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Effect of organic fertilizers and reduced-tillage on soil properties, crop nitrogen
response and crop yield: Results of a 12-year experiment in Changins, Switzerland

Alexandra Maltas, Raphaël Charles, Bernard Jeangros, Sokrat Sinaj *

Research Station Agroscope Changins-Wädenswil ACW, CP 1202, CH-1260 Nyon, Switzerland

1. Introduction

The use of organic fertilizers is considered to be an effective way
of increasing soil organic carbon (SOC) sequestration and supply-
ing micronutrients to crops in comparison with the use of mineral
fertilizers only (Lal, 2009). Long term cultivation without organic
fertilizers usually leads to a decrease in SOC and total N contents
(Dick, 1992) and in crop yield (Bhandari et al., 2002; Regmi et al.,
2002). However, with the increased accessibility to chemical
fertilizers and farm specialization, the use of organic fertilizers has
declined dramatically in some regions of Switzerland over the last
decades. This raises the question of the maintenance of soil organic
matter (SOM) content on farms without livestock (Vullioud et al.,
2006).

SOM is a key component of the agrosystem as it prevents soil
degradation, reduces the risk of water pollution and enhances
chemical, biological and physical soil properties (Swift, 2001).
Consequently, improvement in the SOM content generally leads to
an increase in agronomic productivity through a better use of
energy-based inputs (e.g., fertilizers, water, pesticides) (Lal, 2011).
Changes in the SOM content may also alter the potential of soil to
supply or sequester nutrients, especially N, through changes in
mineralization–immobilization turnover (Jansson and Persson,
1982) and cation exchangeable capacity (Lal, 2006).

The build-up of SOC is a slow process depending on the amount
of carbon (C) input to soil as crop residue, and its balance with SOM
decomposition (Nyborg et al., 1995). Cropping systems affect SOC
levels because of their effects on C inputs and C losses (Follett,
2001). In general, application of organic fertilizers and especially
manure, either alone or in combination with mineral fertilizers,
increases SOC content (Blair et al., 2006; Gong et al., 2009; Maltas
et al., 2012; Manna et al., 2007; Rudrappa et al., 2006;). In contrast,
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A B S T R A C T

The combined effects of the nature of fertilizers (chemical and/or organic), splitting of manure inputs and

tillage intensity (reduced or conventional) on soil properties, crop production and crop response to

nitrogen (N) fertilization were studied in Changins, Switzerland between 1997 and 2009. Five main-

treatments were tested in a split-plot design: (i) mineral fertilizer with reduced-tillage (MinRT), (ii)

manure every year plus mineral fertilizer with reduced-tillage (Ma1RT), (iii) manure every year plus

mineral fertilizer with conventional-tillage (Ma1CT), (iv) manure every three years plus mineral

fertilizer with reduced-tillage (Ma3RT) and (v) slurry every year plus mineral fertilizer with reduced-

tillage (Slu1RT). Sub-treatments included two levels of N-fertilization: an optimal dose (according to the

Swiss fertilization guidelines) and a sub-fertilization (60% of the optimal dose). The soil was a Calcaric

Cambisol with, in 1997, 20.5 g kg�1 of soil organic matter (SOM) in the first twenty centimeters. After

twelve years of experimentation, SOM contents were 19.8, 20.3, 21.3, 21.5, and 22.8 g kg�1 under

respectively Ma1CT, MinRT, Ma1RT, Slu1RT and Ma3RT treatments. The main-treatments do not have a

significant effect on SOM contents and chemical soil properties. When N-fertilization was non-limited

(optimal dose) and manure was applied, tillage intensity had not significant effect on grain yield. When

N-fertilization was non-limited with reduced tillage (RT), the crops in the treatments with organic

fertilizers yielded 2–13% more grains (0.2, 0.3, 0.4 and 0.5 t ha�1 more for respectively rapeseed, spring

cereal, maize and winter wheat) than those in treatments with mineral fertilizers only. The sub-

fertilization (60% of the optimal dose) decreased the grain yields by 9, 13, 15, 7 and 16%, respectively, in

MinRT, Ma3RT, Ma1RT, Ma1CT, Slu1RT. In conclusion, organic fertilizers and reduced tillage provide

effective means to conserve soil fertility and crop production in the studied soil, although both enhance

N fertilizer needs. Splitting manure applications into lower amounts annually did not bring any benefits

to soil properties or crop production.
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inorganic fertilizers often produce contradictory effects on SOC
content (Ghani et al., 2003; Gong et al., 2009; Simon, 2008). This
uncertainty is partly attributed to the specific processes governing
C sequestration under agronomic practices, varying with soil type,
climate and crop rotation. No-till (NT) is generally known to
improve SOM content (Bayer et al., 2006; Bernoux et al., 2006;
Campbell et al., 1999; Follett, 2001; Franzluebbers, 2005; Lal et al.,
1998; Lal, 2009; Six et al., 2002; Tebrügge and Düring, 1999; West
and Post, 2002), especially in the plowed soil layer (Baker et al.,
2007; Ogle et al., 2005; Puget and Lal, 2004), because of changes in
soil structure and lower decomposition rates due to physical
protection of C within aggregates (Jastrow et al., 1996; Six et al.,
2000). However, other studies questioned whether NT actually
increases SOC content (Angers et al., 1993, 1997; Anken et al.,
2004; Baker et al., 2007; Christopher et al., 2009; Franzluebbers
and Arshad, 1996; Wright et al., 2005). The storage capacity of SOM
in these systems varies widely depending on soil characteristics
(texture, slope), climatic conditions, initial SOM content, differ-
ences in C inputs from crop production and C decomposition in the
soil and management practices (Balesdent et al., 2000; Collins
et al., 2000; Doran and Smith, 1987; Paustian et al., 1997).
Numerous studies have also shown that NT can increase or
decrease crop yields (Al-Kaisi et al., 2005; Beyaert et al., 2002; Dam
et al., 2005; Drury et al., 2003; Griffith et al., 1988; Halvorson et al.,
1999; Hammel, 1995; Hussain et al., 1999; Potter et al., 1996;
Tarkalson et al., 2006; Wilhelm and Wortmann, 2004) depending
on environmental conditions and have varying impact on C inputs
to soil (Ogle et al., 2012).

Since long-term effects of agricultural management practices
vary greatly among sites conditions, it is necessary to evaluate
these effects under different soil–climatic conditions (Johnston,
1997; Mitchell et al., 1991). The objective of the present study was
to quantify, for a Cambisol and under the relatively dry climate of
western Switzerland, the medium-term effect (12 years) of
organic fertilization and reduced-tillage practices on soil proper-
ties, crop yield and crop response to N fertilization. The questions
addressed were: (i) how the nature of organic fertilizers, the

splitting of manure application and the tillage intensity affect
SOM content, and (ii) what are the consequent effects of these
practices on soil chemical properties, crop N response and crop
yield.

2. Material and methods

2.1. Site description and experimental design

A field experiment was established in 1997 by the Swiss
Research Station Agroscope ACW (468240E, 068130N; altitude:
445 m) on a Calcaric Cambisol with 230 g kg�1 of clay and
410 g kg�1 of silt in the twenty uppers centimeters of soil. Mean
annual rainfall and temperature were, respectively, 954 mm and
10 8C (means from the last 30 years). Before starting the
experiment, the area was covered with spring barley. Some
selected physico-chemical characteristics are presented in Table 1.

The experimental design was a split-plot with five main-
treatments, two sub-treatments and four replications. The five
main-treatments were: (i) mineral fertilizer with reduced-tillage
(MinRT), (ii) manure every year plus mineral fertilizer with
reduced-tillage (Ma1RT), (iii) manure every year plus mineral
fertilizer with conventional tillage (Ma1CT), (iv) manure every
three years plus mineral fertilizer with reduced-tillage (Ma3RT)
and (v) slurry every year plus mineral fertilizer with reduced-
tillage (Slu1RT). Sub-treatments included two levels of nitrogen
fertilization: an optimal dose (N100) and a sub-fertilization (N60).
The optimal dose was determined according to the Swiss
fertilization guidelines (Sinaj et al., 2009). On the treatment
N100, crop N needs calculated according to Sinaj et al. (2009) were
assumed to be 100% covered by mineral and/or organic fertilizer
(25% of the organic nitrogen is considered available for the crop the
year of application and 15% the following year). On the treatment
N60, chemical N fertilizer was reduced to cover only 60% of N needs
(amount of organic fertilizer is identical to N100 treatments). The
chemical N fertilizations (NH4NO3) were applied in two or three
times during the growing period.

Table 1
Selected soil characteristics in the five main-treatments at the beginning of the experiment (1997, 0–20 cm depth, values in brackets indicate the standard deviation).

Soil characteristics MinRT Ma1RT Ma1CT Ma3RT Slu1RT Mean Probability

SOMa (g kg�1) 20.8 (1.3) 20.0 (2.4) 19.8 (2.6) 21.0 (1.4) 20.8 (1.5) 20.5 0.86

pH-H2Oa 7.9 (0.2) 7.8 (0.2) 7.8 (0.2) 7.9 (0.1) 7.9 (0.1) 7.9 0.56

P-AAEa,b (mg kg�1) 136 (31) 124 (32) 124 (30) 145 (33) 133 (25) 132 0.85

K-AAEa,b (mg kg�1) 195 (14) 190 (22) 193 (14) 216 (33) 199 (37) 198 0.65

a Analyzes performed according to the standards methods of the Swiss research stations Agroscope (FAL et al., 2004).
b P-AAE and K-AAE represent P and K extracted with ammonium acetate and EDTA.

Table 2
Mean chemical fertilization (kg ha�1) applied on N100 sub-treatment from 1997 to 2008.

Year Crop MinRT Ma1RT Ma1CT Ma3RT Slu1RT

N P K N P K N P K N P K N P K

1997a Rapeseed 147 35 66 135 22 66 135 22 66 124 22 66 147 35 66

1998 Spring oats 89 18 66 68 6 22 68 6 22 72 6 22 81 18 66

1999 Winter wheat 138 17 79 111 5 29 111 5 29 138 0 0 141 9 0

2000a Maize 130 0 0 105 0 0 108 0 0 93 0 0 118 0 0

2001 Spring wheat 150 82 242 130 54 0 130 48 0 128 70 116 137 85 216

2002 Spring Barley 90 10 74 71 10 54 71 10 34 90 10 74 79 14 100

2003a Rapeseed 145 42 140 119 18 2 119 18 5 97 0 0 134 37 105

2004 Winter wheat 140 0 0 118 0 0 118 0 0 114 0 0 135 0 0

2005 Maize 115 55 173 79 0 83 79 0 102 115 52 44 104 55 143

2006a Winter wheat 164 0 0 104 0 0 104 0 0 112 0 0 107 0 0

2007 Winter wheat 140 55 0 77 0 0 77 0 0 110 11 0 92 55 0

2008 Rapeseed 141 0 0 117 0 0 117 0 0 141 0 0 117 0 0

a Year with application of manure on Ma3RT.
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2.2. Fertilization and agronomic practices

The crop rotation, over a period of five to six years, alternated
spring and winter crops, and included 60–70% of cereals, rapeseed
and maize (Table 2).

At harvest, straw from the cereals was systematically removed
from the soil, whilst straw from maize (2000 and 2005) and
rapeseed (1997, 2003 and 2008) was incorporated into the soil.
After harvesting the previous crop, shallow stubble cultivation
(10–15 cm) was performed with a cultivator. Before sowing, a
second tillage was carried out with a cultivator (10–15 cm in
treatments with reduced-tillage) or a plough (20–30 cm in
treatment with conventional tillage). Finally, the soil was prepared
with a rotary harrow (5 cm) for sowing.

Manure was applied at a rate of 12 t ha�1 every year on Ma1RT
and Ma1CT and 36 t ha�1 every three years (in 1997, 2000, 2003
and 2006) on Ma3RT. Cattle manure from loose housing was used.
This was spread and incorporated into the soil before sowing.
Cattle slurry was diluted (1:1) with wash water and sprayed in
spring during the period of growth. The characteristics of the
manure and slurry are presented in Table 3.

The total phosphorus (P) and potassium (K) fertilizations
(mineral and organic) were optimal on all main-treatments,

according to the Swiss fertilization guidelines for crops and
grassland (Sinaj et al., 2009). When organic fertilizers were applied
(Ma1RT, Ma1CT, Ma3RT and Slu1RT), mineral P and K fertilizers
completed the organic inputs to reach the optimal doses. The
average amounts of P and K applied as chemical fertilizers in the
different treatments are presented in Table 2. Superphosphate and
salt of potash (KCl) were applied prior to sowing for the summer
crop (maize) and during the growing period for other crops
(rapeseed, winter and spring cereals).

2.3. Soil sampling and analyses

Soils were sampled in September 2009, after the rapeseed
harvest, from the plough layer (0–20 cm). At least 10 cores with a
diameter of 2.5–3 cm were taken randomly within each sub-plot.
Plant residues were removed from the soil and the individual
samples mixed to form a composite sample per plot. These samples
were air-dried, sieved at 2 mm and analyzed for different soil
properties (Table 4).

The total aboveground dry matter of crops (grains and straw)
was measured each year at harvest. The harvest was dried at 65 8C
for 48 h (FAL et al., 2004). The N content of aboveground dry matter
was analyzed each year from 1998 to 2008.

Table 3
Organic fertilizers characteristics (mean content for the period 1997–2008, values in brackets indicate the standard deviation) and inputs by organic fertilizer on Ma1RT and

Ma1CT with 12 t ha�1, Ma3RT with 36 t ha�1 and SluRT with 22 m3 ha�1.

Manure Slurry Ma1RT/Ma1CT Ma3RT SluRT

mg kg�1 of fresh matter kg ha�1

Dry matter 210.0 (92.1) 25.3 (18.6) 2520 7560 557

Organic matter 143.2 (19.8) 20.0 (16.0) 1718 5155 440

Total N 4.6 (1.4) 1.4 (0.7) 55 166 31

N–NH4 0.2 (0.1) 0.8 (0.3) 2 7 18

Total P 1.5 (1.3) 0.2 (0.2) 18 54 4

Total K 6.0 (3.5) 1.7 (0.6) 72 216 37

Total Ca 7.1 (8.5) 0.8 (0.4) 85 256 18

Total Mg 1.0 (0.7) 0.2 (0.2) 12 36 4

Analyzes performed according to the standards methods of the Swiss research stations Agroscope (FAL et al., 2004). Moisture content of manure was 80%. Density assumed for

slurry was 1.0.

Table 4
Effects of the main and sub-treatments on soil properties in 2009.

Analyze N60 subplot Mean of

all main treatments

N100 sub-plot

Mean MinRT Ma1RT Ma1CT Ma3RT Slu1RT

Organic properties

SOMa (g kg�1) 21.1A 21.1A 20.3ab 21.3ab 19.8b 22.8a 21.5ab

Total Na (g kg�1) 1.58A 1.60A 1.58ab 1.60ab 1.48b 1.70a 1.63ab

C/N ratio 7.7A 7.7A 7.5a 7.7a 7.8a 7.8a 7.7a

Chemical properties

pH-H2Oa 7.9A 7.9A 8.0a 7.8a 7.9a 8.0a 7.9a

CECa (cmol + kg�1) 11.2A 11.3A 11.1a 11.3a 11.0a 11.4a 11.7a

Base saturation (%) 94.0A 94.5A 96.0a 91.7a 95.7a 94.3a 94.8a

Total Pb (mg kg�1) 955.3A 943.2A 956.8a 911.5a 909.4a 978.6a 959.9a

Organic Pb (mg kg�1) 286.0A 287.7A 263.8a 321.1a 269.1a 285.2a 299.4a

P-AAEc (mg kg�1) 126.3A 123.2A 120.5a 118.8a 105.2a 140.0a 131.8a

K-AAEc (mg kg�1) 168.4A 167.8A 160.0a 174.3a 154.7a 177.4a 172.7a

Mg-AAEc (mg kg�1) 191.7A 195.5A 213.2a 185.5a 224.4a 176.1a 178.6a

Ca-AAEc (g kg�1) 19.5A 19.7A 24.6a 15.7a 23.9a 16.8a 17.4a

Cu-AAEc (mg kg�1) 10.2A 10.6A 10.9a 7.3a 10.6a 13.8a 10.2a

Fe-AAEc (mg kg�1) 323.5A 322.1A 337.5a 340.8a 346.0a 305.3a 280.8a

Mn-AAEc (mg kg�1) 427.0A 416.9A 422.0a 433.3a 419.5a 441.3a 419.0a

Zn-AAEc (mg kg�1) 3.1A 3.3A 2.8a 3.3a 3.3a 3.1a 3.2a

a SOM, total N, pH-water and CEC are measured according to the Swiss standard methods (FAL et al., 2004).
b Total and organic-P are measured after soil incineration at 550 8C during 1 h and extraction of the ashes with 0.5 M H2SO4 (Saunders and Williams, 1955).
c P-, K-, Mg-, Ca-, Cu-, Fe-, Mn- and Zn-AAE are extracted with ammonium acetate and EDTA according to the Swiss standard methods (FAL et al., 2004).

Different uppercase letters within the same row indicate significant difference between sub-plots at the 0.05 probability level by Fisher’s multiple range test. Different

lowercase letters within the same row indicate significant difference between main-plots at the 0.05 probability level by Fisher’s multiple range test.
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2.4. Data analyses

To avoid any inter-annual variations in yield, often higher than
those observed in a given year between treatments, a crop yield
index was used to compare the results (Morel et al., 1992).

Thus, results of grain yields, aboveground biomass and
aboveground N uptake were expressed as a percentage of the
control (MinRT) and were mentioned as relative grain yields,
relative aboveground biomass and relative aboveground N uptake.
In this latter instance, years were considered as a random factor.

The drop in grain yields, caused by the 40%-reduction of N
fertilization (N60), has been quantified, each year, using Eq. (1):

y ¼ 100 � 1 � xN60i

xN100i

� �
(1)

where y represents grain yield response to N fertilization (in %),
xN60i the grain yield on the N60 sub-plot of the main-plot i and
xN100i the grain yield on the N100 sub-plot of the main-plot i.

The same equation was used to calculate the aboveground
biomass response and the aboveground N uptake response to N
fertilization.

Statistical analyses were accomplished using the program
Xlstat 2010, copyright Addinsoft 1995–2009. A two-way ANOVA
was performed to analyze the effects of main-treatments and sub-
treatments (split-plot design) on soil properties in 2009. Effects of
main-treatments on relative grain yields, aboveground biomass
and aboveground N uptake under N100 sub-treatments were
tested by a two-way ANOVA (crop � main-treatment). Four crops
were defined: rapeseed, winter wheat, spring cereal and maize.
The same test was applied to analyze responses to N fertilization of
grain yields, aboveground biomass, and aboveground N uptake.
After calculating ANOVA, when P < 0.05, the Fisher multiple-range
test was applied to compare significance differences within main-
treatments or sub-treatments. Linear regression was performed
with Sygmaplot 11.0, copyright Systat Software 2008, to describe
the temporal change in the aboveground N uptake response to N
fertilization (Fig. 2).

3. Results and discussion

3.1. Organic soil properties

On the N100 sub-treatments of the five main-treatments, SOM
contents in 2009 (Table 4) were not significantly (P < 0.05)
different compared to SOM contents in 1997 (Table 1). Thus under
conditions of the present study, the application of 12 t ha�1 of
manure every year (Ma1CT) was sufficient to maintain SOM
content when the soil was conventionally-ploughed. When only
mineral fertilizers were used (MinRT), the reduced tillage (RT)
seems to be also effective to conserve SOM content. Nevertheless, it
is difficult to detect losses or gains in SOM content over short- and
medium-term because of temporal and spatial variability of the
studied site (Bosatta and Ågren, 1994).

In 2009, when RT was applied, the nature of fertilizer had not
significant effect on the SOM content (Table 4). However, in
comparison with 1997, SOM content tends to increase when
organic fertilizers were used (+1.3, +1.8 and +0.7 g kg�1 under
Ma1RT, Ma3RT and Slu1RT, respectively, Tables 1 and 4) while it
tends to decrease with mineral fertilizer only (�0.5 g kg�1 under
MinRT, Tables 1 and 4). Edmeades (2003) reported that, in relation
to mineral fertilizers, organic fertilizers increased SOM contents,
since they contain significant amounts of organic matter.

When manure was applied every year, soil tillage intensity had
not significant effect on the SOM contents measured in 2009 (Table
4). However, in comparison with 1997 the SOM content tends to

increase under RT (Ma1RT) while it does not evolve in the case of
conventional-tillage (Ma1CT, Tables 1 and 4). These results confirm
those of Berner et al. (2008) who suggested that reduced tillage
systems may provide a valid option for sequestering soil organic
carbon under Swiss conditions. The increase in SOM content in
reduced-tillage systems is generally due to lower losses by run-off
and mineralization (Six et al., 2002; Tebrügge and Düring, 1999;
West and Post, 2002) or to a dilution effect (Franzluebbers, 2002;
Yang and Wander, 1999).

Splitting the applications of manure into annual doses (Ma1RT)
rather than applying the total amount every three years (Ma3RT)
did not significantly affect the SOM content (Table 4). Organic
matter in slurry form is generally more easily degradable than in
manure (Rudrappa et al., 2006; Su et al., 2006) and therefore has
less effect on SOM storage than manure (Triberti et al., 2008).
However, in this trial, manure and slurry applied annually (Ma1RT
and Slu1RT) presented equivalent SOM contents in 2009 (Table 4),
despite the higher input of fresh organic matter with manure than
with slurry (Table 3).

It is generally accepted that nitrogen fertilization helps to
sequester C in the soil by increasing biomass crop residues (Liebig
et al., 2002; Paustian et al., 1997; Raun et al., 1998). However, no
significant effect of nitrogen fertilization on the SOM-content was
observed from the present study. Indeed, twelve years of different
levels of N-fertilization (N60 and N100) did not significantly
influence SOM contents (Table 4) whereas reduced N-fertilization
decreased aboveground biomass production by only 10% on
average in this experiment (Table 6). Numerous studies in the
United States, listed by Khan et al. (2007), have also shown little
effect of N fertilization on C-storage in soil. It is possible that N-
fertilization stimulates microbial activity (Conde et al., 2005;
Green et al., 1995; Khan et al., 2007) and/or accumulates more
labile organic forms (Stevens et al., 2005) that may be responsible
for enhancing SOM mineralization. Furthermore, effect of N
fertilization on SOM content depends on the crop residues
management. Here, only crop residues of rapeseed and maize
have been returned to the soil. In this condition, reduction of N
fertilization reduced crop residues restitutions (rapeseed and
maize) by, on average, 3.9 t ha�1 between 1997 and 2009 (data not
shown).

The effects of main-treatments and sub-treatments on total N
contents (Table 4) were similar to those reported for SOM content.
The C/N ratio, which is an indicator of SOM quality, was not
significantly affected by main- and sub-treatments (P > 0.05).

3.2. Chemical soil properties

No significant effect of main- and sub-treatments was observed
on chemical soil properties, even after 12 years of trials (Table 4).
Sub-treatment had also not significant effect on CEC and soil pH
(Table 4). However, the application of ammonium-fertilizers
generally decreased soil pH and, consequently, the CEC due to
nitrification of NH4

+ and/or the uptake of NH4
+ by the crops

(Pernes-Debuysera and Tessier, 2004). In the experiments pre-
sented here, the main- and sub-treatments were probably not
applied long enough (12 years) to observe any significant effects on
CEC and soil pH.

The organic fertilizers used in this experiment provided
significant amounts of P, K Ca and Mg (Table 3) and probably
some trace elements, due to their presence in livestock feed (Li
et al., 2007). The P and K content of organic fertilizers have been
taken into account in the calculation of P and K fertilization (Sinaj
et al., 2009). This explains why total, organic and available P (AAE-
P), as well as available K (AAE-K), were not significantly affected by
the main-treatments (Table 4). Repeated supplies of Ca, Mg and
trace elements through organic fertilizers did not significantly
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affect their available forms in the soil (AAE-extraction) in 2009
(Table 4). This result contradicts that of Edmeades (2003), who
reported an accumulation of Ca and Mg in the top soil layer following
repeated applications of manure and slurry, and the results of Li et al.
(2007) which showed higher values of extractable trace elements in
soil receiving organic fertilizers. In the present study, the amounts of
Ca, Mg and trace elements provided by the manure or slurry in
available form (AAE-extraction) are probably (i) offset by higher
exports by harvested crops in treatments receiving manure or slurry
(Table 5), (ii) accumulated in non-available forms or (iii) lost by run-
off or leaching below 20 cm depth.

3.3. Relative grain yields, above-ground biomass and N uptake

When nitrogen is not a limiting factor (N100 sub-treatment),
main-treatments have a significant effect on relative grain yield of
winter wheat and spring cereal (Table 5). Looking at average
results from the 12-year study period, the relative grain yield was
significantly higher in the main-treatment receiving slurry
annually (Slu1RT) compared to the control receiving only mineral
fertilizers (MinRT). When the soil was not ploughed, the relative
grain yield tended to be higher in treatment with manure (Ma1RT
and Ma3RT, Table 5). Many authors (Bhandari et al., 2002; Ladha
et al., 2003; Regmi et al., 2002) have also noted that continued use
of mineral fertilizers alone results in lower yields, while the use of

organic fertilizer combined with appropriate NPK mineral
fertilization helps to maintain them. This positive effect of organic
fertilizer on yield is generally due to a gradual improvement of soil
physical properties (Zhang et al., 2009). However, the cumulative
effect on SOM content alone cannot account for this observation,
since (i) the effect of nature of fertilizer on SOM was not significant
and (ii) the positive effect of slurry was observed from the
beginning of the trial and did not increase with time (Fig. 1). Thus,
the positive effect of slurry on grain yield seems rather due to a
direct effect, like a more diversified mineral fertilization (e.g. Ca,
Mg, trace elements).

On average over the twelve years of the experiment, reduced-
tillage did not significantly affect the relative grain yield (Ma1RT
vs. Ma1CT, Table 5). Lal (2006) reports an increase in wheat and
maize yields with increased organic C content in the soil. Over the
twelve years of the present study, the slight increase in SOM
content due to reduced tillage had no positive effect on the relative
crop yield (Fig. 1). However, such an effect could be expected in the
longer term.

Splitting manure applications (Ma1RT vs. Ma3RT) had no
significant effect on the relative grain yield, whereas the nature of
the organic fertilizer (Ma1RT vs. Slu1RT) did show a significant
effect (Table 5). Slurry presented higher values than manure,
probably due to the greater proportion of rapidly available
nutrients (Rudrappa et al., 2006; Su et al., 2006).

Table 5
Effects of the main treatments on mean relative grain yield, aboveground biomass and N uptake on N100 sub-plots (MinRT = 100%).

Relative grain yield (%) Relative above-ground biomass

(%)

Relative N uptake (%)

Rapeseed

MinRT 100 (3.3)a A 100 (12.6)a A 100 (175)b A

Ma1RT 105 A 102 A 92 A

Ma1CT 102 A 116 B 119 B

Ma3RT 101 A 100 A 91 A

Slu1RT 108 A 98 A 90 A

Treatment P = 0.157 P = 0.012 P = 0.011

Winter wheat

MinRT 100 (5.1)a A 100 (9.8)a A 100 (141)b A

Ma1RT 106 B 108 AB 107 AB

Ma1CT 110 BC 110 BC 110 BC

Ma3RT 105 AB 110 BC 103 AB

Slu1RT 115 C 117 C 117 C

Treatment P < 0.001 P = 0.003 P = 0.001

Spring cereal

MinRT 100 (4.5)a A 100 (7.6)a A 100 (104)b A

Ma1RT 102 A 104 A 107 A

Ma1CT 96 A 100 A 98 A

Ma3RT 105 AB 106 AB 108 A

Slu1RT 115 B 114 B 120 B

Treatment P = 0.013 P = 0.030 P = 0.005

Maize

MinRT 100 (7.5)a A 100 (19.7)a A 100 (231)b A

Ma1RT 103 A 116 A 117 A

Ma1CT 98 A 99 A 97 A

Ma3RT 103 A 110 A 113 A

Slu1RT 110 A 109 A 118 A

Treatment P = 0.235 P = 0.212 P = 0.103

Mean

MinRT 100 A 100 A 100 A

Ma1RT 104 A 107 B 106 A

Ma1CT 102 A 107 B 106 A

Ma3RT 104 A 107 B 104 A

Slu1RT 113 B 110 B 113 B

Treatment P < 0.001 P = 0.011 P = 0.025

Crop P = 0.046 P = 0.061 P = 0.008

Crop � treatment P = 0.396 P = 0.002 P < 0.001

a Absolute value in t ha�1.
b Absolute value in kg N ha�1.

Different letter between treatments for the same crop in a column indicate significant difference at the 0.05 probability level by Fisher’s multiple range test.
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Effects of main-treatments on relative aboveground biomass
(grains and straw) and aboveground N uptake were similar to
those reported for relative grain yields (Table 5). However, the
interactions between main-treatments and crop species showed
significant differences (Table 5). The high requirements with
regards to seed-bed quality (Vullioud and Mercier, 2004) could
explain the decrease in rapeseed aboveground biomass when the
soil was not ploughed. The opposite effect of reduced tillage was
observed for maize. This negative effect of tillage on maize has
been previously reported by Vullioud and Mercier (2004). A greater
water availability in the summer under reduced-tillage, due to
lower soil evaporation (Munawar et al., 1990), could be one
explanation, while soil compaction caused by tillage, generally in
spring when the soil is still wet, could be another. The present
study (Table 5) and other Swiss research (Anken et al., 2004;
Rieger, 2001; Vullioud and Mercier, 2004) did not show any
significant effect of tillage on the yield of winter cereals.

3.4. Response to N fertilization

Main-treatments had a significant effect on the response of
grain yield to N fertilization, whereas no significant interaction
between main-treatments and crop species was observed
(Table 6).

When the soil was not tilled, crops receiving manure annually
(Ma1RT, Slu1RT) gave a higher yield response to N fertilization
than those receiving only mineral fertilizer (MinRT, Table 6)

suggesting greater N needs of crops when manure is used. This
result is in contradiction with the findings of Lal (2006) and
Whalen et al. (2001), who advocated reduced inputs of N fertilizer,
due to higher mineralization, when manure is regularly applied. In
this study, SOM was not significantly affected by nature of fertilizer
(Table 4) while crop yields were affected when N was supposed not
to be a limiting factor (N100, Table 5). On N100, the N uptake by
crops and aboveground biomass were greater in treatments with
slurry and tended to be higher with manure (Table 5). The higher
relative aboveground biomass in these treatments (Table 5)
probably increases the crop requirement for N.

The presented data show that the crop response to N
fertilization is significantly lower in conventionally tilled plots
(Ma1CT vs. Ma1RT, Table 6). This is probably due to the higher soil
N availability in the case of ploughing. Indeed, tillage stimulates
the mineralization of SOM by an effect (i) on the oxygenation of the
soil (Balesdent et al., 2000) and (ii) on the SOM protection inside
the soil aggregates (Balesdent et al., 2000; Paustian et al., 2000; Six
et al., 2002). Thus, shortly after conversion to no-till, the soil-N
availability generally decreases (Balesdent et al., 1990; Kristensen
et al., 2000). However, in the longer-term, the contrary could be
observed thanks to the gradual increase in the amounts of SOM and
the stock of mineralizable-N (Balesdent et al., 2000, Rice et al.,
1986). In the Cerrado region of Brazil, Maltas et al. (2007) reported
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Table 6
Grain yield, aboveground biomass and aboveground N uptake response to N fertilization (relative difference N100 to N60).

Response to N fertilization (%) of

Grain yield Aboveground biomass Aboveground N uptake

MinRT 9.4 AB 8.5 A 19.3 A

Ma1RT 14.9 C 11.5 A 24.5 A

Ma1CT 6.8 A 6.5 A 16.8 A

Ma3RT 12.9 BC 10.4 A 17.5 A

Slu1RT 15.8 C 11.5 A 23.6 A

Main-treatments P < 0.001 P = 0.376 P = 0.066

Crop P = 0.003 P = 0.091 P < 0.001

Crop � main-treatments P = 0.350 P = 0.306 P = 0.384

Different letter between treatments for the same crop in the same column indicate significant difference at the 0.05 probability level by Fisher’s multiple range test.
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that when soils were converted from conventional to no-tillage
systems with cover-crops, N mineralization increased along the
years through increase in soil total N. The results from this study
suggest that N-fertilization should be increased at least during the
first twelve years of transition from conventional to reduced tillage
(Fig. 2).

The grain-yield and the aboveground biomass responses
to N fertilization were not significantly influenced by manure
splitting (Ma1RT vs. Ma3RT, Table 6). The N-uptake response
tends to be negatively affected by manure splitting. In all cases,
splitting of manure applications into smaller doses did not
improve manure-N efficiency (Table 6) and is therefore not
profitable.

4. Conclusion

In order to maintain the sustainability of cropping systems,
preventing the decrease of SOM content is a key factor. Under the
conditions of the present study, the application of 12 t ha�1 y�1 of
manure seems to be an effective way to conserve SOM content
when the soil was conventionally ploughed (Ma1CT) or reduced-
tillage and mineral fertilizers were used (MinRT). Twelve years of
experimentation were not long enough to show significant effects
of organic fertilizers and reduced-tillage on SOM content and soil
chemical properties.

Compared to chemical fertilizers alone, organic fertilizers
improved grain yields by 2–13% under non limiting N conditions,
probably due to a diversified mineral nutrition. Compared to
conventional tillage, reduced tillage did not show any significant
effect on grain yields.

Furthermore, both slurry application and reduced-tillage
increased crop response to N fertilization which suggested higher
N fertilizer needs. This may be due to an increased biomass
potential in organic fertilizer systems and to decreased soil N
mineralization in reduced-tillage systems.

The splitting of manure applications into annual doses would
not appear to be profitable for farmers, since splitting requires
more time and increased costs of spreading without giving any
benefits to soil properties or crop yields.
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