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Abstract: In Europe, approximately 84% of cultivated crop species depend on insect pollinators,
mainly bees. Apis mellifera (the Western honey bee) is the most important commercial pollinator
worldwide. The Gram-positive bacterium Melissococcus plutonius is the causative agent of European
foulbrood (EFB), a global honey bee brood disease. In order to detect putative virulence factors,
we sequenced and analyzed the genomes of 14 M. plutonius strains, including two reference
isolates. The isolates do not show a high diversity in genome size or number of predicted
protein-encoding genes, ranging from 2.021 to 2.101 Mbp and 1589 to 1686, respectively. Comparative
genomics detected genes that might play a role in EFB pathogenesis and ultimately in the
death of the honey bee larvae. These include bacteriocins, bacteria cell surface- and host cell
adhesion-associated proteins, an enterococcal polysaccharide antigen, an epsilon toxin, proteolytic
enzymes, and capsule-associated proteins. In vivo expression of three putative virulence factors
(endo-alpha-N-acetylgalactosaminidase, enhancin and epsilon toxin) was verified using naturally
infected larvae. With our strain collection, we show for the first time that genomic differences
exist between non-virulent and virulent typical strains, as well as a highly virulent atypical strain,
that may contribute to the virulence of M. plutonius. Finally, we also detected a high number
of conserved pseudogenes (75 to 156) per genome, which indicates genomic reduction during
evolutionary host adaptation.

Keywords: European foulbrood; comparative genomics; pathogenesis; Melissococcus plutonius; toxin;
virulence factor; Apis mellifera; brood disease; host-parasite interaction

1. Introduction

The Western honey bee (Apis mellifera) is the most important commercial pollinator
worldwide [1–3]. Approximately 84% of crop species cultivated in Europe depend on insect pollinators,
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mainly bees [4]. Furthermore, honey bees contribute to the pollination of wild plants and are known
for their production of economical and medical relevant products such as honey, beeswax, pollen,
beebread, propolis, royal jelly, and apitoxin. European foulbrood (EFB) is one of the major bacterial
diseases of honey bees [5]. The etiological agent of EFB is Melissococcus plutonius [6], which is a
Gram-positive, microaerophilic and lanceolate coccus. In general, EFB mainly affects the unsealed
brood, and infected honey bee larvae usually die when they are four to five days old [5]. Infection occurs
by ingestion of larval food contaminated with M. plutonius. Subsequently, M. plutonius colonizes the
larval gut. Dying larvae are displaced to the wall of the comb cell, often turn yellow and finally take
on a brownish color, as they decompose after death [7]. In contrast to M. plutonius typical strains,
atypical strains (detected mainly in the UK and Japan, [8]) display a higher virulence and are not
fastidious, meaning that they are able to grow aerobically on some potassium salt-supplemented media.
They do not require potassium phosphate for growth, show β-glucosidase activity and hydrolyze
esculin [9]. Furthermore, in contrast to atypical strains, typical strains often lose their virulence
after a few cultivation steps in vitro [6,9], which hinders the investigation of virulence factors under
laboratory conditions. Nevertheless, variance in virulence related to different M. plutonius phylogenetic
groups, more precisely, sequence types that can be grouped to clonal complexes (CC), has recently been
shown [10]. The authors showed that atypical strain (CC12) was the most virulent followed by the
typical strain of CC3, and a typical strain ofCC13 was non-virulent [10]. Field pathology data confirmed
mostly the decreasing virulence from CC12 and CC3 to CC13 [8]. Until now, virulence factors for
M. plutonius were not described, and therefore the pathogenicity mechanism remains unclear.

In this study, we investigate if phylogeny-related virulence is a consequence of variance in the
gene content. For this purpose, we present the whole genome sequences of 12 M. plutonius strains
and a comparative genome analysis with type strain ATCC 35311 [11] and atypical strain DAT561
from Japan [12]. We identified putative virulence factors of M. plutonius that might play an important
role in EFB pathogenesis. Additionally, we investigated the expression profiles of three putative
virulence factors in naturally EFB-infected larvae. In this way, the study contributes to the prospective
development of a conceptual pathogenicity model and the underlying molecular mechanisms of
EFB disease.

2. Materials and Methods

2.1. Origin of Melissococcus plutonius Strains

M. plutonius ATCC 35311 (type strain) was originally isolated in United Kingdom and represents
a typical strain according to Bailey and Collins [13]. Strain DAT561 represents an atypical strain and
originated from Japan [12]. The typical strains 764-5B and 765-6B were isolated from EFB outbreaks
in Norway and all other typical strains (B5, H6, L9, S1, 21.1, 49.3, 60, 82, 90.0, and 119) from Swiss
EFB outbreaks. Isolates B5, H6, and L9 originate from the same Swiss EFB outbreak and the same
EFB-infected larva. Strains 21.1, 49.3, 60, 82, 90.0, and 119 were isolated from different EFB outbreaks.
M. plutonius S1 is a derivative of strain 49.3 and was isolated after five cultivation steps.

2.2. Growth Conditions and Isolation of DNA from Melissococcus plutonius

Honey bee larvae with clinical EFB symptoms were collected from the aforementioned EFB
outbreaks in Switzerland and Norway, and dissected under sterile conditions. Isolates were prepared
from diseased larvae mixed with Bailey medium [14]. Larval smears were streaked on solidified Bailey
agar. Single colonies were selected after anaerobic incubation at 35 ◦C for five days. All colonies
were verified to be M. plutonius using species-specific 16S rRNA primers (Table S1). Genomic DNA of
M. plutonius was extracted from cells in the exponential growth phase using the Epicentre MasterPure
DNA purification kit (Epicentre, Madison, WI, USA) as recommended by the manufacturer.
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2.3. Genome Sequencing, Assembly and Annotation

Whole-genome shotgun sequencing of M. plutonius strain S1 was performed with a combined
sequencing approach using a Genome Analyzer IIx (Illumina, San Diego, CA, USA) and a 454 GS-FLX
Titanium XL+ system (GS70 chemistry, Roche Life Science, Mannheim, Germany). 454-shotgun
and Illumina Nextera XT shotgun libraries were prepared as recommended by the manufacturers.
Sequencing resulted in 149,969 total 454 shotgun reads and 869,292 Illumina 112 bp paired-end
reads, which were used for a hybrid assembly with MIRA v3.4.0.1 [15]. An average coverage of
67-fold was achieved (Table S2). Editing of the resulting contigs was performed with GAP4, as
part of the Staden software package [16]. Misassembled regions caused by repetitive sequences
were resolved, and closure of remaining gaps was performed by PCR reactions and subsequent
Sanger sequencing. Whole-genome shotgun sequencing of M. plutonius isolates B5, H6, L9, 21.1,
60, 82, 764-5B, and 765-6B was carried out by generating paired-end libraries (2 × 112 bp) with the
Nextera XT library preparation kit and employing the Genome Analyzer IIx as recommended by
the manufacturer (Illumina, San Diego, CA, USA). Strains 49.3, 90.0 and 119 were sequenced at the
Beijing Genomics Institute (Shenzhen, Guangdong, China) with an Illumina Hiseq2000 (Illumina,
San Diego, CA, USA) by employing 90 bp paired-end reads. After read trimming and quality check
using Trim_Galore v0.3.7 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and
FastQC v0.11.2 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), respectively, a de
novo assembly of the paired-end Illumina reads was done with the SPAdes software 3.7.0 [17]. Bacteria
genome sizes were estimated on the outcome of the genome assemblies (Table S2). All small fragments
(>0.5 kb) have been submitted along with larger scaffolds and plasmids. Genomic fragments of 0.5 to
3 kb usually consist of RNA clusters, transposases and repetitive elements. Therefore, we expect no
larger gaps or missing sequence information in the reported genomes.

Prokka v1.9 [18] was used for automatic gene prediction and annotation. Annotation was
manually curated by employing BLASTP and the Swiss-Prot [19], TrEMBL [20] and InterProScan 5
databases [21], and the IMG-ER (integrated microbial genomes-expert review) system [22]. The rRNA
and t-RNA genes were identified with RNAmmer v1.2 [23] and tRNAscan-SE v1.3.1 [24], respectively.

The genome sequences of M. plutonius ATCC 35311 (BioProject: PRJDA61383) and DAT561
(BioProject: PRJDA73165) were obtained from NCBI and re-annotated as described above for
comparative genome analyses (Data S1).

Genome quality was tested by means of estimating genome completeness, contamination and
heterogeneity by using CheckM [25]. The 14 M. plutonius genomes were compared to 55 genomes of
the family Enterococcaceae, the next relatives of M. plutonius. CheckM compares absence, presence and
total copy number for 542 markers with 226 collocated gene sets that are ubiquitous and single-copy
within the Enterococcaceae phylogenetic lineage.

DNA sequences obtained and GenBank submissions: The genome sequences reported in this
paper have been deposited in the GenBank database under accession numbers: JSAY00000000
(M. plutonius 21.1), JSBA00000000 (M. plutonius 49.3), JSBE00000000 (M. plutonius 60), JSBF00000000
(M. plutonius 82), JSAZ00000000 (M. plutonius 90.0), JSBB00000000 (M. plutonius 119), JSAW00000000
(M. plutonius B5), JSBC00000000 (M. plutonius H6), JSBD00000000 (M. plutonius L9), CP006683-CP006684
(M. plutonius S1), JSAV00000000 (M. plutonius 764-5B), JSAX00000000 (M. plutonius 765-6B).

2.4. Genome Analyses

The sequence types (ST) of M. plutonius strains were determined by multilocus sequence typing
(MLST) [26] according to the protocol of Haynes et al. [27]. The sequence type of each strain was
determined in silico using the public available ST data from the PubMLST database (as of 10 August
2017; http://pubmlst.org/). The goeBURST algorithm as implemented in the program PHYLOViZ
v2.0 [28] was used to calculate and visualize the minimum spanning tree (MST) composed of sequence
types and clonal complexes (CC). Orthologous proteins were identified with the program Proteinortho
v5.11 (parameters: identity cutoff 50%, coverage cutoff 50%, e-value cutoff for blastp 1 × 10−5) [29] by

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://pubmlst.org/
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using the protein sequences deduced from the 14 Melissococcus genomes as input. For this purpose,
cat_seq v0.1 and cds_extractor v0.6 were used [30]. Based on these data, presence and absence of
orthologous groups were converted into a simple binary matrix, and a gene content tree was calculated
via RAxML v8.1.3 [31] with 1000 bootstrap re-samplings and the GAMMA model of rate heterogeneity.
For visualization, the Dendroscope software v3.2.1 [32] was used. Harvest v1.1.2 together with Parsnp
v1.2 and Gingr v1.2 as part of the Harvest software suite [33] were used to perform core genome
alignments, calculate genome phylogeny, and identify and visualize single nucleotide polymorphisms
(SNPs) and short insertions and deletions (Indels). M. plutonius 49.3 was used as a reference strain.
Gubbins was used to identify loci with high densities of SNPs [34] that may indicate horizontal gene
transfer (HGT). Results of this analysis were also used to reconstruct genome phylogeny based on
a maximum likelihood approach, as implemented in Gubbins [34]. Mugsy (v1.2.3) [35] was used to
produce a whole genome alignment of all 14 strains used as input for Gubbins. The resulting tree and
HGT events were visualized using phandango [36].

The Phage Search Tool (PHAST) [37] was used to determine prophage sequences within bacterial
genomes. The GIPSy software v1.1.1 (http://www.bioinformatics.org/ftp/pub/gipsy/) was used
to detect genomic islands. Additionally, a blastp (e-value: 1 × 10−50) search of the deduced protein
sequences against the virulence factor database (VFDB) [38] was performed to detect putative virulence
factors. The detection of putative bacteriocins was done via BAGEL3 [39], Bactibase (database as
of 17 February 2015) [40], and IMG-ER [22]. The MEROPS database v9.12 [41] was used to detect
proteolytic enzymes and their substrates. BRIG v0.95 [42] and easyFig v2.1 [43] were used to visualize
whole genome and genome region comparisons, respectively.

2.5. cDNA Synthesis and Reverse Transcription PCR (RT-PCR)

Three 5th instar worker larvae (Apis mellifera) displaying EFB symptoms (M. plutonius strains
B5, H6, L9 all belonging to ST7, have been isolated from one of these larvae) were sampled from
the same colony in Lützelflüh, Switzerland, in June 2013. Furthermore, healthy honey bee 5th instar
larvae (Lohne, Germany, August 2014) were used as a negative control. Sampled larvae were frozen
in liquid nitrogen immediately after collection. Honey bee larvae were individually homogenized
in 200 µL sterile TE buffer (10 mM Tris-HCl (pH 7.4), 1 mM EDTA) supplemented with 3 mg/mL
lysozyme. The homogenate (50 µL) was used for a fast EFB confirmation test using the EFB Diagnostic
Test kit (Vita Europe, Basingstoke, UK) and 10 µL was used for colony PCR with specific primer
pairs targeting the 16S rRNA gene of M. plutonius [44] (Table S1). Subsequently, parallel isolation
of total DNA and RNA was performed by using 140 µL homogenate and the DNeasy Blood and
Tissue kit and RNeasy Mini kit supplemented with RNAprotect Bacteria Reagent as recommended
by the manufacturer (Qiagen, Hilden, Germany). RNA extracts were treated with DNase I (Thermo
Scientific, Germany) and purified with RNeasy MinElute CleanUp kit (Qiagen, Hilden, Germany).
Complete removal of DNA was verified by a PCR reaction targeting the 16S rRNA gene using a specific
primer pair (16S-08F/16S-1504R) (Table S1) and DreamTaq DNA Polymerase as recommended by the
manufacturer (Thermo Scientific, Germany). Purified RNA was transcribed to single-strand cDNA
(sscDNA) using the QuantiTect Reverse Transcription kit (Qiagen, Hilden, Germany). The resulting
sscDNA was used directly for RT-PCRs of single M. plutonius genes. Transcription of M. plutonius
specific genes in EFB-infected larvae was tested using RT-PCR (for primers details see Table S1).
These included the putative virulence factors endo-alpha-N-acetylgalactosaminidase, enhancin, and
a toxin. The transcription of the 16S rRNA gene, rpoD (RNA polymerase sigma factor), and rho
(transcription termination factor) were used as positive controls. Genomic DNA of strain 49.3 was
used as positive control and strain S1 as negative control as the toxin gene is not present in this
strain (Figure S1). For amplification of the 16S rRNA gene, genomic DNA and cDNA from a healthy
honey bee larva was used as a negative control. All PCRs were performed using the Bioxact kit as
recommended by the manufacturer (Bioline, London, UK).

http://www.bioinformatics.org/ftp/pub/gipsy/
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3. Results

3.1. Sequence Types of Melissococcus plutonius Isolates and Clonal Complex Association

In order to analyze the molecular epidemiology and population structure of M. plutonius and
unravel the phylogenetic relationship of 12 isolated strains from Norway and Switzerland, STs were
assigned to all isolated strains. Based on the STs, CC were mainly calculated as single locus variants
with some exceptions (Figure 1). Four isolates belong to ST3 (49.3, S1, 764-5B, and 765-6B) and five
isolates to ST7 (21.1, 60, B5, H6, and L9). Both STs grouped into CC3 (Figure 1, Table 1 and Table
S2). The remaining M. plutonius strains 119 and 90.0 belong to ST20 and ST13, respectively, and their
corresponding STs are part of CC13 (Figure 1, Table 1 and Table S2). Interestingly, the ST profile from
M. plutonius 82, another isolate from Switzerland, with argE 1, galK 9, gbpB 2, and purR 4, could not
be assigned to an already existing ST. Thus, a novel ST (ST32) was defined within CC13. No strain
could be allocated to the known CC12 to which the atypical strains (including DAT561) from Japan
belong. The type strain M. plutonius ATCC 35311 from England was assigned to ST1 (CC13) according
to Haynes et al. [27].
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Figure 1. Minimum spanning tree of sequence types (STs) found in Melissococcus plutonius isolates from
different countries. MLST data from this study were added to those reported previously [8,27,45] and
resulted in the same three clonal complexes (CC3, CC12, and CC13) as reported previously. Altogether,
379 isolates were used to generate this tree using the PubMLST website (https://pubmlst.org/); for
more details see Material and Methods—Genome analyses. Each circle represents a distinct ST –
indicated by the different numbers in each circle, and the size indicates the frequency of occurrence.
Closest relatives are linked with lines including distance labels. Black lines indicate a single allelic
variant between STs and gray lines variation of at least two loci. Colors within circles represent
the proportion of isolates of a particular ST that were found in the countries indicated on the right.
The obtained data were submitted to PubMLST.

3.2. Genome Analysis—General Properties

The genomes of the typical strains M. plutonius 21.1, 49.3, 60, 82, 90.0, 119, B5, H6, L9, S1,
764-5B, and 765-6B range from 2.021 to 2.101 Mbp (2.062 ± 0.0203 Mpb, mean ± standard deviation
(SD)) and comprise between 1589 and 1686 predicted protein-encoding genes (Table 1 and Table S2).
For comparison, the genome sequences of the already known typical strain M. plutonius ATCC 35311
and atypical strain DAT561 were analyzed in the same way. To verify completeness and comparability
of the analyzed genomes, we used checkM [25]. CheckM compared 542 markers across all genomes
and showed that only 16-18 Enterococcaceae specific-marker are missing for each M. plutonius strain
(Table S3). The 14 Melissococcus strains share a genome completeness of 93.88% ± 0.22% (mean ±

https://pubmlst.org/
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SD), and strain heterogeneity and contamination were estimated as 0%. (Table S3). This shows that
genomic variance across strains is very low. M. plutonius strains ATCC 35311, DAT561 and S1 have
closed genomes without any gaps. Even these strains have the same completeness and contamination
value as all other strains. From these results, we can conclude that missing genes (not identified
using the same bioinformatical approach) in some strains, but detected in others, can be assigned as
absent. As mentioned previously (Material and Methods) only sequences below 0.5 kbp have not been
included in estimating genome sizes and for virulence gene screening. Hence, with such high values
for genome completeness, it is very unlikely that genes have not been detected, caused by missing
genome sequences. Comparing the different Melissococcus genomes with respect to their coding density
revealed a high density with neglectable variance for the 14 different strains (79.72 ± 0.29%, mean ±
SD), suggesting no substantial assembly or gene calling errors (Table S3).

Gene content comparisons were performed by using the genome of M. plutonius 49.3 as a reference
(Figure 2). In general, the genomes are very similar in their gene content, except for a 19.4 kbp plasmid
(pMP19) that is present only in 4 isolated strains (49.3, 21.1, 60 and H6). Based on these results, a
phylogenetic tree was obtained via the Harvest software suite [33] through a core-genome alignment
with SNP detection (Figure 3). This phylogeny resolves the relationship of the strains in more detail
than MLST analysis. It confirms the close relationship between ST3 and ST7 strains within CC3, and
shows that M. plutonius 82 is a sister taxon of M. plutonius ATCC 35311 within the monophyletic lineage
of CC13 strains. The SNP based ‘Harvest’ phylogenetic tree was not corrected for recombination.
Reanalyzing all genomes using Gubbins included the search for loci with signs of horizontal gene
transfer. Comparing both phylogenies (Figure 3 and Figure S2) revealed that there is no difference
between both trees. In other words, we did not detect relevant signs of recombination and horizontal
gene transfer events in the phylogeny of our strains.

Interestingly, a high amount of pseudogenes was detected in all strains due to frame shifts and
premature stop codons (75 to 156) (Table 1 and Table S2), which were caused by mutational events in
coding regions like SNPs and Indels [46].

Table 1. General data of M. plutonius strains used in this study.

Strain Origin 1 ST (CC) 2 Classification Genome Size [Mbp] CDS 3 Pseudogenes Plasmids

49.3 CH ST3 (CC3) Typical strain 2.076 1638 140 pMP1, pMP19
S1 CH ST3 (CC3) Typical strain 2.074 1609 151 pMP1

21.1 CH ST7 (CC3) Typical strain 2.077 1629 145 pMP1, pMP19
60 CH ST7 (CC3) Typical strain 2.072 1633 143 pMP1, pMP19
B5 CH ST7 (CC3) Typical strain 2.101 1686 146 pMP1, pMP43
H6 CH ST7 (CC3) Typical strain 2.075 1633 145 pMP1, pMP19
L9 CH ST7 (CC3) Typical strain 2.059 1616 145 pMP1
82 CH ST32 (CC13) Typical strain 2.048 1614 129 pMP1

90.0 CH ST13 (CC13) Typical strain 2.067 1642 131 pMP1
119 CH ST20 (CC13) Typical strain 2.040 1614 127 pMP1

764-5B NO ST3 (CC3) Typical strain 2.046 1605 145 pMP1
765-6B NO ST3 (CC3) Typical strain 2.021 1589 142 pMP1

ATCC 35311 GB-ENG ST1 (CC13) Typical strain 2.069 1594 156 pMP1
DAT561 JP ST12 (CC12) Atypical strain 2.045 1595 75 pMP1, pMP19 4

1 CH: Switzerland, NO: Norway, GB-ENG: England, JP: Japan; 2 Sequence type (ST) and clonal complex (CC); 3 CDS
stands for coding sequences; 4 recently identified in the new version of the genome [47].

All strains harbor a plasmid with high DNA sequence similarity to the recently published plasmid
pMP1 (NC_015517) of M. plutonius ATCC 35311 [11]. Moreover, for several strains such as 21.1, 49.3, 60,
B5, and H6, it is indicated that they harbor additional plasmids. Strain B5 harbors a 42.7 kbp plasmid
(pMP43) encoding phage proteins, which are also present in the chromosome of H6, L9, 49.3, S1, 60,
21.1, 764-5B, and 765-6B (see prophage region 1, Figure 2).

Based on the identification of orthologous proteins we calculated the core genome of this set of
M. plutonius strains as 1304 proteins, which represents on average approx. 71% of the proteins encoded
by a M. plutonius genome. The pan-genome of our strain panel comprises 1846 proteins.
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Comparing the different genome properties, this is the first study providing evidence for multiple
strain infections in a single honey bee larva. B5, H6 and L9 were isolated from the same larva but
have different genome sizes, number of coding sequences and pseudogenes, and the pMP19 plasmid
is only present in H6. All three strains cluster together closely (Figure 3), which might indicate that
they are part of the local M. plutonius evolutionary diversity, rather than the result of independent
infection events.
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the genomes of strains H6, 21.1, 60, S1, L9, B5, 765-6B, 764-5B, 119, 90.0, 82, ATCC 35311, and DAT561
using the BRIG software [42]. The inner circle shows the positions of pseudogenes in the M. plutonius
49.3 genome, while virulence factors and prophage regions are depicted on the outer circle and are
marked with red and blue blocks, respectively. Furthermore, pathogenicity (PI) and genomic islands
(GI) are encircled and numbered in red and black. The plasmids pMP1 and pMP19 of M. plutonius 49.3
are indicated as well.



Genes 2018, 9, 419 8 of 20
Genes 2018, 9, x FOR PEER REVIEW  8 of 21 

 

 
Figure 3. Phylogenetic tree based on core genome single nucleotide polymorphism (SNP)-typing of 
typical M. plutonius strains. The phylogenetic tree was obtained via the Harvest software suite [33]. 
M. plutonius 49.3 was set as the reference strain. The strains are marked in the same color code used 
in Figure 2. The SNP and Indel positions, in relation to the reference, are shown on the right hand side 
as violet lines. Sequence types are shown as well for comparison purposes. 

3.3. Genome Analysis—Detection of Putative Virulence Factors 

Arai et al. [9] and Nakamura et al. [10] showed that one atypical strain DAT561 (CC12) was more 
virulent (laboratory infection assays) than two typical strains (DAT606-CC3, DAT585-CC13). Another 
recent study confirmed the high virulence of a CC3 strain and variable, mostly non-virulence, of CC13 
strains [48]. However, data supporting general CC-specific differences in virulence are currently 
lacking. In order to look for gene patterns characteristic for each CC, which might show if virulence 
differences co-segregate with the three described CCs, we calculated a gene content tree based on the 
presence and absence of proteins in each strain (Figure 4). The gene content tree showed high 
similarity to the SNP-based phylogeny (Figure 3). The ST3/ST7 (CC3) strains cluster together as well 
as STs that belong to CC13 (ST1, 13, 20 and 32). Interestingly, the typical strains built different 
phylogenetic clusters (Figure 3).  

Atypical and typical strains might differ phenotypically under specific field conditions [9], and 
different regulation mechanisms for virulence were suggested [45]. To reveal putative differences at 
the genomic level, orthologous proteins in all strains were analyzed in detail using bioinformatical 
tools. We found 132 proteins, which are present in the atypical strain but were not identified in all 
typical strains (Data S2-Sheet 1a, Figure 4). Some of these potentially represent virulence factors or 
variations in metabolic properties necessary for a pathogenic lifestyle. The typical M. plutonius strains 
have 275 orthologues in common, which were not identified in the atypical strain DAT561 (Data S2-
Sheet 1b). The majority of these orthologues are hypothetical or phage-related proteins, but several 
putative virulence factors were identified. In addition, putative virulence factors were determined by 
identifying genomic (GI 1, 2) and pathogenicity islands (PI 1, 2) and their associated virulence 
determinants (Data S2-Sheet 2, 3a, 3b). A summary of all identified putative virulence factors is 
depicted in Figure 4 and Data S2-Sheet 4, including bacteriocins, a tyrosine decarboxylase, PlCBP49-
like protein, enhancin, a collagenase, bacteria cell surface- and host cell adhesion-associated proteins, 
capsule and antigen-forming proteins, and a toxin. 

Figure 3. Phylogenetic tree based on core genome single nucleotide polymorphism (SNP)-typing of
typical M. plutonius strains. The phylogenetic tree was obtained via the Harvest software suite [33].
M. plutonius 49.3 was set as the reference strain. The strains are marked in the same color code used in
Figure 2. The SNP and Indel positions, in relation to the reference, are shown on the right hand side as
violet lines. Sequence types are shown as well for comparison purposes.

3.3. Genome Analysis—Detection of Putative Virulence Factors

Arai et al. [9] and Nakamura et al. [10] showed that one atypical strain DAT561 (CC12) was
more virulent (laboratory infection assays) than two typical strains (DAT606-CC3, DAT585-CC13).
Another recent study confirmed the high virulence of a CC3 strain and variable, mostly non-virulence,
of CC13 strains [48]. However, data supporting general CC-specific differences in virulence are
currently lacking. In order to look for gene patterns characteristic for each CC, which might show
if virulence differences co-segregate with the three described CCs, we calculated a gene content tree
based on the presence and absence of proteins in each strain (Figure 4). The gene content tree showed
high similarity to the SNP-based phylogeny (Figure 3). The ST3/ST7 (CC3) strains cluster together as
well as STs that belong to CC13 (ST1, 13, 20 and 32). Interestingly, the typical strains built different
phylogenetic clusters (Figure 3).

Atypical and typical strains might differ phenotypically under specific field conditions [9], and
different regulation mechanisms for virulence were suggested [45]. To reveal putative differences at
the genomic level, orthologous proteins in all strains were analyzed in detail using bioinformatical
tools. We found 132 proteins, which are present in the atypical strain but were not identified in all
typical strains (Data S2-Sheet 1a, Figure 4). Some of these potentially represent virulence factors
or variations in metabolic properties necessary for a pathogenic lifestyle. The typical M. plutonius
strains have 275 orthologues in common, which were not identified in the atypical strain DAT561
(Data S2-Sheet 1b). The majority of these orthologues are hypothetical or phage-related proteins,
but several putative virulence factors were identified. In addition, putative virulence factors were
determined by identifying genomic (GI 1, 2) and pathogenicity islands (PI 1, 2) and their associated
virulence determinants (Data S2-Sheet 2, 3a, 3b). A summary of all identified putative virulence
factors is depicted in Figure 4 and Data S2-Sheet 4, including bacteriocins, a tyrosine decarboxylase,
PlCBP49-like protein, enhancin, a collagenase, bacteria cell surface- and host cell adhesion-associated
proteins, capsule and antigen-forming proteins, and a toxin.
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We identified an Enterococcus-type tyrosine decarboxylase gene cluster, which is involved in 
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encoding the tyrosine decarboxylase of the typical strains 82, 90.0, 119 and ATCC 35311 are putatively 
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Figure 4. Gene content tree based on presence or absence of orthologous proteins. For constructing the
phylogenetic tree, a presence/absence binary matrix was created from orthologous groups to calculate
phylogeny with RAxML v8.1.3 [31]. The atypical strain M. plutonius DAT561 was used as the outgroup.
Numbers at nodes are bootstrap values calculated from 1000 re-samplings to generate a majority
consensus tree. The scale bar indicates divergence in presence or absence of proteins. STs are shown on
the right. Color-filled boxes to the right of the organisms show the presence of the indicated proteins.
Genes encoding putative virulence factors in red font are located on pMP19. An ‘N’ symbolizes that the
respective open reading frame (ORF) is not complete due to a gap in the DNA sequence. An asterisk
symbolizes that the respective ORF has been identified only in the second version of the DAT561
genome [47]. (Epa: enterococcal polysaccharide antigen).

3.4. Characterization of Genes Putatively Important for Melissococcus plutonius Survival and Pathogenicity

3.4.1. Bacteriocins

A high number of bacteria produce peptides called bacteriocins, which possess antimicrobial
activities against very closely related species or even against strains of the same species [49].
Seven (typical strains) or five (atypical strain DAT561) genes and gene clusters encoding putative
bacteriocin biosynthesis and transport functions were identified in the M. plutonius genomes (Data
S2-Sheet 4), sharing high similarity with putative bacteriocin biosynthesis clusters of Enterococcus
and transport clusters of Streptococcus spp. (Figure S3). Two putative functional ORFs share low
similarity with Zoocin A-like bacteriocins (Data S2-Sheet 4, see ‘Bacteriocin-associated proteins’, ORF1
and 2), and one with an unclassified bacteriocin determined by BAGEL3 [39] (Data S2-Sheet 4, see
‘Bacteriocin-associated proteins’, ORF3). Remarkably, ORF1 is only present in typical strains ST3 and
ST7. On the contrary, ORF3 was found in all other STs determined in this study, excluding the atypical
strain. In addition, we found lysozyme subfamily 2 domain/GH73 family domain-containing proteins
(Data S2-Sheet 4), which might be involved in bacterial cell wall degradation [50].

3.4.2. Tyramine

We identified an Enterococcus-type tyrosine decarboxylase gene cluster, which is involved in
tyramine production (catalyzing the reaction from L-tyrosine to tyramine and CO2) [51]. The genes
encoding the tyrosine decarboxylase of the typical strains 82, 90.0, 119 and ATCC 35311 are putatively
non-functional due to a nonsense mutation (Data S2-Sheet 4). Kanbar et al. [52] showed that tyramine
production of Enterococcus faecalis has highly toxic effects on honey bee larvae leading to classical EFB
symptoms [53].
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3.4.3. Larval Glycoprotein and Peritrophic Matrix-Degrading Enzymes

The peritrophic matrix lines the midgut of invertebrates and is comprised of secreted chitin and
(glyco)proteins, mainly peritrophins [54]. In the M. plutonius genomes, a potential chitin-binding
domain-containing protein, consisting of a signal peptide and a type 3 chitin-binding domain, was
identified (Data S2-Sheet 4). It belongs to the ‘auxiliary activity family 10’ enzyme complex, a family of
lytic polysaccharide monooxygenases, and exhibited 37% amino acid sequence similarity to PlCBP49
(JX185746) of Paenibacillus larvae. PlCBP49 is able to degrade the peritrophic matrix of the honey bee
larva [55]. Additionally, a peptidase M60 family protein (enhancin), which can potentially degrade
the peritrophic matrix of the honey bee larvae [56–59], was present in all strains (Figures 4 and 5,
Data S2-Sheet 4). It contains a signal peptide and shows high similarity to an enhancin-like protein of
Bacillus thuringiensis serovar kurstaki str. (Figure 5). The peptidase M60 family protein also shows low
amino acid sequence similarity to an M60 family protein of P. larvae DSM 25719 (22% identity with
ERIC1_1c29890) [60] and it is homologous to several pseudogenes of P. larvae DSM 25719/25430, which
are fragmented by transposase insertions or mutations (Figure 5) and are putatively non-functional.
The typical M. plutonius strains harbor an identical enhancin protein (744 amino acids), whereas
the enhancin of atypical strain DAT561 is slightly truncated (728 amino acids). However, analyzing
the most recent version of the DAT561 genome [47] revealed that enhancin is not truncated and
might be fully functional like the gene identified for the typical strains. Furthermore, we detected a
gene encoding putative endo-alpha-N-acetylgalactosaminidase (EC 3.2.1.97) that catalyzes the release
of oligosaccharides via hydrolysis of the O-glycosidic bond between alpha-acetylgalactosamine at
the reducing end of mucin-type sugar chains (O-glycan) and serine/threonine residues of proteins,
which is putatively non-functional in the M. plutonius strains 82, 90.0, 119 and ATCC 35311 due to
nonsense mutations.

To confirm expression of these potential virulence factors in larvae, we conducted a gene
expression analysis using naturally infected honey bee larvae, which showed that enhancin as well as
endo-alpha-N-acetylgalactosaminidase were transcribed in vivo during EFB pathogenesis (Figure S1),
while an expression was not detected in a healthy honey bee larva (Figure S1).
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Figure 5. Comparison of the enhancin gene cluster of M. plutonius S1 with P. larvae DSM 25719,
Paenibacillus larvae DSM 25430 and Bacillus thuringiensis serovar kurstaki str. YBT1520. The graphical
presentation was done with the Easyfig software (minimum blast hit length of 50 bp) [43].
ORFs depicted as dotted arrows represent pseudogenes. ORFs related to enhancin are orange, and
transposases are shown in yellow.
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3.4.4. Bacterial Cell Curface- and Host Cell adhesion-associated Proteins

Altogether, five gene clusters and three single ORFs were associated with bacterial cell surface
and bacteria adhesion to host matrix. Each typical strain has nonsense mutations in at least one
of the cluster involved in adhesion. An overview of the identified bacteria cell surface- and host
cell adhesion-associated proteins including their domain structures is depicted in Figure 6, and the
presence and absence of selected proteins is shown in Figure 4 and Data S2-Sheet 4. The genomes of the
typical strains encode less potentially functional bacteria cell surface- and host cell adhesion-associated
proteins than the atypical strain DAT561. Two gene clusters (one and five) of the typical strains are
putative remnants of clusters detected in the atypical strain DAT561. Cluster three contains one ORF
with a nonsense mutation, and cluster four is missing in all typical strains (Figure 4).
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Figure 6. Domain structure of putative bacteria cell surface- and host cell adhesion-associated proteins
with a putative role as virulence factors identified in M. plutonius 49.3 and DAT561. Signal peptides,
transmembrane regions and domains were determined using InterProScan 5 [21], and are depicted
using the color code shown in the legend. Cluster sizes range from 2 to 5.3 kbp in M. plutonius 49.3
and 1.7 kbp to 9.8 kbp in M. plutonius DAT561. The presence of orthologous genes and gene cluster
identified in the other strains is shown in Figure 4 and Data S2-Sheet 4.



Genes 2018, 9, 419 12 of 20

A fibronectin/fibrinogen-binding domain (DUF (Domain of unknown function) 814)-containing
protein was discovered in all strains examined in this study (Figures 4 and 6). The corresponding ORF
encodes a protein, which shares high similarity (70% identity) to the fibronectin-binding protein of
Enterococcus caccae and Enterococcus moraviensis (WP_010772361 and WP_010765067).

A putative extracellular matrix-binding protein (MEPL7_19p00060, Figures 4 and 6) is
plasmid-encoded (pMP19) and is only present in the typical strains 21.1, 49.3, 60 and H6 (Data
S2-Sheet 4). It contains eight copies of a DUF1542 domain. In Staphylococcus aureus, it was shown
that some DUF1542-containing proteins are involved in cell cluster formation, cellular adhesion and
antibiotic resistance [61,62].

3.4.5. Toxin

Only the genomes of the typical M. plutonius strains 21.1, 49.3, 60 and H6 harbor a putative
toxin-encoding ORF (Figure 4, Data S2-Sheet 4), while all other typical strains and the atypical strain
DAT561 lack such a gene. However, this has to be revised for the atypical strain DAT561, as the latest
version of this genome included the pMP19 plasmid [47]. The toxin, we designated ‘melissotoxin
A’, is plasmid-encoded (pMP19). It shows 33% amino acid sequence identity to an epsilon toxin
ETX/mosquitocidal toxin MTX2 family protein of Brevibacillus laterosporus (WP_018669999), which is a
common secondary invader in EFB disease [63]. Most importantly, the melissotoxin A-encoding gene
is expressed during infection in vivo (Figure S1).

3.4.6. Capsule and Cell Envelope-Forming Proteins

Capsules are a layer of surface-associated polysaccharides protecting bacteria against desiccation,
attack from phages, antimicrobial peptides, and phagocytosis [64,65]. We detected four gene clusters,
which are associated with capsule and cell envelope-forming proteins (Figure 4, Data S2-Sheet 4).
Gene cluster 1 comprises a putative capsule locus, which was described for E. faecium strains by Palmer
et al. [66]. The putative capsule-encoding gene clusters of E. faecium 504 and E. caccae ATCC BAA-1240
share high sequence similarity to this cluster, although all Melissococcus strains contain nonsense
mutations in genes involved in capsule formation (Data S2-Sheet 4).

The second gene cluster exhibits a similar composition to the enterococcal polysaccharide antigen
(epa)-locus of E. faecalis [67–69], Enterococcus haemoperoxidus and E. caccae (Figure 7). Epa is suggested as
a virulence factor and facilitates resistance to bile salts and antimicrobial peptides [69,70]. M. plutonius
ATCC 35311 and the atypical strain DAT561 are the only strains that have frameshift mutations in at
least one gene of this cluster (Data S2-Sheet 4).
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Figure 7. Comparison of a gene cluster of M. plutonius with gene clusters of Enterococci encoding
Epa. ORFs labeled with locus tags represent the corresponding ends of the shown genome segments.
ORFs related to the epa-locus are marked in orange, and ORFs encoding Epa of Enterococcus faecalis are
depicted in red. Conserved hypothetical proteins are shown in gray. The gene cluster shows highest
sequence similarity to Epa of E. faecalis and Enterococcus haemoperoxidus.
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Clusters three and four consist of two ORFs each. Both are putatively only functional in
the atypical strain DAT561 (Data S2-Sheet 4). ORFs belonging to these clusters encode lipid
A-like transporters.

3.4.7. Energy and Sugar Metabolism

Competition for resources with the host results in an evolutionary pressure on bacteria. Therefore,
we studied in more detail the potential pathways for energy and sugar metabolism of M. plutonius.
All M. plutonius strains lack a tricarboxylic acid (TCA) cycle and the electron transport system for
oxidative phosphorylation. Enzymes for a glycolysis system were found in all strains, but the
genes encoding pyruvate kinase and transketolase of the atypical strain DAT561 are interrupted
by frameshift mutations in the original genome sequence of this strains [12]. A recently updated
version shows that both genes are not interrupted [47]. Enzymes required for homolactic acid
fermentation were identified, but a glucose-6-phosphate dehydrogenase, 6-phosphogluconolactonase,
and a decarboxylating 6-phosphogluconate dehydrogenase as part of the heterolactic acid fermentation
are also encoded. An overview of glycolysis, the pentose phosphate pathway, the Entner-Doudoroff
pathway, mixed acid fermentation, sugar interconversions (partly) and pyruvate metabolism of
M. plutonius is shown in Figure 8. Additionally, amino acid decarboxylation and the arginine deiminase
pathway can contribute to energy production. Finally, we detected a number of genes encoding
enzymes that target plant cell wall polysaccharides (e.g., of pollen and beebread) as described for the
honey bee gut microbiota [71] (Figure S4).
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Figure 8. Genome-based analysis of glycolysis, pentose phosphate pathway, Entner-Doudoroff (ED)
pathway, mixed acid fermentation and sugar interconversions (partly). The reactions are schematized
(co-factors, co-substrates, CO2-formation are not shown). Dotted arrows indicate a summary of
multiple reactions, which were found to be present in all strains. Gene products are visualized via
EC numbers for the catalyzing enzymes. Green blocks indicate strain-specific reactions. Red blocks
display all strains missing the respective enzyme. Sugars present in honey and degraded pectin
backbones (Figure S3) are visualized in blue. Pyruvate and putative end products are shown in
bold. All strains lack a pyruvate-decarboxylase (EC 4.1.1.1), which is part of ethanol fermentation.
Additionally, all strains lack a phosphogluconate dehydrogenase (red arrow, EC 4.1.2.12), which is part
of the Entner-Doudoroff-pathway.
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4. Discussion

The focus of this study was the genome-based identification of genes putatively relevant for
survival and virulence (pathogenicity) of the honey bee pathogen M. plutonius. We used the obtained
bioinformatical results to discuss critical steps for the pathogenesis and infection of M. plutonius;
including proliferation of M. plutonius in the gut of the honey bee larva, competition for host resources
and putative encapsulation of M. plutonius. However, nearly all of the pathogenesis mechanisms are
completely unknown and consequently purely speculative. M. plutonius may have a different lifestyle
as genome data showed, with genes which might also be relevant for an invasive lifestyle and actively
killing honey bee larvae. The following discussion is based on the pure presence of the identified genes
in the M. plutonius genomes and experimental evidence is needed to develop a fully functional infection
model. We did not include the potential function of the secondary invaders (B. laterosporus, E. faecalis,
Paenibacillus alvei, and Achromobacter eurydice (but see [72] for the controversial position of A. eurydice))
that are usually found in the remains of EFB-diseased honey bee larvae. Our genome analyses revealed
that all M. plutonius strains are putatively able to degrade the pectin backbone of the pollen cell wall
using a large variety of enzymes. Interestingly, the strains differ in their genetic equipment of these
enzymes, as different enzymes are putatively non-functional due to mutations in the corresponding
genes of all typical strains from Norway and Switzerland (Figure S4). Pectin degradation might result
in pollen perforation and therefore in the release of its nutrient-rich content [71]. All strains harbor
genes encoding enzymes for the essential energy metabolism pathways glycolysis and the pentose
phosphate pathway. The putative lack of function of transketolase and pyruvate kinase of M. plutonius
DAT 561 could be a sequencing error of the 454 sequencing approach chosen by Okumura et al. [12],
which is not suitable to dissolve homopolymer stretches [73]. With the second version of the genome,
using a different sequencing approach, both genes are present without any lack of function [47].
As shown in Figure 8 and Figure S3, the atypical strain DAT561 is putatively able to use a variety of
sugar substrates as energy and carbohydrate sources via glycolysis, the pentose phosphate pathway,
ED-pathway and sugar interconversions, which supports recent results [9]. As these substrates are
ingredients of honey, royal jelly, pollen and beebread, the atypical strain DAT561 is more adapted
to the natural resources found in the larval gut than typical strains. This might be the reason for
faster growth of the atypical strain DAT561 in artificially infected larvae and consequently its higher
virulence [10].

Besides the metabolic differences between typical and atypical strains, the production of tyramine
by M. plutonius might be toxic for honey bee larvae [52]. It was shown that the production of
tyramine led to a classic EFB symptom, whereas tyramine-treated larvae changed their color to
yellow/brown [52]. Interestingly, the typical strains 82, 90.0, 119 and ATCC 35311 (all belonging to
CC13) lack the required tyrosine decarboxylase (Figure 4), which could lead to decreased virulence
of this clonal complex, as shown recently [48]. Here, we speculate that the assimilation of food and
putatively the production of tyramine by M. plutonius might be the first steps in EFB pathogenesis
and impact the further development of the honey bee larva severely; however, experimental data are
needed to confirm this assumption.

During the infection cycle it might be essential for M. plutonius to be able to compete with part of
the natural microbiota of the honey bee gut system. In the genomes of our strain panel, we found three
putative genes encoding bacteriocin (antimicrobial peptides) biosynthesis and only the genome of the
atypical strain M. plutonius DAT561 lacks the respective genes (Figure 4, Data S2-Sheet 4). The ability to
produce bacteriocins in the space-limited and nutrient-embattled environment of the larval gut might
be an advantage, though the lack of the genes for strain DAT561 is an argument against bacteriocins
being relevant for pathogenesis or virulence.

Additionally, only the atypical strain DAT561 and the typical strain M. plutonius ATCC 35311
lack the complete gene cluster encoding the biosynthetic machinery for Epa (Figures 4 and 7).
Teng et al. [74] showed that the epa locus is involved in the biosynthesis of a rhamnopolysaccharide,
which is important for biofilm formation and virulence in a mouse peritonitis model [70,74], but
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also facilitates resistance to antimicrobial peptides. If biofilm formation is necessary for growth and
virulence of M. plutonius it might be realized via the biosynthetic machinery for Epa, at least for the
typical strains. However, biofilm formation might not be prerequisite for increased or high virulence,
as indicated by the lack in the DAT561 genome.

Virulence of pathogenic bacteria of insects is mostly determined by the ability to degrade host
glycoproteins and metabolizing resulting carbohydrates. The honey bee larval gut is coated by a
chitin-containing peritrophic matrix, which is degraded during P. larvae infection [75]. This ability to
destroy the peritrophic matrix has so far not been described for M. plutonius. Takamatsu et al. [76]
showed for the strain DAT561 that peritrophic membrane and midgut epithelial cells were disintegrated
and partly absent in badly infected larvae, and only a few cells were detected outside the midgut
lumen. The same study found evidence that M. plutonius secretes unknown molecules to infiltrate
the peritrophic matrix [76]. Nevertheless, successful invasion and proliferation in the haemocoel has
not been reported so far. We identified several peritrophic matrix degrading proteins (e.g., peptidase
M60 family protein (enhancin), endo-alpha-N-acetylgalactosaminidase), proteins involved in adhesion
to host extracellular matrix (e.g., putative collagen adhesins, S layer and cell surface proteins, and a
fibronectin/fibrinogen-binding protein), proteases and proteolytic enzymes; however, functionality
and relevance for pathogenicity of all these proteins have to be verified in vivo.

Regarding pathogenicity, a plasmid (pMP19) was found in M. plutonius 49.3 with highly similar
contigs in strains 21.1, 60, and H6. The plasmid comprises 20 ORFs of which two ORFs encode
for an extracellular matrix-binding protein and melissotoxin A. Interestingly, the virulence plasmid
pMP19 is not stably maintained during in vitro propagation. The five-time laboratory-passage of
M. plutonius 49.3 cured the strain from the plasmid and resulted in strain M. plutonius S1. Furthermore,
M. plutonius B5, H6 and L9 were all isolated from the same EFB-infected honey bee larva and exhibited
a close phylogenetic relationship (Figure 3), but only strain (H6) still harbored the plasmid after three
cultivation steps. It is already known that typical strains of M. plutonius lose their pathogenicity
after several cultivation steps in the laboratory [9], which is most likely due to the loss of plasmid
pMP19. We hypothesize that the typical strains 21.1, 49.3, 60 and H6 might be more virulent than
the other typical strains analyzed in this study due to the presence of the putative virulence plasmid
pMP19. Nevertheless, other genetic determinants must still be important for virulence, because the
atypical strain DAT561 remains virulent even after multiple cultivation steps [9,10] and lacks pMP19
in the original genome sequence. However, a very recent sequencing effort, to increase coverage and
sequence verification of strain DAT561, revealed that plasmid pMP19 is present in this strain [47]
and might therefore be relevant for its high virulence. The extracellular matrix-binding protein and
melissotoxin A are both present on DAT561 plasmid pMP19, may expressing the same function as
discussed above for the typical strains. A plausible reason for the non-identification of the pMP19
plasmid and genes identified with frame-shifts in our and Okumura’s previous sequence analysis [12]
might be the previous sequencing approach that may have caused more sequencing errors. The plasmid
was also identified in several other, but not all, CC3, CC12 and CC13 strains [77].

If nutrients are depleted, several Gram-positive bacteria undergo sporulation. However, there
are only a few historic references describing that M. plutonius forms a capsule [78,79] that allows
survival in feces and wax for several months up to several years [79]. Other than that, no evidence
is available that M. plutonius produces capsules in vivo in infected larvae, and at least for DAT561,
capsule-formation has not been detected using light and electron microcopy [76]. This is well in line
with our bioinformatical results, as we detected a gene cluster encoding capsule-forming proteins in
all M. plutonius strains analyzed in this study (Data S2-Sheet 4), with nonsense mutations in at least
one gene needed for its biosynthesis (Figure 4) for all strains. Thus, capsule-formation in M. plutonius
is partly inhibited or completely lost due to mutations of capsule-associated genes.

In the last decade, genome qualities and quantities became high-grade on a nearly yearly basis
with the development of new deep sequencing technologies. Resequencing genomes with higher
coverage and including genomes of other subspecies, genotypes or strains improves genome quality
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significantly. The current study was based on 12 newly sequenced typical strains, the genome of the
reference strain ATCC 35311 [11] and the original genome of the atypical strain DAT561 [12]. By having
a look in the second version of the DAT561 genome [47], it became clear that sequencing errors have
been reduced drastically. Comparing the original and newly available genome we could see that
enhancin is no longer truncated and has the same size as for the typical strains, and atypical strain
genes encoding pyruvate kinase and transketolase are not interrupted by frameshift mutations and are
probably fully functional.

5. Conclusions

Based on the identification of putative virulence genes from different M. plutonius genomes, future
EFB research can now study the infection in more detail to develop a pathogenesis model. The genetic
equipment coding for virulence factors differs between most strains (Figure 4). Typical and atypical
strains share a PlCBP49-like protein, enhancin, collagenase and bacterial cell surface proteins, which
putatively represent basic virulence factors of M. plutonius strains that are needed for infection of
honey bee larva. Moreover, we hypothesize differences in virulence within the typical strains, as
the typical strains belonging to CC13 (M. plutonius ATCC 35311, 82, 90.0 and 119) lack putatively
important virulence factors (e.g., tyrosine decarboxylase, endo-alpha-N-acetylgalactosaminidase) in
comparison to CC3 (ST3/7). Additionally, strains harboring the virulence plasmid pMP19 may have
additional advantages versus strains lacking the plasmid. Typical and atypical strains most likely
have different virulence mechanisms, with atypical strain DAT561 encoding for different bacteria
cell envelope-associated and host cell adhesion-associated proteins. However, the atypical strain
might compensate this with faster growth in the larval gut by increased metabolic capabilities with
respect to usage of different nutrient sources. Faster nutrient consumption of atypical strains lead to
starvation of the honey bee larvae. We assume that in case of atypical strains the combination of fast
nutrient consumption and establishment of virulence factors leads to an accelerated death of the honey
bee larvae. Nevertheless, additional infection studies are needed to predict a difference in virulence
between strains and clonal complexes. Such studies also have to be tested with different host genetic
backgrounds, as host genotype contributes to the course of the disease [48]. Therefore, phenotypic
tests with isogenic mutant strains will be needed to evaluate their virulence properties in artificially
infected honey bee larvae.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/8/419/s1,
Data S1: GenBank files of M. plutonius ATCC 35311 and DAT561, Data S2: Detection of putative virulence
factors, Figure S1: Expression of M. plutonius putative virulence factors during infection, Figure S2: Phandango
visualization of Mugsy phylogenetic tree with Gubbins horizontal gene transfer (HGT) events, Figure S3:
Comparison of bacteriocin biosynthesis and transport clusters of M. plutonius S1 with clusters of M. plutonius
DAT561, E. faecalis FLY1 (accession no. NZ_ACAR00000000) and Streptococcus iniae ISNO (accession no. CP007587),
Figure S4: Pectin degradation by M. plutonius, Table S1: Primer used in this study, Table S2: General data of
M. plutonius strains used in this study, Table S3. CheckM results for M. plutonius genome completeness, based on
the marker set for Enterococcaceae (with 55 genomes).

Author Contributions: M.D., D.G. and D.H. performed microbiological and molecular experiments. M.D.
performed in silico genome analysis and drafted the manuscript. M.D., D.G., J.-D.C., and L.G. were involved in
acquiring genome information. A.L., S.D. and A.P. supported genome analysis. A.L. supplied bioinformatical
scripts and pipelines. M.D. and A.P. designed microbiological experiments. J.-D.C., L.G., and R.D. supervised
the work and were involved in the experimental design. S.E., S.D. and H.N. were involved in revision of the
manuscript and figures. All authors interpreted the results, contributed to the writing of the manuscript and
approved submission.

Funding: This research was funded by the Bundesministerium für Bildung und Forschung (to M.D.), the
Niedersächsisches Ministerium für Wissenschaft und Kultur (to A.P.), the Deutsche Forschungsgemeinschaft
(DFG) (e.g., ER 786/1-1 to S.E.), the Open Access Publication Funds of the Göttingen University and by the Swiss
Federal Food Safety and Veterinary Office (to D.G.).

Acknowledgments: The authors would like to thank Eva Forsgren (SLU, Uppsala) for supplying the Norwegian
M. plutonius strains and Dominik Schneider for proofreading the manuscript. We thank the company Vita
Europe (Basingstoke, Great Britain) and especially Wolfgang Egner (S+B medVet GmbH, Babenhausen, Germany)
for support with Vita EFB Diagnostic Test kits. We thank Frauke-Dorothee Meier and Kathleen Gollnow for

http://www.mdpi.com/2073-4425/9/8/419/s1


Genes 2018, 9, 419 17 of 20

technical support. This publication made use of the PubMLST website (https://pubmlst.org/) developed by
Keith Jolley [80].

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Morse, R.A.; Calderone, N.W. The value of honey bees as pollinators of U.S. crops in 2000. Bee Cult 2000,
128, 1–15.

2. Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-term global trends in crop yield and
production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 2008,
18, 1572–1575. [CrossRef] [PubMed]

3. Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural
demand for pollination. Curr. Biol 2009, 19, 915–918. [CrossRef] [PubMed]

4. Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture
confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [CrossRef]

5. Forsgren, E. European foulbrood in honey bees. J. Invertebr. Pathol. 2010, 103, S5–S9. [CrossRef] [PubMed]
6. Bailey, L. European foul brood: A disease of the larval honeybee (Apis mellifera L.) caused by a combination

of Streptococcus pluton (Bacillus pluton White) and Bacterium eurydice White. Nature 1957, 180, 1214–1215.
[CrossRef]

7. Williams, D.L. A veterinary approach to the European honey bee (Apis mellifera). Vet. J. 2000, 160, 61–73.
[CrossRef] [PubMed]

8. Budge, G.E.; Shirley, M.D.F.; Jones, B.; Quill, E.; Tomkies, V.; Feil, E.J.; Brown, M.A.; Haynes, E.G. Molecular
epidemiology and population structure of the honey bee brood pathogen Melissococcus plutonius. ISME J.
2014, 8, 1588–1597. [CrossRef] [PubMed]

9. Arai, R.; Tominaga, K.; Wu, M.; Okura, M.; Ito, K.; Okamura, N.; Onishi, H.; Osaki, M.; Sugimura, Y.;
Yoshiyama, M.; Takamatsu, D. Diversity of Melissococcus plutonius from honeybee larvae in Japan and
experimental reproduction of European foulbrood with cultured atypical isolates. PLoS ONE 2012, 7, e33708.
[CrossRef] [PubMed]

10. Nakamura, K.; Yamazaki, Y.; Shiraishi, A.; Kobayashi, S.; Harada, M.; Yoshiyama, M.; Osaki, M.; Okura, M.;
Takamatsu, D. Virulence differences among Melissococcus plutonius strains with different genetic backgrounds
in Apis mellifera larvae under an improved experimental condition. Sci. Rep. 2016, 6, 33329. [CrossRef]
[PubMed]

11. Okumura, K.; Arai, R.; Okura, M.; Kirikae, T.; Takamatsu, D.; Osaki, M.; Miyoshi-Akiyama, T. Complete
genome sequence of Melissococcus plutonius ATCC 35311. J. Bacteriol. 2011, 193, 4029–4030. [CrossRef]
[PubMed]

12. Okumura, K.; Arai, R.; Okura, M.; Kirikae, T.; Takamatsu, D.; Osaki, M.; Miyoshi-Akiyama, T. Complete
genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile and is
representative of an endemic cluster in Japan. J. Bacteriol. 2012, 194, 3014. [CrossRef] [PubMed]

13. Bailey, L.; Collins, M.D. Reclassification of ‘Streptococcus pluton’ (White) in a new genus Melissococcus, as
Melissococcus pluton nom. rev.; comb. nov. J. Appl. Bacteriol. 1982, 53, 215–217. [CrossRef]

14. Bailey, L. The isolation and cultural characteristics of Streptococcus pluton and further oberservations on
Bacterium eurydice. J. Gen. Microbiol. 1957, 17, 39–48. [CrossRef] [PubMed]

15. Chevreux, B. MIRA: An Automated Genome and EST Assembler. Ph.D. Thesis, Ruprecht-Karls University
Heidelberg, Heidelberg, Germany, 2005.

16. Staden, R.; Beal, K.F.; Bonfield, J.K. The Staden package, 1998. Methods Mol. Biol. 2000, 132, 115–130.
[CrossRef] [PubMed]

17. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.;
Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell
sequencing. J. Comput. Biol. 2012, 19, 455–477. [CrossRef] [PubMed]

18. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [CrossRef]
[PubMed]

https://pubmlst.org/
http://dx.doi.org/10.1016/j.cub.2008.08.066
http://www.ncbi.nlm.nih.gov/pubmed/18926704
http://dx.doi.org/10.1016/j.cub.2009.03.071
http://www.ncbi.nlm.nih.gov/pubmed/19427214
http://dx.doi.org/10.1016/j.ecolecon.2008.06.014
http://dx.doi.org/10.1016/j.jip.2009.06.016
http://www.ncbi.nlm.nih.gov/pubmed/20105559
http://dx.doi.org/10.1038/1801214a0
http://dx.doi.org/10.1053/tvjl.2000.0474
http://www.ncbi.nlm.nih.gov/pubmed/10950136
http://dx.doi.org/10.1038/ismej.2014.20
http://www.ncbi.nlm.nih.gov/pubmed/24599072
http://dx.doi.org/10.1371/journal.pone.0033708
http://www.ncbi.nlm.nih.gov/pubmed/22442715
http://dx.doi.org/10.1038/srep33329
http://www.ncbi.nlm.nih.gov/pubmed/27625313
http://dx.doi.org/10.1128/JB.05151-11
http://www.ncbi.nlm.nih.gov/pubmed/21622755
http://dx.doi.org/10.1128/JB.00437-12
http://www.ncbi.nlm.nih.gov/pubmed/22582373
http://dx.doi.org/10.1111/j.1365-2672.1982.tb04679.x
http://dx.doi.org/10.1099/00221287-17-1-39
http://www.ncbi.nlm.nih.gov/pubmed/13475670
http://dx.doi.org/10.1385/1-59259-192-2:115
http://www.ncbi.nlm.nih.gov/pubmed/10547834
http://dx.doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
http://dx.doi.org/10.1093/bioinformatics/btu153
http://www.ncbi.nlm.nih.gov/pubmed/24642063


Genes 2018, 9, 419 18 of 20

19. Gasteiger, E.; Jung, E.; Bairoch, A. SWISS-PROT: Connecting biomolecular knowledge via a protein database.
Curr. Issues Mol. Biol. 2001, 3, 47–55. [CrossRef] [PubMed]

20. O’Donovan, C.; Martin, M.J.; Gattiker, A.; Gasteiger, E.; Bairoch, A.; Apweiler, R. High-quality protein
knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform. 2002, 3, 275–284. [CrossRef] [PubMed]

21. Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.;
Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014,
30, 1236–1240. [CrossRef] [PubMed]

22. Markowitz, V.M.; Mavromatis, K.; Ivanova, N.N.; Chen, I.M.; Chu, K.; Kyrpides, N.C. IMG ER: A system
for microbial genome annotation expert review and curation. Bioinformatics 2009, 25, 2271–2278. [CrossRef]
[PubMed]

23. Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and
rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [CrossRef] [PubMed]

24. Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic
sequence. Nucleic Acids Res. 1997, 25, 955–964. [CrossRef] [PubMed]

25. Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of
microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014, 25, 1043–1055.
[CrossRef] [PubMed]

26. Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.;
Ussery, D.W.; Aarestrup, F.M.; Lund, O. Multilocus sequence typing of total-genome-sequenced bacteria.
J. Clin. Microbiol. 2012, 50, 1355–1361. [CrossRef] [PubMed]

27. Haynes, E.; Helgason, T.; Young, J.P.; Thwaites, R.; Budge, G.E. A typing scheme for the honeybee pathogen
Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of
variants. Environ. Microbiol. Rep. 2013, 5, 525–529. [CrossRef] [PubMed]

28. Francisco, A.P.; Vaz, C.; Monteiro, P.T.; Melo-Cristino, J.; Ramirez, M.; Carrio, J.A. PHYLOViZ: Phylogenetic
inference and data visualization for sequence based typing methods. BMC Bioinform. 2012, 13, 87. [CrossRef]
[PubMed]

29. Lechner, M.; Findeiss, S.; Steiner, L.; Marz, M.; Stadler, P.F.; Prohaska, S.J. Proteinortho: Detection of
(co-)orthologs in large-scale analysis. BMC Bioinform. 2011, 12, 124. [CrossRef] [PubMed]

30. Leimbach, A. BAC-Genomics-Scripts. 2014. Available online: https://github.com/aleimba/bac-genomics-
scripts (accessed on 31 July 2018).

31. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
Bioinformatics 2014, 30, 1312–1313. [CrossRef] [PubMed]

32. Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks.
Syst. Biol. 2012, 61, 1061–1067. [CrossRef] [PubMed]

33. Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment
and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [CrossRef]
[PubMed]

34. Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid
phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins.
Nucleic Acids Res. 2015, 43, e15. [CrossRef] [PubMed]

35. Angiuoli, S.V.; Salzberg, S.L. Mugsy: fast multiple alignment of closely related whole genomes.
Bioinformatics 2011, 27, 334–342. [CrossRef] [PubMed]

36. Hadfield, J.; Croucher, N.J.; Goater, R.J.; Abudahab, K.; Aanensen, D.M.; Harris, S.R. Phandango: An
interactive viewer for bacterial population genomics. Bioinformatics 2018, 34, 292–293. [CrossRef] [PubMed]

37. Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J. Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res.
2011, 39, W347–W352. [CrossRef] [PubMed]

38. Chen, L.; Xiong, Z.; Sun, L.; Yang, J.; Jin, Q. VFDB 2012 update: Toward the genetic diversity and molecular
evolution of bacterial virulence factors. Nucleic Acids Res. 2012, 40, D641–D645. [CrossRef] [PubMed]

39. Van Heel, A.J.; de Jong, A.; Montalbán-López, M.; Kok, J.; Kuipers, O.P. BAGEL3: Automated identification of
genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res.
2013, 41, W448–W453. [CrossRef] [PubMed]

40. Hammami, R.; Zouhir, A.; Le Lay, C.; Ben Hamida, J.; Fliss, I. BACTIBASE second release: A database and
tool platform for bacteriocin characterization. BMC Microbiol. 2010, 10, 22. [CrossRef] [PubMed]

http://dx.doi.org/10.21775/cimb.003.047
http://www.ncbi.nlm.nih.gov/pubmed/11488411
http://dx.doi.org/10.1093/bib/3.3.275
http://www.ncbi.nlm.nih.gov/pubmed/12230036
http://dx.doi.org/10.1093/bioinformatics/btu031
http://www.ncbi.nlm.nih.gov/pubmed/24451626
http://dx.doi.org/10.1093/bioinformatics/btp393
http://www.ncbi.nlm.nih.gov/pubmed/19561336
http://dx.doi.org/10.1093/nar/gkm160
http://www.ncbi.nlm.nih.gov/pubmed/17452365
http://dx.doi.org/10.1093/nar/25.5.0955
http://www.ncbi.nlm.nih.gov/pubmed/9023104
http://dx.doi.org/10.1101/gr.186072.114
http://www.ncbi.nlm.nih.gov/pubmed/25977477
http://dx.doi.org/10.1128/JCM.06094-11
http://www.ncbi.nlm.nih.gov/pubmed/22238442
http://dx.doi.org/10.1111/1758-2229.12057
http://www.ncbi.nlm.nih.gov/pubmed/23864566
http://dx.doi.org/10.1186/1471-2105-13-87
http://www.ncbi.nlm.nih.gov/pubmed/22568821
http://dx.doi.org/10.1186/1471-2105-12-124
http://www.ncbi.nlm.nih.gov/pubmed/21526987
https://github.com/aleimba/bac-genomics-scripts
https://github.com/aleimba/bac-genomics-scripts
http://dx.doi.org/10.1093/bioinformatics/btu033
http://www.ncbi.nlm.nih.gov/pubmed/24451623
http://dx.doi.org/10.1093/sysbio/sys062
http://www.ncbi.nlm.nih.gov/pubmed/22780991
http://dx.doi.org/10.1186/s13059-014-0524-x
http://www.ncbi.nlm.nih.gov/pubmed/25410596
http://dx.doi.org/10.1093/nar/gku1196
http://www.ncbi.nlm.nih.gov/pubmed/25414349
http://dx.doi.org/10.1093/bioinformatics/btq665
http://www.ncbi.nlm.nih.gov/pubmed/21148543
http://dx.doi.org/10.1093/bioinformatics/btx610
http://www.ncbi.nlm.nih.gov/pubmed/29028899
http://dx.doi.org/10.1093/nar/gkr485
http://www.ncbi.nlm.nih.gov/pubmed/21672955
http://dx.doi.org/10.1093/nar/gkr989
http://www.ncbi.nlm.nih.gov/pubmed/22067448
http://dx.doi.org/10.1093/nar/gkt391
http://www.ncbi.nlm.nih.gov/pubmed/23677608
http://dx.doi.org/10.1186/1471-2180-10-22
http://www.ncbi.nlm.nih.gov/pubmed/20105292


Genes 2018, 9, 419 19 of 20

41. Rawlings, N.D.; Waller, M.; Barrett, A.J.; Bateman, A. MEROPS: The database of proteolytic enzymes, their
substrates and inhibitors. Nucleic Acids Res. 2014, 42, D503–D509. [CrossRef] [PubMed]

42. Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple
prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [CrossRef] [PubMed]

43. Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011,
27, 1009–1010. [CrossRef] [PubMed]

44. Govan, V.A.; Brözel, V.; Allsopp, M.H.; Davison, S.A. PCR detection method for rapid identification of
Melissococcus pluton in honeybee larvae. Appl. Environ. Microbiol. 1998, 64, 1983–1985. [PubMed]

45. Takamatsu, D.; Morinishi, K.; Arai, R.; Sakamoto, A.; Okura, M.; Osaki, M. Typing of Melissococcus plutonius
isolated from European and Japanese honeybees suggests spread of sequence types across borders and
between different Apis species. Vet. Microbiol 2014, 171, 221–226. [CrossRef] [PubMed]

46. Tutar, Y. Pseudogenes. Comp. Funct. Genom. 2012, 2012, 424526. [CrossRef] [PubMed]
47. Okumura, K.; Takamatsu, D.; Okura, M. Complete genome sequence of Melissococcus plutonius DAT561,

a strain that shows an unusual growth profile, obtained by PacBio sequencing. Genome Announc. 2018,
6, e00431-18. [CrossRef] [PubMed]

48. Lewkowski, O.; Erler, S. Virulence of Melissococcus plutonius and secondary invaders associated with
European foulbrood disease of the honey bee. MicrobiologyOpen 2018, e649. [CrossRef] [PubMed]

49. Zacharof, M.P.; Lovitt, R.W. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia
2012, 2, 50–56. [CrossRef]

50. Joris, B.; Englebert, S.; Chu, C.P.; Kariyama, R.; Daneo-Moore, L.; Shockman, G.D.; Ghuysen, J.-M. Modular
design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 1992,
70, 257–264. [CrossRef] [PubMed]

51. Connil, N.; Breton, Y.L.; Dousset, X.; Auffray, Y.; Rince, A.; Prévost, H. Identification of the Enterococcus
faecalis tyrosine decarboxylase operon involved in tyramine production. Appl. Environ. Microbiol. 2002,
68, 3537–3544. [CrossRef] [PubMed]

52. Kanbar, G.; Engels, W.; Nicholson, G.J.; Hertle, R.; Winkelmann, G. Corrigendum to: Tyramine functions as a
toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton. FEMS Microbiol. Lett.
2005, 245, 193. [CrossRef]

53. Kanbar, G.; Engels, W.; Nicholson, G.J.; Hertle, R.; Winkelmann, G. Tyramine functions as a toxin in honey bee
larvae during Varroa-transmitted infection by Melissococcus pluton. FEMS Microbiol. Lett. 2004, 234, 149–154.
[CrossRef] [PubMed]

54. Terra, W.R. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect
Biochem. Physiol. 2001, 47, 47–61. [CrossRef] [PubMed]

55. Garcia-Gonzalez, E.; Poppinga, L.; Fünfhaus, A.; Hertlein, G.; Hedtke, K.; Jakubowska, A.; Genersch, E.
Paenibacillus larvae chitin-degrading protein PlCBP49 is a key virulence factor in American Foulbrood of
honey bees. PLoS Pathog. 2014, 10, e1004284. [CrossRef] [PubMed]

56. Peng, J.; Zhong, J.; Granados, R.R. A baculovirus enhancin alters the permeability of a mucosal midgut
peritrophic matrix from lepidopteran larvae. J. Insect Physiol. 1999, 45, 159–166. [CrossRef]

57. Tellam, R.L.; Wijffels, G.; Willadsen, P. Peritrophic matrix proteins. Insect Biochem. Mol. Biol. 1999, 29, 87–101.
[CrossRef]

58. Fang, S.; Wang, L.; Guo, W.; Zhang, X.; Peng, D.; Luo, C.; Yu, Z.; Sun, M. Bacillus thuringiensis bel protein
enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin.
Appl. Environ. Microbiol. 2009, 75, 5237–5243. [CrossRef] [PubMed]

59. Toprak, U.; Harris, S.; Baldwin, D.; Theilmann, D.; Gillott, C.; Hegedus, D.D.; Erlandson, M.A. Role of
enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic
matrix proteins. J. Gen. Virol. 2012, 93, 744–753. [CrossRef] [PubMed]

60. Djukic, M.; Brzuszkiewicz, E.; Fünfhaus, A.; Voss, J.; Gollnow, K.; Poppinga, L.; Liesegang, H.;
Garcia-Gonzalez, E.; Genersch, E.; Daniel, R. How to kill the honey bee larva: genomic potential and
virulence mechanisms of Paenibacillus larvae. PLoS ONE 2014, 9, e90914. [CrossRef] [PubMed]

61. Clarke, S.R.; Harris, L.G.; Richards, R.G.; Foster, S.J. Analysis of Ebh, a 1.1-megadalton cell wall-associated
fibronectin-binding protein of Staphylococcus aureus. Infect. Immun. 2002, 70, 6680–6687. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/nar/gkt953
http://www.ncbi.nlm.nih.gov/pubmed/24157837
http://dx.doi.org/10.1186/1471-2164-12-402
http://www.ncbi.nlm.nih.gov/pubmed/21824423
http://dx.doi.org/10.1093/bioinformatics/btr039
http://www.ncbi.nlm.nih.gov/pubmed/21278367
http://www.ncbi.nlm.nih.gov/pubmed/9572987
http://dx.doi.org/10.1016/j.vetmic.2014.03.036
http://www.ncbi.nlm.nih.gov/pubmed/24768448
http://dx.doi.org/10.1155/2012/424526
http://www.ncbi.nlm.nih.gov/pubmed/22611337
http://dx.doi.org/10.1128/genomeA.00431-18
http://www.ncbi.nlm.nih.gov/pubmed/29880590
http://dx.doi.org/10.1002/mbo3.649
http://www.ncbi.nlm.nih.gov/pubmed/29799173
http://dx.doi.org/10.1016/j.apcbee.2012.06.010
http://dx.doi.org/10.1111/j.1574-6968.1992.tb05218.x
http://www.ncbi.nlm.nih.gov/pubmed/1352512
http://dx.doi.org/10.1128/AEM.68.7.3537-3544.2002
http://www.ncbi.nlm.nih.gov/pubmed/12089039
http://dx.doi.org/10.1016/j.femsle.2005.02.021
http://dx.doi.org/10.1111/j.1574-6968.2004.tb09526.x
http://www.ncbi.nlm.nih.gov/pubmed/15109733
http://dx.doi.org/10.1002/arch.1036
http://www.ncbi.nlm.nih.gov/pubmed/11376452
http://dx.doi.org/10.1371/journal.ppat.1004284
http://www.ncbi.nlm.nih.gov/pubmed/25080221
http://dx.doi.org/10.1016/S0022-1910(98)00110-3
http://dx.doi.org/10.1016/S0965-1748(98)00123-4
http://dx.doi.org/10.1128/AEM.00532-09
http://www.ncbi.nlm.nih.gov/pubmed/19542344
http://dx.doi.org/10.1099/vir.0.038117-0
http://www.ncbi.nlm.nih.gov/pubmed/22238230
http://dx.doi.org/10.1371/journal.pone.0090914
http://www.ncbi.nlm.nih.gov/pubmed/24599066
http://dx.doi.org/10.1128/IAI.70.12.6680-6687.2002
http://www.ncbi.nlm.nih.gov/pubmed/12438342


Genes 2018, 9, 419 20 of 20

62. Schroeder, K.; Jularic, M.; Horsburgh, S.M.; Hirschhausen, N.; Neumann, C.; Bertling, A.; Schulte, A.;
Foster, S.; Kehrel, B.E.; Peters, G.; Heilmann, C. Molecular characterization of a novel Staphylococcus aureus
surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS ONE 2009, 4, e7567.
[CrossRef] [PubMed]

63. Djukic, M.; Poehlein, A.; Thürmer, A.; Daniel, R. Genome sequence of Brevibacillus laterosporus LMG 15441, a
pathogen of invertebrates. J. Bacteriol. 2011, 193, 5535–5536. [CrossRef] [PubMed]

64. Campos, M.A.; Vargas, M.A.; Regueiro, V.; Llompart, C.M.; Albertí, S.; Bengoechea, J.A. Capsule
polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 2004, 72, 7107–7114.
[CrossRef] [PubMed]

65. Schembri, M.A.; Dalsgaard, D.; Klemm, P. Capsule shields the function of short bacterial adhesins. J. Bacteriol.
2004, 186, 1249–1257. [CrossRef] [PubMed]

66. Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.;
Wortman, J.; Feldgarden, M.; Haas, B.; Birren, B.; Gilmore, M.S. Comparative genomics of enterococci:
variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum
and E. casseliflavus. MBio 2012, 3, e00318-11. [CrossRef] [PubMed]

67. Xu, Y.; Jiang, L.; Murray, B.E.; Weinstock, G.M. Enterococcus faecalis antigens in human infections.
Infect. Immun. 1997, 65, 4207–4215. [PubMed]

68. Xu, Y.; Murray, B.E.; Weinstock, G.M. A cluster of genes involved in polysaccharide biosynthesis from
Enterococcus faecalis OG1RF. Infect. Immun. 1998, 66, 4313–4323. [PubMed]

69. Hancock, L.E.; Murray, B.E.; Sillanpää, J. Enterococcal Cell Wall Components and Structures. In Enterococci:
From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N.,
Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2012.

70. Rigottier-Gois, L.; Madec, C.; Navickas, A.; Matos, R.C.; Akary-Lepage, E.; Mistou, M.Y.; Serror, P. The
surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization.
J. Infect. Dis. 2015, 211, 62–71. [CrossRef] [PubMed]

71. Engel, P.; Martinson, V.G.; Moran, N.A. Functional diversity within the simple gut microbiota of the honey
bee. Proc. Natl. Acad. Sci. USA 2012, 109, 11002–11007. [CrossRef] [PubMed]

72. Erler, S.; Lewkowski, O.; Poehlein, A.; Forsgren, E. The curious case of Achromobacter eurydice, a Gram-variable
pleomorphic bacterium associated with European foulbrood disease in honeybees. Microb. Ecol. 2018, 75, 1–6.
[CrossRef] [PubMed]

73. Luo, C.; Tsementzi, D.; Kyrpides, N.; Read, T.; Konstantinidis, K.T. Direct comparisons of Illumina vs. Roche
454 sequencing technologies on the same microbial community DNA sample. PLoS ONE 2012, 7, e30087.
[CrossRef]

74. Teng, F.; Singh, K.V.; Bourgogne, A.; Zeng, J.; Murray, B.E. Further characterization of the epa gene cluster
and Epa polysaccharides of Enterococcus faecalis. Infect. Immun. 2009, 77, 3759–3767. [CrossRef] [PubMed]

75. Garcia-Gonzalez, E.; Genersch, E. Honey bee larval peritrophic matrix degradation during infection with
Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.
Environ. Microbiol. 2013, 15, 2894–2901. [CrossRef] [PubMed]

76. Takamatsu, D.; Sato, M.; Yoshiyama, M. Infection of Melissococcus plutonius clonal complex 12 strain in
European honeybee larvae is essentially confined to the digestive tract. J. Vet. Med. Sci. 2016, 78, 29–34.
[CrossRef] [PubMed]

77. Takamatsu, D.; Osawa, A.; Nakamura, K.; Yoshiyama, M.; Okura, M. High-level resistance of Melissococcus
plutonius clonal complex 3 strains to antimicrobial activity of royal jelly. Environ. Microbiol. Rep. 2017,
9, 562–570. [CrossRef] [PubMed]

78. Gubler, H.U. Bakteriologische Untersuchungen über die gutartige Faulbrut der Honigbiene (Apis mellifica L.).
Pathol. Bakteriol. 1954, 17, 507–513. [CrossRef]

79. Ritter, W. Bienen Gesund Erhalten; Eugen Ulmer: Stuttgart, Germany, 2012.
80. Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level.

BMC Bioinform. 2010, 11, 595. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0007567
http://www.ncbi.nlm.nih.gov/pubmed/19851500
http://dx.doi.org/10.1128/JB.05696-11
http://www.ncbi.nlm.nih.gov/pubmed/21914864
http://dx.doi.org/10.1128/IAI.72.12.7107-7114.2004
http://www.ncbi.nlm.nih.gov/pubmed/15557634
http://dx.doi.org/10.1128/JB.186.5.1249-1257.2004
http://www.ncbi.nlm.nih.gov/pubmed/14973035
http://dx.doi.org/10.1128/mBio.00318-11
http://www.ncbi.nlm.nih.gov/pubmed/22354958
http://www.ncbi.nlm.nih.gov/pubmed/9317028
http://www.ncbi.nlm.nih.gov/pubmed/9712783
http://dx.doi.org/10.1093/infdis/jiu402
http://www.ncbi.nlm.nih.gov/pubmed/25035517
http://dx.doi.org/10.1073/pnas.1202970109
http://www.ncbi.nlm.nih.gov/pubmed/22711827
http://dx.doi.org/10.1007/s00248-017-1007-x
http://www.ncbi.nlm.nih.gov/pubmed/28634639
http://dx.doi.org/10.1371/journal.pone.0030087
http://dx.doi.org/10.1128/IAI.00149-09
http://www.ncbi.nlm.nih.gov/pubmed/19581393
http://dx.doi.org/10.1111/1462-2920.12167
http://www.ncbi.nlm.nih.gov/pubmed/23809335
http://dx.doi.org/10.1292/jvms.15-0405
http://www.ncbi.nlm.nih.gov/pubmed/26256232
http://dx.doi.org/10.1111/1758-2229.12590
http://www.ncbi.nlm.nih.gov/pubmed/28892305
http://dx.doi.org/10.1159/000160498
http://dx.doi.org/10.1186/1471-2105-11-595
http://www.ncbi.nlm.nih.gov/pubmed/21143983
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Origin of Melissococcus plutonius Strains 
	Growth Conditions and Isolation of DNA from Melissococcus plutonius 
	Genome Sequencing, Assembly and Annotation 
	Genome Analyses 
	cDNA Synthesis and Reverse Transcription PCR (RT-PCR) 

	Results 
	Sequence Types of Melissococcus plutonius Isolates and Clonal Complex Association 
	Genome Analysis—General Properties 
	Genome Analysis—Detection of Putative Virulence Factors 
	Characterization of Genes Putatively Important for Melissococcus plutonius Survival and Pathogenicity 
	Bacteriocins 
	Tyramine 
	Larval Glycoprotein and Peritrophic Matrix-Degrading Enzymes 
	Bacterial Cell Curface- and Host Cell adhesion-associated Proteins 
	Toxin 
	Capsule and Cell Envelope-Forming Proteins 
	Energy and Sugar Metabolism 


	Discussion 
	Conclusions 
	References

