

aderal Department of Economic Affair

ucation and Research EAER

EFFECT OF REDUCED DIGESTIBLE PROTEIN AND AMINO ACID SUPPLY IMPOSED IN THE GROWER AND FINISHER PERIOD OR SOLELY IN THE FINISHER PERIOD ON GROWTH PERFORMANCE AND CARCASS COMPOSITION G. Bee, G. Maikoff, C. Kasper

Interactive!

Click on any of these bubbles to jump to each section

Introduct.

Methods

Кg 0.180 oight gain ≥ 0.170 body empty 0.165 by 0.160

References

Ruiz-Ascacibar, I., P. Stoll, M. Kreuzer, and G. Bee. 2019. Dietary crude protein and amino acid restriction has a different impact on the dynamic of protein, amino acid and fat deposition in entire male, castrated and female pigs. Animal 13(1):74-82. Ruiz-Ascacibar, I., P. Stoll, M. Kreuzer, V. Boillat, P. Spring, and G. Bee. 2017. Impact of amino acid and CP restriction from 20 to 140 kg BW on performance and dynamics in empty body protein and lipid deposition of entire male, castrated and female pigs. Animal 11(3):394-404.

Swine Research Unit, Agroscope Posieux, 1725 Posieux, Switzerland

Above 65 kg empty boy weight (BW), protein deposition is greater in pigs fed protein-restricted compared to standard diets (Ruiz-Ascacibar et al. 2017, Ruiz-Ascacibar et al. 2019)

Results

TAP TO RETURN TO KIOSK MENU

Discussion

ucation and Research EAER

Interactive! Click on any of these bubbles to *jump* to each section

EFFECT OF REDUCED DIGESTIBLE PROTEIN AND AMINO ACID SUPPLY IMPOSED IN THE GROWER AND FINISHER PERIOD OR SOLELY IN THE FINISHER PERIOD ON GROWTH PERFORMANCE AND CARCASS COMPOSITION G. Bee, G. Maikoff, C. Kasper

Introduction

ANIMALS AND DIETS

BREED:	48 Swiss Large		
BW RANGE:	22 to 110 kg		
HOUSING:	1 large pen equ		
	individual pig re		
FEEDING:	Ad libitum acce		

standard) grower and finisher diet

Dry matter Crude protein Crude fat Crude fiber Lysine Methionine + Cystine Threonine Tryptophan Calculated energy content DE (MJ/kg) Crude protein/DE

Swine Research Unit, Agroscope Posieux, 1725 Posieux, Switzerland

- White pigs from 12 litters
- uipped with 8 automatic feeders and ecognition system
- ess to the grower and finisher diets

Analyzed composition (g or MJ/kg as-fed) of the standard and reduced protein (80% of

Grower diets		Finisher diets		
ST	80%-ST	ST	80%-ST	
898	894	894	895	
165	132	151	121	
24	25	21	21	
39	42	37	37	
10.2	8.2	8.0	6.5	
5.6	4.9	5.1	4.2	
6.6	2.7	5.3	4.4	
2.0	1.5	1.9	1.5	
13.2	13.2	13.2	13.2	
12.4	9.9	11.4	9.1	

TRAITS OF INTEREST

GROWTH PERFORMANCE

- Average daily gain
- Average daily feed intake
- Protein intake

- Hot carcass weight
- Carcass yield
- Nutrient composition of the carcass
 - at 22 kg BW
 - at slaughter

REFERENCES

Ruiz-Ascacibar, I., P. Stoll, M. Kreuzer, and G. Bee. 2019. Dietary crude protein and amino acid restriction has a different impact on the dynamic of protein, amino acid and fat deposition in entire male, castrated and female pigs. Animal 13(1):74-82. Mitchell, A., A. Scholz, and J. Conway. 1998. Body composition analysis of pigs from 5 to 97 kg by dual-energy x-ray absorptiometry. Appl. Radiat. Isot. 49(5-6):521-523.

Results

CARCASS COMPOSITION (DUAL-X-RAY-ABSORPTIOMETRY)

NUTRIENT DEPOSITION AND DEPOSITION EFFICIENCY

- Daily deposition rate of carcass protein and fat
- N-deposition efficiency

BASIS TO CALCULATE THE PROTEIN AND FAT CONTENT OF THE CARCASSES

- at 22 kg BW based on data of Ruiz-Ascacibar et al. (2019)
- Protein: 153 g/kg BW
- 96 g/kg BW • Fat:
- at slaughter using DXA-data and the formula of Mitchell et al. (1998)
- Protein: -1.062 + 0.22 × DXA-lean mass
- Fat: DXA-fat mass

TAP TO RETURN TO KIOSK MENU

Discussion

Schweizerische Eidgenossenschaf Confédération suisse Confederazione Svizzera Confederaziun svizr Federal Department of Economic Affairs

ducation and Research EAER groscope

EFFECT OF REDUCED DIGESTIBLE PROTEIN AND AMINO ACID SUPPLY IMPOSED IN THE GROWER AND FINISHER PERIOD OR SOLELY IN THE FINISHER PERIOD ON GROWTH PERFORMANCE AND CARCASS COMPOSITION G. Bee, G. Maikoff, C. Kasper

Interactive!

Click on any of these bubbles to *jump* to each section

Introduction

Methods

Swine Research Unit, Agroscope Posieux, 1725 Posieux, Switzerland

Growth performance

Gain to protein intake ratio in the grower and finisher period

Body weight
Start
End
Average dail
Average dail
Gain-to-feed
Total crude p
Days on fee
Age at slaug
^{a,b,c} Values within a re

Nutrient deposition and nutrient deposition efficiency

TAP TO RETURN TO KIOSK MENU

Overall growth performance

	Experimental treatmments					
	ST	<mark>ST</mark> / 80%-ST	80%-ST	P-value		
(kg)						
	22.1	22.2	21.9	0.78		
	109.9	109.3	110.7	0.29		
/ gain (g/d)	954	959	925	0.16		
/ feed intake (kg/d)	2.43	2.50	2.45	0.41		
(kg/kg)	0.32 ^b	0.38 ^{ab}	0.38 ^a	0.02		
rotein intake (kg)	35.1°	31.5 ^b	29.6ª	< 0.01		
(d)	93ª	92 ^a	97 ^b	0.01		
nter (d)	161	160	165	0.07		
w with different superscripts differ significantly at $P < 0.05$.						

N-Efficiency (N-content of the carcass / N-intake)

Energy efficiency (Gross energy content of the carcass / DE intake)

Discussion

iteractive!

Click on any of these bubbles *to Imp* to each section

Introduction

Methods

Digestible lysine recommendations

d-lysine (g/MJ DE) = 0.895-0.913 x (BW/100) + 0.491 x (BW/100)² - 0.045 x (BW/100)

Digestible lysine recommendations

d-lysine (g/MJ DE) = $0.895-0.913 \times (BW/100) + 0.491 \times (BW/100)^2 - 0.045 \times (BW/100)^3$

Compared to the **STANDARD** (RED LINE)

reducing the digestible essential amino acid content of the grower and finisher diet (blue line). has hardly any effects on the overall growth rate • **but** impaired feed efficiency \bullet feces and urine

had no effect on overall growth rate has no effect on feed efficiency improved the N-efficiency and thus should decrease the N-losses via feces and urine

but markedly improved N-efficiency and thus should decrease the N-losses via

reducing the digestible essential amino acid content **only** in the finisher diet (green line)

TAP TO RETURN TO KIOSK MENU

