The ¹⁵N natural abundance and enrichment techniques provide similar estimates of N transfer

Hammelehle A.¹, Mayer J.¹, Lüscher A.¹, Mäder P.² and Oberson A.³ ¹Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; ²Research Institute for Organic Agriculture FiBL, Ackerstrasse 113, 5070 Frick, Switzerland; ³Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland

Introduction: Nitrogen (N) transfer from clover to grass could present a significant contribution of symbiotically fixed N to grass nutrition in clover-grass swards. However, depending on the method of estimation, the proportion of transferred N might differ. The aims of this study were (1) to compare the ¹⁵N natural abundance (NA) and the ¹⁵N enrichment technique to estimate the N transfer from clover to grass and (2) to test the applicability of the NA technique under different fertiliser strategies affecting the ¹⁵N soil background value.

Materials and methods: The ¹⁵N NA and enrichment (clover leaf labelling) technique were compared in sub plots of a long-term cropping-system field experiment (Hammelehle *et al.*, 2018) using treatments supplied with no fertiliser, animal manure (δ^{15} N of faeces: 6.7‰ and of slurry: 10‰), or mineral N fertiliser (δ^{15} N: 0.5‰). ¹⁵N values and N contents of yields, stubbles, and roots were determined from *Trifolium pratense – Lolium perenne* mixed and *L. perenne* pure stands. Estimates of N transfer were determined using different surrogates of plant available soil N and clover and grass plant parts when using NA (Daudin and Sierra, 2008) and using different experimental setups when using ¹⁵N enrichment (Giller *et al.*, 1991). The design of the study was a split-split plot. Data were fitted to a mixed effect model.

Results: During two consecutive cultivation years, the proportion of transferred N was considerable and was in the same range for both methods (¹⁵N NA: 34%-42% of grass N; ¹⁵N enrichment: 27%-46% of grass N). The ¹⁵N enrichment technique suffered from a temporally non-uniform ¹⁵N labelling of the clover root (results not shown). The NA δ^{15} N of pure stand grass as surrogate of plant available soil N tended to underestimate the proportion of N transfer, especially in the 1st year of cultivation (Table 1).

Species	Stand	δ ¹⁵ N [‰] yield of harvest			
		2 MC	6 MC	17 MC	
Clover	mixed	-0.5 e	-0.5 e	-0.2 e	
Grass	mixed	3.9 ab	1.8 d	2.6 cd	
Grass	pure	3.8 ab	3.3 bc	4.4 a	

Table 1. Development of $\delta^{15}N$ values of clover and grass yields over two years from NA mixed and pure stands (mean of n=15; SEM=0.2).¹

¹ Same letter indicates no difference between means at α <0.05 (post hoc *t*-test); MC: months of cultivation.

Conclusion: Independent of the ¹⁵N method, about 1/3 of grass N derived from N transfer. Adequate NA procedures can be used even in the presence of a range of fertiliser types with differing δ^{15} N values, if soils have been under these fertilisation strategies for many years and fertilisation remains unchanged during the study.

Daudin D. and Sierra J. (2008) Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. *Agriculture, Ecosystems & Environment* 126, 275-280.

- Giller K.E., Ormesher J. and Awah F.M. (1991) Nitrogen transfer from *Phaseolus* bean to intercropped maize measured using 15N-enrichment and 15N-isotope dilution methods. *Soil Biology and Biochemistry* 23, 339-346.
- Hammelehle A., Oberson A., Lüscher A., Mäder P. and Mayer J. (2018) Above- and belowground nitrogen distribution of a red clover-perennial ryegrass sward along a soil nutrient availability gradient established by organic and conventional cropping systems. *Plant and Soil* 425, 507-525.