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Discriminating Dietary Responses by Combining
Transcriptomics and Metabolomics Data in Nutrition
Intervention Studies

Kathryn J Burton-Pimentel,* Grégory Pimentel, Maria Hughes, Charlotte CJR Michielsen,
Attia Fatima, Nathalie Vionnet, Lydia A Afman, Helen M Roche, Lorraine Brennan,
Mark Ibberson, and Guy Vergères

Scope: Combining different “omics” data types in a single, integrated analysis
may better characterize the effects of diet on human health.
Methods and results: The performance of two data integration tools,
similarity network fusion tool (SNFtool) and Data Integration Analysis for
Biomarker discovery using Latent variable approaches for “Omics” (DIABLO;
MixOmics), in discriminating responses to diet and metabolic phenotypes is
investigated by combining transcriptomics and metabolomics datasets from
three human intervention studies: a postprandial crossover study testing
dairy foods (n = 7; study 1), a postprandial challenge study comparing obese
and non-obese subjects (n = 13; study 2); and an 8-week parallel intervention
study that assessed three diets with variable lipid content on fasting
parameters (n = 39; study 3). In study 1, combining datasets using SNF or
DIABLO significantly improve sample classification. For studies 2 and 3, the
value of SNF integration depends on the dietary groups being compared,
while DIABLO discriminates samples well but does not perform better than
transcriptomic data alone.
Conclusion: The integration of associated “omics” datasets can help clarify
the subtle signals observed in nutritional interventions. The performance of
each integration tool is differently influenced by study design, size of the
datasets, and sample size.
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1. Introduction

Nutrigenomics approaches are increas-
ingly applied in human nutritional sci-
ences to comprehensively model the
complex mechanisms that link diet to
health. Large multi-omics datasets have
been generated in nutritional studies,
including whole-genome gene expres-
sion (transcriptome) and the profiling
of small molecules detectable in bioflu-
ids (metabolome). To date, analysis of
data is usually performed separately for
each “omics” layer.[1,2] However, the com-
bination of “omics” datasets, may be
key to understand how the system func-
tions as a whole as each dataset con-
tributes to a larger, common biological
system.[3–5] This integration may iden-
tify related changes in gene expression
andmetabolite flux that would be difficult
to detect when analyzed independently.
Indeed, integrating transcriptomic and
metabolomic data from human blood
samples has already revealed novel in-
sights into the molecular mechanisms of
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clinical traits underlying normal physiology and disease by high-
lighting the cross-talk between biological layers at the pathway
level.[3]

In human nutrition intervention studies, data integration
techniques could also advance understanding of the metabolic
changes attributable to diet or food compounds. Such signals
of metabolic change are often subtle and difficult to elucidate
against a complex background of biological and environmental
variation. Several studies have successfully used data integration
tools to identify groups of biomarkers that are associated with
diet-related outcomes, for example themodulation of insulin sen-
sitivity induced by caloric restriction intervention[6] or change in
body weight.[7] However, data integration of nutritional “omics”
datasets remains underexploited.
Different methods have been developed for integrating

“omics” layers. This study evaluates two recently developed
methods for integrating “omics” data that can be used to group
samples and identify biomarkers, themes that are relevant to
nutrition and disease-focused studies. The first method is the
similarity network fusion tool (SNF),[8] a correlation-based,
unsupervised tool that previously performed well in detecting
subtle signatures in datasets compared to alternative unsu-
pervised methods.[9] SNF uses correlation matrices, generated
separately for the related “omics” datasets, to create a “fused”,
integrated network that models the relationship between individ-
ual samples. The secondmethod is the Data Integration Analysis
for Biomarker discovery using Latent variable approaches for
“Omics” studies (DIABLO),[10,11] a supervised, multivariate
method (component-based) that maximizes the discrimination
between predefined sample groups while associating each pair
of “omics” datasets.[10,12–14] Therefore DIABLO can identify a set
of correlated variables (such as genes or metabolites) that could
discriminate different responses to diet.
This study evaluates the performance of the SNF and DIABLO

methods for the integration of nutritional “omics” data in three
independent nutrition studies. The studies represent some of the
common types of approaches that are used in nutritional stud-
ies, including crossover and parallel design, postprandial tests
(to assess the immediate response to food intake), and fasting
measurements (to assess the longer-term consequences of diet
on metabolism).

2. Experimental Section

2.1. Study Designs

SNF and DIABLO data integration methods were applied in
an exploratory analysis of data obtained from three clinical hu-

Prof. L. Brennan
UCD Institute of Food & Health
School of Agriculture and Food Science
University College Dublin
Belfield, Dublin 4 D04 V1W8, Ireland
Dr. M. Ibberson
Vital IT
Quartier UNIL-Sorge, Lausanne 1015, Switzerland
Dr. M. Ibberson
Swiss Institute of Bioinformatics
Quartier UNIL-Sorge, Lausanne 1015, Switzerland

man studies in which the effects of diet on transcriptomics and
metabolomics or lipidomic signatures were evaluated in blood
samples (Figure 1). Study 1 (the F3 study), a randomized con-
trolled crossover design, assessed the dynamic postprandial ef-
fects of two dairy products (800 g yogurt or acidified milk) on
the whole blood transcriptome (Illumina RNAseq) and serum
metabolome (untargeted UHPLC/Q-TOF-MS analysis) of seven
healthy young men.[15–17] Study 2 (the MECHE study) also used
postprandial testing (response at 4h post-challenge) to evaluate
the transcriptome (human whole-genome GeneChip microarray,
in PBMCs) and serum lipid profile (Orbitrap LC-MS, identifi-
cation of a selection of lipids) of thirteen men with different
metabolic phenotypes (obese/non-obese) to an oral lipid toler-
ance test (OLTT).[18–21] Study 3 (theMARIS study) used a random-
ized controlled parallel study design to evaluate an 8 week dietary
intervention, testing three dietary patterns: a Western-type diet
high in saturated fatty acids (SFA diet), a Western-type diet high
in MUFA from olive oil (MUFA diet), and a Mediterranean-type
diet (MED diet) with equivalent MUFA amounts to the MUFA
diet.[22] The transcriptome (humanwhole-genomeGeneChipmi-
croarray, in PBMCs) and serum metabolome (NMR, identifica-
tion of a selection of metabolites from various classes) were as-
sessed in 39 overweight or obese men and women using fasting
samples collected after a 2 week run-in period (SFA diet) and af-
ter the dietary interventions.[23,24] All three studies included in
this analysis were completed in accordance with the ethical stan-
dards of the responsible committee on human experimentation
and with the guidelines laid down in the 1975 Helsinki Declara-
tion, as revised in 1983. The studies are registered at ClinicalTri-
als.gov (study 1: NCT02230345, study 2: NCT01172951, and study
3: NCT00405197). A full description of study designs is given in
Sections S1-S3, Supporting Information.

2.2. Preparation of Data

Each dataset was preprocessed to filter artifacts and low-level
signal according to the original study protocols (see Sections
S1-S3, Supporting Information). Additional filtering of the data
with baseline measures deducted was applied to refine data in-
tegration performance [8] ( Section S4, Supporting Information).
Total filtered features retained for data integration analysis were:
study 1, n = 5043 genes, n = 1100 metabolites (untargeted, not
identified); study 2, n = 1040 genes, n = 42 lipids (identified
and quantified); study 3, n = 1012 genes, n = 129 metabolites
(identified and quantified). The datasets were then processed
according to a common analysis pipeline (Figure S1, Supporting
Information) in the R environment (R v 3.5.3; R Foundation for
Statistical Computing, Vienna, Austria).

2.3. SNF Analysis

The SNF analysis protocol was based on the methods described
by Wang et al.[8] using the R package “SNFtool” (v 2.3.0) (Sec-
tion S4, Supporting Information). SNF first calculates dissimilar-
ity distances between samples for each separate dataset to create
affinity/similarity matrices that can be interpreted as networks.
Each individual “network” is then iteratively modified by SNF,
finally converging on a unique, integrated network. Transcrip-
tome, metabolome/lipidome and integrated SNF networks were
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Figure 1. Overview of study designs used for data integration. A) Study 1 used a randomized, controlled, crossover study design to test the postprandial
and short-term effects of acidifiedmilk and probiotic yogurt.[15,31 On dairy test days (D1 and D2) blood samples were collected fasting and postprandially
for transcriptome and untargeted metabolome profiling (n = 7 subjects). Dietary restriction applied 3 days before the postprandial tests and diet was
controlled throughout the study. B) Study 2 evaluated the response of obese (n= 5) and non-obese (n= 8) participants to a standardmetabolic challenge
comprised of a lipid overload that was completed after an overnight fast. The postprandial response to the challenge was evaluated by blood sampling
over 5 h for lipid profiling and transcriptome analysis.[20] C) Study 3 used a parallel, controlled study design to evaluate the effect of different dietary
patterns on the fasting metabolic profile and transcriptome. After a 2 week run-in phase of SFA diet, participants were randomly assigned to test for 8
weeks either a MED diet (n = 17), SFA diet (n = 16), or MUFA diet (n = 14).[22] D1/D2, dairy test; MED, Mediterranean; SFA, saturated fatty acid.

visualized by extracting the strongest connections between the
samples. SNF integrated models were validated using bootstrap-
ping tests that compared themodel classification tomodels using
randomized data (p < 0.05) (see Section S4, Supporting Informa-
tion). Classification performance of the models was evaluated by
the classification error rate (CER) (ranging from 0 to 1), which
was estimated by an internal (M-fold) cross-validation analogous
to that of the mixOmics “perf” function. CERs for the integrated
and non-integrated models were compared using linear mixed-
effects models. Post hoc pairwise comparisons were estimated,
where indicated (p < 0.05), using marginal means (emmeans)[25]

(significant effects considered where padj < 0.05).

2.4. PLS-DA and DIABLO Analyses

For each study, separate partial least squares discriminant anal-
ysis (PLS-DA) models for transcriptomics and metabolomics

datasets were created using mixOmics (v 6.6.2).[26] Classification
performance of the models was evaluated by the CERs using the
same cross-validation test as described for SNF. Goodness-of-fit
and predictability were verified with R2 and Q2 parameters.
The integration of the two “omics” datasets using DIABLO

applied the workflow proposed by Rohart et al.[10] and Singh
et al.[11] using mixOmics. For each study, a DIABLO model was
built with settings tomaximize the separation between treatment
groups while accounting for correlation between the “omics”
datasets. Validity of the DIABLO models was assessed by a per-
mutation test that compared the CERs of the original DIABLO
models to CERs of models built with randomly permuted sam-
ples (significance where p < 0.05). Relative “weights” of each
dataset in the final integrated model were compared to evalu-
ate the relative importance of each dataset.[10] Finally, CERs of
DIABLO models were compared to those of PLS-DA models us-
ing the same method as defined for SNF to evaluate whether the
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integration of the two “omics” datasets improved classification
performance.
A multilevel decomposition was applied to PLS-DA and DIA-

BLO analyses for study 1 to account for the crossover design.[27,28]

A detailed description of the PLS-DA and DIABLO workflows is
given in Section S4, Supporting Information and model settings
are presented in Table S1, Supporting Information.

2.5. Comparison of SNF and DIABLO

For each study, the CERs of the SNF and DIABLO models
could be directly compared using paired, two sample t-tests
(p < 0.05), as identical test and training sets were used in
M-fold cross-validations. When both methods showed good
performance (validated CER < 0.05), further evaluation of the
features (genes and metabolites/lipids) selected by the models
was carried out including network and enrichment analyses.
The top 5% most important features for each integrated models
were extracted and the strongest connections between selected
features (𝜌 < −0.9 and 𝜌 > 0.9, Spearman’s correlation) were
represented in networks. Over-representation analysis (ORA)
using Fisher’s exact test was used to assess the functional
relevance of the top 5% most important genes selected by inte-
grated models. Full details are found in Section S4, Supporting
Information.

3. Results

3.1. SNF and DIABLO Performed Well to Discriminate the Two
Postprandial Dairy Tests (Study 1)

Study 1 sought to characterize the postprandial response to acid-
ified milk and yogurt. The SNF models generated for the tran-
scriptome or metabolome data alone (respectively shown in the
form of affinity matrices in Figure 2A,B) did not completely dis-
tinguish the responses to the dairy products, despite the observa-
tion of some grouping of samples especially for the metabolome.
However, the integration of the datasets using the SNF tool re-
vealed two distinct clusters in the integrated SNF affinity matrix,
comprised only of samples representing the postprandial re-
sponse to either acidified milk or yogurt (Figure 2C). The group-
ing of the samples in the SNF model were statistically validated
by bootstrapping permutation tests (p = 0.0002). In line with the
strength of the SNF model in separating the samples, the model
performedwell in prediction tests, with a statistically significantly
lower CER than either model created with the separate datasets
(Table 1).
A network representing the most important connections be-

tween samples in the SNFmodel shows spatial separation ofmilk
and yogurt postprandial samples (Figure 2D). The network con-
nections were generally specific to the metabolome or the tran-
scriptome rather than both, while some connections were only
found when both datasets are combined.
The multivariate analyses of each datasets separately (PLS-

DA) and successfully discriminated the postprandial dairy
responses, as shown by the score plots (Figure S2, Supporting
Information; R2 and Q2 values in Table S2, Supporting In-
formation). The integration using DIABLO resulted in a valid

model (permutation test, p = 2.2×10–16, Figure S3, Supporting
Information) and performed better in classifying the samples
than when the datasets were analyzed separately (Table 1). A
strong association was observed between the first components of
the two data types (Pearson correlation, 𝜌 = 0.86, p = 8.0×10–5)
and correspondingly the relative contribution (“weights”) of the
metabolome and transcriptome datasets in the integrated DIA-
BLOmodel were not significantly different (Table S3, Supporting
Information).
The integration of study 1 datasets with DIABLO and SNF

both resulted in models showing similar performance in the pre-
diction of type of dairy consumed (CER < 0.05), although the
CER was slightly better for SNF (Table 1). Comparison of the
top 5% most important metabolites and genes selected by each
integrated model revealed some similarities despite the differ-
ent strategies used to construct the models. Of these features,
25% were present in both models, with more common genes
(27%) than common metabolites (16%). The similarity between
the models was greater when considering only the most corre-
lated genes andmetabolites (e.g., those with |𝜌|> 0.90), as shown
in the gene-metabolite networks (Figure 3); 41% of all selected
features were found in both networks. Pathway analysis did not
reveal a significant enrichment among the genes identified as dis-
criminant for either model.

3.2. Using Postprandial Transcriptome and Lipid Data to
Separate Responses to an OLTT (Study 2)

The MECHE metabolic challenge study investigated the
metabolic impact of an OLTT in the postprandial state, fo-
cusing on the differences in this response between obese and
non-obese individuals. The affinity matrix for the transcriptome
alone grouped together the five OLTT responses of the obese
subjects correctly while the lipidome misclassified one obese
individual (Figure S4A,B, Supporting Information). Integration
of transcriptome and lipidome datasets for MECHE using SNF
resulted in a valid model (p = 0.003) that broadly grouped the
samples into OLTT responses of obese and non-obese sub-
jects, with one misclassification of a response from an obese
individual (BMI 34.4 kg m−2), which was grouped with the
responses from non-obese participants (Figure S4C, Supporting
Information). The CER of the integrated model was thus a little
lower than the separate lipidome model though higher than the
transcriptome alone (Table 1). The network derived from the
SNF model (Figure S4, Supporting Information) shows the BMI
groups were well separated when only visualizing the strongest
associations between samples, with the lipidome showing par-
ticular importance in defining connections within the non-obese
while associations within the obese group were captured by the
integrated datasets.
PLS-DA analysis of the transcriptome dataset alone cor-

rectly classified all phenotypic responses to the OLTT in all
M-fold tests, while the lipidome PLS-DA model showed sig-
nificantly weaker predictive performance (Table 1). PLS-DA
performance parameters R2 and Q2 values are presented in
Table S2, Supporting Information. The integrated DIABLO
model also correctly predicted all phenotypic responses to the
OLTT (permutation tests, p = 2.2×10–16, Figure S3, Supporting
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Figure 2. Visualization of models constructed with SNF for study 1. Affinity matrices for net iAUC show metabolite, gene, and SNF integrated models
(respectively, A–C); SNF network showing the top 30% connections between samples using Cytoscape with edge weighted spring embedded layout in
panel D. Samples are labeled by subject (S) number and intervention type milk (M, n = 7) or yogurt (Y, n = 7), with colors to indicate test meal: M (blue),
Y (red). Diagonal of heatmaps shows median similarity across all samples. Network connections are colored according to whether the connection
was identified in the top 30% connections for networks created with the metabolome (turquoise), transcriptome (purple), in both metabolome and
transcriptome separate networks (black) or only with the datasets combined (SNF model) (yellow). iAUC, net incremental area under curve; SNF,
similarity network fusion.

Information) (Table 1). Despite a strong association between
the first components of the two data types (Pearson correlation,
𝜌 = 0.77, p = 0.002), comparison of the relative “weights”
of the datasets in the final DIABLO model showed that the
transcriptome dataset was given significantly more importance
than the lipidome dataset (Table S3, Supporting Information).
The spatial separation of the samples and their groupings for
each model are shown in the score plots (Figure S5, Supporting
Information).
For this study, the integration of datasets using DIABLO re-

sulted in better classification of the phenotype groups, with lower
CER for DIABLO than SNF (Table 1). Comparisons of the top fea-
tures selected for eachmodel were not completed due to the high
CER obtained for the SNF model, which implies that extracted
features based on this model would not characterize the groups
well.

3.3. Data Integration for the Long-Term Dietary Intervention
(Study 3)

MARIS was an 8 week dietary fat and dietary quality modification
intervention study. When the three dietary interventions were in-
cluded in the SNF analysis, regardless of whether metabolome,
transcriptome, or integrated datasets were used, affinity matrices
(Figures S6A, S7A, and S8A, Supporting Information) and CERs
(Table 1) did not show good classification of samples. Conversely,
when only two diets were included per analysis, sample cluster-
ing was improved for the metabolome and transcriptome data
(Figures S6B–D and S7B–D, Supporting Information).Moreover,
the integration of the datasets using SNF enabled clustering that
separated the SFA diet group from that of the MED diet group
(p = 0.0005). However, other comparisons using SNF integrated
datasets were not significant (MUFA vs MED: p = 0.07; MUFA
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Table 1. Classification error rates (CER) for SNF models (separate and integrated models) and for PLS-DA and DIABLO models presented for all stud-
ies.CER is validated by M-fold cross-validation tests (respectively, 7-, 5-, and 10-fold for studies 1, 2, and 3).

Study 1 CER ±
SEM

Study 2 CER ±
SEM

Study 3 CER ± SEM

Milk versus
yogurt

Non-obese
versus obese

All diets SFA diet versus
MED diet

SFA diet versus
MUFA diet

MUFA diet
versus MED diet

SNF analysis

Metabolome/lipidome model 0.21a ± 0.004 0.15a ± 0.003 0.41a ± 0.005 0.13b ± 0.003 0.29a ± 0.006 0.30a ± 0.006

Transcriptome model 0.14b ± 0 0.03c ± 0.006 0.38b ± 0.004 0.19a ± 0.005 0.21b ± 0.004 0.33b ± 0.004

SNF integrated model 0.02c ± 0 0.08b ± 0.002 0.30c ± 0.005 0.08c ± 0.002 0.23b ± 0.005 0.32b ± 0.004

DIABLO analysis

Metabolome/lipidome (PLS-DA) 0.14a ± 0# 0.13a ± 0.007# 0.27a ± 0.003# 0.11a ± 0.004# 0.18a ± 0.002# 0.19a ± 0.004#

Transcriptome (PLS-DA) 0.14a ± 0 0b ± 0# 0.06c ± 0.002# 0.07b ± 0.003# 0.01b ± 0.003# 0.07b ± 0.005#

DIABLO model 0.03b ± 0.007# 0b ± 0# 0.08b ± 0.003# 0.06b ± 0.004# 0.02b ± 0.003# 0.08b ± 0.005#

Different letters (a–c) indicate significant differences between CERs for comparisons between models for each study (as assessed by linear mixed-effect models with post hoc
pairwise comparisons, padj < 0.05). #indicates a difference comparing equivalent models created by the SNF tool and DIABLO (as assessed by paired t-test, p < 0.05).CER,
classification error rate; DIABLO, data integration analysis for biomarker discovery using latent variable approaches for “omics” studies; MED, Mediterranean; PLS-DA, partial
least squares discriminant analysis; SFA, saturated fatty acid; SNF, similarity network fusion.

vs SFA, p = 0.06) (Figure S8B–D, Supporting Information). The
comparison between MED and SFA diets also showed the best
spatial separation in the sample networks (Figure S9, Support-
ing Information), with only one sample that was misplaced in
both groups. Themetabolomewas important in defining the sim-
ilarities within each group (Figure S9A, Supporting Information,
turquoise connections).
PLS-DA analyses of study 3 showed that the transcriptome per-

formed significantly better in classifying the samples than the
metabolome for all dietary comparisons (Table 1; score plots avail-
able in Figure S10, Supporting Information, R2 and Q2 values in
Table S2, Supporting Information). Furthermore, the DIABLO
integration of the datasets did not significantly improve the CER
compared to the transcriptome alone for any of the comparisons
although the integrated models were validated (p < 0.0001 for all
permuted tests, Figure S3C–F, Supporting Information). The rel-
ative importance of the transcriptomics dataset was also shown
by the significantly greater weight of the transcriptome dataset
in the DIABLO model as compared to the metabolome dataset
(Table S3, Supporting Information). In addition, the “omics”
datasets were not strongly associated except for the SFA v. MED
model (Pearson correlations: all diets 𝜌 = 0.50, p = 0.001, MUFA
vs SFA 𝜌 = 0.56, p = 0.001, MUFA vs MED 𝜌 = 0.58, p = 0.002,
SFA vs MED 𝜌 = 0.81, p < 0.0001), confirming the different con-
tribution of each dataset to the final model. The lowest CER was
observed for the SFA versus MUFA comparison using the tran-
scriptome PLS-DA model (Table 1).
For study 3, the integration of datasets using DIABLO resulted

in lower CER than the integration using SNF, for all comparisons
of the three diets (Table 1). As for study 2, due to the high CERs
obtained for the SNF models, comparisons of the top features
selected for each model were not completed.

4. Discussion

In our data integration analyses of three different nutritional
studies, we show that the integration of related “omics” datasets,

by DIABLO or SNF, can help to differentiate responses to diet.
The inherent differences of using a supervised (e.g., DIABLO)
or unsupervised (e.g., SNF) data integration approach have
implications for their utility for nutritional studies. As expected,
DIABLO performed well in extracting common discriminating
signals of diet or metabolic phenotype, even where the dietary
effects were small. Conversely, SNF performed well in classifying
samples where the dietary effects were more marked but also
enabled the detection of outliers or novel groups.

4.1. DIABLO could Discriminate Sample Groups for all Three
Study Designs

DIABLO applies a powerful supervised method that discrimi-
nates predefined groups and thus was expected to be relevant for
nutritional datasets as the effects of diet can be subtle. One fea-
ture of DIABLO is its ability to handle “omics” datasets that are
“unbalanced” (i.e., one dataset carries more discriminatory infor-
mation than the other(s)). Specifically, the capacity to attribute
a “weight” to datasets is critical in allowing DIABLO to com-
bine datasets while maintaining the importance of the discrim-
inatory features. In both studies 2 and 3, the transcriptome was
assigned a significantly greater “weight” in the models than the
metabolome. Consequently, the integration of “omics” datasets
using DIABLO was very similar to the separate analysis using
the transcriptome only and did not further improve sample clas-
sification. The lower importance of the lipidome/metabolome in
the DIABLO model for studies 2 and 3 could be explained by the
reduced number of compounds. In contrast, the untargeted ap-
proach used in study 1 captured the broad spectrum of metabo-
lites that could respond to diet similarly to the approach used for
the transcriptome.
In the current analyses, DIABLO models were built using

a “full weighted design matrix,”[10] that maximizes the sepa-
ration between samples groups while taking into account the
correlation between “omics” datasets (design matrix parameter
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Figure 3. Network plots for the top 5%most important genes andmetabo-
lites for differentiating blood samples taken after milk intake or yogurt in-
take in study 1, selected by A) SNF and B) DIABLO. Connections between
nodes (metabolites, green; genes, purple) are shown for the strongest as-
sociations (𝜌 < −0.90 or 𝜌 > 0.90, Spearman’s correlation) (SNF, n = 199
nodes; DIABLO, n= 209 nodes). Nodes present in both networks are high-
lighted by a black outline and a larger size (metabolites, n = 12; genes,
n = 80). DIABLO, data integration analysis for biomarker discovery us-
ing latent variable approaches for “Omics” studies; PLS-DA, partial least
squares discriminant analysis; SNF, similarity network fusion.

set to 0.1). However, by using a “full design matrix” instead
(design matrix parameter set to 1), the model would maximize
the correlation between “omics” datasets, prioritizing the as-
sociation between features of the metabolome with features
of the transcriptome. Thus, although the integration of data

with DIABLO did not improve sample classification in study
2 and 3 compared to transcriptome data alone, DIABLO re-
mains useful in offering a method to associate features of the
metabolome and transcriptome that similarly discriminate
diet.

4.2. SNF Showed Potential to Reveal Novel Sample Groups

In contrast to DIABLO, SNF models are unsupervised and thus
do not use any a priori information to separate sample groupings.
For this reason, the use of a classification measure (i.e., CER) as
a performance criterion to compare the two methods might be
expected to favor DIABLO. Nevertheless, SNF performed slightly
better than DIABLO in study 1.
Interestingly, while DIABLO gives an estimate of the overall

contribution of each dataset (by the relative weights), the SNF
networks provide a deeper insight into the importance of each
dataset by specifying the dataset(s) used to build each connection
between samples. The lack of connections defined by both indi-
vidual datasets (e.g., black connections in Figure 2D), confirmed
the value of integrating the datasets to model the two postpran-
dial dairy responses.
The SNF model for the postprandial metabolic challenge in

study 2 failed to improve classification compared to the tran-
scriptome alone. One explanation for the weaker performance
for the SNF in this study is suggested in the characteristics
of the obese outlier for the SNF model, who was the oldest
participant in the study. This participant may have a metabolic
response profile distinct from both non-obese and younger
obese participants; indeed the broad descriptor “obesity” may
comprise multiple subtypes.[29,30] A potential advantage of
the SNF tool for nutritional studies is the ability to separate
samples by undefined factors (for example environmental or
biological factors). This could lead to the identification of new
metabolic subgroups, but it would require either a stronger
signal or a larger cohort than used in study 2 to clarify the
groupings.
The results from study 3 suggest two important aspects of

study design that can affect the performance of the SNF models:
the number of dietary groups studied and the use of fasting blood
samples to assess long-term effects of diet. It was noteworthy that
a significant improvement was observed for the integrated SFA
versus MED SNF model, whereas the evaluation of all three di-
ets together suggested no clear discrimination. The nutritional
content of the SFA and MED diets were also the most differing
of the three diets, testifying the tendency of SNF to identify the
strongest signals in the data. The discrimination of more than
two dietary intervention groups by SNF using fasting, long-term
data was challenging in this study. The effect of the diet might
be more visible if the inter-variation between participants was re-
duced (e.g., crossover study design). However, the study diet was
well controlled (all food was provided to participants) and, the
SFA andMED diet could be differentiated by SNF. Moreover, the
strong performance of the DIABLO models for all comparisons
of study 3 show the value of the tool in giving weight to the fea-
tures that discriminate the intervention groups, even if the diets
are relatively similar or if the long-term, physiological effects of
diet are being assessed.
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4.3. Strengths and Limitations

We assessed two different data integration tools that hold
promise for nutritional datasets using three independent,
distinct dietary studies. The use of the sameM-fold validation test
with identical samples per fold allowed a direct comparison of the
CERs for the tools in each study although it is acknowledged that
themethods were not designed with the same purpose.We chose
to include a filtering step in the analysis pipeline to limit the noise
in the data as advocated in the previous analysis of Tini et al.,[9]

and this was an essential step in the preparation of our data due to
limited sample size in our studies. In larger nutritional datasets,
models could be explored using filtered and unfiltered data to
confirm the utility of the filtering step for clarifying the dietary
signals. Although the results were validated internally by the M-
fold validation test, an external validation of the results would be
useful to further confirm the robustness of these models. While
the number of participants in our studies was a limitation of our
work, the strength of the models in the internal validation tests
despite this limitation underlines the potential of these tools for
integrating dietary datasets.
Another consideration in our study was the differences in the

choice of “omic” platform and the resulting variation in number
of features per dataset. These differences most likely explain
why transcriptomic datasets carried most of the information
when integrating the datasets in studies 2 and 3. Moreover, such
differences, by influencing the performance of the integration
tools, might limit the direct comparison of the data integration
for different study designs. However, given that these studies
reflected the variation of techniques used across existing nutri-
tional studies it was considered relevant to apply data integration
approaches to studies with different “omic” data types. It is
also noteworthy that the choice of omics data as well as the
omics platform selected could affect the success of data inte-
gration. While we evaluated commonly available blood “omics”
datasets, depending on the research question, the use of other
“omics” approaches (e.g., proteomics) may be considered more
relevant.
The potential to use SNF andDIABLO to support the biological

interpretation of the combined “omics” signal was explored for
study 1 in which both models performed well in classifying the
samples. Different features were found to be important in defin-
ing the models, which may reflect the inherent differences in the
methods, although very discriminatory features were found for
bothmodels. Discriminatory genes did not represent an enriched
metabolic pathway in either model though the limited identifica-
tion of the untargeted metabolic dataset prevented an integrated
pathway analysis of the two datasets.

4.4. Conclusions and Perspectives

The application of data integration methods to combine related
“omics” datasets may help to discriminate responses to differ-
ent diets and identify related biological signals that are regu-
lated by diet. SNF and DIABLO data integration methods seem
to offer different advantages for the analysis of human nutrition
intervention/challenge datasets. Generally, DIABLO performed
well in our relatively small datasets to identify the features that

can differentiate diets or metabolic phenotypes. However, given
the complex responses of humans to diet, SNF may be rele-
vant for the identification and the investigation of new metabolic
phenotypes.
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