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A B S T R A C T   

Background: Digital twins have advanced fast in various industries, but are just emerging in postharvest supply 
chains. A digital twin is a virtual representation of a certain product, such as fresh horticultural produce. This 
twin is linked to the real-world product by sensors supplying data of the environmental conditions near the target 
fruit or vegetable. Statistical and data-driven twins quantify how quality loss of fresh horticultural produce 
occurs by grasping patterns in the data. Physics-based twins provide an augmented insight into the underlying 
physical, biochemical, microbiological and physiological processes, enabling to explain also why this quality loss 
occurs. 
Scope and approach: We identify what the key advantages are of digital twins and how the supply chain of fresh 
horticultural produce can benefit from them in the future. 
Key findings and conclusions: A digital twin has a huge potential to help horticultural produce to tell its history as 
it drifts along throughout its postharvest life. The reason is that each shipment is subject to a unique and un-
predictable set of temperature and gas atmosphere conditions from farm to consumer. Digital twins help to 
identify the resulting, largely uncharted, postharvest evolution of food quality. The benefit of digital twins 
particularly comes forward for perishable species and at low airflow rates. Digital twins provide actionable data 
for exporters, retailers, and consumers, such as the remaining shelf life for each shipment, on which logistics 
decisions and marketing strategies can be based. The twins also help diagnose and predict potential problems in 
supply chains that will reduce food quality and induce food loss. Twins can even suggest preventive shipment- 
tailored measures to reduce retail and household food losses.   

1. Introduction 

The supply chain of fresh horticultural produce plays a crucial role in 
supplying horticultural crops with acceptable quality and remaining 
shelf life to the consumer. The losses and waste of fresh fruits and veg-
etables from farm to consumer are still considerable and can amount to 
several tens of percent (Gustavsson, Cederberg, Sonesson, van Otterdijk, 
& Meybeck, 2011). Reducing the loss of fresh horticultural produce is 
essential to mitigate food insecurity (FAO, IFAD, UNICEF, WFP, & WHO, 
2018) and to reduce greenhouse-gas emissions in both high- and 
low-income countries (Hawken, 2017; Poore & Nemecek, 2018). 

Reducing food waste has been estimated to save about 90 Gigatons of 
CO2 equivalents between 2020 and 2050 (Hawken, 2017). To reduce 
such losses for fresh horticultural produce, we need to better preserve 
the quality of the produce after harvest to prevent quality changes due to 
physical (e.g., moisture loss), biochemical (e.g., browning reactions, 
vitamin degradation), physiological (e.g., ripening, senescence, respi-
ration) and microbiological processes (e.g., growth of micro-organisms). 
When successful, we have more high-quality, nutritious produce avail-
able and less losses, leading to less food insecurity and a lower climate 
impact. 

The most commonly applied strategy to maintain the quality of fresh 
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fruits and vegetables is to reduce the produce’s temperature after har-
vest by refrigeration during storage and transport. The shelf life is 
typically extended with a factor of two to three per 10 ◦C below ambient 
(Robertson, 2016; Thompson, 2004). The reason is the drastic reduction 
in the rate of postharvest degradation processes. A further solution is to 
alter the gas composition of the atmosphere surrounding the produce, in 
order to slow down the produce’s metabolism. This includes reducing 
the oxygen concentration and increasing the carbon dioxide concen-
tration to the optimal level for long-term storage, scrubbing away 
ethylene, and establishing an optimal relative humidity, which is mostly 
close to 100% (Mahajan, Caleb, Singh, Watkins, & Geyer, 2014). Cor-
responding technologies include modified atmosphere packaging and 
controlled atmosphere storage, or even dynamic controlled atmosphere 
storage (Bessemans, Verboven, Verlinden, & Nicolaï, 2016; Joshi, 
Tiwari, Cullen, & Frias, 2019; Zhao et al., 2019). Another strategy is to 
coat the fruit to tailor the gaseous exchange, i.e., of O2, CO2, C2H4, and 
H20 (Dhall, 2013). 

Keeping fresh horticultural produce cool and maintaining the right 
atmospheric conditions remain challenging tasks, especially for trans-
continental transport. A key reason is that fresh horticultural produce 
passes through many cold-chain facilities, where it is subjected to 
different unit operations, including de-greening, hot water treatment, 
waxing, fungicide application, sorting, packing, re-packing, precooling, 
refrigerated transport, cold storage, ripening treatment and storage at 
the retailer under ambient conditions in the stores. During transport, the 
fruit often moves through different climates with the cargo exposed to 
highly varying weather conditions along the route. Furthermore, various 
stakeholders and service providers are involved in these complex supply 
chains, which consecutively transfer the shipment and the associated 
responsibility from one to the next. As a result, each shipment is sub-
jected to highly unpredictable environmental, logistical, but also socio- 
economic boundary conditions. Examples include temperature excur-
sions outside the targeted range, lack of proper refrigeration facilities, 
travel delays, human errors in thermal management or logistics, power 
outages, strikes, or extreme weather conditions. This situation leads to a 
unique temperature history and gas atmosphere for every single ship-
ment from the farm to the consumer. As no two shipments are the same, 
the quality of the fresh horticultural produce received by the retailer, 
and the remaining shelf life for the consumer, is often highly variable. As 
a result of this variability, the risk of food loss and waste is still relatively 
high and unpredictable. 

The most common strategy to safeguard, troubleshoot, and eventu-
ally optimize postharvest supply chains to reduce food losses is to 
intensify in-transit monitoring of the environmental conditions to which 
the cargo is exposed. A reduced cost of sensors, wireless connectivity, 
and Internet of Things (IoT) are driving the increased monitoring in 
supply chains of fresh horticultural produce (Pang, Chen, Han, & Zheng, 
2015; Wang, Zhang, Gao, & Adhikari, 2018; Xiao, Fu, Zhang, Cheng, & 
Yang, 2019). The result is that large amounts of data are gathered in real 
time, which opens up new analysis approaches, for example by artificial 
intelligence and big data analytics (Coble, Mishra, Ferrell, & Griffin, 
2018; Jagtap, Bhatt, Thik, & Rahimifard, 2019; Tiwari, Wee, & Dar-
yanto, 2018; Wolfert, Ge, Verdouw, & Bogaardt, 2017; Zhou, Zhang, Liu, 
Qiu, & He, 2019). New steps are taken to use these sensor data to 
develop so-called digital twins of their products in various industries, 
including in aerospace, the automotive industry, building technology, 
healthcare. These twins can provide highly complementary data that 
was not available ever before. Very recently, the concept of digital twins 
has also emerged in food processing (Verboven, Defraeye, Datta, & 
Nicolai, 2020) and postharvest technology (T. Defraeye et al., 2019). 

In postharvest engineering, such a digital twin could be defined as a 
virtual representation of real horticultural produce. This digital shadow 
contains all essential elements to capture the relevant kinetics of the 
heat and mass transfer processes inside and around the produce and the 
associated food quality degradation processes. The twin is linked to the 
real horticultural produce in the postharvest supply chain by relying on 

sensor data of the measured environmental conditions in its direct 
proximity as an input, for example, the air temperature in the vicinity of 
the fruit. As such, this digital replica evolves and reacts hygrothermally 
and metabolically in a similar way as its physical counterpart – a real 
fruit or vegetable – but now in-silico and preferably in real time. 

Gartner predicted that by 2021, 50% of the large industrial com-
panies would rely on digital twins, leading to an expected 10% gain in 
effectiveness (Gartner, 2019a, 2019b). However, the digital twin 
concept is still novel, and its full potential has not been exploited so far. 
In postharvest technology, digital twins are quasi nonexistent. It seems 
that in this field, not the same progress has been made in terms of the use 
of digital twins, compared to manufacturing or healthcare, for example. 
The knowledge of what fruit is exposed to during its postharvest life 
would help, for example, to optimize refrigeration processes on-the-go 
by applying optimal environmental conditions during shipments or by 
improving logistical decisions. In this study, we first define the digital 
twin concept, classify these twins in different types, and discuss their 
current applications in several research fields. Then, we discuss the 
advantages and future potential of such digital twins for supply chains of 
fresh horticultural produce. We hint at the extent to which they could 
play a role in the digitalization of future postharvest supply chains. 
Thereby, this work aims to help map the future digital twin landscape 
for researchers, engineers and practitioners in supply chains of fresh 
horticultural produce. 

2. Digital twins 

2.1. Definition 

A digital twin of a certain product is defined as a virtual represen-
tation of its real-world counterpart, which (1) contains all essential el-
ements, such as all geometrical components and material properties; (2) 
simulates accurately and realistically all relevant processes and their 
kinetics throughout the product’s life-cycle; and (3) is connected to the 
real-world product and processes by sensor data, which is preferably 
continuously updated in real-time. Other names are a digital shadow, 
digital mirror, virtual avatar, synchronized virtual prototype, or virtual 
phantom. In the horticultural supply chain, a digital twin of horticul-
tural produce ideally would capture the shape, size, and structural 
components of the produce (e.g., skin, seed, pulp). It has been referred to 
as virtual fruit before the digital era. It also mimics, in-silico, the pro-
duce’s physical, biochemical, microbiological and physiological states 
as well as evolution throughout the cold chain, based on measured data 
of the environmental conditions (e.g., air temperature, relative humid-
ity, metabolic gas concentration). The typical processes that could be 
captured are illustrated in Fig. 1. A representation of a digital-twin 
framework for horticultural produce cold chains is given in Fig. 2. 
This twin is, for example, a single horticultural product, which is placed 
inside a pallet of fruit, where a sensor measures air temperature in the 
vicinity of the fruit. As such, every pallet could have its digital-twin fruit 
placed inside to record the thermal state of the fruit. These twins can 
then pick up the well-known variability in fruit cooling between 
different pallets, for example, between the back and the front of a 
refrigerated container (T. Defraeye et al., 2016). A digital twin for an 
entire pallet could also be made (Fig. 2), which would be more 
computationally demanding. Here a sensor, or more sensors, could 
measure the air temperature at the airflow inlet in the pallet, for 
example. Due to the complexity and multitude of the processes at play in 
and around the fruit (Fig. 1), environmental parameters other than the 
air temperature should be fed into the digital twin for increased accu-
racy, or to quantify certain quality attributes. 

To function, a digital twin requires three elements (highlighted in the 
bold red lines in Fig. 2):  

- A digital master model of the object that contains the blueprint of the 
physical asset, its properties, and the processes involved. In our case, 
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the physical asset is a horticultural product, such as a single fruit, or 
an ensemble of products, such as a pallet of fruit.  

- Sensors that monitor environmental parameters in real supply 
chains, for example, air temperature or relative humidity, but also 
oxygen concentrations or the ripening gas ethylene.  

- A connection of the digital master model to the physical asset by use 
of the sensor data. This link is a cornerstone for the digital twin and 
distinguishes it from standard computational models which are run 
separately from the real-world process. This connection is preferably 

done in real-time during operation, but can also be done offline, i.e., 
sequentially. 

The link of the digital master to the real world, via sensing, enables 
the digital twin to evolve and drift with its real-world counterpart during 
its postharvest life from palletization to the arrival at the retailer. This 
evolution is different for every individual “virtual” product. Thereby, 
the digital twin accounts for the unique boundary conditions that each 
product is exposed to. Thus, it responds realistically to real-life changes. 

Fig. 1. Relevant processes occurring inside and around a fruit that need to be included in a mechanistic model to capture and predict food quality evolution, and list 
of relevant food quality attributes (part of figure of orange fruit: dreamstime.com). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 2. The framework of a physics-based (mechanistic) digital twin in a transport chain of fresh horticultural produce (image of orange fruit: 
dreamstime.com, other parts adapted from (T. Defraeye et al., 2019; W. Wu, Beretta, Cronje, Hellweg, & Defraeye, 2019)). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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For this reason, digital twins are especially valuable when each product 
has an unpredictable and unique life cycle. In that case, digital twins 
help physical assets, such as fruits, to tell their history. Apart from 
identifying present-day problems and recording this (hi)story by storing 
data, digital twins can also be used to predict the future evolution of a 
particular shipment. 

2.2. Classification in types 

The underlying master model of the digital twin can be of different 
types (Fig. 3). The first type is a statistical model. A typical example in 
postharvest technology is an analytical model that uses measured air or 
fruit pulp temperature at a specific location to calculate food quality loss 
via a kinetic rate law, which was calibrated empirically with experi-
mental data by a statistical model (Robertson, 2016; Schouten et al., 
2018; Van Boekel, 2008; Wentao Wu & Defraeye, 2018). For such 
models, only an ordinary differential equation (ODE) or even a simpler 
analytical equation needs to be solved. 

A second type is a data-driven model. Here, artificial intelligence 
techniques, such as machine learning, are used for model development, 
calibration, verification, and validation. Machine learning models can 
be trained through (un-)supervised learning, among others. The training 
data would include, for example, the horticultural-produce storage 
conditions and the resulting measured biological response of the fresh 
horticultural produce over time (Kuhn & Johnson, 2013; Liakos, Busato, 
Moshou, Pearson, & Bochtis, 2018). One application uses such sensor 
data for the cold chain of fresh horticultural produce to forecast the 
effects of the microclimate on the fruit quality evolution using a back-
propagation neural network (J. Liu et al., 2019). Another example is the 
use of data-driven models to reduce quality loss and to optimize trans-
port logistics and maintenance (K. N. Kokkinos, Exadactylos, Vafidis, & 
Hatziioannou, 2018, pp. 337–342; Kokkinos & Samaras, 2018, pp. 
81–88; Lu & Wang, 2016). Note that the predictive accuracy of machine 
learning strongly depends on the quality and quantity of the respective 
training data and the choice of specific features (Camacho, Collins, 

Powers, Costello, & Collins, 2018). Self-learning deep learning tech-
niques with data augmentation may partially resolve some of these 
related issues (Zhou et al., 2019). 

A third type is physics-based models, which are also called mecha-
nistic models. Here, multiphysics modeling and simulation are per-
formed to capture all relevant physical, biochemical, microbiological, 
and physiological processes, for example, those illustrated in Fig. 1. Such 
simulations rely on CAD geometries of the fruit, material property data, 
and initial and boundary conditions for the physical model. In addition, 
such simulations also require an appropriate mathematical formulation 
of the relevant underlying biological processes that affect fruit quality 
attributes, such as biochemical reactions involved in the respiration 
metabolism. Finite element or finite volume methods are typically used 
to solve the required partial differential equations. Such physics-based 
process parameters in the computational domain are calculated at a 
very high resolution in space and time. Validation of these physics-based 
models with experimental data is imperative. The main aim here is to 
identify if the dominant physical, biochemical, physiological or micro-
biological processes are included in the model. Such validation studies 
can often identify with which additional processes the model should be 
enriched to increase accuracy. 

Theoretical model formulations are less suitable for digital twins 
(Fig. 3), and therefore are not considered further. An example of such a 
model is an analytical calculation of the cooling of a spherical product. 
The reason is that such models are only derived for very simple, often 
constant, boundary conditions and geometries. 

Of these three types, however, only physics-based, mechanistic dig-
ital twins explicitly solve for the multitude of processes that actually 
drive food quality loss, to a certain degree of complexity. Even a highly- 
sophisticated, data-driven digital twin that is trained by machine 
learning on a large dataset still remains empirically-driven to some 
extent, using a black box to relate input and output. Here, statistics on 
previously measured supply chains are used to train the model, and 
subsequently to predict how a future physical asset or shipment will (re) 
act (Gogou, Katsaros, Derens, Alvarez, & Taoukis, 2015; Sanaeifar, 

Fig. 3. Digital twins in a broad perspective of digitalization. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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Bakhshipour, & de la Guardia, 2016). Deep learning models have a 
unique advantage over other approaches since they can capture and 
identify details in a product’s response that are either currently not well 
understood, are too complex to model with physics-based modeling, or 
are too computationally expensive to include in physics-based model 
approaches. Although such models can predict how the processes occur, 
by grasping the patterns in the data, they do not enable us to explain 
exactly why these processes happen. Data-driven models are therefore 
challenged as every single shipment can evolve to being an outlier with 
its own intricacies. For that specific case, the algorithm might not be 
trained for, or it would require a huge amount of relevant datasets to 
train the model also for such outliers. The logic behind these models is 
thus effectively a “black box” and may require specialized diagnostic 
approaches to properly evaluate further, which are still in the process of 
being developed (S. Liu, Wang, Liu, & Zhu, 2017). This causality be-
tween process drivers and the reason why changes in fruit quality occur 
throughout the supply chain is inherently included in physics-based 
digital twins since the process drivers are modeled explicitly. This 
strategy implies that the impacts of several process drivers on the 
physical, biochemical, microbiological, and physiological quality 
changes, are known, which is not always the case. As every shipment can 
be a one-of-a-kind outlier, this physics-based strategy is likely more 
suitable to provide an individualized solution for every shipment. 
Physics-based digital twins are the main focus of this work. Neverthe-
less, data-driven models can complement physics-based models as they 
could unveil the most relevant processes to be included in physics-based 
models, by analysis of patterns in the large amounts of data. Data-driven 
models could also pinpoint the key couplings between different physical, 
biochemical, microbiological and physiological processes for the spe-
cific postharvest supply chain that is under investigation, which are 
maybe not yet included in a physics-based model from the start. 

A physics-based digital twin uses a mimetic approach to mirror the 
behavior of the physical asset in the digital world as accurately as 
possible, based on measured sensor data. Such mimicking is achieved by 
accounting for the same geometry and material properties as the real 
food product and letting it obey the same laws of physics. Such a 
deterministic approach does not introduce statistical uncertainty or 
biological variability in the temperature history, for example. Due to this 
intrinsic variability, multiple fruits respond differently in lab experi-
ments or field trials even when placed in similar environmental condi-
tions. This variability complicates data analysis and interpretation. 
However, each virtual fruit can be created exactly the same as the 
others, by which these physics-based models can accurately quantify 
very small differences, for example, in cooling rates between different 
solutions. In addition to data that can be monitored experimentally on 
horticultural produce, physics-based models also provide complemen-
tary information, such as surface heat or moisture fluxes, and volume- 
averaged fruit temperatures. These quantities are challenging to mea-
sure in commercial supply chains. Furthermore, virtual sensors can be 
defined, even in points that are experimentally difficult to reach. Such 
virtual sensor data is helpful for defining critical control points when 
using digital twins for Hazard Analysis and Critical Control Points 
(HACCP) (Shih & Wang, 2016; Zhang, Wang, Yan, Glamuzina, & Zhang, 
2019). 

Physics-based models do not suffer from statistical uncertainty or 
biological variability in the data, which is typically found experimen-
tally when dealing with fresh horticultural produce. There is a clear 
intrinsic variability between different products with respect to their 
physical, biochemical or physiological properties, or fruit size and 
shape. This variability should be acknowledged and, if possible, 
accounted for in physics-based models. One option is to quantify how 
the statistical variability on the model input parameters, due to bio-
logical variability, propagates into the model output, such as tempera-
ture, mass loss or quality decay. 

2.3. Use of digital twins in various technological fields 

Digital twins have emerged in different fields (Sanderse & Weippl, 
2018). These twins typically support the design of products and pro-
cesses, their manufacturing process, and operation during their life 
cycle, including inspection, repair, and maintenance. Thereby, digital 
twins are used to providing insight into products and processes that are 
complementary to measured data. Peer-reviewed literature on digital 
twins is rather limited, which is why we also refer to recent projects or 
online sources below. 

In aerospace engineering and related fields, such as product 
manufacturing, digital twins are built for engines, pumps, and turbines, 
among others. As a precursor to the digital twin, in 1970 NASA already 
applied a mirroring concept with Apollo 13 to get the crew back safely. 
NASA now uses the digital twin concept for its manned and unmanned 
aircraft (Glaessgen, Branch, Stargel, & Sciences, 2012). Nowadays, 
digital twins of entire production plants are being developed (Seebo, 
2019; Uhlemann, Schock, Lehmann, Freiberger, & Steinhilper, 2017). 
These twins are constructed for each product on the production line, or 
for different components of a product, which are also connected after-
ward in the real and virtual world. In building technology, digital twins 
of buildings have been proposed, via Building Information Modeling 
(BIM), to create cognitive buildings (Siemens, 2018). In the automotive 
industry, digital twins of cars are used for timing the maintenance of 
parts (e.g., oil replacement (Schleich, Anwer, Mathieu, & Wartzack, 
2017),). Maintenance is triggered by the car’s history, instead of being 
based on mileage. As such, a high degree of individualization is incor-
porated in maintenance, optimizing resources. 

A largely unexplored potential of digital twins lies in healthcare 
(Newman, 2019). Every human or human organ, and therefore, every 
corresponding digital twin, is different and evolves differently 
throughout the patient’s lifetime. As such, this digital technology trend 
has tremendous potential. A digital twin is particularly powerful if 
patient-specific anatomical features or physiology can be incorporated. 
An example is when a CAD geometry of a specific organ is obtained from 
X-ray computed tomography or MRI for a specific patient (van Houten, 
2018), and is then used to build the digital model. As an alternative, 
generic anatomical models of certain organs can be used that have been 
obtained from a large population of patients. Since testing of medical 
treatments is often expensive and hazardous, with irreversible side ef-
fects, the use of digital twins is very appealing to evaluate “what if” 
scenarios. This digital alternative also enables in-silico trials to be run on 
a large population of virtual patients before the actual clinical trials. In 
addition, such digital twins could become a building block for person-
alized medicine, for example, by incorporating it in theranostics, where 
by means of diagnostic tests or sensing, digital twins can propose 
personalized therapy. 

Digital twins are used in healthcare, among others, in surgery, to 
train surgeons in a completely new way. To this end, interactive virtual 
simulations of the mechanical tissue feedback are enabled, namely the 
tissue response during incisions (e.g. (Cordis, 2019; Dequidt et al., 2013; 
EU),). Digital twins are also applied for aerosol pulmonary drug treat-
ment and therapy (Feng, Chen, & Zhao, 2018; Feng, Zhao, et al., 2018). 
For the treatment of aneurysms, digital twins aid neurosurgeons to 
better design, size, and insert the implant during this invasive treatment 
by an implant that is tailored to a specific patient (Sim&Cure, 2019). 
Digital twins are also applied for a personalized analysis of MRI safety 
for patients with implants, hyperthermic oncology, or focused ultra-
sound for tumor ablation ((Sim4Life simulation platform (ZMT, 2019), 
where sensor feedback is integrated. In many healthcare applications, 
digital twins are defined in a broader way since they do not all have a 
real-time connection to sensor data. Instead, their connection to the real 
world, or the real patient, comes from using patient-specific data, for 
example, organ morphologies from X-ray CT. 

Digital twins are expected to play a key role in personalized precision 
medicine, where these in-silico methods strongly complement in-vitro 
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and in-vivo experimental work. In this context, the increased use of 
sequencing of the individual’s genomes can lead to the development of 
customized pharmaceutical products based on the patient’s specific 
genetic condition (Heggie, 2019). A current hurdle is ensuring verifi-
cation and validation of the mechanistic models to obtain acceptance by 
regulatory bodies, but some guidelines are already in place for 
physics-based modeling (FDA, 2016). Digital twins might also raise 
ethical issues, among others concerning data security of the patient or 
negative discrimination between patients with and without digital av-
atars (Bruynseels, Sio, & Hoven, 2018). 

2.4. Key enablers 

The concept of digital twins is not new and around for several de-
cades. However, the strong growth of such twins in different industries is 
driven by recent key enablers:  

- The increased amount of measurement points, including spatial 
resolution, due to a reduced cost of the sensors and sensor 
miniaturization.  

- The speed with which large amounts of sensor data can be gathered 
remotely and transferred in real-time within a network, due to 
enhanced connectivity (e.g., IoT, cloud) and wireless data transfer 
capabilities (e.g., Bluetooth, LoRa, 5G).  

- Reduced costs for computing power, data communication hardware, 
and data storage, which are essential to operate the digital twins, due 
to cheap cloud services.  

- More open data has become available (e.g. (ESA, 2020; Godan, 
2020), and increased attention is being paid to developing data 
standards.  

- Recent developments have been made in simulation software and the 
required computer hardware. For physics-based twins, complex 3D 
finite element models with thousands of degrees of freedom can now 
be run in real-time and embedded in easy-to-use executables. For 
data-driven twins, recent developments in machine learning tech-
niques or artificial intelligence enable efficient processing and 
interpretation of the large quantities of data being gathered 
throughout supply chains of fresh horticultural produce (Bousqaoui, 
Achchab, & Tikito, 2018; Liakos et al., 2018).  

- New apps have emerged on smartphone and tablet platforms as low- 
level, extremely user-friendly interfaces for end-users. 

3. The future of digital twins in supply chains of fresh 
horticultural produce 

3.1. Potential 

Digital twins have a unique potential in postharvest supply chains of 
horticultural produce for multiple reasons. First, each shipment is sub-
ject to a unique history of the temperature and gas atmosphere from 
farm to consumer due to highly unpredictable environmental, logistical, 
and socio-economic conditions. As such, there is no “one-size-fits-all” 
approach to maximize shelf life. As a result, future cold chains should 
ideally enable interventions to be performed “on-the-go”, depending on 
the quality evolution of the fresh horticultural produce in that specific 
shipment. With the current remote monitoring capabilities on refriger-
ated containers (CP, 2020; Maersk, 2020), for example, in-transit in-
terventions of the delivery air temperature and ventilation settings will 
become possible in the near future. However, tailoring such in-
terventions by the stakeholders to each shipment requires detailed, 
real-time information on the relevant environmental conditions within 
the cargo (H2O, CO2, O2, C2H4) and also the physical, biochemical, 
microbiological and physiological quality state of the cargo. Here digital 
twins can help to facilitate decision-making as they drift along with each 
particular shipment. In addition, they would be an ideal tool for diag-
nosing future problems and predicting how to control the cooling 

process and atmospheric conditions to prevent excessive quality loss 
throughout the supply chain. 

Second, sensors for real-time, wireless monitoring of environmental 
conditions and associated cloud-based software platforms for data ac-
cess are already commercially available and used for supply chains of 
fresh horticultural produce (Table 1). Since this cornerstone for digital 
twins is already in place, the main developmental step lies in the model 
setup and establishing the link with the sensor data. 

Third, the timescales in the global cold chains of fresh horticultural 
produce are quite large. Fruits and vegetables often are transported from 
farm to fork over days or more often weeks. This is possible since the 
processes that drive produce quality loss are quite slow. These processes 
include cooling, moisture loss, temperature-dependent biochemical re-
actions, or ripening, among others. As such, this time frame gives the 
opportunity for complex mechanistic models to be run with finite- 
elements in real-time on standard computational hardware. 

Fourth, the most critical locations for cooling and associated quality 
loss are situated in places that are difficult to access in commercial cold 
chains with standard point-probe sensors. A typical example is the 
center of a pallet of fruit or the core of a specific fruit, which often cools 
down the slowest. Also, respiratory hot spots often occur deep inside the 
cargo. Digital twins enable us to monitor fruit at these locations 
remotely and non-intrusively, instead of inspecting its real-world 
counterpart in commercial cold chains. 

3.2. The current state of the art 

The current state of the art of physics-based digital twins in supply 
chains of fresh horticultural produce is discussed. However, their 
essential components, namely sensors and physics-based models, are 
analyzed first. 

3.2.1. Sensors 
An essential cornerstone of digital twins in supply chains of fresh 

horticultural produce is the monitoring of the air temperature and 
relative humidity since these data link the twin to the real-world pro-
cesses. Other environmental parameters are also of interest, such as 
ethylene levels or oxygen and carbon dioxide concentrations, i.e. 
metabolic gasses (Wang et al., 2018). Such sensors are still often more 
expensive and larger that standard temperature or relative humidity 
sensors (Janssen et al., 2014), which complicates their commercial use. 
Several types of (hygro)thermal sensors are commercially available, and 
often cheap and disposable. A selection is shown in Table 1. This field 
evolves to wireless sensors, as enabled by recent developments in 
wireless data communication (RFID, Bluetooth, LoRa) and electronics 
(EU-Catrene, 2012; Kuswandi & Moradi, 2019; Laniel & Émond, 2010; 
Laniel, Émond, & Altunbas, 2011; Pang et al., 2015; Xiao et al., 2019; 
Zou, Chen, Uysal, & Zheng, 2014). These developments enable realistic 
monitoring in each pallet in a single shipment, or even in multiple 
cartons in a pallet. These sensor data can be already used to make 
in-transit decisions on cold-chain logistics (Chaudhuri, 
Dukovska-Popovska, Subramanian, Chan, & Bai, 2018; East, 2011; 
Gaukler, Ketzenberg, & Salin, 2017; Hertog, Uysal, Verlinden, & Nicolaï, 
2014; Jedermann, Nicometo, Uysal, & Lang, 2014; Lütjen, Dittmer, & 
Veigt, 2013). 

However, most of these sensors measure the temperature of the air, 
and not the fruit pulp temperature, for example (Thijs Defraeye et al., 
2015; Jedermann et al., 2014). The fruit pulp temperature lags behind 
on instantaneous fluctuations in the supply air temperature, due to the 
thermal inertia of the fruit. Pulp temperature is a more reliable metric 
for the assessment of fruit quality evolution, thus shelf life. The reason is 
that it better reflects the current thermal state of the fruit and the stored 
heat that needs to be removed. Therefore, fruit pulp temperatures, and 
not air temperatures, are preferred for monitoring in commercial post-
harvest operations. A typical example is found in forced-air precooling, 
where the pulp temperature is monitored to evaluate to what extent the 
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field heat is removed from the fruit. Another example is refrigerated 
container transport, where pulp temperatures need to be used to verify 
compliance with cold phytosanitary protocols to ensure pest mortality 
(PPECB, 2016a, 2016b; Thompson, 2008; USDA-APHIS, 2017). 

Since point probes need to be placed inside the fruit, these sensors 

are often installed in easily accessible places (e.g., at the pallet edge). 
Thereby, pulp measurements are typically not performed in the middle 
of a pallet or carton in a commercial setting, although these are actually 
the most critical locations for hot spots and high-quality loss due to 
reduced ventilation (Thijs Defraeye, Verboven, Opara, Nicolai, & 

Table 1 
Selected commercially-used sensors for cold-chain monitoring.  

Sensor name Type Company Data storage & readout Power supply, 
reusable device 

Measured quantity & Sensor 
technology 

iButton® Thermochron DS 1922L Maxim Integrated 8192 data points -Wired, serial 1- 
Wire® protocol 

Battery, reusable Temp. (− 40 ◦C to +85 ◦C, ±0.5 ◦C) 

iButton® Hygrochron DS1923 Maxim Integrated 8192 data points -Wired, serial 1- 
Wire® protocol 

battery, reusable Temp. (− 20 ◦C to +85 ◦C, ±0.5 ◦C) 
RH (0–100%) 

HiTag2® XSense® BT9 International 104 data points -Wireless RF battery, reuseable Temp. (− 12 ◦C to +50 ◦C, ±0.5 ◦C)) 
Relative humidity (30–95%, ±5 ◦C)) 

TempTale TT4 with external probe Sensitech 16 000 data points - Wired, USB 
reader 

battery, reuseable Temp. (− 30 ◦C to +70 ◦C, ±0.55 ◦C)) 

TempTale Direct Sensitech 8000 data points - Wired, USB 
reader 

battery, single-use Temp. (− 30 ◦C to +70 ◦C, ±0.5 ◦C)) 

TempTale TempTale® GEO Eagle Sensitech 8000 data points - GSM data 
logger (cloud storage) 

battery, single-use Temp. (− 20 ◦C to +55 ◦C, ±0.5 ◦C) 
Digital light sensor 

Ecolog TN2, with NTC probe Elpro-Buchs AG 64 000 data points - Wired, USB 
reader 

battery, reusable Temp. (− 50 ◦C to +140 ◦C, ±0.2 ◦C) 
of air and fruit pulp) 

FlashLink® Model 20 902, with 
external probe 

Deltatrak 3823 data points -Wired, USB 
reader 

battery, reusable Temp. (− 40 ◦C to +85 ◦C, ±0.5 ◦C) of 
air and fruit pulp) 

FlashLink® Model 40 902, with 
external probe 

Deltatrak 40 000 data points -Wireless, 
Bluetooth Low Energy 

battery, reusable Temp. (− 20 ◦C to +60 ◦C, ±0.25 ◦C) 
of air and fruit pulp) 

FlashLink® Model 40 420-40451 Deltatrak 3823 data points - Wired, USB 
reader 

battery, single-use Temp. (− 40 ◦C to +50 ◦C, ±0.5 ◦C)) 

MOST device MOST device Most Mobile and Sensory 
Technology 

1440 data points - GSM data 
logger (cloud storage) 

battery, reuseable Temp. (− 20 ◦C to +55 ◦C, ±0.3 ◦C)) 
RH (0–100%, ±2% from 0 to 90%, 
±3% from 90 to 100%)) 
Digital shock sensor (3-axis G-sensor) 
Digital light sensor 

tempmate® Tempmate.®GS imec Messtechnik 15 600 data points - GSM data 
logger (cloud storage) 

battery, reusable Temp. (− 30 ◦C to +70 ◦C, ±0.2 ◦C) 
RH (0–100%, ±1%) - Capacitive RH 
sensor§

Digital shock sensor (3-axis G-sensor, 
±16G) 

Real Time 
Trackers 

GO Real-Time 2G/3G 
Tracker 

Emerson 14 400 data points - GSM data 
logger (cloud storage) 

battery, single-use Temp. (− 20 ◦C to +70 ◦C, ±0.25 ◦C) 

Real Time 
Trackers 

GO Real-Time Flex 
Tracker 

Emerson 2000 data points - GSM data 
logger (cloud storage) 

battery, reusable Temp. (− 20 ◦C to +70 ◦C, ±0.25 ◦C) 
of air and fruit pulp) 
RH (0–100%, ±2%) - Capacitive RH 
sensor§

Digital light sensor 
Real Time 

Trackers 
GO Real-Time CO2 
Tracker 

Emerson 2000 data points - GSM data 
logger (cloud storage) 

battery, reusable Temp. (− 20 ◦C to +70 ◦C, ±0.25 ◦C) 
of air and fruit pulp) 
Carbon dioxide (0–60%)  

Fig. 4. Biophysical twin (a) and digital twin (b) for a mango fruit (adjusted from (T. Defraeye et al., 2019)). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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Cronjé, 2015; W. Wu, Häller, Cronje, & Defraeye, 2018). An alternative 
solution to measure fruit pulp temperatures is a recently proposed 
artificial-fruit-sensing device (T. Defraeye, 2017; T. Defraeye et al., 
2017). This fruit simulator (Fig. 4a) was engineered specifically to 
match the thermal response of real fruit as closely as possible by a 
biomimetic approach. Essentially, it can be considered a biophysical, 
“real-world” twin of a fruit. This novel sensor system provides a more 
standardized way of measuring fruit pulp temperatures in a commercial 
setting. The device can be packed directly with the fresh horticultural 
produce. This device is also user-friendly and enables monitoring of 
locations deep inside the pallet while following the cargo from farm to 
retailer. Similar sensor systems with the same advantages have been 
developed to monitor airspeed (Geyer et al., 2018) and fruit respiration 
(Keshri et al., 2019) in such stacks of produce. 

A main drawback of the current sensor solutions is that they only 
provide point measurements. As a result, extreme temperature values at 
other locations in the fresh horticultural produce can be missed, and 
extrapolations need to be made to obtain the volume-averaged tem-
perature of the entire fruit or the temperature at the fruit surface. Un-
fortunately, these are exactly the data needed to assess overall fruit 
quality evolution or thermal damage (chilling injury) or to quantify the 
amount of heat stored in the product, or ensemble of products. It is 
exactly here that the digital twin would provide information that is 
complementary to experimental data. 

Nevertheless, it remains important that the sensor data which is fed 
into the digital twin is representative of the cargo. This implies that the 
sensor is placed at an appropriate location inside the cargo. Often these 
locations are prescribed by governmental regulations or sensor place-
ment guidelines. These locations are often easily accessible places (e.g., 
near the container door), rather than being representative for the worst 
location inside the cargo, for example deep inside the pallets. We need to 
keep in mind that if a digital twin takes its real-time input data from such 
sensors, it will thereby also not be representative for the most critical 
location inside the cargo. 

3.2.2. Digital master models 
Another cornerstone of the digital twin is the numerical model that 

captures the process dynamics and kinetics. This model is statistical, 
data-driven, or physics-based (section 2.2). Concerning physics-based 
modeling in postharvest food engineering, mainly computational fluid 
dynamics modeling has been applied, particularly for cooling processes 
(Ambaw et al., 2013; Laguerre, Hoang, & Flick, 2013; Norton, Tiwari, & 
Sun, 2013). The aims were, among others, to improve ventilated pack-
aging design (Pathare, Opara, Vigneault, Delele, & Al-Said, 2012; W.; 
Wu & Defraeye, 2018), to optimize cooling facilities and their operation 
(Ambaw et al., 2013), to evaluate new cooling protocols (Thijs Defraeye, 
Cronjé, Verboven, Opara, & Nicolai, 2015; Ma, Wang, Peng, & Song, 
2018; W. Wu & T. Defraeye, 2018), or to identify trade-offs between the 
cooling process and environmental impact (W. Wu et al., 2019). In 
addition to point measurements, such as fruit pulp temperature, the 
advantage of physics-based modeling is that it provides integrated 
quantities, for example, averaged fruit pulp temperature, but also 
extreme values (min-max) and thermal gradients within the produce 
(Fig. 4b). Furthermore, the finite-volume or finite-element software 
enables us to visualize the results in a clear way. Typical examples are 
simulation graphics, which highlight the physical processes at play 
(Fig. 4b) and identify critical locations in the cargo, such as hot spots. 
This visual information is instrumental in communicating these insights 
into all types of stakeholders in the cold chain. 

Concerning the potential use of statistical models by digital twins, a 
temperature-dependent kinetic rate law of a food quality attribute 
would typically be the first step (Robertson, 2016; Schouten et al., 
2018). Such quality attributes could be, for example, changes in firm-
ness, soluble solids content, or vitamin content. After calibration with 
experimental data, quality loss, and the impact of temperature can be 
solved with a simple ODE. As a next step, the fruit-specific data can be 

further detailed to the cultivar level, and other drivers for decay pro-
cesses could be included, such as relative humidity or light. 

Concerning data-driven models, the training of machine learning 
models for use in digital twins first requires a dataset listing all features 
and labels relevant to fruit quality evolution, as the quality of the 
training data determines the quality of the overall model. Within the 
scope of machine learning, the features refer to the parameters influ-
encing fruit quality such as temperature and/or gas concentration (J. Liu 
et al., 2019), whereas the labels refer to the resulting changes in quality 
over time (Li, Chu, Fu, Feng, & Mu, 2019; Liakos et al., 2018). Data 
would thus have to be generated ideally within laboratory conditions so 
that each respective parameter could be monitored continuously 
throughout the life span of the fruit. As another approach, complex and 
computationally expensive physics-based models could also be used to 
generate large datasets, which could then be used to train less compu-
tationally expensive machine learning models. Machine learning models 
could also make use of reinforcement training, whereby the model is 
continually trained and improved using data collected from the digital 
twin and potential quality reports generated after the fruit has arrived at 
the distributors or final destination (Shalev-Shwartz & Ben-David, 
2014). 

Different model types can also be combined (Laguerre et al., 2013) 
into hybrid digital twins. A typical example is a physics-based model, 
where the temperature data is used in an empirically-calibrated, kinetic 
rate-law model to predict food quality evolution. Another example is a 
mechanistic model that calculates food cooling but accounts for bio-
logical variability in material properties or fruit geometry within the 
species (or cultivar) by using statistical models (Laguerre et al., 2013). 
Such hybrid models could range from an uncertainty propagation 
analysis to Monte Carlo simulation, which has been used in various 
domains (e.g. (Thijs Defraeye, Blocken, & Carmeliet, 2013; Gwanpua 
et al., 2015)). 

Extensive and transparent validation of the digital master models is 
essential to ensure trust in the resulting digital twins. Such master 
models are typically validated with experimental data from well- 
controlled lab-scale experiments. However, the trust in the digital 
twins towards supply-chain practitioners, retailers and engineers would 
significantly be increased if validation would also be performed on 
actual supply chains. Such validation studies would entail measure-
ments of food quality loss at different points in time in the supply chain 
between harvest and the point of sale. A comparison of the measured 
quality attributes and those predicted by the digital master model will 
prove how accurate and reliable the digital twin would be to predict 
quality evolution in real-life supply chains. In addition, such a com-
parison would also show how relevant accounting for biological vari-
ability in the digital twin could be. 

3.2.3. Digital twins 
In order to have a true digital twin, the models above need to be 

linked with the real-world cold chain process via sensor data, either in 
real-time or in an offline manner, so a-posteriori. In postharvest tech-
nology, R&D on digital twins is almost nonexistent, to the knowledge of 
the authors. A first step has recently been taken and applied for the 
mango cold chain (T. Defraeye et al., 2019). Here, a mechanistic, finite 
element model for cooling of mango fruit was developed and validated. 
This model also included the evolution of the temperature-dependent 
quality attributes, such as firmness, soluble solids content, and 
vitamin content. By linking this mechanistic model to air temperature 
sensor data that were measured during actual mango cold chains, the 
digital twin was created of a virtual fruit in the vicinity of that tem-
perature sensor. This link was not yet made in real-time, but offline, so 
a-posteriori. With the digital twins, the differences in fruit quality evo-
lution were quantified for multiple maritime and airfreight transport 
pathways. For each supply chain, the digital twin helped to pinpoint 
where temperature-dependent fruit quality loss occurred and to under-
stand the drivers for these losses. Compared to air temperature data, 
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digital twins were found to provide a particular added value for very 
perishable products and storage at low airflow rates. 

3.3. Promising applications 

Some of the most promising applications for digital twins in post-
harvest cold chains, in view of the authors, are discussed. 

3.3.1. Cold-chain operations 
Digital twins strongly enrich current real-time monitoring capabil-

ities using sensors (Table 1). In addition to air temperature and relative 
humidity, they can be used to predict fruit pulp temperature, the cor-
responding quality attribute loss of the entire fruit, for example, the 
moisture loss resulting in a reduction of salable weight. In addition, the 
risk of thermal damage at both high and low temperatures, such as 
chilling injury, or even mechanical damage due to bruising, as registered 
by accelerometer sensors, can be quantified. This capability implies that 
the digital twin is enriched with relevant submodels for these processes 
and the corresponding quality attributes. This augmented insight helps 
to analyze remotely better how the fresh horticultural produce in every 
single shipment responds throughout the cold chain. As such, potential 
problems can be diagnosed at an early stage, and preventive measures 
can be taken proactively to mitigate the problem. 

One such measure is to improve the triggering of alarms in the cold 
chain. As a next step, digital twins could be used for real-time control of 
cold chain processes during shipment. As mentioned, refrigerated 
container companies already have hardware and software capabilities in 
place for the stakeholder to control the cooling processes. However, to 
our best knowledge, reliable physics-based algorithms are not yet in 
place for the stakeholder to tailor the control based on the cargo’s his-
tory and current state. The additional insight brought by digital twins 
could thereby help to steer better cold chain processes by the stake-
holder or even by the refrigerated container software itself autono-
mously. Future interventions could be driven by the predictive power of 
the digital twins. This implies that digital twins can be used to probe into 
the future by forecasting the food quality evolution under the assump-
tions of the expected cold chain and operating conditions. Thereby, 
digital twins could act similar to a weather forecasting model (Rasheed, 
San, & Kvamsdal, 2019), for example, when combined with 
model-predictive control algorithms. In that way, manual control by the 
stakeholders or autonomous control by the refrigerated container soft-
ware can have even more impact in reducing food quality loss. 

Furthermore, digital twins could supply regulatory bodies (e.g., 
plant-quarantine or invasive-species inspection services) with additional 
data to guide their decisions, and can better protect importers as well as 
exporters against claims of inappropriate handling of the shipment. 

3.3.2. Product and process design 
Digital twins could be used to evaluate new (pre)cooling protocols, 

ventilated packaging designs or cooling facility design, based on actual 
monitored sensor data of the environmental conditions. Since a large 
parametric design space can be explored swiftly in a virtual environ-
ment, human resources, hardware costs, and time can be saved. 

3.3.3. Food traceability 
Recent efforts in blockchain technology aim to mitigate the lack of 

traceability in several postharvest supply chains (Kamilaris, Fonts, & 
Prenafeta-Boldύ, 2019). A typical example is the IBM Food Trust 
initiative (IBM, 2019). Large retailers like Walmart support this initia-
tive and are planning to impose this technology on their suppliers 
(Forbes, 2019). Here, the digital twin has the unique opportunity to help 
tell the fruit’s biological history and record this throughout its post-
harvest journey. Digital twins would not only enhance cargo traceability 
but also would identify hygrothermal mishandling and malpractice. In 
turn, blockchain technology has an elegant way of storing the digital 
twin’s data throughout its life cycle in a digital thread, which is safe and 

accessible to all stakeholders. The ledgers of populations of digital twins 
can, in turn, be used by computational statistics or machine learning 
techniques to identify current bottlenecks, and thereby enhance supply 
chain efficiency. 

3.3.4. Supply chain logistics 
Digital twins can be used to supply different stakeholders in the 

supply chain with actionable data that is derived from physics-based 
modeling and simulation. Metrics of integrated quantities could be 
extracted directly from the pulp temperature, for example. A typical 
example is that instead of an air temperature-time curve, a digital twin 
could quantify the current level of certain quality attributes or predict 
the remaining shelf-life days. Such metrics are more convenient for 
stakeholders in the supply chain than the raw sensor data, which is 
currently provided to the stakeholders. Similar metrics were obtained, 
for example, by time-temperature indicators (Ndraha, Hsiao, Vlajic, 
Yang, & Lin, 2018). Software applications for shelf-life prediction based 
on temperature data are already available, but focus mainly on growth 
and inactivation of microorganisms and do not directly account for 
thermal gradients within the product. 

In a recent study (T. Defraeye et al., 2019), a digital twin was used to 
quantify the remaining quality for different maritime mango cold 
chains. The physics-based model used air temperature data (Fig. 5a) to 
predict the average fruit temperature of mature-green mangoes (Fig. 5b) 
and the resulting fruit quality evolution (Fig. 5c). The thermal model 
was validated and the quality evolution model was calibrated based on 
shelf-life data for mangos. As a logical next step, the shelf life days are 
calculated in the current paper for each of the shipments. This shelf life 
was calculated here by how long the fruits could be stored at 20 ◦C, 
before their quality reduced below the predefined quality threshold, 
making the fruit unacceptable (Tijskens, 2000). Since a mechanistic 
model was used, the shelf-life calculation was done using the average 
pulp temperature instead of air temperature or a single point value in the 
fruit pulp. These results are reported in Fig. 5d, which presents new data 
in addition to the previous study (T. Defraeye et al., 2019). These data 
show that the remaining shelf life days strongly vary, namely from 3.4 to 
6.6 days, due to the unique thermal history and length of each shipment. 
This work was the first step. Future work should focus on quantifying 
multiple quality attributes at the same time, in order to combine them in 
a complete shelf-life expectancy. 

The capability of digital twins to predict the remaining shelf life days 
based on the produce’s physical, biochemical, microbiological or 
physiological states response has a huge potential in supply chains of 
fresh horticultural produce to drive new concepts forward:  

- Best-before date. Each shipment or pallet of horticultural produce 
can be labeled, via the digital twin, with a best-before date. This date 
can help consumers better plan the purchasing of household supplies 
to reduce food waste. Such concepts can be confusing for consumers, 
as they are mixed with a use-by date (or expiry date) (The Guardian, 
2018). A best-before date reflects only the food quality and not food 
safety. As such, a best-before date does not imply any guarantee that 
the product is free from any substances that could compromise a 
person’s health, for example, by inducing food-borne illnesses. 
However, quality is highly subjective, since fruit would be spoiled for 
one consumer but still edible for others. Therefore, absolute shelf life 
is difficult to establish reliably. However, a relative quality rating 
would help guide the consumers’ choices, similar to the EU energy 
label (European Commission, 1994).  

- Fruit categories. In addition to the normal produce, retailers often 
sell high-quality fresh horticultural produce with superior ripeness 
and sensory traits. Similarly, retailers could use the remaining shelf- 
life days to grade and sell their horticultural produce in different 
quality categories or to plan discount programs more efficiently. 
Consumers could be offered the choice to pay more for fruit with a 
longer shelf life, based on their household storage preferences. 
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Especially with the increasing number of customers shopping online 
for food commodities, such a food quality rating will benefit the 
consumer since the product cannot be evaluated hands-on anymore 
in the store.  

- A guaranteed shelf life. Similar to flowers, a concept could be to 
introduce a 3-day or 5-day shelf-life guarantee for horticultural 
produce.  

- Internal logistics. Improved shelf-life estimations on a pallet level 
would enable retailers to optimize the logistical chain to avoid loss of 
fresh horticultural produce. Digital twins can be integrated perfectly 
in new concepts of intelligent logistics, such as first-expired-first-out 
(FEFO) as an alternative for the current first-in-first-out strategy 
(FIFO) (Hertog et al., 2014; Jedermann et al., 2014; Lütjen et al., 
2013). 

Retailers and consumers would largely benefit from this actionable 
data, which the digital twins provide for each shipment. The added 
value of using physics-based digital twins is that they provide average 
fruit pulp temperatures in addition to only point values and enable a 
concurrent evaluation of multiple other temperature-dependent quality 
attributes. The additional benefit of such advanced monitoring of 
quality evolution of fresh horticultural produce, and the associated 
logistical impact, could enable the harvesting of fruit at a more mature 
state, with higher sensory quality and value. 

3.3.5. Food safety 
Digital twins can be used for Hazard Analysis and Critical Control 

Points (HACCP (Shih & Wang, 2016),) as they could be used for more 
elaborate monitoring of control points and to establish corrective ac-
tions. In that way, digital twins could also assist in process analytical 

technology (PAT) and Quality by Design (van den Berg, Lyndgaard, 
Sørensen, & Engelsen, 2013). Although this concept was originally 
developed to design, analyze, and control pharmaceutical 
manufacturing processes, it is promising for use in supply chains of fresh 
horticultural produce as well. Digital twins can be used here to assist the 
feedback control and to do even model-predictive control to help in-
crease shelf life and to decrease produce variability. For other agricul-
tural products where food safety is critical, such as meat (Fang, Zhao, 
Warner, & Johnson, 2017), digital twins could play an even more critical 
role. 

3.4. Future developments 

Existing digital twins in postharvest technology (T. Defraeye et al., 
2019) should be enriched to incorporate more physical, biochemical, 
microbiological, or physiological processes that are affecting the quality 
of fresh horticultural produce (Fig. 1). A typical example is including the 
evaporative mass loss in the digital twin, which affects the salable 
weight and, therefore, the fruit’s market value due to cartons being 
underweight, or the fruit appearance, and occurrence of shriveling at the 
surface. Also, thermal damage incidence due to too low temperatures, so 
chilling injury or freeze damage, should be included for species such as 
mango or citrus fruit. Apart from heat conduction in the produce, 
respiration-driven processes, such as gas transport, could also be 
included. This would be able to predict, for example, anaerobic condi-
tions during (dynamic) controlled atmosphere storage (Delele et al., 
2019; Ho, Verboven, Verlinden, Schenk, & Nicolaï, 2013). The possi-
bility of linking aspects relevant to postharvest pathology and the inci-
dence and severity of decay in fruit would be a further key step for 
digital twins (Ho, Rogge, Verboven, Verlinden, & Nicolaï, 2015). The 

Fig. 5. (a) Air temperature as a function of time, as measured by a sensor in the mango fruit packaging for different maritime shipments; (b) corresponding fruit 
temperature (volume averaged) calculated by the digital twin; (c) quality evolution (calculated from volume-averaged pulp temperature of the digital twin) as a 
function of time for mature-green mango fruit transported by ship; (d) remaining shelf life of mangoes in each shipment, when kept at 20 ◦C. The dots represent the 
end of each chain (Figures a-c are adjusted from (T. Defraeye et al., 2019)). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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close response of pathogens with decay development on temperature 
would add a critical aspect to supplying shelf-life predictions. So 
although the first steps have been made in building up digital master 
models for digital twins, there is still a multitude of processes to be 
included to have a complete digital twin model. However, information 
on the complete set of quality attributes is not always relevant for every 
stakeholder or cold chain to guide decision making. Information on only 
a few key quality attributes often suffices. 

An additional next step is to include a real-time coupling of sensor 
data with the digital twin. This real-time link enables the stakeholders to 
inspect the shipment in the supply chain at all times and take dynami-
cally corrective measures, in contrast to a-posteriori insight into where 
the damage occurred. In this context, prediction of the future state of the 
produce by model-predictive control could help digital twins to foresee 
problems and proactively react to mitigate them. By adding intelligence, 
these twins could be made to “think” and thereby let a refrigerated 
container, for example, to act autonomously to optimize the shelf life 
and food losses of the entire shipment. 

Currently, only environmental conditions induce differences in the 
drift between twins in postharvest technology. The geometrical model is 
still generic, and only one geometry is used for each twin, despite the 
biological variability found between individual fruits. In med-tech, on 
the other hand, customized models of organs or the complete body are 
made for every single patient, based on non-destructive imaging (e.g., X- 
ray, MRI). The large volumes and low value of the fruit make such an 
approach unfeasible in supply chains of fresh horticultural produce. 
Nevertheless, the biological variability can be accounted for by con-
structing the generic geometrical model, based on a population of data 
for a species or even a cultivar (Danckaers et al., 2017; Rogge, Defraeye, 
Van Dael, Verboven, & Nicolaï, 2017). This approach was already 
applied for biophysical and digital twins of fruit (T. Defraeye et al., 
2019, 2017). Another approach would be to incorporate the biological 
variability in the deterministic model by incorporating statistics on the 
input parameters. A Monte-Carlo approach could be combined with 
physics-based modeling (e.g. (Thijs Defraeye et al., 2013),), for example, 
to incorporate the impact of statistical variability on the size, shape, 
thermal properties, and initial maturity, among others, on the resulting 
fruit cooling and shelf life. This approach was already used to assess the 
comprehensive effects of biological variability in fruit size, respiration 
rate, and gas diffusion properties at risk for developing internal disor-
ders during long-term controlled atmosphere storage (Ho et al., 2015). 

The data from the digital twins can, in turn, be used further as input 
for meta-models, for example, machine learning methods (Fig. 3). As 
such, one can analyze and interpret the behavior of entire populations of 
digital twins in the supply chains, where each twin drifts through the 
supply chain in a unique way. 

4. Outlook 

Digital twins are a logical next step for postharvest technology to 
connect the worlds of sensing – in actual supply chains – with that of 
numerical modeling – in the virtual cold chain. Digital twins can 
calculate in real-time the currently still uncharted evolution of quality 
attributes of fresh horticultural produce. They can also deliver advanced 
forecasts of the remaining shelf life throughout the cold chain of every 
single shipment. In the future, we could even target to build digital twins 
of fruit and vegetables at the preharvest stage already. Thereby, fresh 
horticultural produce can be followed in-silico during their entire life-
cycle from growth, to ripening and senescence. For fruit, this enables 
supply chain optimization strategies from flower to fork, instead of from 
farm to fork. 

Compared to statistical or data-driven models, physics-based 
(mechanistic) models provide a unique added value when used as the 
twin’s digital master model. Apart from quantifying how cooling pro-
cesses and quality loss will evolve, physics-based models can help 
explain why processes happen exactly. This causality is possible since 

the process drivers are modeled explicitly to a specific degree of 
complexity. This augmented insight is particularly relevant for cold 
chains where the timescales of the cooling process and the evolution of 
the quality attributes are close together. An example is a very perishable 
species that is stored at low airspeeds flowing through the ventilated 
packaging. Data-driven or statistical digital twins, however, can be 
essential to help identify the most relevant physical, biochemical, 
microbiological and physiological processes at play, and the couplings 
between these processes. Such identification can be used in-turn to 
enrich the physics-based digital twins in a more targeted way. 

A realistic risk of the current hype created around digital twins 
(Gartner, 2019a, 2019b) is that many oversimplified or un-validated 
twins emerge. This problem is likely to occur since the digital master 
model, which is embedded in the digital twin, can be just a simple 
empirical model. An example would be an empirically-calibrated kinetic 
rate law that uses sensor data of the supply air temperature to predict the 
remaining shelf life. For the multiple stakeholders in the supply chain, 
the digital twin will be a black box that outputs a few metrics, by which 
the model’s complexity and precision remain hidden for the user. 
Therefore, it is essential that the underlying model that drives the digital 
twin is rigorously built up and validated. Such verification and valida-
tion should be performed according to best practice. For physics-based 
modeling and simulation, several best-practice guidelines are available 
in various research fields (Casey & Wintergerste, 2000; FDA, 2016; 
Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, 2007). As such, the 
trustworthiness of this black box needs to be guaranteed to provide 
accurate, meaningful metrics and actionable data that can be reliably 
used. 

The next step beyond the digital twin itself will be its integration into 
cyber-physical systems. Here, the further fusion of the physical (real) 
and virtual objects is targeted, including the merging of physical and 
virtual sensor data (Tao, Qi, Wang, & Nee, 2019). Digital twins calcu-
late, for example, integrated quantities in space and time, by which even 
reliable remaining shelf-life days could be extracted, which comple-
ments point measurements from sensors (Fig. 5). Such cyber-physical 
systems enable a much more complete assessment of the fresh horti-
cultural produce’s quality evolution and nutritional content. The po-
tential of physics-based digital twins in this respect is very large since all 
sensor hardware and software platforms are already in place to enable 
real-time sensor data acquisition and transfer during the entire post-
harvest trip. The widespread application of the physics-based digital 
twins in postharvest supply chains might thereby be only a small step 
away. 
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ambient loading of citrus fruit into refrigerated containers for cooling during marine 
transport. Biosystems Engineering, 134, 20–30. https://doi.org/10.1016/j. 
biosystemseng.2015.03.012 

Defraeye, T., Wu, W., Prawiranto, K., Fortunato, G., Kemp, S., Hartmann, S., et al. 
(2017). Artificial fruit for monitoring the thermal history of horticultural produce in 
the cold chain. Journal of Food Engineering, 215, 51–60. https://doi.org/10.1016/j. 
jfoodeng.2017.07.012 

Delele, M. A., Bessemans, N., Gruyters, W., Rogge, S., Janssen, S., Verlinden, B. E., et al. 
(2019). Spatial distribution of gas concentrations and RQ in a controlled atmosphere 
storage container with pear fruit in very low oxygen conditions. Postharvest Biology 
and Technology, 156, 110903. https://doi.org/10.1016/j.postharvbio.2019.05.004 

Dequidt, J., Courtecuisse, H., Comas, O., Allard, J., Duriez, C., Cotin, S., et al. (2013). 
Computer-based training system for cataract surgery. SIMULATION: Transactions of 
the Society for Modeling and Simulation International, 89(12), 1421–1435. https://doi. 
org/10.1177/0037549713495753 

Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. 
Critical Reviews in Food Science and Nutrition, 53(5), 435–450. https://doi.org/ 
10.1080/10408398.2010.541568 

East, A. R. (2011). Accelerated libraries to inform batch sale scheduling and reduce 
postharvest losses of seasonal fresh produce. Biosystems Engineering, 109(1), 1–9. 
https://doi.org/10.1016/j.biosystemseng.2011.01.008 

ESA. (2020). Copernicus open access hub. 
EU-Catrene. (2012). EU-catrene project pasteur: Perishables monitoring through smart 

tracking of lifetime and quality by RFID. Retrieved from www.aeneas-office.eu http 
://www.aeneas-office.eu/web/downloads/ct204-pasteur-project_profile-final_7 
-6-11.pdf. 

European Commission. (1994). Energy label and ecodesign. Retrieved June 18, 2019, 
from https://ec.europa.eu/info/energy-climate-change-environment/standards 

-tools-and-labels/products-labelling-rules-and-requirements/energy-label-and 
-ecodesign_en. 

Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent 
packaging in meat industry. Trends in Food Science & Technology, 61(2), 60–71. 
https://doi.org/10.1016/j.tifs.2017.01.002 

Fao, I. F. A. D., Unicef, W. F. P., & Who. (2018). The State of Food Security and Nutrition 
in the World 2018. Building climate resilience for food security and nutrition. In 
Building climate resilience for food security and nutrition. https://doi.org/10.1093/ 
cjres/rst006 

FDA. (2016). Reporting of computational modeling studies in medical device 
submissions - guidance for industry and food and drug administration staff. 
Retrieved from http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidanc 
e/GuidanceDocuments/ucm371016.htm. 

Feng, Y., Chen, X., & Zhao, J. (2018). Create the individualized digital twin for 
noninvasive precise pulmonary healthcare. Significances of Bioengineering & 
Biosciences, 1(2), 1–5. 

Feng, Y., Zhao, J., Kleinstreuer, C., Wang, Q., Wang, J., Wu, D. H., et al. (2018). An in 
silico inter-subject variability study of extra-thoracic morphology effects on inhaled 
particle transport and deposition. Journal of Aerosol Science, 123, 185–207. https:// 
doi.org/10.1016/j.jaerosci.2018.05.010 

Forbes. (2019). 2019 is the year for blockchain for traceability, but will it have legs?. 
Retrieved June 13, 2019, from https://www.forbes.com/sites/stevebanker/2019/ 
02/02/2019-is-the-year-for-blockchain-for-traceability-but-will-it-have-legs/amp/. 

Franke, J., Hellsten, A., Schlünzen, H., & Carissimo, B. (2007). Best practice guideline for 
the CFD simulation of flows in the urban environment. Hamburg.  

Gartner. (2019a). 5 Trends emerge in the Gartner hype cycle for emerging technologies, 
2018. Retrieved January 29, 2019 https://www.gartner.com/smarterwithgartner/ 
5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/. 

Gartner. (2019b). Prepare for the impact of digital twins. Retrieved January 29, 2019 
https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-t 
wins/. 

Gaukler, G., Ketzenberg, M., & Salin, V. (2017). Establishing dynamic expiration dates 
for perishables: An application of RFID and sensor technology. International Journal 
of Production Economics, 193(November), 617–632. https://doi.org/10.1016/j. 
ijpe.2017.07.019 

Geyer, M., Praeger, U., Truppel, I., Scaar, H., Neuwald, D. A., Jedermann, R., et al. 
(2018). Measuring device for air speed in macroporous media and its application 
inside apple storage bins. Sensors, 18(576), 1–13. https://doi.org/10.3390/ 
s18020576 

Glaessgen, E. H., Branch, D. T., Stargel, D. S., & Sciences, M. (2012). The digital twin 
paradigm for future NASA and U.S. Air Force vehicles. 53rd Structures, Structural 
Dynamics, and Materials Conference, 1–14. 

Godan. (2020). Global open data for agriculture and nutrition. Retrieved February 6, 2020, 
from https://www.godan.info/. 

Gogou, E., Katsaros, G., Derens, E., Alvarez, G., & Taoukis, P. S. (2015). Cold chain 
database development and application as a tool for the cold chain management and 
food quality evaluation. International Journal of Refrigeration, 52, 109–121. https:// 
doi.org/10.1016/j.ijrefrig.2015.01.019 

Guardian, T. (2018). Tesco to axe “confusing” best before dates on its fruit and 
vegetables. Retrieved June 18, 2019, from https://www.theguardian.com/business/ 
2018/may/21/tesco-best-before-dates-fruit-avegetables-food-waste. 

Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., & Meybeck, A. (2011). 
Global food losses and food waste: Extend, causes and prevention. Retrieved from 
http://www.fao.org/docrep/014/mb060e/mb060e00.pdf. 

Gwanpua, S. G., Verboven, P., Leducq, D., Brown, T., Verlinden, B. E., Bekele, E., et al. 
(2015). The FRISBEE tool, a software for optimising the trade-off between food 
quality, energy use, and global warming impact of cold chains. Journal of Food 
Engineering, 148, 2–12. https://doi.org/10.1016/j.jfoodeng.2014.06.021 

Hawken, P. (2017). Drawdown: The most comprehensive plan ever proposed to reverse global 
warming. Penguin Books.  

Heggie, J. (2019). Genomics: A revolution in health care? National geographic. Retrieved 
from https://www.nationalgeographic.com/science/2019/02/partner-content-ge 
nomics-health-care/. 

Hertog, M. L. A. T. M., Uysal, I., Verlinden, B. M., & Nicolaï, B. M. (2014). Shelf life 
modelling for first-expired-first-out warehouse management. Philosophical 
Transactions of the Royal Society A, 372, 20130306. https://doi.org/10.1098/ 
rsta.2013.0306, 2017. 

Ho, Q. T., Rogge, S., Verboven, P., Verlinden, B. E., & Nicolaï, B. M. (2015). Stochastic 
modelling for virtual engineering of controlled atmosphere storage of fruit. Journal 
of Food Engineering, 176, 77–87. https://doi.org/10.1016/j.jfoodeng.2015.07.003 

van Houten, H. (2018). The rise of the digital twin: How healthcare can benefit. 
Retrieved June 11, 2019, from Philips News Center website https://www.philips.co 
m/a-w/about/news/archive/blogs/innovation-matters/20180830-the-rise-of 
-the-digital-twin-how-healthcare-can-benefit.html. 

Ho, Q. T., Verboven, P., Verlinden, B. E., Schenk, A., & Nicolaï, B. M. (2013). Controlled 
atmosphere storage may lead to local ATP deficiency in apple. Postharvest Biology 
and Technology, 78, 103–112. https://doi.org/10.1016/j.postharvbio.2012.12.014 

IBM. (2019). IBM Food Trust. A new era for the world’s food supply. Retrieved June 13, 
2019, from https://www.ibm.com/blockchain/solutions/food-trust. 

Jagtap, S., Bhatt, C., Thik, J., & Rahimifard, S. (2019). Monitoring potato waste in food 
manufacturing using image processing and Internet of Things approach. 
Sustainability, 11(11), 3173. https://doi.org/10.3390/su11113173 

Janssen, S., Schmitt, K., Blanke, M., Bauersfeld, M. L., Wöllenstein, J., & Lang, W. (2014). 
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