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Abstract: High spatial and thematic resolution of Land Use/Cover (LU/LC) maps are central
for accurate watershed analyses, improved species, and habitat distribution modeling as well as
ecosystem services assessment, robust assessments of LU/LC changes, and calculation of indices.
Downscaled LU/LC maps for Switzerland were obtained for three time periods by blending two
inputs: the Swiss topographic base map at a 1:25,000 scale and the national LU/LC statistics obtained
from aerial photointerpretation on a 100 m regular lattice of points. The spatial resolution of the
resulting LU/LC map was improved by a factor of 16 to reach a resolution of 25 m, while the
thematic resolution was increased from 29 (in the base map) to 62 land use categories. The method
combines a simple inverse distance spatial weighting of 36 nearest neighbors’ information and an
expert system of correspondence between input base map categories and possible output LU/LC
types. The developed algorithm, written in Python, reads and writes gridded layers of more than
64 million pixels. Given the size of the analyzed area, a High-Performance Computing (HPC) cluster
was used to parallelize the data and the analysis and to obtain results more efficiently. The method
presented in this study is a generalizable approach that can be used to downscale different types of
geographic information.

Keywords: land cover; land use change; downscaling approach; Switzerland; geographic information
system; aerial photo interpretation; topographic map; inverse distance weighting; expert system

1. Introduction
1.1. Pressures on Land Resources in Switzerland

The Swiss Federal Department of Environment, Transport, Energy and Communica-
tions (DETEC) in its 2016 Strategy stated that by 2030, Switzerland is aiming at becoming
a sustainable country while remaining an attractive and competitive business location
with a high quality of life [1]. This ambitious objective is presently challenged by several
trends such as population growth, increased mobility, energy demand, high consumption
of resources, urbanization, loss of biodiversity and associated ecosystem services, and the
digitalization of society along with related big data [2]. These trends have an important
impact on the environment. Therefore, protecting the environment is a central mission for
the Swiss Government, who wants to promote and adopt more sustainable approaches
for the exploitation of natural resources [3]. To this end, actions such as protecting natural
resources, improving urban planning, reducing emissions of greenhouse gases, preserv-
ing water quality, retaining biodiversity and ecosystem services, protecting soils, and
preserving countryside are essential [4–6].

All these trends are also placing unprecedented demands on land. Between 1985
and 2009, 15% of the country’s surface area changed [7]. Settlement and urban areas have
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expanded, agricultural areas have been lost, forested areas have increased, and glaciers
have receded [8–10]. During the last 50 years, it is estimated that human activities have
affected globally about 83% of the terrestrial land surface and have degraded about 60%
of services provided by ecosystems. Land degradation is now at a critical point and will
undermine the well-being of 3.2 billion people by 2050 [11]. Consequently, Land Cover
(LC) and Land Use (LU) changes are considered as a major tangible indicator of the human
footprint [12].

To preserve its potential to deliver goods and services, land should be efficiently and
sustainably managed. National policies such as the Green Economy, the Spatial Planning
Act, the Spatial Strategy for Switzerland, the Sustainable Development Strategy 2016–2019,
or the Strategy on Biodiversity are essential components to support this vision [13]. They
generally acknowledge that a given area of land can offer many environmental, social,
cultural, and economic benefits at once. However, most ecosystems are being degraded by
unsustainable exploitation, fragmentation, urban growth and development of transport,
and energy networks. This reduces the spatial and functional coherence of the landscape
and consequently, degraded ecosystems are unable to provide the same services as healthy
ecosystems [14].

Detailed and accurate knowledge on Land Use and Land Cover Change (LU/LCC) is
crucial for many scientific and operational applications, such as watershed analyses [15,16],
land use impact on stream ecology [17–19], species and habitat distribution modeling [20],
dynamic modeling of species migration [21,22], reserve site selection [23], impact assess-
ment on biodiversity [24], land use planning [25], or monitoring of land use changes [26].
LU/LC affects many aspects of policy and decision-making processes related to climate,
water, biodiversity, ecosystems, agriculture, or disasters. Additionally, LU/LCC assess-
ment also contributes to many Multilateral Environmental Agreements (MEAs) and Global
Environmental Goals (GEGs) to guide and assess progress toward policy outcomes [27,28].
The importance of sustainable management of land resources is recognized in regional
and global policies such as the 2030 Agenda for Sustainable Development, which contains
land-related targets and indicators under 14 out of the 17 Sustainable Development Goals
(SDGs) [29–31]. Many land organizations and stakeholders are committed to fully imple-
ment the SDGs and to monitor the land-related indicators to promote responsible land
governance. Land is a significant resource for many sectors; timely and high-resolution
LU/LC data therefore constitute critical information for the achievement of the SDGs [32].
Accurate and up-to-date LU/LCC information and related changes are also the base of a
sustainable development assessment [33] based on structural (both temporal and spatial)
and functional (social, ecological, economical) attributes of the landscape [34]. A supple-
mentary challenge is represented by the spatial scale at which the assessment is performed.
For each problem under study, an appropriate scale must be identified, especially when
relating ecological processes to landscape patterns [35].

1.2. Land Use/Land Cover Data in Switzerland

LU/LCC is increasingly acknowledged as both a driver and a consequence of climate
and biodiversity changes [36–38]. This important role has been featured by the fact that land
cover is considered as an Essential Climate Variable (ECV), a supplementary Essential Water
Variable (EWV), and a candidate Essential Biodiversity Variable (EBV) [39–42]. LU/LCC
affects the biophysics, biogeochemistry, and biogeography of both the atmosphere and
biosphere, with important consequences for human well-being. Consequently, accurate
and timely information is necessary for understanding the impact of LU/LCC variations on
the structure and functioning of ecosystems, as well as provision, support and regulation
of goods and services [29,43,44]. However, it is recognized that inadequate information
on LU/LC and its change over time is a recurrent and common problem that prevents
policymakers from making sound, informed decisions [27,45–47]. Currently, the official
LU/LC information in Switzerland (Arealstatistik) is updated approximately every 6 to
8 years and derived by visual interpretation of aerial photographs where an LC and an
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LU category are assigned to each intersection point of a regular 100 m grid [8]. Although
this data set is very useful thanks to its thematic richness, neither its low spatial resolution
nor the update frequency allow for providing accurate and timely information to depict
and understand the dynamic of LU/LCC and the related impact across the country [48,49].
Accurate LU/LC change assessment and effective LU/LCC projections require higher
spatial (e.g., 30 m) and temporal (e.g., yearly) data products to build consistent time
series [47,50].

1.3. Downscaling as a Possible Approach for High-Resolution LU/LC Data

Besides traditional remote sensing approaches, such as unsupervised, supervised,
or object-based classifications [51–54], more advanced techniques include machine or
deep learning [55–58], new sensors with higher spatial and spectral resolution such as
Sentinel-2 [59,60], and automated procedures to reduce the time-consuming process of man-
ual verification of data [61,62]; a possible alternative to generate high-resolution LU/LCC
data [63] is represented by downscaling techniques [64]. In many disciplines, downscaling
is used to derive local scale maps from information available at coarser resolution. Clima-
tologists refer to statistical downscaling [65] to describe this general approach that has been
widely used not only for temperature and precipitation information [66,67] but also for
wind speed [68] and air humidity [69]. In turn, downscaled climatic information is used in
many different applications, such as hydrological modeling [70–72], species distribution
modeling [73], and geological risk assessments [74]. However, downscaling of LU/LCC
data is not very common and has not been widely applied [64,75,76].

Several statistical approaches have been used for downscaling. For instance,
Barodssy et al. [77] used fuzzy rule-based models to predict frequency distributions of
daily precipitation; Bürger and Chen [78] compared regression methods to derive river
runoff from large-scale climatic scenarios; Biau et al. [79] used geostatistical methods (krig-
ing) to estimate rainfall; and Coulibaly et al. (2005) [67] investigated the use of temporal
neural networks to downscale temperature and precipitation.

Downscaling is not restricted to climatic data and has been used with remote sensing
data to derive, for instance, soil moisture maps [80]. Species distribution modeling can
also be defined as a general downscaling approach that predicts species distributions
from point observations combined with spatially explicit environmental predictors [81].
The term “downscaling” can also be used when creating a land use map from combined
input layers at various scales. For example, Remm [82] used case-based predictions to
map the distribution of habitat classes from Landsat 7 ETM imagery, grayscale and color
orthophotos, an elevation model, a digital base map, and a soil map.

Case-based algorithms are problem-solving methods that learn from experiences at a
low level of generalization [83]. They can be considered as an Artificial Intelligence (AI)
method that derives results from the data as directly as possible, without the formulation
of an intermediate model. Machine learning (ML) specialists distinguish between lazy
learning, which typically combines information during the problem-solving phase, and
eager learning, which tends to derive a generalization and forget about raw observations
after the learning phase [56,83,84]. Remm [82] argued that case-based methods represent a
promising alternative for a large range of downscaling problems such as habitat mapping
and the prediction of species’ potential distributions, especially with large and complex
datasets where generalization is difficult.

Based on these considerations, the aim of this paper is to present a lazy learning
method, which could be assimilated to a case-based approach, for downscaling LU/LC
information for Switzerland from a 100 m lattice of points to a 25 m resolution grid, taking
advantage of an existing 1:25,000 digital base map and building an expert system defining
possible correspondences between the base map and the land use categories. This method
is then applied for three different periods of time to assess land use and land cover change.
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2. Materials and Methods

While land use and land cover maps are commonly derived from remote sensing
or photointerpretation [85], traditional base maps of Switzerland have been available for
more than a century and have been provided in digital format since the year 2000. LU/LC
maps derived from the classification of remotely sensed images often have a “salt and
pepper” appearance that does not meet end-user demand [26]. Land use derived from
aerial photo interpretation can define many different classes of land use/cover categories,
but the production is rather time-consuming. National base maps usually lack the thematic
details that can be obtained from aerial photointerpretation but generally have an excellent
geographic precision to define landscape patches and linear features. Hereafter will be
presented the data inputs (Table 1), the downscaling methodology, and the expert system,
together with its implementation and validation strategy.

Table 1. Data input sources.

Input Name Resolution Provider URL

Land Use Statistics
(1992/97, 2004/09, 2013/18) Arealstatistik 100 m Swiss Federal

Statistical Office

www.bfs.admin.ch/bfs/en/home/
services/geostat/swiss-federal-

statistics-geodata/land-use-cover-
suitability.html (accessed on

10 December 2021).

National Base Map
(2003, 2008) Vector 25 25 m swisstopo

www.swisstopo.admin.ch/en/
geodata/maps/smv/smv25.html
(accessed on 10 December 2021).

National Base Map
(2021) swissTLM3D 25 m swisstopo

www.swisstopo.admin.ch/en/
geodata/landscape/tlm3d.html
(accessed on 10 December 2021).

2.1. Data Inputs
2.1.1. Land Use Statistics

LU/LC data are generated by visual interpretation of aerial photographs taken from
a Federal Office of Topography (swisstopo)’s aircraft flying at an altitude of 5000 m and
taking photos to regularly cover, over a 6-year period, the entire surface of Switzerland [8].
LU/LC maps are obtained by visually interpreting and assigning a LU/LC category to
each point of a regular 100 m lattice laid over the Swiss territory, for a total of more than
4 million points over the country.There are three official classifications: (1) the standard
nomenclature NOAS04 (72 basic categories which are a combination of LC and LU, 17 and
27 aggregation classes and 4 main domains); (2) the Land Cover nomenclature NOLC04
(27 basic categories and 6 main domains); and (3) the Land Use nomenclature NOLU04
(46 basic categories, 10 aggregation classes and 4 main domains). Three time periods
are currently available (1979/85, 1992/97, 2004/09), and the latest version has just been
finalized (2013/18) [7].

Strictly speaking, this dataset is not a LU/LC map, because its categories are assigned
to points at the intersection of a 100 m grid rather than indicating the predominant LU/LC
within each hectare square (Figure 1). It was developed as land use statistics over relatively
large zones rather than as an LU/LC map per se. It tends, however, to be often used as
an LU/LCC map in many applications [86] and remains the most exhaustive source of
LU/LCC information for Switzerland. Even if this dataset is thematically more precise
than the classification commonly used in Europe—the Coordination of Information on the
Environment Land Cover (CORINE Land Cover, CLC), which has 44 classes [87]—it suffers
from a low spatial and temporal resolution. Indeed, LU/LC units are coarse with a spatial
resolution of 1 hectare, and a lot of information is therefore aggregated with a large degree
of generalization. Consequently, various landscape features, qualities, particularities, and
configurations cannot be correctly represented.

www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability.html
www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability.html
www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability.html
www.bfs.admin.ch/bfs/en/home/services/geostat/swiss-federal-statistics-geodata/land-use-cover-suitability.html
www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
www.swisstopo.admin.ch/en/geodata/maps/smv/smv25.html
www.swisstopo.admin.ch/en/geodata/landscape/tlm3d.html
www.swisstopo.admin.ch/en/geodata/landscape/tlm3d.html
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Figure 1. Original LU/LC statistics with 72 classes (Arealstatistik) at a 100 m resolution from the
2013–2018 period.

2.1.2. National Base Map (Land Cover)

The Swiss Federal Office of Topography (swisstopo) provides digital versions of
national topographic base maps at a 1:25,000 scale as a landscape model in a vector format.
The data model used until 2011 was called Vector 25 and was later replaced by the Swiss
Topographic Landscape Model (TLM3D). Both include millions of natural and artificial
landscape features, together with their position, shape, type and many other attributes [88].
This land cover information is defined in 29 categories (Figure 2). Data on linear features
such as rivers, roads and rails can also be obtained separately. The national base maps
(TLM3D) are the geographically most precise source of land cover information for the entire
country with a geometric accuracy for different landscape features between 0.2 m and 3 m
that is partially updated every year.

2.1.3. Resolution

For the analysis, all available datasets were rasterized either at a 25 m and/or at a
100 m resolution to allow raster overlays. With a surface of 42,000 km2, Switzerland can be
described with approximately 4 million pixels at a 100 m resolution and with 64 million
pixels at a 25 m resolution.

2.1.4. Data Quality of Inputs

The two main data inputs of this study are of the highest possible quality from the
two main national producers of geospatial data. The first one, land use statistics, has been
developed by the Swiss Federal Office of Statistics with state-of-the-art photointerpretation
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methods, resulting in a very high quality of thematic resolution in the selection of land use
classes on each hectare point of the country. The second input, the national base maps, are
produced by the Swiss Federal Office of Topography and represent the official geographic
representation of the country at a 1:25,000 scale with very high spatial accuracy but a less
developed thematic resolution than the first input.
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2.2. Downscaling Algorithm and Expert System
2.2.1. Downscaling Algorithm

The approach used for downscaling the existing land use information from 100 to
25 m relies on both the geographic precision of the 1:25,000 national topographic base map
rasterized at 25 m and the detailed LU/LC categories obtained from the land use statistics
available at 100 m. The developed algorithm uses inverse distance weighting combined
with an expert system to assign reasonable land use categories at a finer scale (Figure 3).
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Figure 3. Downscaling land use statistics (2013–2018) in the area of Zermatt from 100 m to 25 m
resolution using inverse distance weighting, expert knowledge, national base map, transport and
river information at 25 m. (a) Expert system (details in Figure 4), (b) 1:25,000 base map, (c,c′) hectare
land use information, (d,d′) downscaled land use, (e) 1:25,000 linear features (rivers, roads and rails),
(f,f′) overlay of linear features to downscaled land use at 25 m resolution. Downscaling process (p1)
and linear features addition (p2).

Land 2022, 11, x FOR PEER REVIEW 8 of 24 
 

 
Figure 4. Expert system showing the possible authorized Landuse100 categories within BaseMap25 
units; (1) represents possible choices, (2) unique choice, and (3) the default choice in case of lack of 
decision. Ten land use categories remain unmatched (shaded). Three categories correspond to punc-
tual or linear features (dark grey), and seven categories (light grey) correspond to different types of 
buildings that were merged with their surroundings (green). A full version of the expert table is 
available in the Supplementary Material Table S1. 

The main steps of the downscaling methodology are the following (data preparation: 
1–2–3; process [1] of downscaling: 4–10; process [2] for linear features: 11): 
1. Rasterize a land use grid at 100 m resolution from the lattice of points of the land use 

statistics (Landuse100). 
2. Convert to Non-Applicable (NA) land use categories that correspond to linear fea-

tures (rivers, roads, rails). 
3. Rasterize the primary surfaces of the land cover vector base map at a 25 m resolution 

(BaseMap25). 
4. Visit each BaseMap25 pixel (target pixel). 
5. Then, according to the expert system table (Figure 4), select the land use categories 

that could be eligible for the target pixel. In some rare cases, assign the only possible 
category (then go to point 10). 

6. Select among the 36 nearest Landuse100 neighbors those with eligible categories. 
7. Calculate the inverse distance to each neighbor. 
8. Sum up the inverse distances for each category. 
9. Assign to the BaseMap25 pixel the category obtaining the higher score or, in case of 

lack of decision, assign the best replacement choice according to the expert system 
table. 

10. Repeat steps 4 to 9 for each BaseMap25 pixel. 
11. Replace categories wherever river, road, or rail linear features are available from 

BaseMap25. Only main roads (>3 m wide) and main railways were considered with-
out tunnels and bridges. Underground rivers were ignored. Rivers, railways, roads, 

Figure 4. Expert system showing the possible authorized Landuse100 categories within BaseMap25
units; (1) represents possible choices, (2) unique choice, and (3) the default choice in case of lack of



Land 2022, 11, 615 8 of 21

decision. Ten land use categories remain unmatched (shaded). Three categories correspond to
punctual or linear features (dark grey), and seven categories (light grey) correspond to different types
of buildings that were merged with their surroundings (green). A full version of the expert table is
available in the Supplementary Material Table S1.

The main steps of the downscaling methodology are the following (data preparation:
1–2–3; process [1] of downscaling: 4–10; process [2] for linear features: 11):

1. Rasterize a land use grid at 100 m resolution from the lattice of points of the land use
statistics (Landuse100).

2. Convert to Non-Applicable (NA) land use categories that correspond to linear features
(rivers, roads, rails).

3. Rasterize the primary surfaces of the land cover vector base map at a 25 m resolution
(BaseMap25).

4. Visit each BaseMap25 pixel (target pixel).
5. Then, according to the expert system table (Figure 4), select the land use categories

that could be eligible for the target pixel. In some rare cases, assign the only possible
category (then go to point 10).

6. Select among the 36 nearest Landuse100 neighbors those with eligible categories.
7. Calculate the inverse distance to each neighbor.
8. Sum up the inverse distances for each category.
9. Assign to the BaseMap25 pixel the category obtaining the higher score or, in case of lack

of decision, assign the best replacement choice according to the expert system table.
10. Repeat steps 4 to 9 for each BaseMap25 pixel.
11. Replace categories wherever river, road, or rail linear features are available from

BaseMap25. Only main roads (>3 m wide) and main railways were considered
without tunnels and bridges. Underground rivers were ignored. Rivers, railways,
roads, and freeways were rasterized at 25 m and added in this order after the first
phase of downscaling.

The Inverse Distance Weighting (IDW) calculates a scaled distance to each of the
36 Landuse100 neighbors around the pixel under investigation, and does so in two spatial
dimensions (Equation (1)):

dj(i) = sqrt((x25i − x100j)2 + (y25i − y100j)2)/maxrange (1)

where j spans from 1 to 36 nearest neighbors and i represents each visited pixel at a 25 m
resolution and maxrange the maximum distance between these pixels.

Then the inverse distances are summed up by land use category (Equation (2)):

Dk(i) = ∑36
j=1

(
λj(k)

dj(i) + s

)
(2)

where λj(k) =
{

1 i f landusetypej = k
0 otherwise

, and s is smoothing factor.

Finally, the category scoring the highest sum of inverse distances is assigned to the
pixel under investigation (Equation (3)):

K(i) = greatestk(Dk(i)) (3)

IDW is generally used for interpolating cardinal discrete values (e.g., temperatures,
precipitations) but can be also used on nominal values to spatially interpolate missing
LC data [89], create super-resolution LC maps [90], or rescale LC data [91]. IDW assumes
that values that are close to one another are more similar than those that are at a greater
distance. In the proposed method, measured values surrounding the prediction location
are considered but then they are spatially weighted (i.e., taking into account the distance
of each pixel and the frequency of classes) and constrained (i.e., by the expert system).
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Consequently, the proposed downscaling method is filling a geographically very precise
map (the base map) with information on the most plausible LU/LC category found in the
neighborhood by reducing the possible choices with an expert table. This approach has the
advantage of fully respecting the geographical quality of the base map while enriching it
with a better thematic resolution.

2.2.2. Expert System

An expert system was used to constrain the possible choices when using information
from BaseMap25 to select the most appropriate Landuse100 category (Figure 4). For
instance, if a forest patch is defined for a particular site in BaseMap25, the expert system
constrains the choice of Landuse100 categories to include only those related to forest.
Furthermore, the expert system can also select a default Landuse100 category when the
distance-based algorithm fails to make a clear selection because of the lack of eligible land
use categories within the searching neighborhood.

2.3. Implementation

Although the algorithm used is relatively simple, it requires extensive calculations on
several large grids (25 m resolution grid for Switzerland contains approximately 64 million
pixels), which is time-consuming. To ensure the portability of the code on different plat-
forms, the algorithm has been implemented using a set of open-source software and
libraries. The programming language is Python 3 [92] using the PyCharm Community
Edition (CE) Integrated Development Environment (IDE) [93]. The implemented algorithm
relies on the following libraries: (1) the Geospatial Data Abstraction Library (GDAL) [94]
to handle raster data; (2) Numpy [95] and math for mathematical operations on large
multi-dimensional arrays; and (3) xlrd [96] and pandas [97] for reading and formatting
information from Excel files.

To ensure a fast and efficient processing, the algorithm has been parallelized and
executed on the High-Performance Computing cluster at University of Geneva [98], allow-
ing to process the entire 64 million pixels grid significantly faster. The analyzed area is
subdivided in tiles and the processing of each tile is performed on a different node on the
cluster. The surface of Switzerland was divided in 900 tiles (30 × 30), which were associated
to 900 jobs in the cluster, using SLURM job arrays. The processing time is on average less
than 2 h per tile, but the actual processing time of a single tile is strongly dependent on
the user priority and on the cluster load at the execution time. When the results of all the
jobs are available, a final script is launched to assemble the 900 processed tiles together in a
single image.

The code is freely available on GitHub [99] under an Apache 2.0 license, and a static
version can be downloaded from the University of Geneva digital repository [100] under a
CC-BY 4.0 license.

2.4. Validation and Accuracy Assessment

The categories of the downscaled LU/LC maps at 25 m (with or without linear features)
for the three periods were compared with the categories of the original LU/LC point
statistics. A random sample of 500,000 out of 4,129,070 points was used for this assessment.
Multi-class classification metrics were used to assess the efficiency of the algorithm to
classify each LU/LC category [101–103]. Results are shown as F1-score, which is obtained
by harmonic mean from the recall and precision, and Cohen’s kappa coefficient [104].
Results were expressed as class F1-scores and weighted means for each dataset, and kappa
coefficient for each dataset. Barplots and boxplots are used to display these metrics and
the main misclassifications per category. The relative surface area per category was also
compared to that of the original Landuse100 dataset [64,105].
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3. Results

Results from the land use downscaling are best appreciated at a regional scale
(Figures 5 and S1), where the map produced by the algorithm not only preserves the geo-
graphic precision of the original BaseMap25 map but also inherits the higher definition of
categories (66 categories in the downscaled map compared to 29 categories in BaseMap25).
Seventy-two categories were originally found in Landuse100, but a few groupings had to
be performed on some less important categories (e.g., buildings and their surroundings).
The new map has a much finer grain and can be used for Geographical Information System
(GIS) overlays at much finer scales, where the 16-fold increase in the density of pixels gives
substantially improved results. Fine-scale details on roads and river networks were also
maintained, whereas they are often difficult to represent adequately in coarse resolution
raster formats (Figure 6).
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The average percentage of similarity for the three periods evaluated between the
original points found in the Landuse100 statistics and the resulting Landuse25 classifi-
cations is 71% when assessed without roads, rivers, and rails, and 68% when assessed
with these linear features. Several categories have a correspondence of 70% or greater.
Overall F1-scores and kappa coefficient are high (0.69 and 0.67, respectively). Individual
classes F1-scores range from 0.007 to 0.98 depending on the category (Figure 7). Weighted
mean F1-scores per dataset range from 0.67 to 0.70. Kappa scores range from 0.65 to 0.69.
Categories from the Landuse100 classification that show zero correspondence are those that
were not predicted, such as flood protection structures (63), field fruit trees (38), or grooves
and hedges (58), and were thus discarded from the validation analysis. The categories that
are best respected by the downscaling are those that have a large spatial representation and
those that were imposed from the topographic map.
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features. Numbers along the boxplots represent the land use categories and their size the proportion
of each category in the dataset. Blue represents categories attributed based on “swisstopo” original
classes; black represents categories attributed based on IDW of the 36 nearest neighbors. Values under
each boxplot are overall weighted mean F1-score (F1) and kappa coefficient (k) for the considered
year and dataset.

The percentages of misclassification for the downscaling of 2018 without linear features
are represented in Figure 8. The major misclassifications concern unproductive grasslands
(15%), farm pastures (12%), and meadows (10%). The classes in which the pixels were
misattributed are also presented (color in the box). This figure will help in understanding
the behavior of the downscaling algorithm to further improve it.
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The absolute surface area difference from the downscaled map (Landuse25) categories
compared to the original Landuse100 map ranges from −87,585 ha for the category “unpro-
ductive grass and shrubs” to +118,174 ha for the category “normal dense forest” (Figure 9).
On average, a difference of 532 ha per category is observed. Underlaying reasons for
large discrepancies in surface areas (misattributed categories) are further displayed in
Figure 8. The relative surface area difference (proportion from downscaled map compared
to original) ranges from −100% for small categories that were not included in the algorithm
to +355% for cat. 14, “surroundings of unspecified buildings”.



Land 2022, 11, 615 13 of 21
Land 2022, 11, x FOR PEER REVIEW 15 of 24 
 

 
Figure 9. Absolute surface area difference from the downscaled map (Landuse25) categories com-
pared to the original Landuse100 map. 

  

Figure 9. Absolute surface area difference from the downscaled map (Landuse25) categories com-
pared to the original Landuse100 map.

4. Discussion

The method presented in this study is a generalizable approach that can be used to
downscale different types of geographic information such as results from photo interpreta-
tions, classifications of remotely sensed images, or vegetation and soil maps. The general
idea is to use the nearest precise point observations to define the attribute of a target pixel
at a finer resolution within an area defined by a high-resolution land cover map. Other
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co-variables such as remote sensing indices (e.g., Normalized Difference Vegetation Index
(NDVI)), topographic position, slope, or orientation could also be used to help model the
most probable LU/LC category and could certainly further improve the present method.

In the case study presented here, the use of a national topographic base map at a
1:25,000 scale to define main land cover patches guarantees a perfect overlay with official
maps. Indeed, topographic base maps are now available in digital format and are widely
used as reference maps in most studies and field work. The possibility of matching the
geometry defined by base maps with detailed land use categories reinforces the chance of
uptake from end-users. However, some recent changes in LU/LC that might be visible
from remote sensing images could be lost if involving changes between incompatible land
use categories as defined by the expert system.

One of the main strengths of the proposed approach is that it avoids the “salt and
pepper” effect generally resulting from the classification of remotely sensed images [26],
except in the case of object-oriented classifications [106]. We believe that our approach
could be particularly useful in this respect and could be used to smooth out land use
maps obtained from remote sensing classifications. In such a case, land use statistics
would be replaced by the land use classification obtained from supervised or unsupervised
classification of the remotely sensed image, whereas the land cover information would still
be retrieved from the national base map. Moreover, with the increased spatial resolution
and the removal of the “salt and pepper” effect, LU/LC changes are more evident and can
be assessed more easily (Figure 10).
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Figure 10. Comparison of the 1997 and 2018 LU/LC data with original 100 m resolution (above) and
the downscaled outputs at 25 m (below) for the Bulle and Freiburg cities. Urban expansion (as well
as other land cover changes and the smoothing effect) of this economically active region can be more
easily visualized with the improved spatial resolution.
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The proportion (71%) of exact matches between the land use categories recorded at
the 100 m resolution lattice points of the Landuse100 statistics and the corresponding
points in the downscaled map (25 m resolution) is particularly encouraging. Discrepancies
appear to result mainly from the change in scale and geometric precision brought in by the
1:25,000 base maps. The fundamental difference in approach between the land use statistics
(punctual) and the topographic map (surface) is also important. A visual check confirms
that most divergences mainly occur along boundaries of patches of different land use and
along linear and small features. By using an inverse distance calculation—which gives a
higher weight to close-by information—to choose the best land use category for each pixel,
we greatly favored the retaining of input land use categories at an observed location in the
result. This effect can be modulated by the smoothing factor in Equation (2).

The approach could be used at even finer scales by rasterizing for instance the topo-
graphic maps at 10 m instead of 25 m or using a regional map at a finer scale (1:10,000).
Getting accurate land use information is crucial for calculating landscape indices such as
those obtained from FRAGSTAT [107]. As demonstrated by Uuemaa et al. [108], changing
grain size can have a significant effect on many landscape metrics. Therefore, one should
pay attention to the scale at which a given landscape metric is calculated, and what grain
size of land use maps is best adapted for the purpose, as there is no single land use scale
which is “best” for observing and managing changes in land use patterns.

The implementation of a case-based reasoning algorithm in Python code proved to
be a very efficient approach given the very large number of pixels (64 million) to handle
but required the development of a purpose-written software. The availability of tools
for implementing case-based approaches within existing GIS packages would certainly
be very useful for many applications. One such tool has been developed by Remm [82]
using Microsoft Visual Studio.NET, and this can predict several response types (binomial,
multinomial, continuous, and complex) based on continuous and categorical predictors.

Riitters [109] mentions the practical trade-off that exists between the generality, preci-
sion, and realism of a method, as previously proposed by Levins [110], and emphasizes
that generality and realism should be maximized at national scales, while precision should
be optimized at local scales. Indeed, the use of the same raw data to develop models at
different scales will enhance thematic and geographic comparisons between disciplines
and across scales. Methods to upscale and downscale data are therefore central to local,
national, and global environmental assessments.

The presented approach contributes to tackle the need of increased spatial resolution
of LU/LCC information. However, the temporal issue remains a major problem. Indeed,
land cover changes are caused by either natural or anthropogenic sources such as climate
change, demographic growth, and economic growth [111,112]. Therefore, the state of
land cover is highly dynamic and involves an inherent challenge for its mapping and
monitoring that remains not adequately addressed [85]. Timely and reliable information
on land cover change is crucial to efficiently mitigate the negative impact of environmental
changes [113,114]. Traditional environmental data collection (e.g., field data collection)
suffers from many shortcomings, among them the data inconsistency caused by changes in
reporting methodologies through time, the gaps (missing measurements) in data series,
and the fact that it is notoriously time-consuming and labor-intensive [115]. One of the
main advantages of remotely sensed data collection is that it can provide a synoptic and
repetitive view of a given area/region. With the opening of different Earth Observations
(EO) data archives such as Landsat [112,116,117], it becomes possible to build consistent
time series (i.e., image of the same location at regular intervals) to compare different periods
of time and derive trends [118–120].

At the national scale, various attempts have been made to use satellite imagery, but
unfortunately, no processes are currently in place to routinely generate accurate, consistent,
and regular LU/LCC data. These large volumes of freely and openly available EO data
are still underutilized and are not effectively used for national environmental monitoring.
Therefore, mapping and monitoring LU/LC changes remain as challenges that are not
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adequately addressed at the national scale, and new methodologies are required to produce
consistent and reliable yearly, medium-to-high-resolution (spatial, temporal, thematic) time
series of LU/LCC data and projections of their (future) change across Switzerland to inform
national and regional environmental policies and planning.

With the opening of different medium-to-high-resolution satellite EO data archives
such as Landsat or Copernicus and the development of advanced data science techniques
(e.g., Big Data, Artificial Intelligence, High-Performance Computing), it now becomes
possible to build consistent time series of LC, to investigate the spatio-temporal dynamics
of LC, and to perform quantitative assessments of LC dynamics, by comparing different
periods of time, deriving trends, and determining environmental trajectories [121]. This
can generate a consistent and reliable LU/LC time series that will help to understand the
evolution of LU/LCC in Switzerland over the last 30 years and to model future changes
according to plausible scenarios by 2050 [122,123].

To reach this objective, an essential pre-condition to support user applications and
generate usable information products is to facilitate data access, preparation, and analysis.
The systematic and regular provision of Analysis-Ready Data (ARD) can significantly
reduce the burden of EO data usage. To be considered as ARD, data should be processed
according to a minimum set of requirements (e.g., radiometric and geometric calibration;
atmospheric correction; metadata description) and organized in a way that allows im-
mediate analysis without additional effort [124,125]. In Switzerland, more than 37 years
of satellite EO Analysis-Ready Data over Switzerland are made available by the Swiss
Data Cube [126,127]. The increasing availability of EO data together with the improved
computing and storage capacities allow monitoring, mapping, and assessing LU/LC and
its change over time on large areas in a consistent and reliable manner. This favors the
development of annual, high-quality LU/LC products based on time series data and can
inform on class stability and transitions [128].

5. Conclusions

The proposed downscaling approach allowed for combining the geographic precision
of existing topographic base maps with the thematic details of photo-interpreted land use
statistics. Improved land use maps open the door to more accurate watershed analyses,
species and habitat distribution modeling, and species dynamic models of migration.
Accurate land use information is also the base for developing sustainable development
indicators defining the structural and functional attributes of landscapes.

The proposed approach could be implemented for three time periods. It allowed for an
efficiently downscaled LU/LC at a spatial resolution that is more suitable for environmental
change monitoring. The increased spatial resolution removed the “salt and pepper” effect,
and consequently, LU/LC changes are more evident. However, the changing definition of
the base map input across the years resulted in discrepancies in the resulting downscaled
maps that are refraining their use for land use change analyses. We therefore recommend
using the original land use statistics data for trend analyses and our downscaled data for
GIS analyses at each time period. The presented approach contributes to tackling the need
for increased spatial resolution of LU/LC information, but the temporal issue is still a major
problem. The use of dense time series of satellite data such as those provided in the Swiss
Data Cube can be a promising solution to investigate to obtain high spatial and temporal
LU/LC data over the country.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/land11050615/s1. Figure S1. Final result of the downscaled Land Use/Land Cover at 25 m
for the period 2013/18. Table S1. Full version of the expert table.
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