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Abstract
The	application	of	visible	and	near-	infrared	(vis–	NIR)	spectroscopy	to	character-
ize	soil	samples	has	gained	growing	interest	as	a	fast	and	cost-	effective	methodol-
ogy	for	soil	fertility	assessment.	In	order	to	profit	from	the	full	potential	of	vis–	NIR	
spectroscopy,	 the	acquisition	of	 soil	 spectra	directly	 in-	situ	would	 increase	 the	
possibility	to	obtain	data	rapidly	and	at	a	high	spatial	and	temporal	resolution.	
In	the	present	study,	we	test	and	propose	the	best	practice	to	characterize	a	set	
of	fertility-	related	parameters	(i.e.	texture,	organic	carbon,	pH,	cation	exchange	
capacity	and	major	nutrients)	of	agricultural	soils	by	measuring	vis–	NIR	spectra	
in	the	field.	To	reach	this	goal,	we	compare	the	spectra	obtained	from	different	
scanning	 positions	 with	 two	 portable	 spectrometers,	 that	 is,	 a	 micro-	electro-	
mechanical	systems	(MEMS)-	based	spectrometer	and	a	research-	grade	vis–	NIR	
spectrometer.	On	the	basis	of	134	soil	sampling	points,	vis–	NIR	spectra	were	re-
corded	 from:	 (1)	 the	 cutaway	 side	 of	 a	 soil	 sample	 collected	 with	 an	 Edelman	
auger	to	a	depth	of	20	cm,	(2)	the	raw	soil	surface,	as	well	as	(3)	the	cleaned	and	
smoothed	soil	surface.	Partial	least	squares	regression	(PLSR)	calibration	models	
were	built	for	the	selected	soil	parameters,	scanning	positions	and	different	spec-
tral	 pretreatments	 for	 both	 spectrometers.	 The	 model	 performance	 was	 evalu-
ated	based	on	the	ratio	of	performance	to	interquartile	range	(RPIQ),	the	R2,	the	
root	mean	squared	error	(RMSE)	and	Lin's	concordance	correlation	coefficient	
(CCC).	Overall,	the	following	soil	parameters	were	successfully	predicted:	clay,	
sand,	pH,	organic	carbon,	cation	exchange	capacity,	total	nitrogen	and	exchange-
able	magnesium.	In	contrast,	total	and	exchangeable	Ca,	K	and	P,	as	well	as	total	
Mg	could	not	be	predicted	at	a	satisfactory	level	for	both	the	spectrometers.	The	
best	scanning	position	for	the	successfully	calibrated	models	was	along	the	cuta-
way	sides	of	the	Edelman	auger.	Although	the	research-	grade	spectrometer	gave	
better	performance	indicators	for	most	of	the	parameters,	the	calibrations	with	
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1 	 | 	 INTRODUCTION

In	 the	 last	 decades,	 the	 use	 of	 visible	 and	 near-	infrared	
(vis–	NIR)	 spectroscopy	 for	 chemical	 and	 physical	 char-
acterization	 of	 soil	 samples	 has	 gained	 a	 growing	 inter-
est	as	a	methodology	for	assessing	soil	fertility	indicators	
(Demattê	et	al., 2022;	Francos	et	al., 2022).	More	recently,	
the	 technical	 development	 of	 portable	 and	 affordable	
spectrometers	has	increased	the	interest	for	in-	situ	char-
acterization	of	soil	quality	by	vis–	NIR	spectroscopy	(Fathy	
et	 al.,  2020;	 Ng	 et	 al.,  2020;	 Sharififar	 et	 al.,  2019;	Tang	
et	al., 2020;	Thomas	et	al., 2021).

Although	the	concept	of	soil	fertility	depends	on	the	con-
text	in	which	it	is	used	(Abbott	&	Johnson, 2017),	multiple	
parameters	have	been	suggested	as	soil	fertility	indicators	
for	agricultural	soils	such	as	 texture,	pH,	organic	carbon	
(OC),	 cation	 exchange	 capacity	 (CEC)	 and	 major	 nutri-
ent	 content	 (Bastida	 et	 al.,  2008;	 Doran	 &	 Parkin,  1994;	
Gozukara	et	al., 2022;	Karlen	&	Stott, 1994;	Qi	et	al., 2009).	
The	 rationale	 of	 using	 spectroscopy	 is	 that	 spectra	 col-
lected	in	the	vis–	NIR	range	(i.e.	350–	2500	nm),	as	well	as	
in	the	mid-	infrared	range	(MIR,	i.e.	2500–	25,000	nm),	can	
provide	 information	 about	 soil	 constituents	 (Dindaroglu	
et	al., 2021;	Soriano-	Disla	et	al., 2014).	Although	the	effi-
ciency	of	vis–	NIR	spectroscopy	to	characterize	soil	fertility	
is	 still	 a	 matter	 of	 debate	 when	 compared	 with	 classical	
laboratory	analyses,	soil	spectroscopy	has	anyway	the	po-
tential	to	collect	information	at	high	spatial	and	temporal	
resolution,	an	opportunity	particularly	helpful	for	the	im-
plementation	of	precision	agriculture	technologies	(Breure	
et	al., 2022;	Li	et	al., 2022;	Semella	et	al., 2022).

The	 working	 principle	 of	 soil	 spectroscopy	 is	 the	 ab-
sorption	of	infrared	light	by	chemical	bonds	of	the	mole-
cules	present	in	the	soil	constituents.	In	the	vis–	NIR	range,	
the	 absorptions	 are	 mainly	 overtone	 and	 combination	
vibrations	leading	to	broader	peaks,	whereas	in	the	MIR	
range	absorptions	are	mainly	because	of	fundamental	vi-
brations	giving	more	details	to	the	spectrum,	but	making	
the	extraction	of	information	more	challenging	(Stenberg	
et	al., 2010;	Viscarra	Rossel	et	al., 2006).	The	main	chemi-
cal	bonds	which	react	to	vis–	NIR	radiation	are	C-	H,	C-	N,	
O-	H,	C-	O,	C-	N,	N-	O,	C-	C,	Al-	O,	Fe-	O	and	Si-	O	covalent	
bonds,	all	of	which	can	be	found	in	molecules	associated	
with	 soil	 fertility	 (primary	 soil	 parameters)	 such	 as	 clay	

minerals,	 carbonates,	 iron-	oxides	 and	 organic	 matter	
(Ben-	Dor	&	Banin, 1995;	Gozukara	et	al., 2021;	Soriano-	
Disla	et	al., 2014;	Stenberg	et	al., 2010).	Calibration	models	
for	 other	 secondary	 soil	 parameters	 such	 as	 micronutri-
ents	and	trace	elements	have	been	trained	by	several	au-
thors	but	their	predictive	power	is	still	a	matter	of	debate	
(McBride, 2022;	Viscarra	Rossel	et	al., 2022).

The	most	common	protocol	for	analysing	soil	samples	
by	vis–	NIR	spectroscopy	is	to	scan	the	samples	after	they	
have	been	air-	dried	and	sieved	to	<2	mm	or,	additionally,	
finely	 ground	 (Bachion	 de	 Santana	 &	 Daly,  2022).	 With	
such	a	protocol,	the	samples	are	certainly	uniform	and	well	
mixed	with	reduced	influence	from	soil	structure	variabil-
ity	(e.g.	voids,	stones,	bulk	density)	and,	most	importantly,	
from	soil	moisture,	but	still	this	protocol	requires	process-
ing	 the	 soil	 samples	 in	 the	 laboratory.	 In	 order	 to	 profit	
from	the	full	potential	of	vis–	NIR	spectroscopy,	the	acqui-
sition	of	soil	spectra	directly	on	the	field	(in-	situ)	would	be	
ideal	to	collect	soil	information	at	a	high	spatial	and	tem-
poral	resolution.	The	main	challenge	for	this	type	of	proto-
col	lies	in	the	in-	situ	characteristics	of	fresh	soil,	especially	
in	relation	to	soil	moisture,	which	has	a	strong	influence	
on	the	spectra	(Liu	et	al., 2022;	Stenberg	et	al., 2010;	Tang	
et	al., 2020;	Viscarra	Rossel	et	al., 2009).	Other	potential	
errors	associated	with	in-	situ	acquisition	of	spectra	are	re-
lated	to	losses	of	signal	caused	by	a	rough	soil	surface	and	
to	soil	heterogeneities	due,	for	example,	to	stones	or	plant	
residues	(Ackerson	et	al., 2017;	Ji	et	al., 2015).

Recently,	mathematical	methods	have	been	developed	
to	eliminate	the	influence	of	in-	situ	disturbances,	such	as	
(1)	 external	 parameter	 orthogonalization	 (EPO),	 where	
the	 undesired	 variability	 (introduced,	 e.g.,	 by	 soil	 mois-
ture)	is	analysed	and	removed	from	the	spectra	(Minasny	
et	al., 2011;	Roger	et	al., 2003),	and	(2)	direct	standardiza-
tion	(DS),	where	the	discrepancy	between	laboratory	and	
field	spectra	is	calculated	and	removed	from	the	dataset	(Ji	
et	al., 2015).	These	methodological	developments,	in	com-
bination	with	the	development	of	compact	and	less	expen-
sive	portable	spectrometers,	provide	the	potential	to	make	
use	of	vis–	NIR	spectroscopy	directly	in	the	field	as	an	effi-
cient	and	reliable	method	of	soil	fertility	characterization.

The	goal	of	our	study	is	to	test	the	in-	situ	vis–	NIR	spec-
troscopy	 as	 a	 tool	 to	 characterize	 the	 fertility	 of	 agricul-
tural	soils	while	assessing	the	best	scanning	methodology	

the	MEMS-	based	spectrometer	still	resulted	in	satisfactory	predictions.	Based	on	
these	findings,	the	proposed	best	practice	for	obtaining	in-	situ	soil	vis–	NIR	scans	
is	to	scan	along	the	cutaway	sides	of	a	soil	core	using	at	least	five	replicate	scans.

K E Y W O R D S

best	practice,	MEMS	spectrometer,	soil	fertility	indicators,	soil	quality	assessment,	soil	
spectroscopy,	vis–	NIR	spectroscopy
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directly	in	the	field	so	to	corroborate	previous	studies	(Gras	
et	al., 2014;	Ji	et	al., 2016).	More	specifically,	we	want	to	pro-
vide	a	‘best	practice’	for	obtaining	reliable	vis–	NIR	spectra	
in	the	field	by	answering	the	following	research	questions:

1.	 What	 is	 the	 best	 position	 to	 scan	 the	 soil	 in	 the	
field	 in	 order	 to	 obtain	 a	 good	 and	 robust	 predictive	
capacity	 of	 chemometric	 models	 tested	 for	 a	 set	 of	
15	 soil	 fertility-	related	 parameters?

2.	 Do	 different	 classes	 of	 portable	 spectrometers	 (i.e.	 a	
compact	 MEMS	 (micro-	electro-	mechanical	 systems)-	
based	 spectrometer	 and	 a	 research-	grade	 spectropho-
tometer)	provide	the	same	level	of	predictive	quality	for	
the	investigated	soil	parameters?

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Sampling sites and soil laboratory 
analyses

A	sampling	campaign	was	conducted	from	spring	to	au-
tumn	2021	in	nine	experimental	fields	of	Agroscope,	the	

Swiss	competence	center	for	agricultural	research.	The	
fields	 were	 situated	 at	 three	 Agroscope	 research	 sites	
across	 Switzerland:	 in	 Tänikon	 (Canton	 of	 Thurgau),	
in	 Reckenholz	 (Canton	 of	 Zurich)	 and	 in	 Changins	
(Canton	 of	 Vaud)	 (Figure  1).	 The	 experimental	 fields	
are	composed	of	plots	subjected	to	different	agronomic	
treatments	such	as	the	amount	and	type	of	fertilizer	ap-
plication	 or	 the	 soil	 tillage	 intensity	 (Table  1).	 Within	
each	experimental	field,	one	soil	sample	was	collected	in	
each	of	the	different	treatment	plots	(=	sampling	point)	
with	an	Edelman	auger	(Eijkelkamp,	NL)	at	a	depth	of	
0–	20	cm	in	the	centre	of	the	treatment	plot	(n	=	134	soil	
samples).	The	 total	number	of	 sampling	points	per	ex-
perimental	field	was	variable	depending	on	the	number	
of	treatment	plots.

Soil	samples	were	stored	in	plastic	bags	in	a	cold	room	
until	they	were	dried	at	40°C	for	24	h	and	sieved	to	<2	mm	
for	further	analyses	(Guillaume	et	al., 2021).	Soil	moisture	
content	(105°C	for	24	h)	was	immediately	determined	grav-
imetrically	on	a	subsample	of	fresh	soil.	Using	routine	labo-
ratory	protocols	(Table S2.1),	the	following	physicochemical	
parameters	 were	 analysed:	 moisture,	 clay,	 sand,	 organic	
carbon	 (OC),	 total	 carbonates,	 cation	 exchange	 capacity	

F I G U R E  1  Location	of	the	three	Agroscope	research	sites	within	Switzerland.	For	the	Changins	site,	the	detailed	location	of	the	seven	
experimental	fields	is	also	reported.
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(CEC),	total	nitrogen	(N_tot),	total	phosphorus	(P_tot),	ex-
changeable	phosphate	(P2O5_OL),	total	potassium	(K_tot),	
exchangeable	potassium	(K2O_ex),	total	calcium	(Ca_tot),	
exchangeable	calcium	(CaO_ex),	total	magnesium	(Mg_tot)	
and	exchangeable	magnesium	(MgO_ex).

2.2	 |	 Spectrometers

Two	 spectrometers	 were	 used	 for	 the	 collection	 of	 soil	
spectra:	the	research-	grade	Spectral	Evolution	PSR	+	3500	
spectroradiometer	(‘PSR’,	Spectral	Evolution),	and	a	low-	
cost,	 MEMS-	based,	 handheld	 Fourier-	transform	 (FT)	
NIR	 spectrometer	 NeoSpectra	 Scanner	 (‘NEO’,	 Si-	Ware	
Systems)	(Table 2).

2.3	 |	 Scanning positions of spectra 
in the field

Vis–	NIR	 spectra	 were	 recorded	 at	 one	 position	 (=	 sam-
pling	 point)	 per	 plot.	 First,	 a	 core	 was	 taken	 with	 the	
Edelman	auger	containing	soil	from	0	to	20	cm.	Both	the	
lateral	soil	surfaces	of	the	extracted	core	were	gently	cut	

and	 straightened	 with	 a	 knife	 to	 guarantee	 good	 con-
tact	before	being	scanned	at	five	points	(serving	as	spec-
tral	 replicates)	per	side	with	both	 the	PSR	and	the	NEO	
(hereafter	called	side_a	and	side_b)	(Figure 2a).	The	soil	
was	then	extracted	from	the	auger	and	stored	in	a	plastic	
bag	 to	be	processed	 for	 laboratory	analyses.	For	 the	sur-
face_raw	 scans,	 the	sensors	were	placed	on	 the	soil	 sur-
face	next	to	the	auger	hole	after	manually	removing	large	
plant	residues	or	stones	if	present	and	the	soil	surface	was	
scanned	 in	 five	 points	 as	 replicates	 (Figure  2b).	 For	 the	
surface_smooth	scans,	the	previously	scanned	raw	surface	
was	smoothed	by	gently	scratching	across	it	with	the	shoe	
sole,	breaking	down	the	aggregates	(so	ensuring	that	good	
contact	between	the	scanner	and	the	soil	was	established)	
and	the	surface	was	scanned	again	in	five	points	as	repli-
cates	 (Figure  2c).	 With	 the	 PSR	 spectrometer,	 the	 scans	
were	recorded	by	means	of	a	contact	probe	with	an	inter-
nal	light	source	(5	W	tungsten	halogen)	and	auto-	shutter,	
auto-	exposure	 and	 auto-	dark	 correction.	 The	 compact	
NEO	spectrometer	has	an	internal	light	source,	the	instru-
ment	was	placed	with	the	sapphire	window	directly	on	the	
soil,	and	scans	were	integrated	over	5	s.	At	each	sampling	
point,	the	spectrometers	were	calibrated	with	a	white	ref-
erence	panel	(i.e.	every	25	scans).	The	five	replicate	scans	

Site name
Field 
code

Sampling 
points Crop Soil type

Tänikon HB 12 Winter	wheat,	sowing Cambisol/	Alisol

Reckenholz ZOFE 24 Potato,	harvested Luvisol

Changins 11A 12 Winter	wheat,	harvested Calcaric	Cambisol

Changins 20 12 Corn,	emerging Calcaric	Cambisol

Changins 24A 24 Oats,	harvested Calcaric	Cambisol

Changins 29B 10 Corn,	emerging Calcaric	Cambisol

Changins 29CA 12 Corn,	emerging Calcaric	Cambisol

Changins 29CL 16 Corn,	emerging Calcaric	Cambisol

Changins 29D 12 Corn,	emerging Calcaric	Cambisol

T A B L E  1 	 List	of	the	research	sites,	
code	of	the	experimental	fields	and	
number	of	soil	samples	collected	in	each	
field.	The	crop	indicates	the	species	
present	at	the	time	or	just	before	the	soil	
sampling,	soil	types	are	according	to	
WRB.

Instrument PSR NEO

Spectral	range	(nm) 350–	2500 1350–	2500

Spectral	resolution	
(nm)

2.8	@	700	nm
8	@	1500	nm
6	@	2100	nm

16

Spot	size	(mm) 10 10

Sample	scanning Contact	probe	with	fibre	optic	
and	5	W	tungsten	halogen	
light	source

10	mm	window	with	
halogen	light	source

Detector Si	photodiode	array	
(350–	1000	nm)

InGaAs	photodiode	
array	(970–	1910	nm,	
1900–	2500	nm)

FT-	NIR	optical	
MEMS	Michaelsen	
interferometer	and	
InGaAs	photodetector

T A B L E  2 	 Technical	characterization	
of	the	Spectral	Evolution	PSR	+	3500	
spectroradiometer	(PSR)	and	the	MEMS-	
based,	handheld	Fourier-	transform	(FT)	
NIR	spectrometer	NeoSpectra	(NEO).
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at	 each	 position	 (side_a,	 side_b,	 surface_raw,	 surface_
smooth)	have	been	 then	averaged	 so	 to	 form	one	 repre-
sentative	scan	per	scanning	position	and	sampling	point.	
In	addition,	the	average	of	both	cutaway	soil	sides	of	the	
auger	(n	=	5	+	5	replicates)	was	calculated	so	to	assess	the	
impact	of	increasing	the	number	of	replicates.

2.4	 |	 Spectral processing

Data	 treatment	 was	 done	 using	 R	 2022.02.3	 (R	 Core	
Team,  2022)	 with	 the	 following	 packages:	 tidyverse	
(Wickham	 et	 al.,  2019),	 prospectr	 (Stevens	 &	 Ramirez-	
Lopez,  2022),	 asdreader	 (Roudier,  2017)	 chemometrics	
(Filzmoser	&	Varmuza, 2011)	and	pls	(Liland	et	al., 2021).	
The	 raw	 spectra	 for	 the	 PSR	 are	 reported	 in	 reflectance	
with	a	wavelength	interval	of	1	nm,	whereas	those	of	the	
NEO	 are	 reported	 with	 a	 ca.	 13.5	cm−1	 (wavenumber)	
resolution	which	corresponds	to	ca.	2.5–	8.8	nm.	To	have	
a	 consistent	 wavelength	 interval,	 the	 NEO	 spectra	 were	
thus	resampled	to	a	2	nm	resolution	and	all	spectra	were	
transformed	 into	 absorbance	 (A	=	1/log	 R,	 with	 R	 being	
the	measured	reflectance).	To	check	the	stability	of	the	five	
replicate	scans,	the	spectral	standard	deviation	(standard	
deviation	across	the	replicates	for	each	wavelength,	then	
the	 standard	 deviation	 thereof	 along	 all	 wavelengths)	
was	calculated	(Metzger	et	al., 2020).	When	the	spectral	
standard	deviation	was	below	the	threshold	of	0.01	all	the	
spectra	were	accepted,	if	not,	the	scans	were	plotted	and	
visually	examined.	If	the	spectra	were	only	spread	out	but	
they	followed	the	same	pattern,	they	were	left	in	the	data-
set,	attributing	the	variability	to	the	heterogeneity	of	the	
soil	in	the	field.	On	the	other	hand,	if	some	replicates	were	
clearly	not	following	the	same	pattern,	we	argued	that	this	

reading	was	not	representative	of	the	soil	sample	(e.g.	be-
cause	of	specular	reflection	causing	sensor	errors)	so	the	
associated	spectrum	was	removed	from	the	dataset	while	
the	remaining	replicates	were	used	for	averaging.	Because	
of	some	sensor	errors	in	the	NEO,	the	data	from	29	points	
could	not	be	used	and	they	have	been	removed	from	the	
dataset.	In	order	to	make	the	calibrations	of	the	NEO	and	
the	PSR	comparable,	the	same	spectra	were	also	removed	
from	the	PSR	dataset,	resulting	in	a	total	of	104	soil	sam-
ples	being	effectively	used.	Some	examples	and	a	list	of	the	
removed	spectra	can	be	found	in	the	supplementary	mate-
rial	(SI	1	Outlier	selection).	After	the	data	were	cleaned,	
the	 resulting	 replicates	 of	 each	 scanning	 position	 (see	
Figure 2)	were	averaged	to	be	used	for	future	analyses.	To	
minimize	the	influence	of	the	soil	moisture	on	the	spec-
tra,	the	regions	known	for	H2O	absorptions,	that	is,	1350–	
1500	nm	 and	 1850–	2100	nm	 (Bowers	 &	 Hanks,  1965),	
were	removed	from	both	spectral	datasets,	as	well	as	the	
region	of	960–	980	nm	for	the	PSR	in	order	to	remove	the	
irregularities	 resulting	 from	 the	 sensor	 transition	 (see	
Table 2).	For	the	goals	of	this	study,	the	spectra	were	not	
further	 processed	 to	 remove	 the	 influence	 of	 soil	 mois-
ture	 (e.g.	 EPO	 or	 direct	 standardization).	 Mathematical	
pretreatment	of	 the	 raw	spectra	 is	a	 common	 technique	
to	enhance	the	information	content	of	the	raw	spectra	by	
smoothing,	normalizing,	removing	scattering	effects	and	
enhancing	the	peaks	through	derivatization.	The	follow-
ing	mathematical	pretreatments	were	applied	to	the	raw	
spectra	 (RAW)	so	 to	enhance	 their	 information	content:	
standard	normal	variate	(SNV,	[Barnes	et	al., 1989]),	mul-
tiplicative	 scatter	 correction	 (MSC)	 (Geladi	 et	 al.,  1985)	
and	three	different	Savitzky–	Golay	(SG)	smoothings	and	
derivatives	(Savitzky	&	Golay, 1964),	all	fitting	a	second-	
order	polynomial	(2)	over	11	points	(11):	only	smoothing	

F I G U R E  2  Schematic	representation	of	the	in-	situ	scanning	protocol	of	soil	samples	with:	(a)	the	scanning	of	the	two	sides	of	the	
Edelman	auger	(hereafter	called	side_a	and	side_b),	(b)	the	scanning	of	the	raw	surface	(surface_raw)	and	(c)	the	scanning	of	the	cleaned	
and	smoothed	soil	surface	(surface_smooth).
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the	 spectra	 (no	derivative,	SG2110),	 smoothing	and	 first	
derivative	(SG2111)	and	smoothing	and	second	derivative	
(SG2112).	Together	with	the	different	scanning	positions,	
this	 led	 to	 24	 (4	 scanning	 positions	×	6	 pretreatments)	
input	datasets	for	each	spectrometer.

2.5	 |	 Modelling and model evaluation

Each	 of	 the	 input	 dataset	 was	 analysed	 by	 partial	 least	
squares	 regression	 (PLSR),	 an	 established	 technique	 to	
relate	 the	 spectra	 to	 laboratory	 analyses	 (Esbensen	 &	
Swarbrick, 2018).	With	PLSR,	the	number	of	variables	(ab-
sorbance	at	each	wavelength)	is	drastically	reduced	and	the	
system	is	described	by	 latent	variables	 (LVs)	 for	both	 the	
predictors	(spectra)	and	the	response	variables	(laboratory	
data)	which	are	then	used	for	multivariate	regression.	The	
model	performance	was	evaluated	through	a	repeated	dou-
ble	cross-	validation	(rdCV)	consisting	of	two	nested	cross-	
validations	(CVs):	the	inner	CV	to	optimize	the	number	of	
LVs	and	the	outer	CV	to	evaluate	the	model	performance.	
This	procedure	is	then	repeated	100	times,	producing	model	
performance	indicators	for	each	repetition.	The	inner	CV	is	
run	as	a	10-	fold	CV	and	the	optimum	number	of	LV	is	evalu-
ated	based	on	the	standard	error	of	prediction	(SEP)	of	that	
loop	 with	 the	 ‘hastie’	 method	 within	 the	 ‘chemometrics’	
package	for	each	iteration	and	then	averaged	and	rounded	
over	 the	 four	 folds	 (Filzmoser	 et	 al.,  2009;	 Filzmoser	 &	
Varmuza, 2011;	Hutengs	et	al., 2019).	The	best	combination	

of	 mathematical	 preprocessing	 and	 scanning	 position	 for	
each	 parameter	 was	 chosen	 based	 on	 the	 minimum	 SEP	
that	 was	 calculated	 after	 the	 100	 times	 rdCV.	 From	 the	
100	repetitions,	the	average	and	standard	deviation	of	the	
coefficient	of	determination	(R2),	root	mean	squared	error	
of	 the	prediction	(RMSEP),	ratio	of	performance	to	 inter-
quartile	 range	 (RPIQ	=	IQR/RMSEP	 with	 IQR	 being	 the	
interquartile	range	(Q3	–		Q1)	of	the	laboratory	parameter)	
and	 Lin's	 concordance	 correlation	 coefficient	 (CCC)	 as	 a	
measure	of	 the	agreement	between	predicted	and	 labora-
tory	data	(Lin, 1989,	2000)	were	calculated.

3 	 | 	 RESULTS

3.1	 |	 Laboratory analyses and soil sample 
characterization

Our	 dataset	 covered	 a	 wide	 range	 of	 fertility-	related	 pa-
rameters	 of	 Swiss	 agricultural	 soils.	 Some	 outliers	 were	
observed	in	the	boxplots	for	clay	because	of	high	values	in	
one	experimental	field	(site	29CA	where	clay	was	>50%)	
and	for	OC	probably	because	of	organic	residue	remain-
ing	in	the	soil	(Figure 3).	On	the	other	hand,	the	distribu-
tion	of	carbonates,	total	calcium,	exchangeable	potassium	
and	magnesium	showed	a	high	number	of	outliers	at	high	
concentration	values.	The	high	values	for	carbonates	and	
total	calcium	belong	to	the	same	research	site	(HB)	char-
acterized	 by	 high	 carbonate	 content	 soils.	 A	 complete	

F I G U R E  3  Boxplots	of	the	analysed	soil	parameters	showing	the	median	(bold	middle	line),	the	upper	and	lower	quartile	(box)	and	the	
outliers	(dots)	for	the	examined	soil	parameters.	Outliers	are	defined	as	values	which	are	more	than	±1.5	×	IQR	(interquartile	range)	from	
the	upper/lower	quartile	away.	The	summary	statistics	can	be	found	in	Table S2.1.
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summary	of	the	laboratory	data	can	be	found	in	the	sup-
plementary	data	(Table S2.1).

3.2	 |	 Spectral shape and 
absorption features

Clear	 absorption	 features	 were	 visible	 around	 1400	 and	
1900	nm	for	both	instruments,	as	here	reported	for	one	rep-
resentative	sampling	point	(Figure 4).	The	overall	reflectance	
was	 highest	 for	 the	 surface_smooth	 scanning	 positions.	
Conversely,	the	scans	on	both	sides	of	the	core	(i.e.	side_a	
and	side_b)	show	the	lowest	reflectance	values,	whereas	the	
surface_raw	spectra	showed	a	reflectance	pattern	interme-
diate	 between	 the	 smooth	 surface	 and	 the	 side	 positions.	
Another	 absorption	 feature	 can	 be	 seen	 around	 2200	nm	
which	was	more	detailed	in	the	PSR	than	in	the	NEO.

The	general	shapes	and	main	absorption	features	were	
very	 similar	 between	 the	 two	 spectrometers	 (Figure  4c).	
From	 the	 first	 absorption	 feature	 at	 1400	nm,	 the	 NEO	
produced	a	 steeper	 slope	and	ultimately	a	higher	 reflec-
tance	before	the	drop	to	the	1900	nm	absorption	feature.	
Over	the	entire	spectrum,	the	reflectance	of	the	NEO	was	
shifted	up	to	higher	values,	producing	higher	reflectance	
than	the	PSR	scans.

3.3	 |	 Spectral calibration results

For	the	PSR,	the	best	predictions	(based	on	the	RPIQ)	were	
for	CEC	(RPIQ	6.26	9	LVs,	R2	0.91,	RMSEP	19.65	meq/kg),	

extractable	MgO	(RPIQ	4.4,	9	LVs,	R2	0.89,	RMSEP	0.08	g/
kg)	 and	 clay	 (RPIQ	 3.69,	 9	 LVs,	 R2	 0.91,	 RMSEP	 3.84%)	
(Table 3).	The	spectra	pretreated	with	MSC	and	from	the	
side_a	(MgO_ex)	or	side_b	(CEC	and	clay)	scanning	posi-
tion	provided	the	best	results.	For	the	NEO	spectrometer,	
the	best	predictions	were	obtained	also	for	CEC	(RPIQ	5.55,	
8	LVs,	R2	0.90,	RMSEP	19.84	meq/kg),	clay	(RPIQ	4.73,	6	
LVs,	R2	0.95,	RMSEP	2.49%)	and	extractable	magnesium	
(MgO_ex,	 RPIQ	 2.95,	 4	 LVs,	 R2	 0.78,	 RMSEP	 0.11	g/kg).	
The	best	combinations	of	scanning	position	and	pretreat-
ment	were	for	CEC	the	SG2110	smoothed	side_a	spectra,	
for	clay	SG2110	and	side_a	and	for	MgO_ex	first	derivative	
(SG2111)	and	side_a.	The	wide	range	of	laboratory	values	
for	 the	 CEC	 (see	 Table  S1)	 can	 explain	 the	 high	 RMSE,	
RMSEP	 and	 IQR	 values	 for	 both	 instruments	 (Table  3).	
The	scatter	plots	of	the	laboratory	values	versus	the	pre-
dicted	values	for	each	physicochemical	parameter	can	be	
found	in	the	supplementary	data	(Figure S2.1-	S2.4).

4 	 | 	 DISCUSSION

4.1	 |	 Spectral absorption features

For	both	instruments,	there	are	clear	absorption	features	
around	1400	and	1900	nm	because	of	water	absorption,	a	
result	 that	 is	 typical	 for	vis–	NIR	spectra	of	soils	because	
of	stretching	and	bending	of	O-	H	and	overtone	and	com-
bination	vibrations	(Liu	et	al., 2022;	Stenberg	et	al., 2010;	
Tang	et	al., 2020;	Viscarra	Rossel	et	al., 2009).	In	order	to	
reduce	 the	 influence	of	 soil	moisture	on	 the	spectra,	we	

F I G U R E  4  Reflectance	spectra	for	the	representative	sampling	point	from	the	experimental	field	20	for	the	PSR	(black	lines)	and	the	
NEO	(red	lines)	and	different	sampling	positions.
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removed	 the	 areas	 corresponding	 to	 these	 wavelengths.	
Another	absorption	feature	because	of	O-	H	stretching	and	
metal-	O-	H	bending	can	be	seen	around	2200	nm	(Viscarra	
Rossel	et	al., 2009),	particularly	in	the	PSR	because	of	the	
higher	spectral	resolution	compared	with	the	NEO.

The	 overall	 reflectance	 is	 higher	 for	 the	 surface_
smooth	scanning	positions	because	a	smooth	soil	surface	
can	 reflect	 a	 greater	 fraction	 of	 the	 incoming	 radiation	
and	because	the	soil	surface	dries	faster	than	the	cutaways	
soil	 sides	 in	 the	 core	 (Gras	 et	 al.,  2014;	 Viscarra	 Rossel	
et	 al.,  2009).	 Over	 the	 entire	 spectrum,	 the	 reflectance	
of	 the	 NEO	 is	 shifted	 up	 to	 higher	 values	 so	 producing	
higher	reflectance	than	the	PSR	scans.	This	shift	has	been	
reported	also	by	other	studies	 (Gorla	et	al., 2022)	and	 is	
likely	because	of	intrinsic	instrument	properties.

4.2	 |	 Spectral calibration

Based	 on	 a	 threshold	 of	 RPIQ	 >1.89	 and	 Lins's	 CC,	 the	
analysis	of	the	model	performance	parameters	shows	that	
out	of	the	15	soil	physicochemical	parameters,	for	seven	
of	 them	 a	 satisfactory	 model	 can	 be	 calibrated	 with	 the	
PSR	 data.	 The	 RPIQ	 threshold	 of	 1.89,	 as	 proposed	 by	
Ludwig	 et	 al.  (2019)	 and	 based	 on	 Chang	 et	 al.  (2001),	
is	 currently	 used	 to	 distinguish	 satisfactory	 from	 unsat-
isfactory	 calibrations	 (Francos	 et	 al.,  2022;	 Greenberg	
et	 al.,  2020;	 Leenen	 et	 al.,  2022).	 However,	 it	 should	 be	
kept	in	mind	that	these	thresholds	are	arbitrary	and	must	
be	defined	in	the	context	of	the	specific	research	questions	
(Bellon-	Maurel	et	al., 2010;	Reeves	&	Smith, 2009).	Based	
on	 the	 above	 threshold	 in	 combination	 with	 Lin's	 CCC,	
the	 RMSEP	 and	 the	 R2,	 our	 study	 indicates	 that	 a	 satis-
factory	prediction	can	be	obtained	 for	 the	 following	 soil	

parameters:	CEC,	clay,	sand,	pH,	MgO_ex,	OC,	N_tot,	well	
in	 accordance	 with	 previous	 studies	 (Barra	 et	 al.,  2021;	
Soriano-	Disla	 et	 al.,  2014).	 For	 CaO_ex	 and	 Mg_tot,	 the	
RPIQ	 is	 >1.89	 but	 the	 values	 of	 Lin's	 CC	 (<0.8)	 and	 R2	
(<0.66)	indicate	unsatisfactory	calibration.	The	other	pa-
rameters	 that	 could	 not	 satisfactorily	 be	 calibrated	 are	
total	 and	 extractable	 K,	 total	 and	 extractable	 P,	 total	 Ca	
and	carbonates	 in	 line	with	the	results	of	previous	stud-
ies	(McBride, 2022;	Viscarra	Rossel	et	al., 2006).	Although	
in	other	studies	the	carbonates	were	well	calibrated	(see	
Barra	et	al. (2021),	the	unsatisfactory	performance	in	our	
study	is	probably	related	to	the	high	number	of	outliers,	
similarly	to	Ca_tot	concentration	(see	Figure 3).

For	 the	 NEO	 spectrometer,	 satisfactory	 models	 could	
be	built	for	six	parameters.	The	parameters	are	the	same	as	
for	the	PSR,	with	the	exception	of	pH,	which	has	a	RPIQ	
of	2.16,	but	the	Lin's	CCC	(0.62)	and	the	R2	(0.42)	suggest	
an	insufficient	model	performance.

4.3	 |	 In- situ scanning position and 
proposed best practice

Based	on	the	scanning	positions	leading	to	the	best	model	
results	for	the	PSR,	we	can	observe	as	all	the	soil	param-
eters	with	satisfactory	models	(i.e.	RPIQ	>1.89	show	a	bet-
ter	performance	with	scans	taken	from	the	cutaway	sides.

For	the	NEO	spectrometer	(Table 3),	satisfactory	mod-
els	with	RPIQ	>1.89	were	obtained	for	six	soil	parameters	
with	scans	taken	from	the	cutaway	sides	of	the	soil	core.

Based	on	the	model	results,	scanning	along	one	side	of	
the	soil	core	seems	 the	best	scanning	position	and	prac-
tice.	This	practice	also	offers	the	most	plausible	and	useful	
results	 considering	 that	 most	 of	 the	 laboratory	 analyses	

F I G U R E  5  Boxplots	of	the	RPIQ	
(IQR/RMSEP)	values	of	the	PSR	(full)	and	
the	NEO	(empty)	for	the	best	scanning	
position	(see	Table 3).
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are	performed	on	samples	taken	at	this	depth.	In	addition,	
we	must	consider	that	because	the	soil	surface	is	exposed	
to	external	inputs	(sun,	rain,	plant	residues)	the	predicted	
values	from	this	position	might	divert	considerably	from	
the	bulk	sample.	Thus,	scanning	the	soil	along	the	side	of	
a	soil	core	is	the	preferred	position	for	in	field	spectra	ac-
quisition.	This	finding	corroborates	previous	studies	(Gras	
et	al., 2014;	Ji	et	al., 2016)	 in	which	the	scanning	of	 the	
soil	along	the	core	sides	appeared	as	the	best	field	protocol	
using	a	full-	range	spectrometer.

Our	data	show	that	increasing	the	number	of	replicate	
scans	 on	 both	 the	 sides	 of	 the	 soil	 core	 (i.e.	 the	 average	
of	 side_a	 plus	 side_b,	 n	=	10)	 do	 not	 improve	 the	 per-
formances	 of	 the	 models	 for	 the	 successfully	 predicted	
parameters.	 This	 result	 is	 consistent	 with	 the	 expected	
similarity	of	the	two	cutaways	of	the	soil	core	and,	in	ad-
dition,	it	allows	to	reduce	the	time	of	the	scan	acquisition	
by	focusing	on	only	one	cutaway	side.

4.4	 |	 Comparison of PSR and NEO based 
on the proposed best practice protocol

The	RPIQ	from	the	100	times	repeated	rdCV	of	the	seven	
successfully	 calibrated	 parameters	 for	 the	 PSR	 and	 the	
NEO	are	shown	in	Figure 5.	When	the	performances	of	
the	 two	 instruments	 are	 compared	 (Table  3),	 the	 PSR	
usually	performs	better	in	terms	of	RPIQ,	but,	unexpect-
edly,	for	clay,	the	RPIQ	for	the	NEO	was	higher	because	
of	the	decreased	RMSEP	(3.48%	for	PSR	and	2.94%	for	the	
NEO,	respectively).The	reason	for	that	remains	unclear,	
but	 it	 could	 be	 because	 of	 the	 fact	 that	 important	 clay-	
associated	 absorptions	 are	 found	 in	 the	 range	 in	 which	
the	 NEO	 operates	 (1350–	2500	nm)	 (Viscarra	 Rossel	 &	
Behrens, 2010),	so	that	the	visible	region	covered	by	the	
PSR	 only	 contributes	 as	 noise.	 However,	 for	 both	 PSR	
and	NEO,	the	RMSEP	values	are	within	the	range	(2.9–	
4%)	found	by	other	authors	(Viscarra	Rossel	et	al., 2006).	
Overall,	the	results	exhibit	a	very	low	bias,	especially	for	
the	PSR	(<0.1),	while	the	NEO	showed	higher	biases	for	
CEC	(−0.58)	and	clay	(−0.29).	This	bias	might	be	caused	
by	the	reduced	range	of	the	NEO	compared	with	the	PSR,	
even	if	further	examinations	are	necessary	to	confirm	this	
hypothesis.

The	 high	 RPIQ	 values	 of	 CEC	 can	 probably	 be	 ex-
plained	by	the	strong	correlation	of	CEC	with	OC	(Pearson	
r2	=	0.81,	 n	=	134)	 and	 clay	 (Pearson	 r2	=	0.89,	 n	=	134)	
and	the	wide	range	of	CEC	in	the	laboratory	values	(70–	
289	meq/kg).	Even	 if	 the	OC	does	not	show	such	a	high	
RPIQ	compared	with	the	other	parameters,	the	RMSEP	of	
0.37%	and	0.41%	for	both	the	PSR	and	the	NEO	are	within	
the	 range	 of	 other	 publications	 (Hutengs	 et	 al.,  2019;	
Viscarra	Rossel	et	al., 2006).

The	NEO	spectrometer	became	available	recently,	and	
several	authors	have	used	it	or	other	MEMS-	based	spec-
trometers	 in	 the	context	of	 soil	analysis	 for	OC,	 texture,	
pH	and	nutrient	analysis	as	well	as	in	comparative	studies	
with	research-	grade	spectrometers	(Angeletti	da	Fonseca	
et	 al.,  2022;	 Goodwin	 et	 al.,  2022;	 Karyotis	 et	 al.,  2021;	
Ng	 et	 al.,  2020;	 Pasquini	 &	 Hespanhol,  2021;	 Sharififar	
et	al., 2019;	Tang	et	al., 2020;	Thomas	et	al., 2021).	Overall,	
it	 appears	 that	 the	 NEO	 spectrometer,	 as	 other	 low-	cost	
MEMS	 instruments,	 are	 less	 performing	 than	 the	 full-	
range	 spectrometers,	 but	 that	 they	 show	 a	 potential	 for	
future	applications	(Karyotis	et	al., 2021;	Tang	et	al., 2020;	
Thomas	et	al., 2021).

Using	 the	 NEO	 spectrometer	 in	 comparative	 studies	
with	 research-	grade	 spectrometers	 (PSR,	 ASD),	 other	 au-
thors	 have	 found	 generally	 better	 performances	 of	 the	
research-	grade	 instruments,	 but	 comparable	 results	 for	
some	parameters	(e.g.	texture,	pH,	carbon)	from	dried	and	
ground	samples	(Tang	et	al., 2020;	Thomas	et	al., 2021).	Ng	
et	al. (2020)	started	to	build	a	spectral	library	with	spectra	
collected	 with	 the	 NEO	 spectrometer	 for	 several	 soil	 pa-
rameters	(including	texture,	carbon,	pH	and	nutrients)	and	
they	used	the	predicted	results	to	calculate	fertilizer	appli-
cation	 recommendations.	 In	 a	 different	 approach	 to	 soil	
sampling,	Angeletti	da	Fonseca	et	al. (2022)	used	the	NEO	
spectrometer	in	combination	with	a	sampling	device	where	
the	dried	and	ground	soil	was	scanned	in	a	rotating	bottle	to	
increase	the	scanned	surface	(Pasquini	&	Hespanhol, 2021)	
so	improving	the	prediction	of	soil	OC	considerably.

We	 underline	 that	 the	 influence	 and	 the	 correction	
of	field	moisture	have	not	been	taken	into	consideration	
for	this	study	because	this	topic	will	be	specifically	ad-
dressed	 in	 future	 studies	 with	 additional	 experiments	
and	sampling,	once	the	best	practice	of	in-	situ	soil	scan-
ning	 has	 been	 clarified.	 This	 will	 be	 one	 of	 the	 chal-
lenges	for	future	routine	in-	situ	analysis	of	soil	fertility	
with	 vis–	NIR	 spectroscopy,	 among	 other	 challenges	
such	as	the	selection	of	a	representative	calibration	set,	
the	construction	of	a	spectral	library	or	the	development	
of	 a	 transfer	 function	 between	 in-	situ	 spectra	 and	 an	
existing	 spectral	 library.	 Another	 challenge	 will	 be	 to	
determine	 the	 precision	 and	 accuracy	 of	 the	 predicted	
measurements	by	different	types	of	vis–	NIR	spectrome-
ters	for	agricultural	decision	support,	especially	if	many	
soil	 indicators	 are	 considered	 and	 evaluated	 in	 classes	
instead	of	using	continuous	values	 (Flisch	et	al., 2017;	
Sinaj	et	al., 2017;	Wall	&	Plunkett, 2016).

5 	 | 	 CONCLUSIONS

Our	 study	 has	 clearly	 demonstrated	 the	 feasibility	 of	
using	 portable	 vis–	NIR	 spectrometers	 to	 measure,	
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in-	situ,	a	set	of	soil	fertility	indicators	such	as	clay,	OC,	
N_tot,	pH	and	CEC.	We	have	found	that,	in	the	field,	the	
best	scanning	position	for	soil	samples	is	along	cutaway	
sides	of	a	20	cm	long	core	where	 the	PLSR	models	can	
be	calibrated	successfully	 (RPIQ	>1.89).	By	comparing	
two	different	instruments,	we	showed	that	the	PSR	spec-
trometer	performed	better	 than	 the	NEO	spectrometer	
(higher	RPIQ).	However,	it	was	still	possible	to	success-
fully	 calibrate	 the	 cheaper	 NEO	 spectrometer	 for	 the	
same	soil	parameters	as	the	PSR	spectrometer,	with	the	
only	exception	of	pH.
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