Validation of behavioural-based models to estimate pasture herbage dry matter intake of dairy cows

Jessica Werner¹, Thorsten Haak^{2,3}, <u>Fredy Schori²</u>

- ¹ Institute of Agricultural Sciences in the Tropics, University of Hohenheim, 70599 Stuttgart, Germany
- ² Ruminant Nutrition and Emissions, Agroscope, 1725 Posieux, Switzerland
- ³ Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany

Objective

The objective was the validation of existing behavioural- and production-based models to estimate individual pasture dry matter intake (**PHDMI**) of dairy cows with an independent dataset.

Materials and Methods

- Independent dataset: 72 measurements of 7 d PHDMI of 38 Holstein and Swiss Fleckvieh cows
- Main feed resource was grazed herbage with mean concentrate supplementation of 0.7 kg DM d⁻¹ (0 3.5 kg)
- RumiWatch halter for eating and rumination behaviour recording over a 7 d period
- Reference method for individual PHDMI: n-alkane double marker technique
- Two models were evaluated against reference PHDMI:
 - Exclusively behavioural-based model (Schori et al. 2020, EGF-Proceedings)
 - Production-based model including behavioural characteristics (Rombach et al. 2019, J. Dairy Sci.)

Results

	Behavioural- based model	Production- based model
Mean bias (kg DM)	- 0.13 ± 1.95	0.81 ± 1.85
RMSEP (kg DM)	1.94	2.01
Rel. prediction error (%)	14.0	14.4
CCC	0.33	0.21
r	0.33	0.24
R ²	0.11	0.06

RMSEP = root mean square error of predicti CCC = Concordance correlation coefficient

r = Pearson correlation coefficient

 R^2 = Coefficient of determination

Conclusion

The estimation models, either behavioural- or production-based, appear to be valid for estimating mean herd PHDMI, but seem only moderately suitable for estimating individual PHDMI. Furthermore, the exclusively behavioural-based model performs similarly to or even better than the production-based model. A larger validation dataset with more values in the range of 2-12 kg PHDMI per day may be beneficial.

UNIVERSITÄT HOHENHEIM

Federal Department of Economic Affairs, Education and Research EAER Agroscope

16

18

20

