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Abstract: The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture
in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose
of this research was to investigate the potential effects of two recently described species of AMF
(Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving
the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against
soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru.
The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second exam-
ined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the
results showed that AMF inoculation of P. volubilis seedlings positively improved their development,
particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to
M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without
AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in
particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF
inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf
contents. The findings provide strong justification for the development of products based on AMF
as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases,
especially those that are locally adapted to local crops and cropping conditions.

Keywords: biofertilizer; bioprotectant; mycorrhizal symbiosis; Nanoglomus plukenetiae; Rhizoglomus variabile;
root knot nematode

1. Introduction

Food security is a significant global challenge that aims to ensure availability, access,
use, and stability to satisfy the fundamental human right to food [1]. Due to a rapidly rising
global population, there is an ever-rising demand for food associated with the increasing
number of people to feed. There is consequently a continuous need to intensify and
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adapt agricultural practices to increase productivity [2]. However, such intensification of
agricultural practices cannot be sustained without increasing the use of synthetic inputs,
which has ecological as well as human safety issues associated with it [3,4]. In addition
to the strive to improve productivity, therefore, there is also the necessity to achieve
sustainable and ecologically equitable production through the identification of alternatives
that can improve resource use efficiency.

Arbuscular mycorrhizal fungi (AMF) facilitate the long-term benefits of soil fertility,
plant nutrition, and protection against pathogens, as well as maintaining agroecosystem
services and dynamics with a reduction of environmental degradation [4]. They establish
an obligate symbiotic association with the roots of ~80% of terrestrial plant species, in
which the plant supplies carbon and lipids to the fungi and the fungi deliver water and
nutrients to the plant [5,6]. For agriculture, they offer a promising, largely untapped
potential towards more sustainable agriculture. They assist plant acquisition of nutrients
for improved growth but also, by eliciting host resistance to soil-borne pests and diseases,
result in greater shoot growth [7].

Plukenetia volubilis, called sacha inchi in Spanish and inka nut in English, produces
eatable, delicious seeds. It is a traditional Amazonian crop that dates back millennia. Lately,
it has received increasing attention due to its remarkable seed nutritional contents, which
include omega fatty acids (ω3, ω6, and ω9) [8], proteins (22–30%), vitamin E (tocopherols
and tocotrienols), and natural antioxidants, and its associated benefits for human health,
including benefits for nutritional and pharmaceutical purposes [9,10]. In Peru, national
production reaches 2785 tons, with the San Martín region being the main producer, con-
tributing 1797 tons, which represents 64.5% of the country’s total production [11]. It is
cultivated in combination with various other plants as live stakes and increasingly under
more intensive conditions in monoculture. Additionally, it grows across a broad range of
soils and altitudes. For example, it can be found at altitudes ranging up to 1490 m above
sea level (m.a.s.l.) [12]. However, P. volubilis appears to be highly affected by a particularly
damaging and fatal root disease complex caused by root knot nematodes (Meloidogyne spp.)
and fungal wilt pathogens (Fusarium spp.) [13].

Studies assessing the application of AMF to P. volubilis are scarce. However, recent
research by Wiriya et al. [14] demonstrated that inoculation with Acaulospora sp. gener-
ally improved plant growth and development. Additionally, Tian et al. [15] found that
inoculation with Glomus versiforme and Paraglomus occultum enhanced the crop’s ability to
withstand drought conditions. Given the recent descriptions of two native species of AMF,
Rhizoglomus variabile and Nanoglomus plukenetiae [16,17], and that P. volubilis is indigenous to
the Amazonia region, the current study was established to investigate the potential of these
indigenous AMF to offset the impact of the Meloidogyne spp. and additionally improve
the productivity of this interesting crop. This study aims to evaluate the biofertilizer and
bioprotective potential of single and combined inoculations of two native AMF species for
seedling development and early plant growth of P. volubilis plants. We hypothesized that
inoculating P. volubilis plants with R. variabile and N. plukenetiae alone or in combination
will enhance the development of morphological traits and contribute to a level of tolerance
against M. incognita infection.

2. Materials and Methods
2.1. Plukenetia volubilis Seed

Ripe capsules (fruits) of P. volubilis (ecotype Shanantina) were collected from healthy
plants without signs of pest or diseases in 2018 from Lamas province, San Martín depart-
ment, Peru (06◦26′47.3′′ S 076◦31′44.00′′ W; 382 m a.s.l.). Viable seeds with similar color
(dark brown), size (1.5–2.0 cm), and shape (ovoid and bulging seed) were selected according
to Guerrero-Abad et al. [13]. Seeds were surface-sterilized by immersing in 0.05% sodium
hypochlorite for 2 min and 95% ethanol for 2 min and then rinsed in sterile distilled water
three times. The seeds were vertically positioned with the hilum directed downwards in a
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tray [13], covered with a thin layer of sieved coarse sterile sand (1 cm thick), and irrigated
daily with water during the first week until pre-germination (Figure 1A).
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Figure 1. Inoculation of Plukenetia volubilis seedlings with arbuscular mycorrhizal fungi (AMF)
and Meloidogyne incognita. (A) Germination of P. volubilis seeds in sterile sand. (B) Sowing of pre-
germinated P. volubilis seeds on substrate with AMF. (C) Inoculation of P. volubilis seedlings with
M. incognita (0 days). (D) Inoculation of P. volubilis seedlings with M. incognita 45 days after sowing.
(E) Experimental layout of P. volubilis seedlings in the greenhouse 60 days after sowing.

2.2. Mycorrhizal Inoculum

Pure cultures of the isolates R. variabile and N. plukenetiae were obtained from the collec-
tion of Arbuscular Mycorrhizal Fungi of the Laboratorio de Biología y Genética Molecular
of the Universidad Nacional de San Martín (Peru). Our previous experiments show that
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R. variabile and N. plukenetiae have a high potential for biofertilizer and growth promo-
tion in coffee (Coffea arabica) seedlings [18]. These isolated AMF were multiplied using
Sorghum vulgare, Urochloa brizantha, and Medicago sativa together over several continuous
cycles in the greenhouse (06◦35′28′′ S, 76◦18′47′′ W) under the environmental conditions as
described by Corazon-Guivin et al. [19]. Information about morphological and molecular
characterization, including DNA extraction, PCR, cloning, sequencing, and phylogenetic
analyses of R. variabile and N. plukenetiae, is available in Song et al. [17] and Corazon-Guivin
et al. [16]. For single inoculation assays, an inoculum of each isolated AMF (Rv: R. variabile
and Np: N. plukenetiae) was delivered using 20 g of substrate, which contains segments of
mycorrhizal roots, hyphae, and ~1500 AMF spores. For dual inoculation assays (Rv + Np),
10 g of each inocula was combined to inoculate 20 g per inoculated pot.

2.3. Inoculation of Plukenetia volubilis Seedlings

Each inoculum (20 g of Rv, Np, and Rv + Np) was mixed with 3 kg of previously
sterilized substrate (121 ◦C, 15 p.s.i., 60 min per day/three consecutive days) composed
of a mixture of field soil and coarse river sand (2:1, v/v). The textural classification of
this substrate was a sandy loam, with pH 4.82, 0.35 dSm−1 electrical conductivity, 1.66%
organic matter, 6.5 mg of P kg−1, and 63 mg of K kg−1 (0.14 K + meq/100 g). Uniform
pre-germinated seeds (~1 cm root) were transplanted singularly into plastic 3 L pots filled
with 3 kg of sterile substrate containing AMF inoculum (Figure 1B).

2.4. Experiment #1: Impact of AMF Inoculation on Plukenetia volubilis Growth and Physiology
2.4.1. Experimental Design

The experiment was performed from May to July 2018 and comprised 4 treatments,
each with 12 replications, arranged in a completely randomized design totaling 48 ex-
perimental units (i.e., pots, Table 1) in the greenhouse at Universidad Nacional de San
Martín, Tarapoto (06◦35′28′′ S, 76◦18′47′′ W). Four experimental treatments included a
non-mycorrhizal control and single and dual inoculation of R. variabile and N. plukenetiae.
Each pot contained one P. volubilis seedling cultivated for 75 days in the greenhouse and
watered to field capacity at 3-day intervals until completion.

Table 1. Summary of Experiment #1 treatments to evaluate the effects of AMF inoculation on
Plukenetia volubilis.

Treatment Description

Control Non-inoculated
Rv Inoculation with Rhizoglomus variabile
Np Inoculation with Nanoglomus plukenetiae

Rv + Np Inoculation with Rhizoglomus variabile +
Nanoglomus plukenetiae

2.4.2. Plukenetia volubilis Growth, Physiology, and Mycorrhizal Characterization

Plant height (cm), stem diameter (mm), and number of leaves growth parameters were
recorded at 10-day intervals over 75 days from the 15th day. At experiment completion, total
fresh biomass (g), dry biomass (g), chlorophyll content (SPDA, Minolta Camera Co., Ltd.,
Osaka, Japan), leaf area (cm2, ImageJ FIJI) and leaf nitrogen (N, mg kg−1), phosphorus (P,
mg kg−1), and potassium (K, mg kg−1) content were determined. The leaf N concentration
was obtained using the Kjeldahl method [20], the leaf P concentration was obtained through
digestion in HNO3:HClO4 (4:1) and spectrophotometry in UV-Vis (λ = 420 nm), and the K
concentration was obtained through digestion in HNO3:HClO4 (4:1) and atomic absorption
spectrophotometry (Model Varian, AAS Spectra 55B, Victoria, Australia).

Mycorrhizal root colonization (%) and spore density (per 10 g of soil) were also
determined. For this, the roots were rinsed and cut into 1–2 cm fragments. These root
fragments were cleared by boiling in 10% (w/v) KOH and stained with Parker Quink ink
in lactoglycerol according to the modified method of Vierheilig et al. [21]. Twenty pieces
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of roots per plant were observed under an optical microscope at 20× magnification and
evaluated according to Brundrett et al. [22]. To assess spore density, they were first isolated
using the wet sieving and decantation method [23], followed by sucrose centrifugation.
Subsequently, they were quantified using a stereoscopic microscope (at 20× magnification,
Eclipse E200, NIKON, Tokyo, Japan).

2.5. Experiment #2: Impact of AMF Inoculation on Plukenetia volubilis against
Meloidogyne incognita

In the second experiment, AMF inoculations were challenged with nematodes. The in-
oculation of AMF in P. volubilis was the same as in the previous experiment.

2.5.1. Nematode Inoculum

Egg masses of M. incognita were individually removed from naturally infected P. volu-
bilis root samples collected from plantations located in Aucaloma, Lamas Province, Peru.
Each egg mass was placed independently in 5 mL Petri dishes in distilled water [24] and
100–200 freshly hatched infective juveniles (J2) used to inoculate 30 × 15-day-old P. volubilis
plants in pots filled with sterilized substrate. After 60 days, J2 was extracted from the galled
roots according to Hussey and Barker’s [25] method, modified by Atamian et al. [24], and
quantified. Information about the molecular characterization of M. incognita is available in
Guerrero-Abad et al. [13].

2.5.2. Experimental Design

A two-factorial experiment, with 8 treatments and 12 replications per treatment, was
conducted using a completely randomized design over 75 days (see Table 2) from May to July
2018. The first factor included timing of M. incognita infestation at two levels (0 or 45 days
after inoculation of AMF), and the second factor was AMF inoculation with four levels: single
AMF isolated (Rv, Np), their combination (Rv + Np), and non-inoculated (Figure 1C,D). Each
replicate consisted of a pot with one P. volubilis plant, as described in Experiment #1. Nematodes
were inoculated using 3000 freshly hatched J2 suspended in 10 mL of distilled water in 4 holes
(10 cm deep, 0.5 cm diameter) equispaced around each seedling [13]. All treatments were
compared against a non-inoculated control (no AMF, no Mi).

Table 2. Summary of Experiment #2 treatments to evaluate AMF against Meloidogyne incognita in
Plukenetia volubilis.

Treatment Description

Control Non-inoculated
Rv/Mi 0 Inoculation with Rhizoglomus variabile and Meloidogyne incognita at 0 days
Np/Mi 0 Inoculation with Nanoglomus plukenetiae and Meloidogyne incognita at 0 days
Rv + Np/Mi 0 Inoculation with R. variabile + N. plukenetiae and M. incognita at 0 days
Mi 0 Infestation with Meloidogyne incognita at 0 days
Rv/Mi 45 Inoculation with Rhizoglomus variabile and Meloidogyne incognita at 45 days
Np/Mi 45 Inoculation with Nanoglomus plukenetiae and Meloidogyne incognita at 45 days
Rv + Np/Mi 45 Inoculation with R. variabile + N. plukenetiae and M. incognita at 45 days
Mi 45 Infestation with Meloidogyne incognita at 45 days

2.5.3. Plukenetia volubilis Growth, Physiology, and Mycorrhizal Characterization and
Evaluation of Meloidogyne

Plant growth, physiology, and AMF parameters as outlined in Experiment #1 were
recorded. In addition, the nematode density (J2) per 100 g of soil, per planta (J2), and the
root infestation level according to Bridge and Page [26] at the end of the experiment were
recorded. The reproductive factor (RF) was calculated as follows: RF = final population/initial
population, where the final population is the number of J2 counted at the end of the experiment
(soil and root) and the initial population is the number of inoculated J2 (3000).
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2.6. Culture Conditions

Both experiments were conducted in the greenhouse of the Laboratorio de Biología
y Genética Molecular of the Facultad de Ciencias Agrarias, Universidad Nacional de San
Martín, Tarapoto, Peru from May to July 2018. During this period, the temperature was
between 21.4 ◦C and 38.2 ◦C, whereas the relative humidity was between 47.9% and 73.8%
(Figure 1E). Fertilization was applied weekly with 75 mL of the Long Ashton nutrient
solution [27], modified to supply 10.25 µg of P mL−1 per pot.

2.7. Statistical Treatment of Data

Measured variables in the study were evaluated for normality and homogeneity
using Shapiro–Wilk [28] and Levene’s [29] tests, respectively. When assumptions were not
fulfilled, data were subjected to a log or square root transformation process according to the
case analysis of variance (ANOVA) followed by Tukey’s HSD to test for differences among
treatments at p < 0.05 [30]. When analyzing root colonization data and spore density, the
non-inoculated treatment was excluded. The analyses of variance and mean comparison
tests were conducted using the transformed data, which were back-transformed to present
the original units. All of the data were analyzed using R version 4.0.2 (R Core Team, 2020).

3. Results
3.1. Experiment #1: Impact of AMF Inoculation on Plukenetia volubilis Growth and
Physiological Responses

In general, inoculation with AMF resulted in improved growth and development of
P. volubilis (Table 3, Figures 2 and 3). Plant shoot weight (total fresh and dry biomass) was up
to 1.16 and 1.35 times higher, respectively, for AMF-inoculated plants compared with non-
mycorrhizal plants. At 75 days after inoculation, all mycorrhizal plants were significantly
taller (1.14–1.20 times, F3 = 8.96, p < 0.0001) and had more leaves (1.12–1.16 times, F3 = 10.46,
p < 0.0001) than non-mycorrhizal plants (Figure 2).

Table 3. Impact of AMF inoculation on Plukenetia volubilis growth, colonization, and physiology after
75 days.

Treatment 1 Leaf Area
(cm2)

Chlorophyll
Content (SPAD)

Total Fresh
Biomass

(g)

Shoot Dry
Biomass

(g)

Root
Colonization

(%)

Spore Density
(10 g Soil)

Control 493 ± 11.5 c 35.7 ± 0.48 a 77.9 ± 2.5 b 10.6 ± 0.32 b 0 0
Rv 652 ± 8.3 a 38.5 ± 0.67 a 90.4 ± 2.0 a 14.4 ± 0.24 a 94.4 ± 1.0 a 169 ± 5.2 a
Np 609 ± 8.1 b 36.9 ± 0.94 a 88.7 ± 1.3 a 13.8 ± 0.26 a 73.1 ± 1.3 c 74 ± 6.7 c

Rv + Np 613 ± 5.4 b 37.6 ± 1.03 a 89.5 ± 1.4 a 13.8 ± 0.39 a 90.1 ± 1.1 b 114 ± 6.1 b
p-values p < 0.0001 p = 0.1129 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
F-values F3 = 63.792 F3 = 2.110 F3 = 10.129 F3 = 30.567 F2 = 98.287 F2 = 62.252

1 Rv = Rhizoglomus variabile and Np = Nanoglomus plukenetiae. Means ± standard deviation of 12 replicates.
Treatments with the same letter are not significantly different within a column (p < 0.05).

Single inoculation with R. variabile led to the greatest leaf area (652 cm2), which was
higher than the leaf area for N. plukenetiae and dual-inoculated plants, all of which were
1.32, 1.23, and 1.24 times greater than non-mycorrhizal control plants, respectively. Chloro-
phyll content (SPAD) was not significantly affected by AMF inoculation. All mycorrhizal
treatments demonstrated good AMF colonization of P. volubilis roots. The highest root
colonization (94.4%) and soil spore density (169 per 10 g of soil) were recorded in plants
inoculated with R. variabile only, followed by the dual inoculation and single inoculation
with N. plukenetiae (Table 3).
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Figure 2. Effect of single and dual arbuscular mycorrhizal fungal inoculation on plant height and
leaf number of Plukenetia volubilis at 10-day intervals. Means ± standard deviation of 12 replicates.
Treatments with the same letter are not significantly different (p < 0.05). Control = non-inoculated,
Rv = inoculation with Rhizoglomus variabile, Np = inoculation with Nanoglomus plukenetiae, Rv +
Np = inoculation with R. variabile + N. plukenetiae.

Leaf nutrient contents were increased for P (12.7 mg P kg−1; F3 = 19.20, p < 0.0001)
and K (224.9 mg K kg−1; F3 = 17.05, p < 0.0001) following dual AMF inoculation, which
were 2.5 and 1.5 times higher than non-inoculated plants, respectively. When inoculated
individually, N. plukenetiae significantly improved P leaf content (1.9 times higher than
control plants), but single inoculation treatments did not lead to enhanced K contents, and
no AMF treatment affected N content (Figure 3, F3 = 0.81, p = 0.52).
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mus variabile and Np = Nanoglomus plukenetiae.
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3.2. Experiment #2: Impact of AMF Inoculation on Plant Growth and
Meloidogyne incognita Infection
3.2.1. Plant Growth Parameters

Overall, infection by M. incognita reduced P. volubilis growth and development, which
was effectively compensated when inoculated with AMF (Table 4). This recovery against
M. incognita infection resulted in increased plant growth in mycorrhizal treatments when
compared to control plants. Plants generally showed higher growth in treatments infected
45 days after AMF inoculation than those infected on the day of AMF inoculation (day 0).
The leaf area, total fresh biomass, and shoot dry biomass were significantly affected by
M. incognita infection and by inoculation with AMF, while the interaction of both factors
was non-significant (Table 4). Leaf area was significantly increased by AMF inoculation
regardless of infestation timing with M. incognita (up to 1.29 times higher than the control),
except for the N. plukenetiae and R. variabile + N. plukenetiae treatments infested with the
nematodes at day 0. Dual AMF inoculation induced the highest leaf area when plants were
infected with M. incognita after 45 days, whereas through single inoculation with R. variabile
the leaf area was increased and also when AMF and nematodes were co-inoculated (0 days).
Plants inoculated simultaneously (0 days) with AMF and M. incognita had similar weights
as the non-mycorrhizal control; meanwhile, plants infected with nematodes 45 days after
AMF inoculation increased their weights compared to simultaneous inoculation (0 days)
and the non-inoculated control (Table 4).

Table 4. Impact of AMF single and dual inoculation and nematode infestation on Plukenetia volubilis
growth and physiology after 75 days.

Treatment 1 Leaf Area
(cm2)

Chlorophyll
Content (SPAD)

Total Fresh
Biomass

(g)

Shoot Dry
Biomass (g)

Root
Colonization (%)

Spore Density
(10 g Soil)

Control 493 ± 12 de 35. 7 ± 0.5 a 77.9 ± 2.5 b 10.6 ± 0.32 b 0 0
Co-inoculation of AMF and M. incognita at 0 days

Rv/Mi 0 563 ± 9 bc 38.3 ± 0.6 a 79.9 ± 0.8 b 10.5 ± 0.31 b 93.2 ± 0.6 a 101 ± 12.6 ab
Np/Mi 0 522 ± 7 cd 36.3 ± 0.6 a 81.2 ± 1.6 b 9.5 ± 0.39 b 71.1 ± 0.9 c 41 ± 4.0 c

Rv + Np/Mi 0 539 ± 11 cd 36.6 ± 0.8 a 80.9 ± 1.3 b 9.4 ± 0.24 b 88.5 ± 1.3 b 65 ± 5.9 bc
Mi 0 423 ± 16 f 28.3 ± 1.1 c 57.1 ± 3.6 c 5.6 ± 0.29 c 0 0

Inoculation of M. incognita after 45 days
Rv/Mi 45 630 ± 9 a 36.8 ± 0.6 a 90.9 ± 1.3 a 14.3 ± 0.27 a 93.0 ± 0.7 a 89 ± 2.0 ab
Np/Mi 45 611 ± 10 ab 36.8 ± 0.7 a 89.9 ± 1.8 a 13.4 ± 0.33 a 72.7 ± 0.8 c 46 ± 2.0 c

Rv + Np/Mi 45 637 ± 18 a 36.0 ± 0.6 a 93.6 ± 1.1 a 13.7 ± 0.35 a 91.8 ± 0.5 ab 113 ± 20 a
Mi 45 461 ± 12 ef 32.4 ± 0.8 b 75.4 ± 2.4 b 10.3 ± 0.44 b 0 0

p and F-value

AMF p < 0.0001
F3 = 70.809

p < 0.0001
F3 = 27.713

p < 0.0001
F3 = 40.662

p < 0.0001
F3 = 52.178

p < 0.0001
F2 = 286.970

p < 0.0001
F2 = 26.84

Nematodes p < 0.0001
F1 = 43.742

p < 0.0001
F1 = 18.755

p = <0.0001
F1 = 49.466

p < 0.0001
F1 = 177.729

p = 0.034
F1 = 4.726

p = 0.047
F1 = 4.890

AMF ×
Nematodes

p = 0.070
F3 = 2.435

p = 0.001
F3 = 5.838

p = 0.116
F3 = 2.021

p = 0.288
F3 = 1.2741

p = 0.161
F2 = 1.883

p = 0.005
F2 = 8.188

1 Rv = Rhizoglomus variabile and Np = Nanoglomus plukenetiae. Treatments with the same letter in the column are
not significantly different (p < 0.05). N = 12 replicate pots.

Chlorophyll content was significantly affected by M. incognita infection (0 and 45 days)
in the absence of AMF (Table 4; Figure 4) and by the interaction of both factors. Addition-
ally, AMF inoculation and its interaction with M. incognita significantly influenced spore
density; thus, the highest spore density was generated following dual AMF inoculation
in plants infected with M. incognita infection at 45 days, but when AMF and nematodes
were co-inoculated, R. variabile produced the largest number of spores (Table 4), and with-
out significant differences to R. variabile inoculated at day 0 together with the nematode
infestation. Finally, AMF inoculation significantly influenced mycorrhizal colonization,
while M. incognita and the interaction of both factors were non-significant (Table 4). Plants
inoculated with R. variabile presented the highest level of colonization, followed by dual in-
oculation and single inoculation with N. plukenetiae, regardless of the timing of M. incognita
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inoculation but with relatively similar colonization levels, as observed in Experiment #1 for
plants without nematode infection.
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mus variabile and Nanoglomus plukenetiae at planting; (B) after infection with M. incognita at planting.
This figure illustrates chlorophyll content and possibly leaf size.

Plant height and number of leaves followed a similar trend, i.e., growth was improved
when plants were infected by nematodes at 45 days after AMF inoculation (up to 1.17 times
more than the control, respectively), whereas when co-inoculated at day 0, growth parame-
ters were more similar to the non-mycorrhizal control but still significantly increased when
compared to plants infected with M. incognita without AMF inoculation (Figure 5).
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Figure 5. Effects of single and dual inoculation of the arbuscular mycorrhizal fungi Rhizoglomus vari-
abile (Rv) and Nanoglomus plukenetiae (Np) and infection with Meloidogyne incognita. (A,C): plant
height and leaf number of Plukenetia volubilis measured at 10-day intervals and (B,D) at 75 days after
mycorrhizal inoculation. Error bars indicate standard deviation (± S.D.). Treatments sharing the
same letter are not significantly different (p < 0.05). Control = non-inoculated, Mi = infestation with
M. incognita at 0 and 45 days, Rv + (Mi0 or Mi45) = inoculation with R. variabile and infestation with
M. inocognita at 0 or 45 days, Np + (Mi0 or Mi45) = inoculation with N. plukenetiae and infestation
with M. incognita at 0 or 45 days, Rv + Np (Mi0 or Mi45) = inoculation with R. variabile + N. plukenetiae
and infestation with M. inocognita at 0 or 45 days.

3.2.2. Effects of AMF Inoculation on Meloidogyne incognita

Although nematode population densities increased in all treatments, the density of
nematodes in roots and soil was significantly influenced by AMF inoculation, M. incognita
infestation, and the interaction of both factors. The single inoculation with R. variabile reduced
nematode multiplication the most, with population densities up to 9.8 and 2.3 times lower in
roots and soil, respectively, compared with non-mycorrhizal control plants (Table 5). The repro-
ductive factor of M. incognita was also significantly affected by AMF inoculation, M. incognita
infestation, and the interaction of both factors. Inoculation with R. variabile, both alone and
in combination with N. plukenetiae, proved to be more effective in significantly reducing the
reproductive factor of M. incognita, both at 0 and 45 days of infestation (Rv = −51.87%, Rv
+ Np = −44.23%, 0 days; Rv = −47.92%, Rv + Np= −43.61%, 45 days). Infestation with
M. incognita at 45 days resulted in lower reproductive factors in all treatments compared to
infestation at 0 days, once again highlighting the effectiveness of the R. variabile (Figure 6).
The level of nematode infection in roots was lower in plants inoculated with AMF, especially
when nematodes were inoculated at 45 days.
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Table 5. Impact of single and dual inoculation of Rhizoglomus variabile and Nanoglomus plukenetiae
AMF on population density of Meloidogyne incognita (J2) after 75 days. Rv = Rhizoglomus variabile and
Np = Nanoglomus plukenetiae. Treatments with the same letter are not significantly different within a
column (p < 0.05). N = 12 replicated pots.

Nematode Density
Per Plant Per 100 g of Soil

Control 0 0
Co-inoculation of AMF and M. incognita at 0 days

Rv/Mi 0 15319 ± 563.9 c 1244 ± 72.9 c
Np/Mi 0 17860 ± 121.0 b 2200 ± 88.2 b

Rv + Np/Mi 0 16972 ± 279.0 bc 1467 ± 19.3 c
Mi 0 23403 ± 1111.3 a 2867 ± 19.3 a

Inoculation of M. incognita after 45 days
Rv/Mi 45 448 ± 79.0 f 556 ± 22.2 e
Np/Mi 45 1443.8 ± 279.0 e 678 ± 19.3 e

Rv + Np/Mi 45 1194 ± 77.4 e 578 ± 22.2 e
Mi 45 4194 ± 108.5 d 956 ± 40.1 d

p- and F-values
AMF p < 0.0001 p < 0.0001

F3 = 119.7 F3 = 202.65
Nematodes p < 0.0001 p < 0.0001

F1 = 4602 F1 = 1517.92
AMF × Nematodes p = 0.018 p < 0.0001
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Figure 6. Reproductive factor of Meloidogyne incognita assessed in Plukenetia volubilis plants inoculated
with single and dual inoculation of Rhizoglomus variabile (Rv) and Nanoglomus plukenetiae (Np).
Treatments sharing the same letter are not significantly different (p < 0.05). Mi = infestation with
M. incognita at 0 and 45 days, Rv + (Mi0 or Mi45) = inoculation with R. variabile and infestation with
M. incognita at 0 or 45 days, Np + (Mi0 or Mi45) = inoculation with N. plukenetiae and infestation with
M. incognita at 0 or 45 days, Rv + Np (Mi0 or Mi45) = inoculation with R. variabile + N. plukenetiae and
infestation with M. incognita at 0 or 45 days.

3.2.3. Leaf Nutrient Levels

The phosphorus contents in the leaves were influenced by M. incognita infection
(0 and 45 days). No effects on N contents were revealed when compared to the non-
mycorrhizal controls. AMF inoculation had no significant effect on this variable, either
alone or in interaction with nematode infestation. Phosphorus significantly increased in
plants inoculated with AMF and infested with M. incognita at 45 days compared to plants
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co-inoculated with AMF and M. incognita at 0 days (up to 1.5 and 1.3 times, respectively)
and the non-mycorrhizal control (up to 3.9 and 1.2 times, respectively). Similarly, potassium
content was significantly influenced by the time of M. incognita infection (0 or 45 days)
and its interaction with AMF (nematodes: F1 = 37.84, p < 0.0001; AMF × nematodes:
F3 = 3.60, p = 0.03). In this tendency (and up to 1.40 times), potassium contents increased in
plants inoculated with AMF and infested with M. incognita at 45 days compared to plants
co-inoculated with AMF and M. incognita at 0 days and the non-mycorrhizal control (up to
1.24 times) (Figure 7).
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Figure 7. Effect of single and dual inoculation of the arbuscular mycorrhizal fungi Rhizoglomus variabile
(Rv) and Nanoglomus plukenetiae (Np) and the pathogenic nematode Meloidogyne incognita on nitrogen,
phosphorus, and potassium contents (mg kg-1) of Plukenetia volubilis leaves after 75 days. Error bars
indicate standard deviation (± S.D.). Columns with the same letter are not significantly different (p < 0.05).

4. Discussion

The potential for exploiting AMF as a bio-input to improve nutrient use efficiency and,
consequently, crop yields has been a long-standing source of attention [31]. Commercially
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marketed products are now available internationally, which tend to rely on a small number
of species/isolates that have proved easier to bulk [32] but may not necessarily be better
adapted to the prevailing conditions of the user. In Amazonia, the use of AMF is similarly
attracting increasing interest for its use in various economically important crops [33–35]. How-
ever, despite a small number of studies to assess the impact of AMF with P. volubilis [14,15],
our study appears to be the first to evaluate the use of native AMF. We assessed the two
species R. variabile and N. plukenetiae, which were originally described from the rhizosphere of
P. volubilis in western Amazonia [16,17]. The importance of using native species, which are
physiologically and genetically adapted locally, has previously been highlighted, as they can
promote greater benefits compared to commercially produced fungi derived from different
environmental conditions [36,37]. In our study, compelling benefits from using R. variabile
were evident. Improved fitness of plants inoculated with AMF was clearly observed, which
was further pronounced in the presence of root knot nematodes. Indeed, inoculation of
P. volubilis seedlings prior to exposure to M. incognita provided high levels of protection.
Although this did not provide total protection, with M. incognita still able to multiply, in-
oculation of P. volubilis led to much-reduced nematode infection of roots, up to ~10-fold,
even. This translates into a highly recommendable practice for improving P. volubilis pro-
duction. The current study was conducted under controlled conditions in pots, and for a
more practical understanding of how this would protect and impact crop production for
farmers, field studies would be necessary. Inoculation of seedlings in the nursery prior to
transplanting would lead to improved production due to more efficient nutrient acquisition,
including through better-protected and thus healthier, more efficient root systems. As root
knot nematodes are intractable, difficult-to-control pests and a serious threat to P. volubilis [13],
the use of native AMF, especially R. variabile, provides a tangible alternative management
option. However, it remains important to consider the activity of native AMF in the context of
varying conditions and soil or agricultural practices [38,39]. Consequently, further assessment
is necessary to ensure compatibility of the selected AMF across a range of conditions and,
indeed, in combination with other AMF species.

In the combined application, our study echoed results from other studies, which
demonstrated a general lack of synergism between AMF strains [18,40], although with some
additional benefits experienced from the dual inoculation, as also observed elsewhere [15].
In general, the total number of associated AMF species may not necessarily be a good
predictor of overall benefits provided by AMF, and other aspects, such as the phylogenetic
relatedness between species, should also be considered [41]. For example, the three globally
most prevalent and commercially used AMF species (Rhizoglomus intraradices, Funneliformis
mosseae, and R. irregulare) all belong to the Glomeraceae family [42] and should probably
not be combined but instead complemented with species from other AMF families. AMF
families have complementary functional capacities in favor of the plant hosts and, as
such, AMF species combinations should ideally be comprised of species from different
families [43,44]. Combining species with mutually beneficial properties is currently viewed
as a step towards developing the so-called “next generation” of inoculant biostimulant
products [45] and towards delivering products with multiple benefits in a complementary
and synergistic manner.

In our assays, AMF-treated plants were taller and had a greater leaf area compared
to non-inoculated controls. Our results are consistent with growth benefits observed in
other species from the Euphorbiaceae family, such as Mallotus paniculatus using Gigaspora
decipiens [46] and Euphorbia pulcherrima employing a mixture inoculum of Claroideoglomus
claroideum (currently Entrophospora claroidea according to Błaszkowskia et al. [47]), Rhizoglo-
mus intraradices, Funnelifomis mosseae, and F. geosporus [48]. The plant leaf nutrient contents
are also a strong indicator of plant nutrition and health status [49], and our results revealed
significantly higher leaf P contents in AMF-treated P. volubilis, especially by N. plukene-
tiae, and P and K contents in the dual inoculated plants. Enhanced nutrient uptake by
AMF-colonized plants occurs due to an extended root surface area through the hyphal
network [50]. In the case of P, however, improved absorption is also achieved through
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mineralization of organic P by way of hyphal phosphatase exudate and solubilization of
inorganic P via organic acid production and pH modification of the rhizosphere [51], as well
as the induction of the host phosphate transporter gene expressed on the peri-arbuscular
membrane [52]. Various studies have consistently demonstrated the improvements in P
acquisition by using AMF inoculation in various Euphorbiaceae species [53] and other
botanical families [54]. An increase of up to 2.5-fold in P content was recorded in our study,
which is high compared with other studies, such as 1.5-fold in Manihot esculenta following
inoculation with Acaulospora colombiana and Ambispora appendicula [55]. The difference in
leaf P content of AMF-inoculated plants was further increased, however, when challenged
with M. incognita, with up to 3.9-fold higher P content than non-AMF plants compared with
other studies, such as in Carica papaya with R. irregulare [56] and in Solanum lycopersicum
with F. mosseae [57], which showed 1.3 times higher P contents. The raised K leaf content
in the dual AMF inoculation treatment only may be the result of enhanced P uptake, as
a strong association between K and P during AMF symbiosis has been described [58,59].
Despite our expectations, however, no increase in N content was recorded following AMF
inoculation. This reflects the results of Reynolds et al. (2005), which established that mycor-
rhizal symbiosis could have a neutral or negative effect on host N intake. This situation
may be explained by the “trade balance model” [60], which suggests that the increase in N
uptake will only occur if the plant is restricted by P and hence will benefit from providing
carbon (C) to the roots and associated mycorrhizal fungi.

With respect to the protective effect of AMF against biotic stress factors [7], there are
numerous accounts of AMF enhancing resistance against plant pathogens by competing for
colonization sites and improving plant defense systems [61]. For plant parasitic nematodes,
most attention has generally tended to focus on protection against root knot nematodes
(Meloidogyne spp.), with repeated demonstrations of AMF application suppressing nema-
tode reproduction and root galling damage [62]. However, this interaction also appears
complex and can be dependent on various factors, such as AMF, plant, or nematode species,
as well as environmental conditions [63]. In our study, AMF provided substantial protec-
tion against M. incognita. Application of AMF, therefore, would undoubtedly be beneficial
in the management of the soil-borne complex (M. incognita and Fusarium spp.) that can be
devastating to P. volubilis [13] and should be further assessed. The application of AMF in
the nursery prior to transplanting led to higher levels of protection, especially by R. variabile.
It is likely that early root colonization affords AMF the opportunity to compete for space
against nematodes, which promotes structural and morphological alterations in the root
system to counterbalance infection, in addition to providing an enhanced nutritional host
plant state [62,64] and activating plant defense priming [65].

For an AMF species or isolate that demonstrates benefits and advantages for their
hosts to be successfully developed into a product, the isolate must also possess additional
qualities or traits, such as durability, high multiplication factor, colonization, etc. [66–68].
Species of Rhizoglomus are characterized by their ability to produce abundant spores [69],
while their beneficial influence on plant growth has been demonstrated on various hosts,
such as Phoenix dactylifera [70], Abelmoschus esculentus [71], and Robinia pseudoacacia [72].
The genus Rhizoglomus, along with Nanoglomus, belong to the Glomeraceae family, which
are broadly known for their early colonization, high rates of growth, and short generation
times [66]. In our study, R. variabile exhibited optimal values of spore density and root
colonization and suppressed M. incognita reproduction, particularly in plants inoculated
with M. incognita after 45 days of inoculation with AMF.

5. Conclusions

This study demonstrates the biofertilizer and bioprotective impact of two species
of AMF native to Amazonia on the indigenous crop P. volubilis. Both R. variabile and
N. plukenetiae improved early growth and development of P. volubilis and, importantly,
provided a high level of protection against the root knot nematode, M. incognita. However,
better results in plant fitness occurred when the plant was inoculated with R. variabile.



J. Fungi 2024, 10, 451 16 of 19

These findings are a first step towards advocating for the use of AMF as a mechanism for
improving the sustainable production of this crop.
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