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A B S T R A C T

Due to an increasing demand for food and pressures on our ecosystem, mechanisation and automation in agri-
culture has been proposed as one of the main solutions to the problems associated with overpopulation given
today’s life standards. To encourage the use of new technologies and bridge the gap between plant and computer
science, here we validate an open-source pipeline capable of predicting real time in situ fruit characteristics,
specifically in this case for apples. Using Agroscope’s phenotyping tool (ASPEN), we achieve an average precision
at intercept over union of 50 % of 0.75 when using YOLOv8 - m as the object detection algorithm, and with
thanks to the use of multiple sensors, we find an average diameter error of 4.4 mm in the task of apple size
determination. Our research demonstrates that although the pipeline tends to underestimate the actual fruit size,
size estimation cannot only be used to determine the size of apples per scan, but also to track temporal apple size
distribution in 4 different varieties. This research supports ASPEN in potentially replacing traditional field
measurements, also suggesting that other traits could also be digitally measured for standard orchard pheno-
typing, either for scientific or agricultural output goals. Finally, we make publicly available a new dataset of
more than 600 images (Agroscope_apple dataset) and a pre-trained model based on YOLOv8 and specifically
trained for the in-situ apple detection task. By doing so, we hope to increase the accessibility and use of new
technologies in the field of agriculture.

Introduction

Due to an ageing and growing population [1] in conjunction with the
current anthropogenically induced climate crisis [2], our food system is
challenged to meet future demand while reducing pressure on our
ecosystems (e.g. [3]). These challenges have produced a recent surge in
more efficient methods, and in particular for those based on remote
sensing technologies and automation. Although the long-term effects of
these will only be known in the future [4], some technologies already
show positive effects in agriculture. For example, the selection of plant
genotypes based on trait descriptions, phenotyping, and specific con-
ditions that highlight plant traits, especially under stress, are one of the
most important procedures used in agricultural research today [5].
While phenotyping is not a new technique, is still a labour-intensive task
[5].

For the adequate selection of apple varieties in agricultural contexts,
one of the most consumed fruits (i.e. [6]), a considerable amount of time
is required in phenotyping due to its perennial cycle and its height,
making it a difficult manual task. Considering the basic subtask of fruit

counting, several authors proposed the use of images. Image analysis for
fruit detection was initially explored using several approaches: shape
based as demonstrated by Whittaker et al. [7] using Hough trans-
formation algorithms [8], colour segmentation techniques as Bulanon
and Kataoka [9] demonstrate with its limitations: e.g. green apples are
significantly harder to identify compared with red apples (e.g. [10]), or
texture based detection techniques, as leaves, fruits, and branches pre-
sent different textures or combinations of these different techniques (e.g.
[11]). Independently, these techniques have demonstrated limitations,
especially in full tree images, as fruits are relatively small objects and all
of the methods include highly manually fine-tuned parameters.

Since the introduction of algorithms-based on neural networks (NN),
not only the robustness and generalization of the object detection task
has increased, but there has also been a reduction in processing time. Liu
et al. [12] demonstrates that when using a fully convolutional neural
network (FCN) they could detect, localize, and track either apples or
oranges along multiple images. A remarkable case is the usage of
region-based convolutional neural networks (R-CNN), as many have
demonstrated apple detection with high precision when using variations
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of R-CNN. Gené-Mola et al., [13] demonstrates that when using Mask
R-CNN in tilled apples orchard images, they could reach an average
precision rate at interception over union 0.5 (AP@0.5) of 0.859 in a 288
images dataset. Moreover, when using full tree images, Häni et al. [14]
reach an AP@0.5 of 0.775 and 0.763 when using either faster R-CNN or
Mask R-CNN respectively, where in both cases, smaller objects of less
than 32 pixels (px) were harder to detect with an AP of 0.296 in images
of a resolution of 1290× 720 px. Despite higher accuracy and robustness
than previous methods before NN, none of the algorithms have the ca-
pacity to work in real time, or in other words, to process more than 30
images per second when working with RGB images bigger than a reso-
lution of 400 × 400 px. With the introduction of the YOLO algorithm
[15], exhibiting a simpler architecture than previous NN, near real time
results were reported for first time in the object detection task in an
ordinary desktop computer equipped with a graphical processing unit
(GPU). Continuous improvements in this family of algorithms (i.e. [16]
and [17]), allowed us to reach real time object detection with similar
precision to that of R-CNN, allowing many researchers to develop var-
iations of these algorithms tailored to different crops i.e. apples [18],
banana [19], cherry [20], tomatoes [21], lemons [22], or mango [23]
among others. In 2020, Kuznetsova et al., demonstrated that when using
the algorithm YOLOv3 they reach a detection rate in apple images of
0.908 with a precision of 0.922 and an average speed of 19 ms (circa 52
frames per second, FPS) per image when using images of resolution 416
× 416 px.

Later in 2021, the same research group also demonstrated that when
using YOLOv5 trained in the same dataset, they could reach a higher
recall of 0.978 [24]. Yan et al., [18] shows that using either YOLOv5s or
a modified version specifically optimized for a apple detection task, their
AP was 0.817 and 0.867 respectively, where their specific network was
slightly slower than compared with YOLOv5s (76 vs 66 FPS). To trans-
late these results to the field in real time and in a reproducible way,
several challenges need to be addressed, for example: working with
higher amounts of data (e.g. [25]), optimization of the increasing
computation power [26], and standardizing benchmark datasets are
crucial for reliable comparisons and advances in the field. Many of the
previously mentioned examples use either close-up images or private
images datasets, this makes it harder to compare these results even
though apple datasets for object detection are available (e.g. [14,27,
28]).

To translate 2D object detections to in situ yield estimation, 3D
localization must demonstrate better results than 2D detections (i.e. [12,
13] and [29]) as it allows us to filter for the background and remove
false negatives. To achieve 3D detections, multiple pipelines are avail-
able, each with its unique trade-offs. Here we highlight two specific
cases: 1) motion-enabled 2D object detection and 3D sensors object
detection. Motion-enabled 2D object detection allows for 3D estimations
using information from 2D frames. Roy et al., [30] shows that thanks to a
semi-supervised colour-based algorithm together with camera motion to
merge the multiple views (homography), it was possible to count the
number of apples and estimate the fruit yield with an overall accuracy of
0.91 to 0.94 precision rate across their different datasets. Similarly, Häni
et al., [31] highlights that using a combination of semi supervised
methods plus NN based methods for fruit detection (2D) and camera
motion, they could reach yield accuracies in the range of 0.956 to 0.978,
depending on the dataset. In a similar setup and results, using structure
from motion (sfm) from both sides of a row of apple trees, Gené-Mola
et al., [13] processed 11 trees with 582 images in a total of 345 min.
Although a 2D analysis was carried out for localizing apples, 3D infor-
mation was mainly used for filtering false negatives, and this improved
the quality of the detections.

Regarding 3D sensors, frequently light detection and ranging
(LiDAR) technology has been successfully used for yield estimation.
While this technology has been already utilized for many years, espe-
cially in mining and forestry, its use in agriculture only has increased in
the last couple of years mainly due to a reduction in the price of

equipment [32]. For instance, using the different reflectance properties
of fruits, an equivalent method to colour filtering in 2D, Gené-Mola
et al., [33] identified up to 0.824 fraction of apples with a 0.104 false
detection rate of apples present in LiDAR 3D based dataset with an
average time of 9.6 s per tree when using their DBSCAN based algorithm
in the LiDAR data. In a posteri work, they reach a higher identification
rate of 0.87 when using LiDAR in combination with applications of force
airflow [29]. Is important to consider that in both cases a mobile
terrestrial laser scanner (MTLS) was used together with a real-time ki-
nematics global navigation system (RTK-GNSS) in a post processing step.
Comparable to the case of RGB images, although there are datasets
available that could be used for apple detection in 3D point clouds using
supervised learning (i.e. [34]) these have been rarely used mainly due to
today’s neural networks for 3D detection are currently in an emerging
stage (e.g. [35]), have lower detection rates possibly due to lacks in
training data, higher computational requirements than 2D methods, are
highly dependent on data which can vary in quality from sensor to
sensor. In addition to the variation due to the used scanning method-
ology [36] and the required usage of pre-defined point cloud size, which
forces the point cloud to be subdivided and may introduce errors and
slower processing times [37].

While previous studies reach high accuracies when using either 2D or
3D data, the reliance on a single sensor could lead to failures in the
pipeline, e.g. if no overlap exists between two consecutive images, or if
there is a lack of features due to illumination issues as an example, or the
nature of a non-structured environment which may motion estimation
between frames or scans impossible to convert. As an alternative, the
fusion of multiple sensors has been proposed, where the usage of LiDAR
in fusion with RGB cameras during yield estimation has been already
successfully demonstrated in post processing (i.e. [38,39]) or recently in
real time using simultaneous localization and mapping algorithms
(SLAM, e.g. [40]). Once this bottleneck problem has been solved in terms
of working in real time for object detection and 3D reconstruction, the
phenotyping capabilities of such a pipeline need to be evaluated. In the
present study we aim to present for first time in the apple crop, a pipeline
that can run real time in situ phenotyping, specifically to measure apple
size along the growing period. For this task, we use the Agroscope
phenotyping tool (ASPEN). Unlike our previous introductory work to the
tool [40] we highlight the outputs as a function of time. To increase
reproductively of our results, we make publicly available all outputs of
this research, including a new dataset labelled for apple detection
(Agroscope_apple dataset) and a pre-trained model for object detection.

Materials and methods

For a real time in situ characterization of an apple orchard, an ASPEN
unit was used. For a detailed description of ASPEN, the reader is referred
to the online project’s repository1 and to our previous publication [40].
In brief, ASPEN is a 3D reconstruction tool engineered for agricultural
scenarios and even more, it is specifically designed to be compatible
with other tools used in the field of agricultural research (i.e. multi-
spectral cameras), which rely on an embedded platform based in Jetson
Xavier NX, using ROS in Ubuntu 18.04 LTS environment and robotic
operating system (ROS, melodic) and multiple sensors, including a
LiDAR sensor (Mid70, Livox), a RGBD camera (D415 Realsense, Intel)
and an inertial measurement unit (IMU; BMI088, Bosh). These sensors
are then used for the 3D reconstruction of the scanned environment
using a SLAM algorithm and fruit localization, tracking, and charac-
terization. In contrast to our previous work, FAST-LIVO [41] was
selected as a SLAM algorithm as it was more robust than the previously
used SLAM (R3Live; [42]) under a less structured environment than in
our preceding research (data non shown). For the purposes of this
publication, we here highlight the details of the ASPEN pipeline when

1 www.github.com/camilochiang/ASPEN
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using ASPEN in apple orchards, with special emphasis in object detec-
tion and object characterization.

Object detection and characterization

To train an object detection algorithm in situ orchard apple detection
the publicly available dataset Minneapple was used [14] together with
our own dataset (Agroscope_apple). The Minneapple dataset consists of

Fig. 1. Comparison of the Minapple dataset (A, C and E) against the newest and Agroscope_apple dataset (B, D and F). A and B (shown by the object distribution
along the differently normalized frames; C and D) the difference in size of the multiple annotations along the image frames (normalized), and E and F, a random
selection of images from each dataset to show the used criteria for annotation regarding either the Minapple dataset or the Agroscope_apple dataset respectively,
where each red square correspond to an apple instance.

C. Chiang et al.
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1000 high-resolution images of full trees in orchards with more than 41,
000 instances annotated for instance segmentation, which was trans-
formed for the object detection task using a python script. Agro-
scope_apple is a new dataset of 623 images of apples trees with more
than 55,000 annotations that were captured at the research site of
Agroscope (Conthey, Switzerland) in previous years. All new images
correspond to full tree images with at least one tree in each image with
different degrees of illumination. The images were captured 2–3 m from
the tree row, where each image contains one tree in the image center
and multiple trees at either side or in the background. Trees were
selected with the aim of increasing image variety, therefore apples from
different sizes and colours are present in the dataset. More details are
present in Fig. 1. The images were captured using a Samsung sm-a510F
cell phone at two different resolutions: 2448 × 3264 px and 3096 ×

4128 px. In contrast to the Minneapple dataset, we chose to annotate all
apples present in any one picture. This new dataset was carefully an-
notated using Office PowerPoint (Microsoft® 2016) where a rectangular
form was added for each instance. A posteriori, the coordinates of each
instance were extracted using a python script into text files with the
YOLO format annotation.

As the main goal of ASPEN is to work in real time in an embedded
environment (i.e. Jetson Xavier NX) without the requirement of high
volumes of data transference to other computers, YOLOv8 was selected
for object detection, due its high inference speed and detection rate.
YOLOv8 is a family of object detection architectures and models pre-
trained in the COCO dataset capable of running in real time, i.e.
capable of processing more than 30 frames per second (FPS) at a reso-
lution of 1280 × 1280 px [17]. As YOLOv8 contains several models of
different complexities, all of these were trained in our dataset at two
different resolutions (512 and 1024 px), with the aim of selecting the
more efficient model and optimize the available computer resources. We
trained all models using 300 epochs with a batch size of 5 images, using
transfer learning from a pre-trained model based in the COCO dataset.
The main difference between the different models (n, s, m, l and x) is the
amount of feature extraction modules and convolution kernel position
within the networks [17]. This creates a series of models with different
complexities ranging from 8 to 268 giga float point operations per sec-
onds (GFLOPs). Furthermore, to fully evaluate the effect of the addition
of our new dataset, the model that performed better was also trained
using only the Minneapple adapted dataset. The main components of the
YOLOv8 are its backbone network, neck network and detect network.
The backbone convolutional network takes care of aggregating detailed
images and form features, meanwhile the neck network mainly gener-
ates feature pyramid networks (FPN) which are transmitted to the detect
network. The detect network is then used in the application of anchor
boxes and its associated probabilities, which given the right conditions
the user sees as a “detection box”. For a detailed description of the
network, the reader is referred to Terven and Cordova-Esparza [43] for a
review of the algorithm.

To determine the size of the detected objects, these are first detected
in a central portion of an image of resolution 1040 × 1040 px from the
available RGBD frame with resolution 1720 × 1080 px. This is done to
optimize the speed of the object detection algorithm and maximize
image resolution, avoiding to resizing the full image frame. After each
apple detection, these are tracked along the image frames using an ob-
ject tracking algorithm (MOT): SORT [44]. Once a tracked instance
passes a region of interest (ROI), which was determined by the closest
point of the camera frame to the vegetation and the direction of the
movement allowing for the longest possible tracking period, the real size
of the instance is measured using the available closest in time depth
frame from the RGBD sensor in a parallel process. For this, the boundary
box of each detected object is used to crop the RGBD frame and calculate
fruits diameters. The selection of the MOT algorithm and region of in-
terest (ROI) size were selected base in previous experiments [40].

Data collection for 3D reconstruction and apple size determination

Four consecutive lines of four different apple varieties planted in
2008 with a density of 1923 trees per ha (4 m x 1.3 m) comprising
different colorimetrics (Braeburn, Diwa, Golden and Fuji) were scanned
with ASPEN in an orchard located at the research site of Agroscope,
Conthey (Switzerland). Each line containing at least 8 trees of the same
variety. From each variety, 3 trees were selected per row, and the
diameter of 5 apples per tree was measured along the growing season
weekly. To evaluate the capacity of ASPEN, these trees were scanned
three times within a period of five weeks during July - September 2022,
where the fruits not only change in size, but also in colour along the
season. Following the recommendations of several studies, the orchard
was scanned at approximately solar noon to maximize the quality of the
RGB channels, and to avoid the negative influence of shadows in the
different measurements (i.e. [45]). The rows were scanned on both sides
by walking parallel to them at an approximate speed of 4 km h− 1. Special
care was taken to visualize the complete tree in each image frame,
keeping an approximate distance of at least 2.5 m from the trees and in
an angle of 45◦ with respect to the tree line what allows bigger depth in
the RGB frame and LiDAR sensor what facilitate the convergence of the
SLAM algorithm and a longer tracking period of each fruit (see section
above).

Data analysis

To analyse and replicate our results in different platforms, multiple
consecutive robot operating system (ROS) bag files of 1 min were
recorded during each measuring date using ASPEN. Due to the lack of a
3D segmentation algorithm capable of segmenting each individual tree
within the full point cloud (beyond the scope of this paper), these files
where then reviewed for time extraction of the approximate boundary
limits between trees in a desktop computer (Lenovo ThinkPad P15, Intel
core i9, GPU NVIDIA Quadro RTX 5000 Max-Q, 16VGb). Thanks to the
timing and localization of the detections, and the manually boundary
determinate, it was then possible to determinate distribution of apple
diameter measurements per tree.

Manual apple diameters time series were filtered out to account for
out layers: e.g. apples that reduced in size with time. Once outliers were
detected, the following measurements were then also removed from the
time series. Time series were complemented using a linear model with a
quadratic equation fitted using normalized data with respect to the first
diameter measurement of all complete time series per variety (data non
shown).

To compare the results between manual and digitally measured di-
ameters distributions, a two-sample Kolmogorov-Smirnov test was per-
formed within date and variety. Due to the significantly different
number of samples, the digitally measured diameters were subsampled
using a random sampler. This was only accepted after confirming no
statistical difference between the sub sample population and the original
population with the same previously mentioned test. To account for
potential variability due to random sampling, the analysis was repeated
100 times to obtain a more robust estimate of statistical significance. P
values where then corrected using Bonferroni correction for significance
(P value < 0.05/100). Finally, to measure the average error of the
ASPEN, a linear correlation was fitted between the average values
measured digitally and manually.

All post statistical analysis were done using python 3.8 [46] and the
package statsmodels (version 0.13.5, [47]).

Results

The addition of our 623 new images to the Minneapple dataset
resulted in a total of 1623 images, an increase of 62 % over the original
dataset for in situ apple object detection. The addition of 55,921 new
instances more than doubles the previous number of instances. The

C. Chiang et al.
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distribution of the annotations from the Minneapple dataset, and the
added images is present in Fig. 1A and B. In our case smaller annotations
were used mainly due significantly bigger tress which increased the
distance between the camera and the tree (Fig. 1C and D). A randomly
selected image from each dataset can be seen in Fig. 1E and F, aiming to
highlight the differences between datasets: Minneapple dataset does not
consider fruits in the floor, meanwhile Agroscope_apple have every
instance annotated. Similarly, deeper shadow levels are appreciated in F
than compared with E, where we aimed to increase the diversity of the
dataset.

When using YOLOv8 as an object detector within the merged dataset,
there was a significant effect of the image resolutions (p < 0.05) used in
the mean average precision at interception over unit of 0.5 (mAP@0.5).
The complexity and size of the model plays an important role only at
resolution 512 px (Fig. 2A). When considering the mmodel at resolution
1024px a mAP@0.5–0.95, which is calculated at multiple interception
over unions from 0.5 to 0.95 in steps of 0.05, a value of 0.37 was ob-
tained, and as demonstrated by Fig. 2B the bigger effect of the increase
of resolution was an augment in the recall, indicating a reduction in the
total number of false negatives. However, the addition of our new
dataset has a negative effect when compared with only training
YOLOv8-m in the Minneapple dataset reducing mAP@0.5 from 0.9 to
0.825 and mAP@0.5–0.95 from 0.4 to 0.37 in the trained data (Data not
shown).

The average size manually measured along the growing season per
variety can be observed in Fig. 3. Although differences were detected
along the varieties, similar dynamics are observed where these were
better described by a linear model with a quadratic function (R2= 0.92).
On average, Fuji produce bigger apples meanwhile Diwa is the variety
with the smallest apples at the end of the season, with an average dif-
ference of up to 9.9 mm between varieties.

When observing the apples size distribution for the 3 specific dates
when the orchard was also digitally scanned (Fig. 4), it is possible to
observe the apple size population dynamics shifting to bigger diameters
with time, independent of the used methodology. When comparing the
population distributions using the Kolmogorov-Smirnov test (Table 1),
only in the latest date it was not possible to reject the null hypothesis of
difference between populations for all varieties, indicating that inde-
pendent of the method nor the variety, the distribution of the mea-
surements did not differ at the end of the experiment.

The average of the diameter measurements for each variety and date
correlate with a R2 of 0.83 from the digital method when compared to
the manual measurements (Fig. 5). From Fig. 5 it is possible to observe
that the digital method tends to on average, underestimate the average
real size by 4.4 mm.

Discussion

The results of the different YOLOv8 models tested are in line with
results of previous authors, where object detection produces worse re-
sults at lower resolutions and this is mainly due to the small objects (e.g.
fruits) having a tendency to disappear during the data preparation stage
for the object detection algorithm due reductions in image resolution.
When evaluating their apple dataset for object detection, Häni et al.,
[14], reached a mAP@0.5–0.95, of 0.438 when using faster RCNN,
compared with 0.433 and 0.341 when using Mask RCNN and Tilled
FRCNN. When considering mAP@0.5, a higher value of 0.775 was
reached when using faster RCNN. Despite YOLOv8-m performing better
than the previously tested algorithms by Häni et al., [14], the negative
effect in mAP@0.5 due to the addition of our dataset could be explained
by enrichment of the dataset by smaller objects (Fig. 2). Häni et al.,
(2022) confirmed the main issue in their dataset was the small objects
category with an mAP@0.5 of 0.297 compared with 0.871 for large
objects. This suggest that even with a larger dataset YOLOv8 does not
perform as well with small objects. Additional studies have obtained
higher mAP@0.5 when using YOLO for fruits (i.e. [18,24,48,49]),

nevertheless, its comparison with the current study is not possible due to
either usage of close-up images or image tilling to improve object de-
tections (e.g. see images in [50]). However, in our case thanks to using
YOLOv8-m, we achieve an inference time of circa 1.8 ms when using a
tensorRT FP16 model in a desktop computer. When considering the full
image processing pipeline and visualization, this transfer to circa 130
FPS.

Previous authors have demonstrated even higher speeds when using
previous versions of the same algorithm (i.e. [18,50]). Our findings in
context with this literature indicate that processing timing is no longer
the bottle neck in real time data analysis when video capture is under-
taken at walking speed. For higher speeds, commercial platforms exist (i.
g. [51,52]) yet in contrast to ASPEN, these heavily rely on GPS sensors
for object localization. While new versions of the YOLO algorithm have
potential for further improvement in our results (i.e. [53]), an explora-
tion of their applicability to this specific problem is beyond the scope of
this paper.

The fruit growth reported in Fig. 3 follows the expected growth of
apples where growth is predominantly controlled via cell expansion
properties [54] and in the current case crop load is specifically influ-
enced by soil water potential (data non shown). At the end of the
experiment all varieties had reached their growing potential what is
visible in Fig. 3, and moreover, when observing the apple size popula-
tion dynamics (Fig. 4), the ASPEN pipeline demonstrates the ability to
track the apple growth and correlate positively with manual measure-
ments (Fig. 5), even though the population distributions differ, partic-
ularly during the second sampling date (table 1). In a post-processing
stage, Gené-Mola et al. [55] correlated image-based measurements of
apple diameters transformed to 3D point clouds that correlated up to
0.91 with their respective hand measurements once heavily occlude
apples were removed from the analysis. When considering all apples
independent of their visibility, similar to our study, they reach a cor-
relation of 0.57, lower than the presented pipeline. It is important to
highlight the previously mentioned authors calculate errors per apple,
with a mean absolute error of 3.7 mm in their best case, meanwhile in
our study the mean error of 4.4 mm correspond to the average error as
the measurements were not specifically compared per apple but rather
per population distribution. Similar to our case, their methodology tends
to overestimate apples diameters, and this could be partially explained
by variations within fruit, the methodology used to calculate fruit
diameter, and errors related to the usage technologies. In our case, the
D415 camera has an approximate depth accuracy of 2 % at 2 m and this
fits the average observed error (4 vs 4.4 mm).

Examining the population measurements specifically during the first
and second dates, differences were found between the methods used
(table 1). A conceivable partial explanation for this findingmay lie in the
selection of bigger apples for the manual measurements at the begging of
the experiment, meanwhile the digital tool did not have this bias. In-
dependent of this, for the second and third date apples partially
occluded by other objects, e.g. leaves and other fruits, may have
contributed to an increase in erroneous measurements in the lower tail
of the distribution of the digital measurements (Fig. 4). Interestingly for
the third date, this potential bias was not enough to have an impact in
any of the different Kolmogorov-Smirnov tests. Still, this suggests that to
improve the accuracy of ASPEN, new steps could be implemented.

Although less precise than previous works, thanks to the use of a
RGBD camera and LiDAR scanner, the ASPEN pipeline can run in real
time and here it demonstrates its capacities not only for object detection
and localization, but also for object characterization. Moreover, thanks
to the parallelization of the pipeline, object characterization does not
increase processing times as size determination could be run faster than
object detection. From a software perspective, an amodal segmentation
mask; basically an estimator of the non-visible part of an object (i.e.
[56]), may help to remove measurement errors due occlusion problems,
one of the main problems related to size estimation as demonstrated by
Gené-Mola et al. [55]. An amodal segmentation mask has already been

C. Chiang et al.
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demonstrated to positively effect size measurements of broccolis and
apples ([57] and [58] respectively) this is due to reductions in error
measurements after removing measurements from highly occluded
fruits, and in the case of apples we are able to increase the correlation to
real measurements from 0.8 to 0.91 compared with manually measured
apples [58]. While modifying tree architecture to resemble narrow
canopies and simpler planar crowns has shown promise for object
detection tasks (e.g., [59]), widespread implementation across all apple
orchards may not be currently feasible.

For better yield estimations (data non-shown), it would been bene-
ficial to utilize a RGBD camera with a highly dynamic range, as this
could assist in improving object detections in shadow areas. Our pre-
vious research [40] showed this was not critical as a result of the pres-
ence of indirect light. Different orchards tend to be dominated by direct
light and this creates difficulties in the acquisition of high contrasting

images. To solve this problem previous authors, have chosen to capture
images in the presence of artificial light, or work under controlled levels
of light which require additional equipment (i.e. [45,51,52,60]).

Although our pipeline functions in real time, to fully automate the
process two additional software improvements would be required: first a
reliable SLAM algorithm, and second, a tree segmentation algorithm.
The selected SLAM must work in non-structural environments, and this
is not always the case for research when using FAST-LIVO ([41]; data
non-shown). As current SLAM algorithms are mainly optimized to work
in structured environments, we select FAST-LIVO as the best alternative
to use in parallel with visual information for odometry. Regardless, the
lack of clear features and repetitive visual patterns make it difficult for
the algorithm to converge, especially under highly contrasting light
conditions. A critical limitation in the field of SLAM is the scarcity of
publicly available datasets that accurately represent non-structured
environments coming from mobile terrestrial laser scanners, especially
in the field of agriculture.

Equally important, a tree segmentation algorithm able to segment
each tree within the point cloud would be beneficial. While many al-
gorithms exist for tree segmentation based on LiDAR data, the most
important are tailored for forestry usage (i.e. [61]). While in agricultural
usage, Wellington et al., [62] demonstrates the capacity of ground sur-
face and individual tree segmentation from a 2D LiDAR sensor when
using a Markov random field (MRF) and a hidden semi-Markov model
respectively, in a citrus orchard in an offline per row analysis. A poste-
riori, following the same methodology that relies on previous knowledge
of the space between trees, Underwood et al., [63] reached a matching
performance of 86.8 % with respect to a manually annotated dataset in
the tree segmentation task in a parkour equivalent to 26 linear km in a
commercial orchard. Westling et al., [64] inspired by the work of Vicari
et al., [65] could go one step further and segment trees with crossing
canopies without previous knowledge of the orchard required previ-
ously, taking on average 49 s per tree. Although the previous methods
were efficient, these are functional in complex scenarios with under-
crossing canopies and in real time. Even though 3D neural network
segmentation has been improved in recent years, especially after the
introduction of point net [36], it is not until recently that tailored al-
gorithms have been developed specifically for orchards [66] or even
leaves [67]. The capacities and speed of these are still to be evaluated.

Conclusion

In this paper, we validate an open-source pipeline that allows for real

Fig. 2. Training results of YOLOv8 algorithm family. In A) the effect of the models’ architecture in the mAP and B) precision recall curve of the medium size models,
where in both figures two different resolutions were used (512 and 1024 px).

Fig. 3. Average size of 15 fruits for four different apple varieties (Braeburn,
Diwa, Fuji and Golden) measured along the growing 2022 season at the
Agroscope research site in Conthey, Switzerland.
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time in situ apple characterization. We demonstrate that ASPEN, detects,
tracks and characterizes in situ apples independent of colour and/or
variety of apples scanned. When using a RGBD camera, a correlation of
0.83 between average automated measurements and average manual
measurements is achieved with a mean error of 4.4 mm.

Although in real time opoerations, improvements could be made
with respect to hardware and software, leaving room for further
research. To reduce the gap between computer sciences and agricultural

researchers, we open source a new dataset of more than 600 images used
in this research2 and we hope this can be used as a benchmark together
with previous datasets to evaluate future algorithms in detecting apples
in full tree images. Similarly, we make the weights of our trained models
available to accelerate the use of image-based technologies in
agriculture.

Fig. 4. Diameter measurement distributions for 4 different apple varieties scanned at 3 different dates using either A) manual measurements or B) digital mea-
surements. For the manual measurements, 15 apples per variety were used meanwhile for the digital measurements a variable value was used from 29 to 300 apples.

Table 1
p values of the Kolmogorov-Smirnov test betweenmanual and digital measurements per each date and variety, corrected by Bonferroni (p value threshold= 0.05/100).

2 https://zenodo.org/doi/10.5281/zenodo.12623539
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