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A B S T R A C T

Pollinators are essential for crop productivity. Yet, in agricultural areas, they may be threatened by pesticide
exposure. Current pesticide risk assessments predominantly focus on honey bees, with a lack of standardized
protocols for solitary bees. This study addresses this gap by developing a long-term oral exposure protocol
tailored for O. bicornis. We conducted initial trials to determine optimal container sizes and feeding methods,
ensuring high survival rates and accurate syrup consumption measurements. A validation test involving five
laboratories was then conducted with the insecticide Flupyradifurone (FPF). Control mortality thresholds were
set at ≤ 15% at 10 days. Three laboratories achieved ≤10%, demonstrating the protocol’s effectiveness in
maintaining healthy test populations. The seasonal timing of experiments influenced control mortality, under-
scoring the importance of aligning tests with the natural flight period of the population used. Our findings
revealed dose-dependent effects of FPF on syrup consumption, showing stimulatory effects at lower concentra-
tions and inhibitory effects at higher ones. The 10-day median lethal daily dose (LDD50) of FPF for O. bicornis
(531.92 ng/bee/day) was 3.4-fold lower than that reported for Apis mellifera (1830 ng/bee/day), indicating
Osmia’s higher susceptibility. Unlike other insecticides, FPF did not exhibit time-reinforced toxicity. This study
introduces a robust protocol for chronic pesticide exposure in solitary bees, addressing a critical gap in current
risk assessment. Based on its low risk to honey bees and bumblebees, FPF is approved for application during
flowering. However, our results suggest that it may threaten Osmia populations under realistic field conditions.
Our findings underscore the need for comparative toxicity studies to ensure comprehensive protection of all
pollinators and the importance of accounting for long term exposure scenarios in risk assessment. By enhancing
our understanding of chronic pesticide effects in solitary bees, our study should contribute to the development of
more effective conservation strategies and sustainable agricultural practices.
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1. Introduction

Declines in bee diversity and abundance over the last decades have
been widely documented at both local and regional scales (Bartomeus
et al., 2013; Biesmeijer et al., 2006; Ollerton et al., 2014; Zattara and
Aizen, 2021). Although these declines have multiple causes, the use of
pesticides is considered one of the major contributing factors (Goulson
et al., 2015; Sánchez-Bayo and Wyckhuys, 2019). Prior to their approval
for commercial use, pesticides undergo a risk assessment process to
ensure their use will not pose a threat to non-target organisms, including
bees (Sgolastra et al., 2020). Bee risk assessment follows a tiered
approach, progressing from simpler assessments in the laboratory (tier
1), to more realistic assessments in semi-field and field (higher tier)
conditions. When laboratory tests, conducted under worst-case exposure
conditions, indicate a high potential risk, higher tier experiments are
conducted (Sgolastra et al., 2020).

Pesticide regulation is an essential component of pollinator protec-
tion programs. However, pesticide risk assessment schemes have some
limitations and, therefore, are permanently being revised to increase the
level of protection (EFSA, 2013; EFSA et al., 2023; Sgolastra et al.,
2020). One of these limitations is an insufficient coverage of chronic
exposure. Although chronic toxicity tests are available (see below) and
their incorporation has been emphasized in the guidance documents of
the European Food Safety Authority (EFSA, 2013; EFSA et al., 2023),
these have not been officially endorsed at the EU level. As a result,
authorisation decisions still rely on acute toxicity data, even though in
field conditions bees are usually exposed to pesticides for extended pe-
riods (Azpiazu et al., 2023b; Botías et al., 2015; Tosi et al., 2018).
Therefore, it is crucial to include tests of chronic exposure to obtain a
comprehensive understanding of the long-term consequences of
continued exposure. In addition to addressing dose-dependent effects,
chronic exposure tests should also address accumulative toxicity effects
due to long-term exposure. Accumulative toxicity occurs when pro-
longed exposure to low doses produces a greater effect than a short-term
exposure to an equivalent higher dose. In other words, when the toxic
effects of a chemical are reinforced by exposure time. Accumulative
toxicity can be measured following time-reinforced toxicity (TRT) ap-
proaches (EFSA et al., 2023; Tosi et al., 2021). TRT effects are caused by
the bioaccumulation of the pesticide in the body of the organism
(Rondeau et al., 2015; Simon-Delso et al., 2018). The EFSA has recently
proposed the inclusion of TRT measures in tier 1 of bee risk assessments
(EFSA et al., 2023)

An additional limitation of current bee risk assessment schemes is
that they rely solely on the honey bee, Apis mellifera, assuming this
species is a good surrogate for other bees (Franklin and Raine, 2019).
However, bees (Hymenoptera, Anthophila) comprise more than 20,000
species worldwide (Michener, 2007), encompassing a wide range of life
history traits. Unlike honey bees, which are social, solitary bees (and
their cleptoparasites) account for almost 90% of bee species (Danforth
et al., 2019). As a consequence of this and other differences in life his-
tory traits, certain pathways of pesticide exposure that are particularly
relevant to solitary bees but not honey bees are not adequately
addressed in existing risk assessment schemes (Sgolastra et al., 2019).
Moreover, different bee species exhibit varying degrees of sensitivity to
different classes of pesticides (Arena and Sgolastra, 2014; Azpiazu et al.,
2021; EFSA et al., 2023; Linguadoca et al., 2022; Pamminger, 2021;
Sgolastra et al., 2017; Uhl et al., 2016). Considering these factors and
recognizing the difficulty to extrapolate pesticides effects from honey
bee endpoints to other bees, the European Food Safety Authority
emphasized the need to include solitary bees, such as Osmia cornuta and
Osmia bicornis, in risk assessment schemes (EFSA, 2013).

A standardized protocol to assess the effects of 10-day exposure to
pesticides on honey bees is available since 2017 (OECD, 2017a), and a
protocol to evaluate the impact of long-term (more than 10 days)
chronic exposure has been recently ring-tested (Tosi et al., 2021).
Standardized risk assessment protocols are yet to be established for

Osmia spp., but some protocols are being developed and/or ring-tested
(Cabrera et al., 2024; Roessink et al., 2017). In addition, various
studies have used different methodologies to study pesticide effects on
Osmia adults, including acute topical exposure (Bednarska et al., 2022;
Biddinger et al., 2013; Hayward et al., 2019; Scott-Dupree et al., 2009),
acute oral exposure (Albacete et al., 2024, 2023; Azpiazu et al., 2023a,
2021; Ladurner et al., 2005a, 2003; Linguadoca et al., 2022; Phan et al.,
2020; Sgolastra et al., 2018, 2017) and chronic oral exposure (Azpiazu
et al., 2023a, 2022; 2019; Boff et al., 2021; Heard et al., 2017; Mokka-
pati et al., 2022; Robinson et al., 2017; Spurgeon et al., 2016; Strobl
et al., 2021). In this study, we introduce a chronic oral toxicity protocol
for Osmia, based on the chronic exposure methodology currently used
for honey bees adjusted to the biology and behaviour of Osmia. Then, to
validate the protocol, we provide independent results from five labo-
ratories testing the chronic oral toxicity of the insecticide flupyradifur-
one (FPF) on O. bicornis. We calculate the median lethal daily dose
(LDD50) at 10 days and assess the effects of sublethal chronic oral
exposure on syrup consumption. We also assess potential accumulative
toxicity effects resulting from long-term exposure (time-reinforced
toxicity).

FPF is a butenolide insecticide developed by Bayer CropScience and
marketed under the name Sivanto® (Nauen et al., 2015), approved by
the European Union in 2015. Similarly to neonicotinoids recently ban-
ned in the EU (Brown et al., 2016; Sgolastra et al., 2020), FPF is a sys-
temic insecticide that acts as an agonist of nicotinic acetylcholine
receptors (nAChR) (Nauen et al., 2015). Based on its low risk to social
bees (honey bees and bumblebees) the use of FPF is allowed during
bloom (Nauen et al., 2015; USEPA, 2014), even though subsequent
studies unveiled various sublethal effects (Gray et al., 2024; Hesselbach
et al., 2020; Richardson et al., 2024; Siviter and Muth, 2022; Tan et al.,
2015; Tosi et al., 2021). The scarce evidence available suggests that FPF
may pose a greater risk to solitary bees. The alfalfa leafcutting bee,
Megachile rotundata, was found to be 30 to 170 times more sensitive to
FPF contact exposure than honey bees and bumblebees (Hayward et al.,
2019), and exposure to sprays at field application rates resulted in
decreased survival in the blue orchard bee, Osmia lignaria (Siviter et al.,
2024). When combined with a fungicide, FPF was found to decrease the
number of emerging offspring in ground-nesting squash bees, Xenoglossa
pruinosa (Rondeau and Raine, 2024).

2. Materials and methods

2.1. Preliminary study: test cage assessment

In 2020, five laboratories conducted a preliminary trial to establish
an appropriate cage type in which to perform the exposure phase with
O. bicornis. We tested Nicot cages (also known as roller queen cages;
Nicotplast SAS, France), which are commonly used in bumble bee acute
toxicity tests, and plastic containers (see Supplementary Information).
Plastic containers were larger (150 cc) than Nicot cages (25 cc). Adding
a petal to the syrup dispenser (syringe) has been shown to facilitate
prompt location of the syrup source (Azpiazu et al., 2023a). For this
reason, we tested large cages with and without a flower petal of Euryops
(Asteraceae) attached to the tip of the feeding syringe (Fig. S1; Azpiazu
et al., 2023a). Large cages with the petal performed better (feeding
success: 89.2 %; bee longevity: 24.7 ± 1.1 days) than large cages
without the petal (feeding success: 65.3 %; bee longevity: 22.6 ± 1.3
days), or Nicot cages (feeding success: 53.2 %; bee longevity: 21.2 ± 1.2
days) (Table S1). The conclusions from this preliminary test were that
Nicot cages were unsuitable for long-term exposure experiments with
Osmia and that the addition of the petal significantly facilitates the
prompt location of the feeder (see Supplementary Information for sta-
tistics and additional data).
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2.2. Chronic exposure test

In 2022, another group of five laboratories conducted the actual
chronic exposure toxicity test using a common methodology as
described below (see Supplementary Information for the detailed
protocol).

2.3. Osmia bees and test conditions

The tests were conducted with newly emerged O. bicornis females.
Different laboratories used populations reared in natural areas in their
respective countries. In autumn, once all individuals had reached the
adult stage within their cocoons, the cocoons were transferred to 3–4 ◦C
chambers for wintering. In spring, large cocoons (presumed to contain
females) were incubated at 22-23 ◦C until emergence. The timing of
incubation and emergence differed among laboratories (Table 1). Bees
were maintained under laboratory conditions throughout the test:
temperature (mean: 25–28 ◦C; Table 1), ambient humidity (40–60%)
and indirect natural light. Temperature and relative humidity (RH) were
recorded daily.

2.3.1. Test procedure and experimental cages
Cocoons were checked daily for emergence throughout the incuba-

tion period. Upon emergence, bees were transferred to a flight cage
(>50 × 50 × 50 cm) for meconium deposition and starvation. Twenty-
four hours later, bees were individually transferred to plastic cages
(volume = 500 cc; height: 70 mm; Ø: 110 mm) with a transparent pin-
perforated lid to allow air exchange. Each cage had a 1-ml calibrated
syringe with the tip cut off inserted laterally at approximately 35 mm
from the base. Adhesive tape attached to the outer walls of the container
was used to secure the syringe in a slightly tilted position, thus facili-
tating syrup flow. A petal of Euryops sp. was attached to the end of the
syringe to help the bee locate the feeder. On subsequent days, once the
bee had learnt the position of the feeder, the petal was removed. Sy-
ringes were covered with a sheath of black cardboard to avoid pesticide
degradation. Twenty-four hours after the introduction of the bees in the
cages we assessed syrup consumption by checking the level of test so-
lution in the syringe. Only bees that fed at least 10 μl within the first 24 h
of exposure were considered successful feeders and were retained for the
duration of the chronic test. Syrup consumption and survival were
assessed daily until the last bee died. To account for potential evapo-
ration of the feeding solution, three additional cages without bees were
also monitored. Initial samples sizes per laboratory were at least 30 bees
per treatment divided into three groups (10 bees per group) corre-
sponding to three incubation times one week apart from each other.

2.3.2. Flupyradifurone and dimethoate concentrations and feeding solution
The syringe feeders were filled with a sucrose solution (33% w/w)

with or without insecticide and bees were allowed to feed ad libitum
throughout the test. The insecticide was dissolved into the sucrose so-
lution at the desired concentrations. We had seven treatments: a nega-
tive control (sucrose water solution, 33% w/w), a positive control (1
mg/L of dimethoate) (OECD, 2017a), and five different concentrations
of FPF (0.77, 1.92, 48.00, 12.00, 30.00 mg/L; geometric series factor of
2.5).

New feeding solution was prepared every seven days and stored in
darkness at 6 ± 2 ◦C to prevent photolysis and degradation. The feeding
solution in the syringes was renewed every 3–4 days to avoid prolifer-
ation of microorganisms.

The stock solutions of both FPF (CAS #: 951659-40-8, Purity: 99.9%,
PESTANAL analytical standard, Sigma-Aldrich Laborchemikalien
GmbH) and dimethoate (CAS #: 60-51-5, EC #: 015-051-00-4, Purity:
99.5%, PESTANAL analytical standard, Sigma-Aldrich Laborchemika-
lien GmbH) were prepared with distilled water at the beginning of the
test and stored in a refrigerator (6 ± 2 ◦C). We avoided the use of
acetone because both pesticides are soluble in water at the stock con-
centrations (FPF: 3200 mg/L, dimethoate: 25900 mg/L).

To evaluate the stability of FPF, we measured its concentration using
ultra-high-pressure liquid chromatography (UHPLC, Agilent 1290 series
with 6470 Triple Quad, Agilent Technologies). This analysis was per-
formed on both the initial stock solution and the feeding solution. Two
different concentrations were measured for each matrix (stock solution:
15 and 600 mg/L; feeding solution: 0.8 and 30.5 mg/kg). These solu-
tions were stored under refrigerated conditions (6 ± 2 ◦C). The stability
of the feeding solution within the syringe feeders was also examined. For
the stock solution, measurements were conducted on day 0 and after
four weeks. The feeding solution, stored in the refrigerator, underwent
measurements at two distinct time points: upon preparation (day 0) and
after three days (day 3), which coincided with the refilling of the sy-
ringes. Furthermore, the feeding solution extracted from the syringes,
simulating conditions within cages, was assessed with and without black
cardboard on day 3 (initial syrup refill) and day 7 (renewal of feeding
solution). Three replicates were analysed per day and concentration.
According to SANTE/2020/12830 guidelines, Rev. 2 (EU, 2023), prod-
uct concentration is stable when the variation of concentration between
the fresh samples and the aged samples is <20%. Details of analytical
techniques and results are provided in Supplementary Information. FPF
concentrations measured at two different times in the stock and feeding
solutions, both stored in the fridge and in the syringe feeders, confirm
that the active ingredient FPF can be considered stable under the test
conditions (Table S2). The variation in concentration was lower than
20% in all cases. According to OECD guidelines, a concentration is stable
when it remains within 80–120% of nominal or mean measured values
over the entire exposure period.

2.4. Statistical analysis

2.4.1. Survival
We used Kaplan–Meier (K-M) survival curves to illustrate the com-

bined effects of insecticide concentration treatments on survival. Then,
we ran a log-rank omnibus test to explore overall differences among
concentrations (survdiff function of the survival R package with ρ = 0;
Therneau et al., 2020). Pairwise comparisons between survival curves
were done with Holm multi-comparison corrections and ρ = 0 (pairwi-
se_survdiff function of the survminer package; Kassambara et al., 2020).

2.4.2. Calculation of median lethal daily dose at 10 days
To estimate the median Lethal Daily Dose (LDD50) at 10 days, we

first calculated the daily dose [μg/bee/day] of the concentrations tested
[mg/L] using the average of the daily bee consumption [μl solution/bee/
day] during the first 10 days of the experiment. Then, dose-response
models were fitted to mortality data at the different exposure doses
using the drc package (Ritz et al., 2015). The mselect function of drc was
used to determine which models used for binomial response data (i.e.

Table 1
Experimental conditions and control mortality results in the five laboratories
participating in the validation test for the assessment of FPF toxicity under
chronic oral exposure in O. bicornis females.

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

Test start date 09/05/
2022

15/05/
2022

15/05/
2022

25/05/
2022

04/06/
2022

Mean
temperature ± SE
(◦C)

25.9 ±

0.25
– 28.02 ±

0.23
24.24 ±

0.21
27.11
± 0.18

% Control
mortality at 10
days

5.8% 10.7% 10.7% 16.70% 31.0%

Validity criteriaa Fulfilled Fulfilled Fulfilled Failed Failed
Control LT50
(days)b

24 34 38 24 19

a Control mortality at 10 days <15% (OECD, 2017a,b).
b Lethal time 50 (time required for 50% of the study population to die).
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3-parameter models) were most appropriate based on the Akaike in-
formation criterion (AIC). LDD50 and lethal daily dose for 10% of the
population (LDD10) doses were then estimated with the ED function of
drc package. Following the validity criteria of OECD protocol for honey
bees, we built dose-response curves and calculated the overall LDD50
and LDD10 considering only the data of the (three) laboratories in which
control mortality was <15% (at 10 days). We calculate a critical refer-
ence point, considered the lowest dose that produces an adverse
response compared to the negative control, as the 95% lower confidence
bound of the LDD10. We use this approach instead of the traditional
no-observed-effect-level (NOEL) method because NOEL is highly
dependent on dose selection and sample size (Davis et al., 2011).

2.4.3. Syrup consumption
We used a linear mixed model (LMM) to analyse log-transformed

daily syrup consumption during three periods (days 1–10, 11–20 and
21–30). We included FPF concentration (0.768, 1.92, 48.00, 12.00,
30.00 mg/L) as fixed factor, and laboratory (Lab 1, Lab 2 and Lab 3) as
random factor. We tested the significance of the main effects with the
likelihood ratio test (p < 0.05).

2.4.4. Time reinforced toxicity
We applied the standard, most recent methodology (EFSA et al.,

2023) to investigate the potential of FPF to exert time reinforced toxicity
(TRT). The TRT behaviour was estimated from the first 10 days of the
experiment using the dose data at each concentration tested as explain
above. For each laboratory, data were fitted to the reduced version of the
General Unified Threshold models of Survival (GUTS-RED) model, using
both the Stochastic Death (SD) and the Individual Tolerance (IT) ap-
proaches. From the IT and SD fitted models, LDD50 values were esti-
mated for every day until day 27. Later, the LDD50 at day 10 and day 27
were compared. In agreement with the recommendations of EFSA et al.
(2023), TRT was concluded if the median LDD50 at day 27 was lower by
at least a factor of 2.7 with respect to the LDD50 at 10 days. The target of
27 days is specific for honey bee workers, corresponding to the median
field adult lifespan (EFSA et al., 2020). The average daily mortality of
O. bicornis ranges between 0.028 and 0.09, corresponding to an adult
lifespan of 11–35 days (EFSA et al., 2020), however we maintained the
standard value of 27 days as a worst-case scenario. The robustness of the
adopted methodology was checked by extrapolating survival trends
calibrated over 10 days to the entire study period. We assumed that the
longevity of a cohort of synchronized-emerging bees shows a unimodal
pattern. To check this assumption, longevity distributions in the controls
were fitted to standard unimodal distributions (namely normal, Weibull,
gamma, logistic, and log-normal). The best fit based on the Akaike In-
formation Criterion (AIC) was selected for the following step of the
analysis (Table S6).

2.4.5. Potential risk of O. bicornis under field conditions
We calculated a risk index (RI) to compare the hazard posed by FPF

levels found in different crops (melon, cotton, blueberry, and apple;
USEPA, 2014) to O. bicornis. Following Sgolastra et al. (2024), the RI
combines estimated exposure concentrations, daily amounts of nectar
ingested and the lowest dose that produces a lethal effect (LDLE). RI
values close to 1 indicate potential lethal risk for bees.

For each crop and bee species the RI was calculated as:

RI=
Rn*NC
LDLE

where: Rn is the FPF maximum level of residue found in nectar (USEPA,
2014, Table 3) expressed in mg/Kg; NC is the daily nectar consumption
in mg/day; and LDLE is the lower confidence bound of the LDD10
calculated in this study (256.8 ng/bee/day). Nectar consumption (NC)
was calculated based on EFSA’s (2012) estimate of daily sugar intake in
Osmia (77 mg/day), adjusted by the nectar % sugar concentration of
each crop.

3. Results

3.1. Survival curves and median lethal daily dose 50 (LDD50)

As expected, the mortality of females exposed to dimethoate (posi-
tive control) exceeded 50% within 10 days in all laboratories. The cu-
mulative survival curves of O. bicornis females chronically exposed to
FPF showed significant differences across concentrations in all labora-
tories (Log Rank test; Fig. 1; Table S3). The validity criterion of mortality
of the control group (<15%) was met in three of the five laboratories
(Table 1).

Table 2
Median lethal daily dose (LDD50), lethal daily dose for 10% of the population (LDD10) and their 95% confidence intervals at 10 days inO. bicornis females subjected to
chronic oral exposure to FPF in five laboratories.

Lab 1 Lab 2 Lab 3 Lab4 Lab5 Overalla

n 194 165 173 181 173 532
Body weight (mg) ± SE 102.61 ± 0.47 85.99 ± 0.54 93.26 ± 1.25 89.53 ± 4.41 86.97 ± 0.61 93.56 ± 0.62
Model Weibull Normal Logistic Normal Normal Logistic
AIC 24.58 21.77 22.24 21.69 25.47 28.6
t-value 16.61 41.68 49.88 22.21 1.56 17.59
p-value <0.001 <0.001 <0.001 <0.001 0.119 <0.001
LDD50 (ng/bee/day) 504.27 442.131 586.94 302.38 – 531.92
95% CI 435.62–572.93 360.44–523.82 489.17–684.70 258.86–345.90 – 472.67–591.18
LDD50 (ng/mg/day) 4.91 5.14 6.29 3.38 – 5.69
95% CI 4.25–5.58 4.19–6.09 5.25–7.73 2.89–3.86 – 5.05–6.32
LDD10 (ng/bee/day) 339.51 260.29 383.74 220.60 – 316.01
95% CI 291.33–387.69 177.63–342.94 281.55–485.92 153.08–288.12 – 256.81–375.20
LDD10 (ng/mg/day) 3.31 3.03 4.11 2.46 – 3.38
95% CI 2.84–3.78 2.07–3.99 3.02–5.21 1.71–3.22 – 2.74–4.01

a Considering only data from labs that met the validity criterion (Labs 1, 2 and 3).

Table 3
Risk index (RI) for O. biconis based on maximum FPF residues measured in the
nectar of several crops treated during bloom (USEPA, 2014).

Crop FPF concentration (mg/
kg)

Sugar concentration
(%)

O. bicornis
RI

Melon 0.36 20a 0.49
Cotton 0.39 53b 0.22
Blueberry 0.64 42c 0.46
Apple orchard

1
1.2 42d 0.86

Apple orchard
2

1.5 42d 1.07

a Dag and Eisikowitch (1999).
b Gottsberger et al. (1984).
c Bożek (2021).
d Butler (1945).
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The mean daily dose of FPF consumed during the first 10 days by
bees of the different treatments is shown in Table S4. In four of the five
laboratories, the dose-response relationships were significant (Table 2).
The 10-day LDD50 values obtained in the laboratories that met the
validity criterion (Labs 1, 2 and 3) were similar as indicated by the
overlapping confidence intervals (Table 2). Similarly, the 10-day LDD10
values from Labs 1, 2, 3, and 4 also showed similar results due to the
overlapping confidence intervals (Table 2). The overall estimated lowest
doses that produce an adverse response compared to the negative con-
trol, as determined by the 95% lower confidence bound of the LDD10
was 256.81 ng/bee/day (Table 2).

3.2. Syrup consumption

Considering only the data from laboratories that met the validity
criterion (Labs 1, 2 and 3), syrup consumption varied significantly
across FPF concentrations during the first two time periods assessed
(LMM; 1–10 days: F = 15.24, df = 5, p < 0.001; 11–20 days: F = 14.93,
df = 4, p < 0.001), but not during the third period, when only control
bees and bees exposed to the lower insecticide concentrations remained
alive (21–30 days: χ2 = 1.53, df = 3, p = 0.207). Bees exposed to the
highest FPF concentration showed decreased daily syrup consumption
compared to the control (Fig. 2). On the other hand, bees exposed to the

Fig. 1. Survival probability of O. bicornis females chronically exposed to different FPF concentrations and to the reference toxic standard dimethoate (DIM, at 1 mg/
L) in five laboratories. Different letters denote significant differences (Holm pairwise comparisons).

Fig. 2. Mean daily syrup consumption ± SE (μl/day/bee) during three 10-day periods in O. bicornis females chronically and orally exposed to five FPF concen-
trations. Asterisks indicate significant differences between the FPF concentration (ng/g) and the control (LMM; *p < 0.05 **p < 0.001, ***p < 0.001). Only data from
laboratories meeting the validity criterion were used.
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intermediate FPF concentration (4.8 mg/L) consumed more syrup than
control bees during the first period (Fig. 2). Details of mean daily syrup
consumption at the different FPF concentrations in each laboratory and
time period are provided in Fig. S2.

3.3. Time reinforced toxicity

TKTD (GUTS) fitting: Both GUTS-SD and GUTS-IT provided very good
to excellent fit with the data (Figs. S3–S7). Both models provided similar
temporal patterns of survival over the 10 days and largely overlapping

credible parameter intervals across labs (Figs. S3–S7). However, both
models overestimated background mortality rate for Lab 5 (Fig. S8).
Background mortality rate clearly differed between Lab 5 and the
remaining laboratories. Both SD and IT models were thus re-fitted using
a fixed background mortality rate estimated by fitting survival data of
the control to a single first-order decay model (resulting decay constant:
0.045 day− 1). These fitted results, which remained similar, were used in
the final analysis. The GUTS-SD and GUTS-IT results (Figs. S9–S10)
validate the robustness of the experimental data (except for Lab 5) and
the TKTD model results.

Fig. 3. LDD50 in mg/bee (and related 95% credible interval) trend over time for all laboratories. The results were predicted using GUTS-SD (red) and GUTS-IT (blue)
models. The dashed horizontal lines represent the thresholds for TRT, corresponding to the LDD50 at 10 days divided by 2.7 (see Methods section for details). The
labs are (A) Lab 1, (B) Lab 2, (C) Lab 3, (D) Lab 4, (E) Lab 5 (background mortality fitted separately and fixed). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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TRT assessment: The results demonstrate that FPF does not show TRT
properties in O. bicornis. Compared to exposure level, time of exposure
plays a smaller influence than expected from Haber’s law (Miller et al.,
2000). In fact, the median LDD50 at 27 days was higher than the LDD50
at 10 days divided by 2.7 (Fig. 3). This is consistent across models and
laboratories, except Lab 5. This Lab showed credible limits of the LDD50
at 27 days below the threshold under both models. This is likely due to
the large uncertainty in model parameters, propagating into large un-
certainty of survival estimates and thus to unreliable LDD50 estimates
for Lab 5. This dataset has however lower fit than all others (see TKTD
fitting section), limiting the reliability of this outcome.

Extrapolation of survival trends: The extrapolation of the survival
trends calibrated in the first 10 days to the entire study period further
demonstrate the robustness of our methodology (Fig. S11). The models
calibrated over the first 10 days of the test predict survival at the tested
doses for the full duration of the experiment reasonably well
(Figs. S12–S15). The only exception to this general trend is again Lab 5
(Figs. S16–S17). This is not unexpected considering the constraints of
the results of this laboratory.

The analysis consistently indicates lack of TRT properties in
O. bicornis chronically exposed to FPF. Predictions for the survival trends
beyond 10 days also showed that the models were generally able to
accurately describe the outcome of the tests (except for Lab 5). Of the
five labs, only one had lower fit due to high control mortality and lack of
a clear dose-response pattern, producing less reliable outcomes.

3.4. Potential risk of O. bicornis under field conditions

Risk levels varied across crops (Table 3). The RI was close to 1 on
apples, indicating potential lethal risk (Table 3).

4. Discussion

In this study, we adapted existing honey bee chronic exposure pro-
tocols (Tosi et al., 2021) to the biology and behaviour of Osmia. We first
conducted a preliminary trial to establish an appropriate cage size for
individual exposure. Nicot cages proved unsuitable for long-exposure
tests with Osmia. Frequent contact between the body of the bee and
the tip of the syringe causes bees to become daubed in syrup, resulting in
low survival and hindering the measurement of syrup consumption
(Azpiazu et al., 2023a). The larger containers, on the other hand, pro-
vided longevities comparable to those of field bees (Bosch and Vicens,
2006) and allowed for accurate measurement of syrup consumption.
Unlike honey bees and bumblebees (OECD, 2017a; 2017b, 1998), Osmia
spp. are usually reluctant to feed on artificial feeders (Azpiazu et al.,
2023a; Ladurner et al., 2005b, 2003). For this reason, we attached a
petal to the tip of the syringe to facilitate prompt location of the feeder,
thus reducing the number of unfed bees and variability among fed bees
in the timing of exposure (Azpiazu et al., 2023a), which allowed us to
work only with bees that began feeding within 24 h. All participating
labs obtained feeding success rates higher than 80% (Table S5).

The quality of the test population is a fundamental parameter in any
toxicity study. Standard chronic exposure tests with honey bees and
bumblebees establish control mortality criteria at 15 % at 10 days
(OECD, 2017a). In our validation of the test, three labs had mortality
rates ≤10%. Unlike honey bee and bumblebee colonies, which have long
activity periods, Osmia populations are only active for a couple of
months in spring. Depending on the bioclimatic region, O. bicornis adults
emerge from March to June. Although the timing of emergence can be,
within certain limits, adjusted through appropriate management of
wintering temperatures (Bosch and Kemp, 2004, 2003), best results are
obtained when the tests are conducted during the natural activity time of
the population. In our validation of the test, control mortality was
related to the timing of the experiments, reaching values > 15% in the
two labs working later in the season. There was also a relationship be-
tween control mortality and the LDD50 values obtained. Laboratories

experiencing control mortality below 15% yielded similar LDD50 values
(at 10 days). The LDD50 was lower in Lab 4 (16% control mortality) and
could not be calculated in Lab 5 (31% control mortality). Based on these
results we propose to perform a preliminary emergence test to determine
the optimal flight period of the population (see protocol in Supple-
mentary Information). Our results also allowed us to establish 15% as
the control mortality threshold for the validity, in congruence with
honey bee tests (OECD, 2017a). Although chronic honey bee tests are
conducted over a period of 10 days (OECD, 2017a) we extended survival
checks until all bees died. Mean longevity of the control groups was 29.2
days, similar to that of Osmia spp. observed in field and semi-field
studies (Bosch, 1994; Bosch and Vicens, 2006; Sgolastra et al., 2016;
Sugiura and Maeta, 1989; Tepedino and Torchio, 1982), further proving
that the test conditions were appropriate for Osmia.

We used dimethoate as a positive control, at the same concentration
(1 mg/L) proposed for honey bee chronic exposure tests (OECD, 2017a).
Mortality in dimethoate-exposed bees exceeded 50% within 10 days,
thus meeting the criterion for a positive control outcome. The mean
daily dose of dimethoate used in our study was 0.60 μg/bee/day, close to
24-h oral LD50 values for O. cornuta (0.66 μg/bee), O. lignaria (0.27
μg/bee) and A. mellifera (0.15 μg/bee) (Azpiazu et al., 2023a; Ladurner
et al., 2005a).

The LDD50 of FPF at 10 days in O. bicornis obtained in our study
(531.92 ng/bee/day) is 3.4 times lower than that of A. mellifera (1830
ng/bee/day; (EFSA et al., 2022) The lowest observed adverse effect dose
(256.81 ng/bee/day) is 3 times lower than for A. mellifera (NOED = 790
ng/bee/day; EFSA et al., 2022). These results are in agreement with
previous oral exposure studies showing that insecticides targeting
nAChR, such as neonicotinoids and sulfoxaflor, are more toxic to Osmia
than to honey bees and bumblebees (Arena and Sgolastra, 2014; Azpiazu
et al., 2021; Biddinger et al., 2013; Linguadoca et al., 2022; Sgolastra
et al., 2017). Contrasting sensitivity to insecticides among bee species, is
commonly attributed to differences in P450 enzymes responsible for
xenobiotic detoxification (Beadle et al., 2019; Haas and Nauen, 2021;
Hayward et al., 2019; Manjon et al., 2018; Troczka et al., 2019), un-
derscores the need to increase our knowledge base on the comparative
sensitivity of different groups of bees. FPF toxicity has been shown to
increase synergistically with propiconazole, a sterol biosynthesis
inhibiting (SBI) fungicide that inhibits cytochrome P450 (Tosi and Nieh,
2019), highlighting the need to account for multiple exposure to obtain
meaningful assessments of the potential risks of realistic pesticide con-
texts to bee health (Topping et al., 2020).

Syrup consumption was affected by FPF exposure. As previously
observed in honey bees (Tosi et al., 2021), high concentrations of FPF
had an inhibitory effect on feeding. Similar effects have been reported in
studies involving neonicotinoids and sulfoxaflor in honey bees, bum-
blebees and Osmia (Azpiazu et al., 2022, 2019; Laycock et al., 2012;
Siviter et al., 2019; Zhu et al., 2017). During the first 10 days of expo-
sure, an increase in syrup consumption at the 4.8 mg/L concentration
was observed. The influence of these insecticides on feeding behaviour
are known to be dose-dependent, and several studies report stimulatory
effects at low doses (Azpiazu et al., 2022; Kessler et al., 2015; Sgolastra
et al., 2018). These findings emphasize the need to consider
dose-dependency when evaluating the impact of pesticide exposure on
bees, as any effects on syrup consumption will directly influence the
ingested dose.

Chronic oral exposure experiments allow for the evaluation of cu-
mulative toxicity effects resulting from long-term exposure. We did not
find evidence of time-reinforced toxicity of FPF inO. bicornis. Our results
are consistent across laboratories, except for Lab 5, with high control
mortality and lack of a clear dose-response. Our results are congruent
with those observed in A. mellifera (Tosi et al., 2021), but diverge from
studies using other insecticides, such as neonicotinoids and fipronil,
which show cumulative toxicity in honey bees and bumblebees
(Bommuraj et al., 2021; Mulvey and Cresswell, 2020; Rondeau et al.,
2015). Some studies demonstrate that FPF is quickly detoxified and
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metabolised by cytochrome P450 (Haas et al., 2021; Hayward et al.,
2019).

The first goal of our study was to describe a protocol for long-term
pesticide exposure in solitary bees. We showed that control mortality
levels as low as 10% can be obtained with Osmia and that consistent
LDD50 estimates can be obtained when this mortality threshold is met.
An adjusted protocol, incorporating elements of a parallel effort to
develop a chronic oral test for Osmia (Cabrera et al., 2024), is currently
being ring-tested by several laboratories. The second goal of our study
was to test the toxicity of FPF on O. bicornis under chronic oral exposure.
FPF is considered a “relatively safe” insecticide for honey bees and
bumblebees and its use under label recommendations is allowed during
bloom (USEPA, 2014). However, our toxicity results combined with
residue levels found in various crops, suggests that FPF could pose a
lethal threat to Osmia populations under field conditions, a view
corroborated by a recent semi-field experiment with O. lignaria finding
lethal effects in bees exposed to FPF at recommended field rates (Siviter
et al., 2024). In view of these results, the use of FPF during crop bloom
should be reconsidered. Overall, our research underscores the need for
comparative studies to determine whether current safety factors are
sufficiently protective of non-Apis bees, and a more comprehensive
approach to risk assessment including realistic scenarios of long-term
exposure. By elucidating the impacts of chronic oral pesticide expo-
sure on Osmia, our study contributes to a broader understanding of
pollinator health and to the mitigating of pesticide use in agricultural
ecosystems.
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