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Abstract 

As core constituents of healthy diets, fruits are often cultivated in temporally stable and structurally complex ecosystems that harbor 
high levels of biodiversity. However, high-intensity orchard management can lessen the human and environmental health benefits of 
fruticulture. In the present article, we argue that increased emphasis on biological control could contribute to preventative manage- 
ment of fruit pests, weeds, and diseases, resulting in pesticide phasedown. Carefully calibrated orchard management can increase the 
provision of ecosystem services by above- and belowground biota, improve soil health, and store atmospheric carbon. When tactically 
integrated with agroecological measures, behavior-modifying chemicals, or digital tools, biological control helps to conserve pollinator 
or soil fauna, protect vertebrate communities, and improve vegetation restoration outcomes. Its implementation can, however, give rise 
to scientific and social challenges that will need to be explored. By resolving the adoption hurdles for biological control at scale, human 
society could enjoy the myriad benefits of nature-friendly fruit production. 
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Leclère et al. 2020 ), which should be coordinated across geo- 
graphic, disciplinary, and crop boundaries (Willett et al. 2019 , 
Mehrabi et al. 2022 ). 

A redesign of farming systems entails more than extracting 
maximum yields through top-down control and simple recipes 
(DeFries and Nagendra 2017 ); it also involves a careful manip- 
ulation of their biotic constituents, structure, and functioning 
(Garibaldi et al. 2021 ). This process poses significant challenges, 
given the increasing homogeneity and interconnectedness of 
agroecosystems and their exposure to recurrent anthropogenic 
disturbance (Tooker et al. 2020 ). In particular, synthetic pesticides 
are often liberally applied on farmland (Tang et al. 2021 ), where 
they replace ecosystem-provided population regulation services 
and lead to a state of coerced resilience (Rist et al. 2014 ). As such, 
many farming systems have now become inflexible and ecolog- 
ically brittle (Tittonell 2020 ), requiring constant intervention to 
maintain desirable outcomes (Rist et al. 2014 ). Simplified, chemi- 
cally intensified, and disturbed farmland is inhospitable to many 
plant, animal, and microbial biota (Wagner et al. 2021 , Edlinger 
et al. 2022 ), with cascading impacts on ecosystem integrity, 
human health, and well-being. For instance, pollinator deficits 
reduce global fruit and nut production by 3%–5% and could 
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umankind is facing a mounting triple challenge through cli-
ate change, biodiversity loss, and malnutrition. Food and farm-

ng find themselves at the core of this challenge (Willett et al.
019 ). Since its earliest origins, agriculture has provided supplies
f nutrient-dense food, forming one of the cornerstones of com-
lex civilizations. However, over the past century, agriculture has
hanged substantially and now poses important risks for the
arth system’s resilience and stability. Energy-intensive industrial
griculture notably contributes to global warming, biodiversity
oss, ecosystem decay, and human health hazards (Jaureguiberry
t al. 2022 , Wyckhuys et al. 2022 ). It is pushing the Earth system
eyond its safe operating space (Richardson et al. 2023 ), compro-
ising One Health—that is, the combined health of people, plants,
nimals, and ecosystems (Falkenberg et al. 2022 )—and degrading
ocietal well-being (Sachs et al. 2023 ). The wholesale transforma-
ion or planet proofing of agriculture in order to keep it within
lanetary boundaries (Rockstrom et al. 2020 ) requires urgent at-
ention and bold action. In such an endeavor, a balance needs
o be struck among its ecological, socioeconomic, and cultural
pheres (Sachs et al. 2023 ). An effective rerouting or redesign of
arming systems demands holistic perspectives and integrative
ystems approaches (Vandermeer et al. 2018 , Barrios et al. 2020 ,
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otentially cause over half a million excess deaths from human
alnutrition and associated diseases every year (Smith et al.
022 ). Equally, agrochemical inputs negatively affect the richness
f nontarget biota (Qi et al. 2020 ), many of which play a vital
ole supporting ecosystem services and upholding ecological
esilience (Keyes et al. 2021 ). To retain humanity’s options for
n increasingly unpredictable future, with climatic upheaval
nd biotic shocks (Moore and Schindler 2022 ), these farmland
cosystems urgently need to be transformed. 
Impacts wrought on by high-intensity farming are pervasive

nd not restricted to frontier zones but feature poorly on biodi-
ersity conservation, ecosystem restoration, and nutrition agen-
as. Those impacts can be offset by harnessing biodiversity and
groecological processes through so-called ecological intensifica-
ion (Kleijn et al. 2019 ). This involves a careful tuning of on-farm
ractices (LaCanne and Lundgren 2018 , Finger and Möhring 2024 ),
stablishment of ecological infrastructures such as hedgerows
Albrecht et al. 2020 ), reconfigured landscapes, reduced field sizes,
nd more diverse cropland (Tscharntke et al. 2021 ). Those mea-
ures allow farmers to exploit landscape-level spillover of benefi-
ial organisms (Larsen et al. 2024 ), especially in ephemeral pro-
uction systems. However, most farming landscapes miss the
ritical 20% of natural or seminatural habitat cover to uphold
rime ecosystem services such as pollination or natural pest reg-
lation across space and time (Garibaldi et al. 2021 ). In those
ettings, judiciously managed perennial agroecosystems, includ-
ng tree-based production, prove a powerful lever to reconstitute
andscape-level service delivery (Barrios et al. 2018 , Ickowitz et al.
022 ), reverse biodiversity loss (Villar 2023 ), and wield food as a
estorative force. 
In this article, we outline the potential for fruit orchards to

e transformed from intensively managed, externality-generating
roduction systems into productive but resilient landscape hubs
or ecosystem service-providing biodiversity, by integrating bio-
ogical pest control with other management methods. We dis-
uss those actions that should be targeted; provide examples of
heir potential or realized benefits for ecosystems, consumers, and
rowers alike; and discuss how these actions could be achieved at
ifferent scales. Although this Forum article is centered on fruits
nd nuts, many elements readily apply to other orchard crops,
uch as cacao, coffee, tea, and olives. 

erennial fruit orchards as prime levers for 
ealthy ecosystems and people 

iven their temporal stability, perennial fruit orchards carry am-
le promise to serve as landscape hubs for service providers and
ould thus enhance resilience of the surrounding ephemeral agro-
cosystems. However, there are also pitfalls associated with high-
ntensity orchard management. In the below paragraphs, we elab-
rate further on the exact promise and pitfalls of the kinds of
ystems. 

romise 

ruits and nuts (which we simply call fruits in the present ar-
icle) are key constituents of sustainable healthy diets (Willett
t al. 2019 ). Given the elevated contents in nutrients, vitamins,
nd phytochemicals, their dietary intake can alleviate the human
isease burden (Glabska et al. 2020 ). Tree-sourced fruits in par-
icular carry up to ninefold higher titers of vitamin A and C than
ther foods (Jansen et al. 2020 ) and assume a central role in re-
olving malnutrition among underprivileged populations in food-
eficient regions (Omotayo and Aremu 2020 , Aburto et al. 2022 ,
ckowitz et al. 2022 ). For example, fruit tree portfolios have been
eveloped to face the challenge of seasonal availability, there-
ore providing year-round micronutrient to smallholder farmers
McMullin et al. 2019 ). Aside from directly improving human nutri-
ion and health, an increased global consumption and cultivation
f perennial fruit crops may also reduce the land-use require-
ents and diminish the environmental footprint of agriculture. 
Specifically, perennial fruit orchards may complement the

rea-wide role of natural habitat in biodiversity conservation
Wang et al. 2021 ), ecosystem service delivery (Ickowitz et al. 2022 ),
nd ecological resilience. These patterns derive from ecological
heory, in which temporal constancy and spatial or structural
eterogeneity lend stability among a varied tapestry of ecosys-
ems (May 1974 ). Temporally homogeneous systems such as fruit
rchards are highly stable and prone to bear high biodiversity
Worm and Duffy 2003 ), which, in turn, can bolster ecosystem
ultifunctionality. Indeed, extensively managed fruit orchards
onstitute agroecosystems with high levels of temporal stability. It
s primarily foliage or fruit loss (or harvesting) that upsets the con-
inuity of on-farm interactions (Wiedenmann and Smith 1997 ),
nd even such impacts are minimal in tropical settings. Moreover,
ther layers of vegetative and nonvegetative complexity can be
dded to orchards to reinforce or magnify the resource continu-
ty (Iuliano and Gratton 2020 ). Vegetational diversity per se ben-
fits various trophic guilds, such as carnivores (Root 1973 ), om-
ivores (Ebeling et al. 2018 ), and pollinators (Ebeling et al. 2008 );
oil health and fertility (Furey and Tilman 2021 ); and multitrophic
ontrol of arthropod herbivory (Barnes et al. 2020 ). 
As a result, perennial fruit orchards offer complementary re-

ources and serve as refuges for species-rich communities of
unctionally important plant, animal, and microbial biota (Kreitz-
an et al. 2022 ). Elevated levels of biodiversity translate into su-
erior pollination, pest control, and insect- or even snail-mediated
ectoring of yeasts (Stefanini et al. 2012 ), decisive factors of fruit
uality. Low-input systems such as Opuntia fruit orchards offer
oraging habitat for apex predators such as bobcats, bears, and
oxes (Borchert et al. 2008 ) and act as stepping stones or cor-
idors for multiple taxa (Riojas-López et al. 2018 ), maintaining
abitat connectivity and upholding service delivery across scales
Nogeire and Davis 2015 ). By favoring functional biota, perennial
ruit systems could catalyze a transition toward low-carbon,
ature-friendly, and pest-resilient farming if only their ecological
acets and (taxon- or context-specific) the impacts of orchard
anagement were properly investigated (Rosas-Ramos et al. 2020 ,
iffard et al. 2022 ). 

itfalls 
ruits can be health-giving, but their social–environmental ben-
fits can be partially or wholly offset by high pesticide usage in-
ensity, mechanization, and habitat simplification (van Der Meer
t al. 2020 ). Globally, the hazard load of insecticide usage in fruit
ystems is 5 to 466 times higher than that of other crop categories
figure 1 ; Wyckhuys et al. 2023 ). Its adverse impact on nontarget
iota such as mammals markedly exceeds that of other agrifood
tems and is felt beyond orchard boundaries (García et al. 2022 ).
 wide set of synthetic fungicides, herbicides, acaricides, and in-
ecticides are used in fruit production, uniquely but imperfectly
irrored by the residue profiles of harvested produce. Multiple

esidues are most commonly found in berries (65%–86%), citrus
ruit (73%), and grapes (68%) in the European Union and in 70%–
6% of China pears and peaches (Wyckhuys et al. 2020 ). These
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Figure 1. Hazard load per hectare of the various pesticide classes that 
are applied in the world’s agricultural crops. For each crop group c and 
pesticide class p, the hazard load (HL, in the unit of kilograms of body 
weight) was calculated as HL (c, p ) = ∑ 

i [Mi / (NOAE Li × 365 ) ] , where i 
represents the active ingredients within pesticide class p that are 
applied to crops in crop group c, M i is the total mass of active ingredient 
i accumulated in the environment, and NOAEL is its no observed 
adverse effect level in nontarget organisms. The values of Mi were 
calculated on the basis of spatially explicit, crop-specific, and active 
ingredient–specific application rates for 2015, obtained from 

PEST-CHEMGRIDS v1.0 (Maggi et al. 2019 ), and the corresponding 
degradability of each active ingredient was determined using a spatially 
explicit process-based model (see Tang et al. 2022 for a detailed 
description). The hazard load accounts for both the degradability and 
the toxicity of pesticides, and it reflects the mass of nontarget biota (i.e., 
birds and mammals) that is needed to absorb the applied pesticides 
without adverse effects. The total hazard load for each crop group c and 
pesticide class p was then divided by the global total crop area of all 
crops within the crop group c. The nine categories of agricultural crops 
are defined on the basis of the Indicative Crop Classification by the Food 
and Agriculture Organization of the United Nations. 
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boundaries. 
an pose immediate hazards for food safety and human health.
o less than 56% and 61% of domestically produced fruits respec-
ively in Argentina and the Middle East surpass maximum residue
imits—the highest legally tolerated residue of a given pesticide
MacLoughlin et al. 2018 , Philippe et al. 2021 ). Meanwhile, at least
0 single pesticide applications are made per season in today’s
anadian apple orchards, 20%–55% higher spraying frequencies
han in the late 1900s (Chouinard et al. 2021 ). In Brazil, 63% of pas-
ionfruit pulp samples carry pesticide residues with 70% of the de-
ected compounds not authorized for local use (de Oliveira Moz-
aquatro et al. 2022 ). Under these conditions, it is unclear whether
he actual health benefits of regular fruit consumption, such as by
nfants outweigh its protracted risks (Landrigan et al. 2019 , Vigar
t al. 2019 , but see Fantke et al. 2012 ). 
Crop value drives pesticide usage intensity in the fruit sector

Rosenheim et al. 2020 ), and this intensity is deepened by the high
osmetic standards of industrialized nations, high-end suppliers,
r export markets (Zakowski and Mace 2022 ). Pesticide overre-
iance can weaken ecological safeguards such as natural biologi-
al control and can therefore induce pest outbreaks or facilitate
esistance development—that is, hallmark features of a pesticide
readmill. Treadmills often start with the launch of new pestici-
al compounds against endemic pests or pathogens (Beers et al.
016 ), climate-triggered issues, or the appearance of invasive ones.
ollowing the arrival of the invasive stink bug Halyomorpha halys ,
sian citrus psyllid Diaphorina citri , or spotted-wing drosophila
rosophila suzukii , insecticide spraying frequency in invaded ar-
as increased by more than four times (Leskey et al. 2012 , Haye
t al. 2016 , Joshi et al. 2022 ), often in smallholder systems that had
historically remained pesticide free. Aside from sometimes being
ineffective and unnecessary, such routine or calendar-based ap-
plications tend to aggravate pest problems (Qureshi and Stansly
2009 ) and cause human health impacts (Jones 2020 ). Therefore,
regardless of its crop protection benefits in the short-term, chem-
ical crop protection can diversify the negative impacts of invasive
pests to include inflated monetary costs, the loss of native bio-
diversity, and human health hazards. These impacts can be sub-
stantial: Invasive tephritid fruit flies such as Bactrocera dorsalis (or
Bactrocera invadens ) inflict more than US$2 billion losses per year
across Africa—not accounting for the additional approximately
10% expenditure on insecticides (Ekesi et al. 2016 ). Those mon-
etary impacts are compounded by social–environmental ones,
which all too often remain unquantified. Invasive pest issues and
pesticide-induced externalities are likely to deepen in the near fu-
ture. Globalization and the resulting cross-border trade, as well
as transformed environments and societies, lead to the recur-
rent emergence, spread, and proliferation of crop-feeding herbi-
vores worldwide (Seebens et al. 2017 , Hulme 2021 ). Among those
polyphagous fruit pests such as H. halys , D. suzukii , and Bactro-
cera spp. challenge fruit growers and severely compromise the One
Health benefits of fruit growing. 

Aside from pesticide-related issues, common management
practices jeopardize the overall integrity and functioning of
perennial fruit orchards. These are most severe in technified and
intensified systems with low-stem fruit cultivars—that is, those
that have been bred to be of low stature in order to simplify
management and facilitate picking (van der Meer et al. 2020 ).
Although the diverse vegetation and multistrata designs of
traditional orchards offer complementary benefits (Perfecto et al.
1996 , Rosas-Ramos et al. 2020 , Mockford et al. 2022 ), more simpli-
fied arrangements drastically affect resident biota. In vineyards,
mowing negatively affects spider and grasshopper diversity and
affects small mammals, whereas tillage and herbicide use lowers
biodiversity and ecosystem service delivery by 20% (Winter et al.
2018 ). Heavy machinery used during fertilizer and pesticide appli-
cation or for irrigation causes soil compaction and organic matter
loss (Giffard et al. 2022 ) with cascading impacts on aboveground
biodiversity and trophic interactions. The removal of structural
diversity and ecological infrastructures such as hedgerows exerts
taxon- and context-specific impacts on pollinator and natural
enemy communities (Rosas-Ramos et al. 2020 ). Finally, expansive,
genetically uniform fruit orchards increase the abundance of
invasive pests with limited dispersal abilities, such as mealybugs.
Well-calibrated management may enhance biodiversity and
reconstitute service delivery at spatial scales far beyond those
of individual orchards—that is, at the landscape level (Borchert
et al. 2008 , Pumariño et al. 2015 , Riojas-López et al. 2018 ). 

Redesigning fruit production systems for 
enhanced service delivery 

Anthropogenic disturbances degrade biodiversity-driven ecosys-
tem processes, functions, and services in farming landscapes.
Offering temporally stable habitats, perennial fruit orchards con-
stitute unique testing grounds for conservation and restoration
action (Tooker et al. 2020 ). Through an ecological intensification of
orchard systems (Kleijn et al. 2019 ), human-made perennial habi-
tats can become central pivots of self-sustaining multifunctional
landscapes (Asbjornsen et al. 2014 , Winkler et al. 2017 ). With
functionally important biota spilling over into adjacent farmland
(Larsen et al. 2024 ), their benefits accrue far beyond the orchard
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Box 1. Designing climate-resilient, pest-suppressive banana cropping systems.

Bananas are globally important food crops that are increasingly affected by climate change and biotic stressors (Bebber 2023 ). The 
banana weevil, Cosmopolites sordidus , is the main pest of banana and causes substantial yield losses (Gold et al. 2001 ). Weevil grubs 
bore galleries into the banana rhizome, weakening plants and vectoring or facilitating the entry of phytopathogens (Guillen Sánchez 
et al. 2021 ). 

Invertebrate and microbial natural enemies contribute substantially to C. sordidus management. Histerid beetles, ants, earwigs and 
spiders prey on C. sordidus eggs and larvae (Abera-Kalibata et al. 2006 , Mollot et al. 2014 , Dassou et al. 2023 ), whereas vertebrates 
such as shrews, lizards and toads are voracious predators of adult stages. Entomopathogenic nematodes affect weevil larvae and 
adults (Tabima et al. 2023 ). Insect-killing fungi such as Beauveria spp. or Metarhizium spp. exert important levels of larval mortality in 
laboratory settings (Membang et al. 2020 ), can easily be mass cultured (Mascarin and Jaronski 2016 ) and act as antagonists against 
pathogenic fungi such as Fusarium oxysporum f. sp. cubense (Mascarin et al. 2022 ), but their efficacy against C. sordidus in the field 
proves more variable (Tresson et al. 2021 ). 

By deploying biological control within integrated or agroecological management packages, such as IPM, its full potential can be 
tapped. Delivery of insect-killing fungi can be enhanced through attract-and-kill approaches involving pseudostem traps (Gold 
et al. 2001 ), aggregation pheromones and their endophytic establishment in plant tissues (Akello et al. 2009 ). Volatile attractants or 
repellents can be used in concert with fungi via a push–pull strategy similar to that used against the Asian citrus psyllid in orange 
orchards (Eduardo et al. 2023 ), or can help to recruit natural enemies into pest infestation hotspots (Tinzaara et al. 2007 ). Biological 
control agents constitute the first line of defense in IPM and are smartly integrated with physical, cultural and agroecological tactics. 
This involves deploying LED-equipped traps for adult weevils (Kannan et al. 2020 ) or diversifying banana orchards (Dassou et al. 
2023 ). The latter can be achieved through use of cover or intercrops, addition of noncrop habitats and agroforestry arrangements 
(Mollot et al. 2014 , Collard et al. 2018 , Carval et al. 2022 ). The addition of crop residues or mulching provide refuges to natural 
enemies (Gold et al. 2001 ) and benefit water infiltration, plant nutrition and yield, though its impacts in terms of pest suppression 
are inconsistent across sites (Gold et al. 2006 ). 

Cover crops are a so-called climate-smart solution, because they add structural complexity and plant diversity to banana 
monocrops (Carval et al. 2022 ) which, in turn, raises overall resilience. Their impacts in terms of C. sordidus control are highly 
context- or species-specific and depend on spatial configureuration of crop and noncrop habitats (Collard et al. 2018 ). Although 
certain intercrops positively affect biological pest control (Duyck et al. 2011 ), others benefit crop performance through nitrogen 
fixation or prevent soil erosion but do not consistently lower pest damage (Carval et al. 2022 ). Along the same vein, polycultures 
of banana with maize, cocoyam or gourds and agroforestry arrangement also harbor more speciose natural enemy communities, 
experiencing enhanced levels of biological control and lowered susceptibility to biotic, abiotic shocks (Poeydebat et al. 2017 ). 
Overall, a systems perspective is instrumental in building pest-suppressive, climate-resilient banana systems. Interdisciplinary 
research is imperative to fully account for the effects of plant diversity, soil coverage, habitat structure or landscape-level flows 
of natural enemies (Poeydebat et al. 2017 , Tresson et al. 2021 ) without discounting its social–environmental dimensions, such as 
human well-being, farmer revenue, agrochemical pollution and environmental integrity. 
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To ecologically intensify fruit production, an array of tactics has
een defined, trialed, and validated. These include agroecologi-
al measures such as agroforestry, cover cropping, conservation
illage, and organic matter addition, as well as landscape-level
nterventions. Given the pervasive, uneven impact of pesticide-
ntensive crop protection on ecosystem integrity and functioning,
onchemical management alternatives represent a main lever-
ge point. Regardless of the potential of individual measures such
s biological pest or disease control (Urbaneja et al. 2023 ) and
rchard grazing (Paut et al. 2021 ), their standalone implemen-
ation tends to spawn limited outcomes. Meanwhile, their tacti-
al integration can achieve pesticide phasedown, pollinator, and
ildlife conservation; enhanced soil health; and carbon seques-
ration (box 1 ; Barrios et al. 2018 ). Practices such as organic manur-
ng and efficient water management can even raise the titers of
ealth-promoting phytochemicals (Yan et al. 2023 ), directly bene-
ting human health. 

arnessing nature for biological pest 
ontrol 
aturally occurring (vertebrate, invertebrate, or microbial) con-
umer organisms keep pest populations within bounds, provid-
ng the universally valid service of pest population regulation or
iological control (Hairston et al. 1960 ). Those so-called natural
nemies bring balance to ecosystems, with their action valued at
S$95.5 billion per year across biomes (Costanza et al. 2014 ; ad-
usted for inflation) and vital to restoration success (Villar 2023 ).
s such, they underpin economically profitable agrifood produc-
ion in a wide portfolio of systems (Naranjo et al. 2019 ). In peren-
ial fruit orchards, resident natural enemies uphold photosyn-
hetic capacity or primary productivity, fruits’ nutritional quality,
nd growers’ profits (Jacas and Urbaneja 2010 ). For example, in
ineyards and apple orchards, insectivorous bats alone raise rev-
nues by up to US$263 or US$ 594 per hectare per year (Rodriguez-
an Pedro et al. 2020 , Ancillotto et al. 2024 ). Although microbial
ntagonists of Erwinia amylovora , the causal agent of fire blight in
pple orchards, are readily delivered through natural precipita-
ion (Mechan Llontop et al. 2020 ), farmers can actively manipu-
ate the spatiotemporal abundance, activity, and impacts of many
ther natural enemies. The service of biological control has there-
ore been ingeniously exploited by man, and its scientific under-
innings are robust (figure 2 ; Peña et al. 2002 ). Biodiversity can
e harnessed under three different biological control modalities—
hat is, conservation, classical, and augmentation biological con-
rol (Heimpel and Mills 2017 , Wyckhuys et al. 2024 ). These tactics
re ideally to be bundled with agroecological measures (Deguine
t al. 2023 ) and other compatible technologies, such as robotics,
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Figure 2. Scientific underpinnings of biological control in 35 globally important fruit or nut crops. Per fruit or nut crop, we plot the number of all-time 
scientific publications on biological control of arthropod pests. Underlying queries were run on Web of Science over 1900–2023. Search strings were 
designed to capture scientific output on biological control in the particular crop: TS = ((“biological control” OR biocontrol) AND crop AND (pest* OR 
herbivore*)). Per crop, the number of logged publications is reflective of overall technoscientific progress, cropping area, and pest incidence or severity. 
The crop categories are defined on the basis of the Indicative Crop Classification by the Food and Agriculture Organization of the United Nations. 
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recision agriculture or decision-support tools to manage pests
r diseases preventatively. 

anaging orchard habitats to benefit resident 
iota 

he density, performance, and action of natural enemies can
e enhanced by manipulating on- and off-farm habitat (Landis
t al. 2000 , Judt et al. 2023 ), a practice that has been refined for
illennia. As early as 304 CE, date palm and citrus growers in
emen and subtropical Asia built up the populations of resident
redatory ants using kitchen scraps (van Mele 2008 ). Its basic
remise includes favoring natural enemy populations through
dded shelter, floral or extrafloral nectar or pollen, alternative
ost or prey items, and suitable microclimates (Landis et al. 2000 ).
egetation management is pivotal in these efforts: Cover crops,
ong-lived flower strips, or hedgerows can be highly effective
Albrecht et al. 2020 , Judt et al. 2023 ) and are often paired with
ugar dispensers, artificial pollen dustings, or behavior-modifying
olatiles. Natural vegetation within and near the orchard also
enefits natural enemy populations (Álvarez et al. 2019 , 2024 ).
lower strips, when they are established in alleyways, nearly
ouble natural enemy abundance and reduce pest pressure by
5% in cherry orchards (Mateos-Fierro et al. 2021 ). Interrow strips
f flowers, grasses, or rice straw can enhance natural enemy
ction in vineyards by 50% (Berndt et al. 2006 ) and raise predator-
ediated fruit fly control by one-third (Cruz-Miralles et al. 2022 ).
In citrus, sown wildflower strips in alleyways with high structural
heterogeneity of vegetation increase the abundance and nutri-
tional status of parasitoids twofold (Mockford et al. 2022 ). Their
usage is not restricted to invertebrates; adding coarse sand in
planting holes benefits insect-killing nematodes and raises citrus
yield by 60% (Duncan et al. 2013 ), and white mustard covers lower
root disease incidence (Richards et al. 2020 ). Ant management
can also enhance the biological control of sap-feeding herbivores
such as aphids, scales, and mealybugs (Anjos et al. 2022 ), because
ants protect these herbivores from natural enemy attack in return
for access to their sugar-rich honeydew excretions. Conserving
resident natural enemies also pays off. Washington apple growers
that consciously protect natural enemies by using selective
insecticides annually save $671 per hectare (Gallardo et al. 2016 ),
whereas Australian mango growers that conserve weaver ants
enjoy 55% higher profits (Peng and Christian 2006 ). However,
some pest species such as D. suzukii can even benefit from natu-
ral enemy conservation measures (Santoiemma et al. 2018 ), and
their impacts are often crop, pest, and context specific. One such
example is the conservation or reintroduction of noncommercial
fruit trees in the orchard periphery, to act as alternative hosts for
pest or nonpest fruit flies and their parasitoids (Aluja et al. 2014 ).
By acting as a locally preferred host of Anastrepha obliqua , the
native tree Spondias mombin enhances natural the densities of four
species of fruit fly parasitoids and bolsters biological control in
guava- and mango-growing areas of Brazil (de Sousa et al. 2021 ).
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Figure 3. Tephritid infestation dynamics on three culturally important fruit or nut crops in Tahiti, French Polynesia following the release of the 
nonnative parasitoid Fopius arisanus. Year by year infestation pressure of the invasive fruit fly Bactrocera dorsalis (as the number of pupae per 
kilogram of fruit) are shown for guava Psidium guava, Polynesian chestnut Inocarpus fagifer, and Malabar almond Terminalia catappa (Vargas et al. 
2007 ). Infestation dynamics are contrasted with temporal patterns in F. arisanus parasitism (as a percentage) on each fruit crop, depicted with a 
square markers in each graph. 
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owever, in areas where S. mombin is absent or where pest or non-
est fruit fly species exhibit varying seasonal dynamics or are less
revalent, this strategy proves futile. Similarly, although raptors
uch as American kestrels show high occupancy of nest boxes in
orth American cherry orchards (approximately 93%; Shave and
indell 2017 ), occupancy is much lower (approximately 31%) in
lueberry fields 300 kilometers away (Hannay et al. 2023 ). Field-
evel effects of promising tactics are often inordinately shaped
y landscape context, farm management, locally abundant biota,
r cropping history (Paredes et al. 2015 ). If one aims to gener-
te desirable social–ecological outcomes, conservation biological
ontrol practices need to be promoted with due regard for farming
ontext—something that is often forgotten (Giller et al. 2021 ). 

estoring balance in invaded fruit systems 
ecause the success of some invasive pests is thought to be tied
o their release from coevolved natural enemies (Liu and Stiling
006 ), their long-term suppression in invaded ecosystems often
elies on a scientifically guided restoration of ecological balance
Hoddle 2004 ). By introducing host-specific natural enemies from
he pest’s region of origin, perpetual, self-sustaining control can
ometimes be attained. Since its first effective use in the late
800s to resolve invasive pest issues in California citrus orchards
Caltagirone and Doutt 1989 ), this form of biological control has
een globally deployed against a suite of invasive fruit pests,
iseases, and weeds. Perennial systems in particular are well
uited for this practice mainly because they represent compar-
tively stable ecosystems (Kenis et al. 2017 ). Guided releases of
ne single parasitoid species enabled declines of a factor of 16 in
nvasive African citrus psyllid Trioza erytreae incidence on the Ca-
ary Islands (Pérez-Rodríguez et al. 2024 ) and lowered Bactrocera
oralis fruit fly densities on guava by up to 98% in Tahiti (figure 3 ;
argas et al. 2007 ). Across the Caribbean, the parasitic wasp
nagyrus kamali reduced invasive mealybug numbers by 95%–
9% on soursop and Spondias plum (Kairo et al. 2000 , Roltsch
t al. 2006 ). Mycoviruses of an invasive blight fungus restored the
ommercial viability of chestnut production in Europe (Rigling
nd Prospero 2018 ). Nonnative natural enemies often arrive acci-
entally (box 2 ; Weber et al. 2021 ). For instance, the cosmopolitan
redator Amblyseius largoensis provides fortuitous biological
ontrol of the invasive red palm mite on coconut (Carrillo et al.
014 ). Meanwhile, the economic dividends of intentional releases
an be immense: The biological control of invasive mealybugs
nnually yields US$86 million gains for Benin’s mango growers at
 145:1 benefit–cost ratio (Bokonon-Ganta et al. 2002 ). 
ortifying inherent defenses with mass-reared 

eneficials 
 third form of biological control involves inoculative or re-
urrent releases of mass-produced, endemic natural enemies
ither invertebrate or microbial. Extensively used in greenhouse
orticulture, this tactic has considerable potential in perennial
ruit orchards (Lacey and Shapiro-Ilan 2008 ). Predatory mites
hat are grown in biofactories, for example, provide 80%–92%
ontrol efficacy of the European red mite Panonychus ulmi in
hinese apple orchards (Zhou et al. 2014 ). Earwigs, reared
n dogfood and protected by artificial refuges, cause 40- to
0-fold declines in aphid numbers on apple or kiwifruit as com-
ared to untreated control plots (Carroll and Hoyt 1984 , Logan
t al. 2011 ). Scheduled releases of minute parasitic wasps at 0.3
ndividuals per square meter kill 74% of the nymphs of the Asian
itrus psyllid Diaphorina citri (Marin et al. 2023 ), whereas drones
istribute predatory mites with high levels of precision in vine-
ards. Single, soil-directed sprayings of entomopathogenic fungi
ill up to 82% of citrus coddling moth Thaumatotibia leucotreta ,
nd these natural enemies persist for 5 months after application
Coombes et al. 2016 ). Often, biological control proves competitive
ith pesticide pricing, and growers even receive price premiums
or residue-free produce (Khan et al. 2018 , Wittwer et al. 2021 ).
uch produce is highly coveted in export markets, which has
nabled the implementation of augmentation biological control
n more than 20,000 hectares of mango crops in southeast-
rn Mexico (Liedo et al. 2021 ). However, its implementation in
pen-field systems such as fruit orchards can face unique so-
iotechnical challenges such as a heightened likelihood of agent
ispersal beyond proprietary boundaries, eventual interference
ith orchard management or naturally occurring biota, and
armers’ limited knowledge of and familiarity with biodiversity-
ased practices (Michaud 2018 , Wyckhuys et al. 2019 ). To spur
idespread adoption, additional societal support may be needed.

ross-scale benefits of biological control 
erennial woody plants assume central roles in global water,
nergy, carbon, and nutrient cycles (Ellison et al. 2017 ), and
ruit-bearing trees prove popular in climate change mitigation
fforts (Martin et al. 2021 ). Perennial fruit orchards constitute
alued carbon sinks (Eddy and Yang 2022 ): Vineyards, for exam-
le, annually increase carbon storage by 43% by mass (Wiliams
t al. 2020 ). Biodiversity-based and agroecological interventions
uch as biological control can lower the energy-use intensity and
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Box 2.Native and (fortuitously) introduced natural enemies provide Drosophila suzukii biological control in small fruits.
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arbon footprint of farm operations (Wyckhuys et al. 2022 ),
nhance carbon sequestration rates, and simultaneously sustain
roader bundles of ecosystem services that derive from fruit
rowing (Kreitzman et al. 2022 , Ickowitz et al. 2022 , Deguine et al.
023 ). Cover cropping, in particular, greatly augments the carbon
torage potential of perennial fruit crops (Zumkeller et al. 2022 ,
eonel et al. 2024 ). When established in banana monocultures;
hade-tolerant forage grasses; or legumes such as Brachiaria spp.,
anicum spp., Arachis spp., Neonotonia wightii or Paspalum notatum
ay also suppress weeds, retain soil moisture, lower disease
usceptibility, and enhance overall resilience to climate change
box 1 ; Carval et al. 2016 , Dassou et al. 2023 ). Pairing cover crops
ith an array of regenerative farming practices in US almond
rchards increased carbon storage, improved water infiltration
y 600%, and doubled profit (Fenster et al. 2021 ). 
Biological control in fruit systems can help to achieve area-
ide pest management—that is, suppression of pest populations
eyond the confines of single fields or orchards (Hendrichs et al.
021 ). First, such can be achieved by exploiting the cross-habitat
ovement of natural enemies (Larsen et al. 2024 ), in which
rchards are prime source habitats for pest regulation services
t broad spatial scales (Bianchi 2022 ). In landscape matrices,
he spatial cover of structurally complex traditional orchards
nd organic vineyards increases landscape-level abundance and
diversity of insectivorous birds, spiders, and predatory beetles
(Horak et al. 2013 , Paiola et al. 2020 ). High-intensity orchard
management cancels out such organismal flows and the asso-
ciated cross-scale benefits (Clemente-Orta et al. 2020 ). Another
option is to exploit pest phenology, dietary breadth, or habitat
affinities to use orchards as the main loci for pest management
interventions (Lu et al. 2024 ). Orchard leaf litter, for example,
teems with winter-active predators (Niedobová et al. 2024 ), which
can be used to suppress (dioecious) aphids or polyphagous mirids
before they colonize adjacent field crops (De Roincé et al. 2013 ,
Gajski et al. 2024 ). On the other hand, however, it also harbors
fungal pathogens that can facilitate the infection or reinfection
of orchards with diseases such as apple scab (Gomez et al. 2007 ). 

Furthermore, ecosystem-friendly interventions to mitigate
aboveground pest threats benefit the belowground realm of agroe-
cosystems (Veen et al. 2019 ). Soil health is pivotal to human and
environmental health (Banerjee and Van Der Heijden 2023 ), and
this certainly applies to perennial fruit systems (Giffard et al.
2022 ). In addition to the soil microbiome, macrofauna are critical
to the sustainability of orchard systems and define plant nutrition
(Sofo et al. 2020 ). As agrochemical inputs and tillage exert strong
negative impacts (Sánchez-Moreno et al. 2015 , Giffard et al. 2022 ),
their deliberate reduction restores soil health even in the absence
of organic management regimes (Daelemans et al. 2022 ). Cover
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rops, mulching, and organic manuring further boost microbial
iomass, earthworm abundance (Morugán-Coronado et al. 2020 ,
enster et al. 2021 , Webber et al. 2022 , Castellano-Hinojosa et al.
023 ), soil stability (Gomez et al. 2018 ), and fruit yield, especially
n nonarid, fertile settings (Novara et al. 2021 ). Soil-mediated pro-
esses also define fruit quality and titers of health-promoting an-
ioxidants in grapes or blueberries (Wang et al. 2008 , Mezzasalma
t al. 2018 ). 

ross-guild benefits and leverage points 

erennial fruit orchards, especially when combined with semi-
atural or natural areas, flower strips, and hedgerows offer a suit-
ble habitat for pollinator diversity conservation (Eeraerts et al.
021 , von Königslöw et al. 2022 , Leclercq et al. 2023 ), and can also
enefit the conservation of birds, mammals and even vascular
lants. In the following paragraphs, we outline how orchard sys-
ems offer important leverage points for biodiversity conservation
t large. 

ollinator conservation 

n temperate zones, many fruit trees are early flowering,
ffering pollen and nectar at a crucial period for nest-founding
umble bees and many solitary bees (Becher et al. 2024 ). In ad-
ition, some fruit crops of the genus Rubus (e.g., raspberry, black-
erry) can provide nesting habitat themselves for stem-nesting
ees (Coates et al. 2022 ). Farmers can consciously retain or pro-
ide nesting material for (small) carpenter bees and orchard bees,
eratina spp., Xylocopa spp. or Osmia spp. (table 1 ). Comanaging or-
hards for pest control and insect pollination has been the cen-
ral aim of integrated pest and pollinator management (Lundin
t al. 2021 ) and can be used in analogous ways in organic manage-
ent. The key is to minimize trade-offs while maximizing coben-
fits and synergies among pest control, pollinator diversity, and
rop yield (table 1 ; Lundin et al. 2021 ). This can be achieved in
he long term by increasing seminatural areas, providing nesting
aterial, increasing flowering resources, and phasing down dis-

urbances such as pesticide applications (table 1 ). However, not
ll resulting direct and indirect effects and their interactions and
rade-offs are well understood. Relatively unexplored win–win
utcomes include the enhancement of floral resources that ben-
fit both pollinators and natural enemies but do not favor pests
Albrecht et al. 2020 ) and, at the same time, offsetting negative
ffects of pesticide exposure on bees by providing a diverse diet
Wintermantel et al. 2022 ). To what extent a diverse diet can com-
ensate for the effects of pesticides is not fully understood, so a re-
uction of pesticide use should be a priority (Sponsler et al. 2019 ).
owever, there could also be trade-offs when reducing pesticide
se. For instance, when using mechanical weeding instead of her-
icides to keep the soil vegetation free under trees, ground-nesting
ees could potentially be harmed more than by using the herbi-
ide (Ullmann et al. 2020 ), although more research is needed to
onfirm that this effect persists in the long term. To resolve those
rade-offs without resorting once again to pesticides, nonchem-
cal solutions such as biological control need to be inserted and
reated equivalently as other tools in incipient decision frame-
orks (Knapp et al. 2022 ). Pollinators do not only provide cru-
ial pollination services (Klein et al. 2007 ), lifting yields and yield
esilience (Hünicken et al. 2021 , Senapathi et al. 2021 ) and im-
roving the organoleptic characteristics of fruits (Gazzea et al.
023 ), but they can also directly engage in biological control. By
ectoring fungal natural enemies that are delivered through dis-
ensers at the entrance of hives nesting tubes, managed honey-
ees and mason bees suppress fire blight in pear orchards (Joshi
t al. 2020 ). Meanwhile the larvae of pollinating hoverflies are vo-
acious predators of sap-feeding herbivores such as aphids and
syllids (Irvin et al. 2021 ). 

ertebrate and bird conservation 

any nonchemical management approaches have benefits for
ertebrates such as insectivorous birds, bats, shrews, and rap-
ors, which, in turn, contribute to biological control. In Dutch ap-
le orchards, as few as three nesting pairs of great tits ( Parus
ajor ) reduce caterpillar infestation pressure by 50% compared
ith areas free of P. major (Mols and Visser 2007 ). By protecting
hese organisms from pesticide-related harm, biological control
olsters their cost-free, self-sustaining pest control services. In
urn, thriving natural enemy communities help to regulate popu-
ations of small-mammal herbivores that benefit from nonchem-
cal orchard management, such as with vole numbers increasing
y 73% when herbicide use is suspended (Sullivan et al. 1998 ). 
The benefits of vertebrate-friendly crop protection can further

e enhanced by introducing additional habitat management prac-
ices (García et al. 2021 ). In particular, the installation of nest
oxes influences the presence or activity of cavity-nesting birds
n fruit systems and, therefore, the potential to promote biologi-
al control. By installing nest boxes for western bluebirds ( Sialia
exicana ) in vinyards in California, in the United States, the re-
oval of pest moth larvae was markedly enhanced (Jedlicka et al.
011 ). The installation of nest boxes for American kestrels ( Falco
parverius ) in cherry orchards in Michigan, in the United States,
ed to fewer fruit-eating birds and reduced small mammal activ-
ty (Shave et al. 2018a , Shave et al. 2018b ). On the basis of obser-
ations of fruit removal by fruit-eating birds, American kestrels
ere estimated to reduce cherry loss by 600% as compared to
rchards without active nest boxes, potentially resulting in over
S$2 million added to Michigan’s GDP (Shave et al. 2018a ). Nest
oxes designed for kestrels are also readily used by other insec-
ivores such as eastern bluebirds ( Sialia sialis ) and tree swallows
 Tachycineta bicolor ; Jasinski et al. 2021 ). Finally, barn owls ( Tyto ja-
anica javanica ) in Malaysia palm oil plantations reduce rat abun-
ance and associated fruit damage to levels comparable to that
chieved by rodenticides. Their establishment further keeps palm
ruit damage below the 5% threshold at which rat control pro-
rams are economically justified (Zainal Abidin et al. 2021 ). In ad-
ition to nest box establishment, amended orchard management
ould enhance bird-mediated biological control, but its scientific
nderpinnings require strengthening. 

egetation restoration 

or vascular plants, structural vegetation diversity is a sound
roxy of biodiversity (Sullivan and Sullivan 2006 ). Diversified,
raditional orchards with a varied canopy architecture harbor
pecies-rich weed communities (Norfolk et al. 2013 ), and those
re further enhanced by heterogeneous cover crops (Gomez et al.
018 , Mockford et al. 2022 ) and herbicide phasedown (Terzi et al.
021 ). Functionally diverse cover crops effectively increase veg-
tation cover, lower weed pressure, and sustain plant commu-
ity composition (Haring et al. 2023 ), with cascading benefits for
ower visitors such as pollinators and parasitoids (Kammerer
t al. 2016 , Vaca-Uribe et al. 2021 , Mockford et al. 2022 ). The
ermination of cover crops, such as by roller-crimpers, offers a
alid alternative to herbicides in vineyards and the resulting
ulch aids weed control (Recasens 2024 ), although mowing and



Wyckhuys et al. | 9

Table 1. Measures to enhance pollinator activity and pollination rates in fruit orchards and their respective synergies with biological 
control of pests, weeds and pathogens. 

Measure Examples and effects on pollinators Synergies and trade-offs 

Seminatural 
areas 

SNA can provide complementary floral and nesting resources to fruit orchards 
(Eeraerts et al. 2021 ) and act as reservoirs for pollinators of crops (Ortego et al. 
2024 ). SNA can boost bumblebee colony development in apple orchards 
(Proesmans et al. 2019 ) and dense tropical forest cover around coffee 
plantations increased the richness of flower visiting wild bees (Moreaux et al. 
2022 ). Nearby agroforestry settings enhance pollinator visits in cacao orchards 
(Toledo-Hernández et al. 2021 ). 

Indirect effects: SNA can buffer negative effects of pesticide use in apple orchards 
(Park et al. 2015 ). 

Synergy: SNA can serve as 
reservoirs of both pollinators 
and natural enemies for nearby 
agricultural landscapes (Ortego 
et al. 2024 ). 

Increasing floral 
resources 

Hedges and flower strips can be complementary food resources in fruit orchards 
(von Königslöw et al. 2022 ) and can increase flower visitors (Dhandapani et al. 
2024 ) especially when implemented over several years (Blaauw and Isaacs 
2014 ). A simple measure in fruit orchards can be to mow alleys less frequently. 
Wild bees can also be supported by summer flowering cover crops in vineyards 
(Wilson et al. 2018 ). 

Indirect effects: A diverse diet can offset negative sublethal effects of pesticides 
on wild pollinators (Knauer et al. 2022 , Wintermantel et al. 2022 ). 

Synergy: Floral strips and cover 
crops can enhance natural 
enemies and pest regulating 
services (Geldenhuys et al. 2021 , 
Mateos-Fierro et al. 2021 ). 

Crop and cultivar 
diversity 

Crop diversity benefits pollinator communities in landscapes with SNA (Aguilera 
et al. 2020 ). Bees can spill over from an earlier flowering to a later flowering 
crop (Grab et al. 2017 ) but coblooming crops can also compete for pollinators 
(Osterman et al. 2021 ). Increasing cultivar diversity in fruit orchards can 
prolong crops‘ flowering time and providing flowering resources over a longer 
period, supporting even different pollinator communities (Eeraerts 2022 ). 

Synergy: Crop diversification can 
promote natural enemies 
(Jaworski et al. 2023 ) and favour 
the control of pests and diseases 
(Parisi et al. 2013 ). 

Beekeeping Beekeeping can increase visitation rates of honeybees to crops (Osterman et al. 
2023 ) but might be dependent on landscape hive density rather than on-field 
densities (Eeraerts 2022 ). 

Indirect effects: Managed bees might be competing with wild bees (Angelella et al. 
2021 ). 

Synergy: Managed bees can be 
used as “flying doctors” to vector 
fungal natural enemies (Joshi 
et al. 2020 ). 

Nesting material Provisioning of nesting material can increase Osmia flower visitation rate in 
cherry orchards (Osterman et al. 2023 ) and are used to promote Xylocopa spp. 
for passion fruit orchards (Junqueira et al. 2013 ). More different types of nesting 
material should be tested, as stink stations (i.e., dead fish or meat) can boost 
blow fly visitation rates in mango orchards (Finch et al. 2023 ) and straw bales 
can provide suitable nesting habitats for bumblebees (Lindström et al. 2022 ). 

Synergy: Nesting material could 
potentially host natural enemies 
(Gilpin et al. 2022 ) and 
consequently reduce pest 
pressure. 

Pesticide 
reduction 

Pesticide use can negatively affect wild bees (Park et al. 2015 ). However, the 
reduction of pesticides is often indirectly investigated, by comparing, such as 
organic with IPM or industrial production systems. In organic apple orchards 
more bee species were found compared to in IPM systems (Samnegård et al. 
2019 ), whereas organic vineyards can benefit butterfly species richness 
(Puig-Montserrat et al. 2017 ). 

Indirect effects: Some management alternatives„ such as tillage, could be harmful 
for ground-nesting bees (Ullmann et al. 2016 ). 

Synergy: Increase in natural 
enemies in apple orchards 
(Samnegård et al. 2019 ). 

Trade-off: Can increase pest 
pressure (Samnegård et al. 2019 ). 

Note: For context-specific or place-based solutions, specific reference is made to the relevant crop or cropping system, such as IPM, organic, pesticide-free production 
modalities. Where relevant, examples are also provided for nonfruit orchard systems, such as coffee, cacao or tea. 
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ow-intensity tillage may conserve floristic diversity better than
he above practice (Lisek 2023 ). Furthermore, by favoring con-
umer organisms, low-input orchards may reestablish trophic
ascades and improve vegetation restoration outcomes at a land-
cape scale (Villar 2023 ). 

rade-offs and limitations of 
iodiversity-friendly farming 

iodiversity-friendly farming aims to balance agricultural produc-
ivity or yield and natural resource conservation. However, ad-
ressing both objectives can result in limitations and trade-offs
hat need to be considered. First, even though orchard systems
ffer ample room for yield–biodiversity win–win outcomes (Gong
et al. 2022), biodiversity-friendly systems often carry lower yields
than industrial ones (Seufert et al. 2012 ). Some farmers will there-
fore need to accept lower yields or higher costs in return for im-
proved social–environmental outcomes. However, nonmonetary
outcomes such as bolstered ecosystem functioning or enhanced
farmer health are all too often undervalued. Where relevant,
lower revenues or profits can be offset through incentive pay-
ments (Canales et al. 2024 ), subsidies, premium pricing, such as
for organic or pesticide-free produce, or reduced production costs
(Sánchez et al. 2022). The rising costs of pesticides may discour-
age their use, whereas the effectiveness of financial incentives de-
pends on societal awareness and a willingness and capacity to
pay, either through the tax system or markets. Equally, opportu-
nities for premium pricing may be limited because of a lack of
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erritorial markets, consumer awareness or sufficient labeling
iPES Food 2024 ). Second, because biodiversity-friendly farming
ends to be comparatively labor intensive, rural labor shortages
r an ageing farming population can pose important hurdles.
hese can potentially be countered through the use of small-scale
echanization or robotics (Daum et al. 2023 ). Managing these

rade-offs successfully involves a careful balancing of environ-
ental benefits with economic, social, and productivity outcomes
nd requires a smart deployment of financial incentives, capacity
evelopment, market access improvements, and integrated policy
rameworks (Piñeiro et al. 2020 ). 

uture research directions or hypotheses 

o effectively transform intensively managed fruit orchards into
esilient, biodiversity-rich landscape hubs, a series of scientific
nd social challenges need to be resolved: 

unding and institutional support for long-term 

rojects 
any of the proposed methods, such as the manipulation of on-
nd off-farm habitat or the restoration of ecological balance in
nvaded areas, are based on complex ecological systems and re-
uire long-term projects to be implemented and evaluated. To
hed light on their multifaceted benefits, these projects will re-
uire longer time horizons than the short-cycle projects that are
ommonly funded. 

mplementation of area-wide projects 
or technologies such as classical biological control, mating
isruption, or the sterile insect technique, area-wide imple-
entation has generated immense social–ecological benefits

Hendrichs et al. 2021 ). When implemented at similar scales
nd through multistakeholder involvement, conservation or
ugmentation tactics are prone to deliver outcomes of similar
agnitude. Multidisciplinary projects. 
Multidisciplinary projects are needed to evaluate multifunc-

ional benefits and resolve potential trade-offs that result from
onchemical pest management. For instance, the use of cover
rops may exacerbate water or nutrition competition in arid or
ow-fertility conditions impacts that remain obscured in monodis-
iplinary research efforts. 

unds, infrastructure, and local technoscientific 
apacity 

unds, infrastructure, and local technoscientific capacity are
entral to the promotion of biological control, especially in devel-
ping countries. Critical momentum can be generated through
onsumer demand for biodiverse, low-emission ecosystems or
groecosystems or pesticide-free produce. Equally, the establish-
ent of local biological control companies can help to ensure
ufficient availability of high-quality natural enemies. In this
rocess, targeted investments from national and international
gencies or philanthropy or through markets for biodiversity
redits (Antonelli et al. 2024 ) can lend a vital stimulus. 

he complexity of orchard ecosystems 
he complexity of orchard ecosystems, including the multitude
f (native, invasive) herbivores, in different contexts or regions
nd the context specificity of management measures (e.g., Walker
t al. 2024 ) could pose a challenge. Big data approaches (Rosen-
eim and Gratton 2017 ), although they are limited by the
vailability of standardized methodologies in many parts of the
orld, may produce useful predictive tools in the future. Net-
orked trials, standardization of data collection methodologies,
nd crowdsourcing data from farmers, such as achieved that
hrough the 1000 Farms Initiative (Brock et al. 2024 ) should be
ncouraged to make these kinds of data more available. 

ovel molecular techniques 
ovel molecular techniques, such as metabarcoding and next-
eneration sequencing, as well as automated image analysis pro-
ide, alongside with traditional tools, the opportunity to unravel
rophic links faster and in more detail than ever before (Miller
t al. 2021 , Rondoni et al. 2024 ). 

ultidimensional and multiscale performance 

riteria 

ultidimensional and multiscale performance criteria are essen-
ial to holistically capture social–ecological outcomes and bun-
les of One Health benefits (e.g., Darmaun et al. 2023 ). By steer-
ng clear of yield-only metrics, stakeholders can appreciate the
angible benefits of biological control on farm-level revenue or re-
urn on investment (Naranjo et al. 2015 ). Also, to properly allocate
esources into different strategies, opportunity costs need to be
oncurrently considered in monetary terms and social or nonmar-
et values, including human health and biodiversity or ecosystem
etrics (Lee et al. 2024 ). 

nternational networking and knowledge transfer
nternational networking and knowledge transfer is critical to the
lobal advancement of biological control. Although national re-
earch institutions and academia feature as prominent actors
Wyckhuys and Hadi 2023 ), transnational institutions, such as the
GIAR and specialized UN agencies such as FAO ideally also step
o the fore. 

chieving behavioral change at scale 

nnovative measures, even those anchored in biodiversity or
cological processes, can be disruptive and can create gales of
reative destruction that transform established sociotechnical
tructures (Schumpeter 1942 ). However, in industrial agricul-
ure, standalone technologies such as biological control have
rregularly generated net positive outcomes over space and time
González-Chang et al. 2020) and routinely face pushback from
anufacturers of incumbent technologies such as agrochem-

cals. This has been embodied in the European Union struggle
o retain pesticide reduction goals in its Farm to Fork Strategy.
he latter has been marred by farmer protests, misinformation
ampaigns, and fickle decision-making. These issues could be
efused through inclusive consultation and cocreation processes
ith due involvement of farmers, as well as agroecology or
iological control constituencies, and by treating crop protection
s an integral part of orchard or agrolandscape management.
lso, the emergence of pesticide-free, nonorganic production as
 disruptive third-way strategy (Finger and Möhring 2024 ) can
ower implementation hurdles and reduce the yield penalties
ied to organic production while generating traction for biological
ontrol. Equally, an enhanced recognition of the multifunctional
enefits of agroforestry and cover crops (Barrios et al. 2018 ,
ouëdel et al. 2019 , Tamburini et al. 2020 ) can create unprece-
ented opportunities for their deployment as biological control
olutions. Individual solutions are also to be tactically bundled—
s in Tephritid fruit fly mitigation packages (table 2 )—and
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Table 2. Effective bundling of biological control with compatible technologies in area-wide mitigation programs for Tephritid fruit flies 
in the Americas and Spain. 

Pest management strategies 

Species Country Baited traps Cultural Chemical Biological Sterile insect technique 

Anastrepha ludens M X X X X X 
Anastrepha obliqua M X X X X X 

Br, Co, E – –
Anastrepha serpentina M X X X X –
Anastrepha striata Co, M X X X – –
Anastrepha suspensa – X X X – –
Anastrepha grandis Br, Pa X X X – –
Anastrepha fraterculus A, Br, E, Co, Pe X X X X –
Bactrocera oleae S, U X X X X –
Bactrocera carambolae Br X – X X –
Ceratitis capitata A, Br, Bo, E, Ch, Co, G, M, Pe, S, U X X X X X 

Note: Programs target various Anastrepha , Bactrocera and Ceratitis spp. in citrus, mango, hog plum, guava, sapodilla, mamey sapote, olive, apple or cucurbits, among 
others. Traps are baited with nontoxic lures, such as torula yeast pellets, protein hydrolysate, ammonium bicarbonate, or sex pheromones. Cultural practices involve 
the periodic removal of infested or unharvested fruits (eventually to be transferred to mesh-covered augmentoria, from which small-bodied parasitoids can escape; 
Deguine et al. 2011 ), whereas chemical control entails an attract-and-kill approach using spot applications of spinosad-based bait sprays. Biological control relies 
on resident biota or scheduled releases of laboratory-reared parasitoids, such as Diachasmimorpha longicaudata , Psytallia humilis , or Psytallia lounsburyi . Phytosanitary 
regulations, such as the delineation of fruit fly free areas and postharvest treatments, are not listed. Abbreviations : A, Argentina; Bo, Bolivia; Br, Brazil; Ch, Chile; Co, 
Colombia; E, Ecuador; G, Guatemala; M, Mexico; Pa, Panama; Pe, Peru; S, Spain; U, United States. 
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ntegrated with emerging technologies. This involves pairing nat-
ral enemy releases with nectar-bearing plants (Patt and Rohrig
017 , Tougeron et al. 2023 ) or artificial food sources (Tena et al.
015 ), exploiting synergies between microbial and invertebrate
atural enemies (Koller et al. 2023 , but see Heve et al. 2021 ), and
oncurrently harnessing ecosystem processes that occur above
nd below ground. It also entails combining natural enemy-based
easures with scheduled releases of sterile males (i.e., the sterile

nsect technique), volatile mating disruption or mass trapping
Horner et al. 2020 , Stupp et al. 2021 ), exclusion netting or glue
trips (Marshall and Beers 2023 , Lu et al. 2024 ), behavior-based
recision treatments (Blaauw et al. 2015 ), bred or engineered
arietal resistance, robotics, or sensor-equipped early-warning
ystems. As standalone technologies, the sterile insect technique
educed codling moth populations in New Zealand apple orchards
y 90%–99% over a 6-year time frame (Horner et al. 2020 ), whereas
erimeter sprayings can keep the invasive H. halys at bay with up
o 61% lower insecticide volumes (Blaauw et al. 2015 ). Therefore,
n early stages of pesticide phase down, border-only sprayings
gainst herbivores that exhibit strong edge effects (Blaauw et al.
015 ) can promote biological control by leaving most of the crop
nsprayed and therefore hospitable for natural enemies. New
ruit crop varieties, such as fungus resistant grape varieties, could
educe fungicide use by 60%–90% in vineyards (Finger et al. 2023 ),
nd their integration with alternative pest and weed management
an generate further benefits. Laser-guided sprayings or drone-
ased delivery of biopesticides can then provide curative control
here needed (Chen et al. 2020 ). However, not all technologies
re mutually compatible or benefit different functional guilds to
qual extent: High-density plantings (Lang 2019 ) and netting in
igh-value crops (Manja and Aoun 2019 ) can enhance biological
ontrol but may hamper insect pollination. Overall, the effective
eployment or codeployment of this diverse range of tools im-
oses in-depth ecological insights or so-called ecological literacy
n behalf of scientists and growers alike (Wyckhuys et al. 2019 ).
ndeed, when compared with technological fixes such as synthetic
esticides, biodiversity-based strategies tend to be knowledge
ntensive. Ultimately, success derives from a combination of
ultiple compatible practices into a functioning orchard system

Fenster et al. 2021 , Baaken 2022 ) and routinely translates into
added social–ecological resilience and wider profit margins for
farmers. 

Fruits’ elevated pesticide hazard load (figure 1 ) underscores
how a large-scale adoption of nature-based crop protection is crit-
ically lagging. Indeed, its global diffusion is hampered by reduc-
tionism, silo approaches, and insufficient collaboration with the
social sciences (Mansfield et al. 2023 , Wyckhuys et al. 2023 ). Closer
farmer–scientist interaction, such as through participatory on-
farm trials or living laboratories could engage fruit growers (Belien
et al. 2021 ), enable discovery-based learning, and fortify ecologi-
cal literacy. Indeed, although farmers may very well appreciate
the role of pollinators (e.g., managed honeybee; Park et al. 2020 )
and the agronomic benefits of cover crops (Cosgray et al. 2023 ),
they possess scant knowledge of natural enemies and ways to
deploy them (Wyckhuys et al. 2019 ). There are, however, excep-
tions: Oregon pear growers readily value biological control and
are even willing to pay an extra US$109 per hectare to protect
resident natural enemies (Gallardo and Wang 2013 ). Knowledge
cocreation approaches also play a crucial role in generating lo-
cally specific and context-appropriate knowledge (Coe et al. 2014 ,
Hölting et al. 2022 ), which is especially important given the high
levels of spatiotemporal variability in agroecological systems. To
tap the area-wide service of nature-friendly orchard manage-
ment, a critical mass of adopters or so-called mass action is of-
ten needed (Nahar et al. 2024 ). Also, to steer decision-making, sci-
entists need to record decision-relevant endpoints, such as profit
or return on investment (Kleijn et al. 2019 ), and to communicate
the superior product quality that results from biological control
(Martínez-Sastre et al. 2020 ) to value chain actors such as retailers
(Macfadyen et al. 2015 ) and consumers (Wyckhuys et al. 2020 ).
Overall, multicriteria analyses that capture win–win outcomes (or
large wins and small losses) in terms of fruit yield, harvest quality,
revenue, biodiversity recovery, or food safety hazards are central
in farmer extension and policy advocacy alike. Furthermore, the
lowering of cosmetic standards for certain food items and con-
sumers’ or retailers’ acceptance of imperfectly shaped or blem-
ished produce could go a long way in phasing down pesticide us-
age. Finally, when pursuing regulatory change and advocating for
alternative forms of agrifood production at national or regional
scales, regulators are to be properly insulated from public or
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rivate sector pressure, popular perceptions or misperceptions,
nd populist excesses (Kuran and Sunstein 1998 ). Much is to be
mproved in this domain. 
On many fronts, enabling pesticide policies and regulations of-

ers an important leverage point to advance biodiversity-friendly
rchard management. Most countries have implemented legisla-
ive frameworks to regulate pesticide registration and approval
nd to establish maximum residue limits for pesticide residues on
ommodities used for food or feed (Handford et al. 2015 ). Some
urisdictions have also established guideline values to regulate
esticide concentrations in the soil (Jennings and Li 2014 ), on
he surface, and in the ground water (Li and Fantke 2022 ) and
tmosphere (Huang and Li 2024 ). However, despite harmoniza-
ion efforts by several international bodies (Handford et al. 2015 ,
ubiak–Hardiman et al. 2023 ), pesticide legislation varies widely
cross jurisdictions. Regulatory values can vary by orders of mag-
itude (Li and Fantke 2022 ), with Global North countries gener-
lly having more stringent pesticide regulations than those in the
lobal South, where limited resources and expertise hinder effec-
ive implementation and enforcement (Handford et al. 2015 ). Even
ithin the Global North, disparities exist; for example, the Euro-
ean Union has stricter pesticide regulations and sets markedly
ower maximum residue limits than the United States (Handford
t al. 2015 ). Meanwhile, the registration process for low-risk alter-
atives such as biological control invertebrates or biopesticides
s overly protracted in the European Union while being stream-
ined in countries such as Brazil, Kenya, and even the United
tates. These disparities pose challenges for the large-scale im-
lementation of biological control strategies, because the coun-
ries with more relaxed pesticide regulations and enforcement
end to provide fewer incentives for farmers to adopt nonchemi-
al pest management. Equally, fast-track registration procedures
r even waivers are key to ensuring that best-bet approaches such
s biopesticides become readily available to fruit growers. 
Given the absence of critical amounts of species-rich natural

abitat in most present-day farmland, sustainably managed or-
hards pose a powerful lever to rebuild ecosystem service delivery,
ncrease trophic diversity, and facilitate restoration at a landscape
evel. In these temporally stable habitats, biological control—as
ntegrated with complementary tools and technologies—offers a
iable means to alleviate anthropogenic disturbances, harness
esident biodiversity, and uplift farmer livelihoods. Integrative ap-
roaches together with international and cross-disciplinary col-
aboration can tap its full potential and unlock the cornucopia of
ne Health benefits of fruticulture worldwide. 
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