Paddy Rice Cultivation as GHG Mitigation Option in Organic Soils – RiceClim Project

Sonja Paul¹, F. Gschwend², S. Nohl^{1,3}, C. Wüst-Galley¹, M. Jocher¹, M.C. Schoelmerich³, S. Szidat^{4,5}, J. Leifeld¹, C. Ammann¹

¹Climate and Agriculture Group, Agroscope, ²Molecular Ecology Group, Agroscope, ³Environmental Microbiology, ETH Zürich, ⁴Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, ⁵Oeschger Centre for Climate Change Research, University of Bern

Background

Overall Aims

Drained organic soils are significant sources of greenhouse gases (GHGs). Rewetting these soils improves the GHG balance, but it is often associated with the abandonment of agriculture. In Switzerland, paddy rice has been successfully cultivated since 2017 and has become an economically viable local niche product. The RiceClim project, running from May 2025 to April 2029, aims to evaluate the potential for mitigating GHG emissions through paddy rice cultivation.

Practical recommendations to reduce

the GHG balance of paddy rice cultivation on organic soils

Field (ha)

Does paddy rice have a lower climatic impact than drained cropland?

Which taxonomic and functional differences exist between microbial communities in paddy rice and adjacent drained cropland soils?

- Annual budget of CO₂, CH₄, N₂O,
- 16S (archaea and bacteria), mcrA, pmoA,
- soil properties

Mesocosm facility (m²): Residue management

Can the addition of biochar and the removal of straw improve the GHG balance?

Process understanding

How are CH₄ emissions related to microbial communities and functional markers?

What are the contributions of straw and old peat to CH_4 and CO_2 fluxes?

Can biochar reduce the amount of co-metabolized peat and recent carbon?

Incubation (cm²)

Can biochar effectively reduce CH₄ emissions in different soils?

Is a high soil organic carbon (SOC) level associated with increased CH₄ emissions?

How do electron acceptors affect the microbial communities and CH₄ emissions?

16S, mcrA, pmoA

Swiss National

Science Foundation

- SO42-, NO3-, DOC, Fe3+
- ¹⁴CO₂

- 16S, mcrA, pmoA
- SO₄²⁻, NO₃⁻, DOC, Fe³⁺

Schweizerische Eidgenossenschaft Confédération suis Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs, Education and Research EAER Agroscope

Swiss Confederation