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Summary

The worldwide food demand is expected to increase by 35% to 56% between 2010 and 2050
due to the growing world population. At the same time, about a third of earth’s land surface is
already used for agriculture. To increase agricultural production, without expanding the land
under cultivation or increasing agrochemical inputs used, sustainable ways of intensification
are necessary.

One approach of sustainable intensification is to breed high-performance genotypes that are
well adapted to specific environments, and breeding was instrumental in the sharp increase in
yields since the Green Revolution. Nevertheless, yields of important field crops, including wheat
(Triticum aestivum L.), have stagnated since the late 1990s. This has significant implications
for future food security, as wheat is one of the most important staple crops. Calories from
wheat supplied up to 21%of the energy consumed by humans.

Genetic gain of wheat was shown to not have declined, and under optimal conditions,
increased grain yields can still be realized. But genetic gains were in part counteracted by
climate change, which comes with a higher frequency of adverse growing conditions such as
drought and heat during sensitive growing stages and leads to a climate that is generally less
favorable for agriculture, especially in temperate and hot climates.

Thus, further efforts should focus on adapting genotypes and management practices to
local conditions and climates, as interactions between genotypes and environments (G⇥E) but
also management (G⇥E⇥M) are responsible for large variability in grain yields. Developing
and identifying optimal genotypes for specific environments is paramount to closing the gap
between the attainable and the realized yield.

Plant breeding allows for the development of improved varieties. To translate genetic
progress in breeding into higher yields, the most suitable genotypes must be used in specific
environments. Thus, breeding must be paralleled with a thorough characterization of variety
performance in respective environments by conducting multi-environment trials (MET) for
variety testing. Results of variety testing are published in annual lists of recommended varieties
to allow farmers and other stakeholders to choose varieties that meet the market goals in their
specific environments and soils.

Typical traits monitored in variety testing are grain yield at 15% water content, lodging
resistance, early maturity, early heading, sprouting, overwintering, plant height, thousand
kernel weight, hectoliter weight, resistance to various diseases such as powdery mildew, rusts,
different Septoria species and Fusarium head blight. On harvested grains, the baking quality,
the sedimentation index (Zeleny test), and the protein content are evaluated. These traits are
typically still assessed by field observations or laboratory analysis, which is labor intensive and
costly, especially since variety testing usually uses METs and thus traits must be assessed on
multiple sites. In breeding, high-throughput field phenotyping (HTFP) methods were proposed
and developed to make the assessment of plant traits more efficient and also to assess novel
traits.

Variety testing could also profit from new HTFP methods, but many of these methods have
been tested experimentally under relatively controlled conditions and still have a relatively low
technology readiness level (TRL). They have thus not yet been established in the daily practice
or variety testing. To close the gap between basic research and methods that are actually
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applied by variety testing organizations to finally benefit farmers’ production, translational
research is necessary.

This thesis focuses on “lean phenotyping” as one aspect of translational research in the
context of variety testing. Many of the proposed HTFP workflows are just too expensive
in terms of initial investments, operational costs, and labor to be applied in variety testing,
especially as within MET, multiple sites must be measured. Switching to cheaper equipment
or simplifying workflows is often not easily possible, as the quality of the measured traits is
too poor for beneficial integration into variety testing.

Lean phenotyping in this context is understood as translational research to design workflows
in such a way that results of sufficient quality can be generated even with more affordable
sensors or that the costs of high-quality methods can be reduced. Another aspect concerns
the use of new technologies or sensors to measure new traits, provided that they add value
for variety testing. The ultimate goal in lean phenotyping is to develop methods with an
acceptable balance of costs and benefits.

This thesis was carried out within the Agroscope “Production Technology & Cropping
Systems Group”, which is responsible for the official variety testing of wheat and other cereals
in Switzerland. The thesis is committed to translational research on phenotyping methods
for variety testing to further develop them toward lean phenotyping. It aims to evaluate and
increase the TRL of existing phenotyping methods under realistic variety testing conditions.
Therefore, three optical lean phenotyping methods, drone-based thermal cameras, PhenoCams,
and chlorophyll fluorescence sensors were developed, adapted, and examined.

Airborne thermography is a promising method for measuring canopy temperature (CT)
to examine the relative fitness of a plant in an environment, especially in the context of heat
and drought. With the development of drone-based thermal cameras, airborne thermography
became easily accessible and affordable. However, the high variability of CT data from
such uncooled thermal cameras makes interpretation very challenging and hindered the broad
adoption of this new technology. Therefore, a multi-view approach was adapted for drone-based
thermal cameras. Without changing the equipment used, but only with a novel and more
comprehensive statistical analysis pipeline, the temporal and spatial variability of CT could
be estimated and corrected, allowing for more genotype-specific and consistent measurements.
This increased the interpretability of CT, thereby rendering thermal imaging more applicable
and therefore more interesting as a phenotyping method in wheat variety testing.

However, CT is an ephemeral trait and influenced by many factors in the short term. The
thermal sensor and CT itself are very sensitive to confounding environmental influences. In
addition, viewing geometry related effects add uncertainty to CT estimates. These effects
mask experimental sources of variance, such as different genotypes and treatments, and while
CT is mostly considered a proxy measure of stomatal conductance, the trait also features
phenotypic correlations with other traits such as plant height or fractional canopy cover.
To gain a thorough understanding of CT as a trait, the sources of variance of drone-based
uncooled thermography were thoroughly examined based on 99 flights. Using the thermal
multi-view approach developed in the previous step, more than 96.5% of the initial variance
could be explained on average by experimental and confounding sources of variance combined.
The insights gained support the planning, conducting, and interpretation of drone-based CT
screenings in variety testing.

While drone-based CT represents a new trait that could be useful in the context of
evaluating varieties and their resistance to drought and heat, this thesis also developed methods
to screen established traits more efficiently and objectively. It is crucial to know the timing
of phenological stages and the senescence behavior of genotypes to select for locally adapted
varieties and to plan crop management accordingly. Knowing the timing of phenological stages
also allows for a more meaningful interpretation of G⇥E interactions. Capturing these traits
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with frequent field visits is very time-consuming. A semimobile PhenoCam setup was used to
track phenology and senescence from ear emergence to full maturity. An economic analysis
revealed that PhenoCams are economically interesting for observing distant experimental
sites. Thus, PhenoCams offer a cost-effective replacement of visual ratings of phenology and
senescence, especially in the context of MET.

As for evaluating the timing of phenological stages and senescence, the rating of plant disease
infestations under field conditions is time-consuming and prone to subjectivity. Chlorophyll
fluorescence (CF) was proposed as a tool to track and rate Fusarium head blight infestations
and this chapter explored the potential and limitations of CF methods under field conditions.
A hand-held CF sensor was used to track Fusarium infestations first in a greenhouse trial
and the method was then transferred to a field trial and tested for two seasons, together
with a CF imaging approach. The tested methods worked well in high-level infestations, but
it is hypothesized that they would fail at low-level infestations due to a too low number of
measurements and the throughput of the method would need to be increased drastically, e.g.
by automatization with field robots.

This work provides methodologies and insight for three optical lean phenotyping methods
in the context of wheat variety testing. For drone-based thermography, a novel statistical
approach was developed to handle the large variability of such data and the approach was
applied to examine the manifold sources of variance in CT estimates based on thermal images.
PhenoCams were applied to observe phenology and senescence and finally the potential of
chlorophyll fluorescence to track the disease progression of Fusarium in field conditions was
examined.
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Zusammenfassung

Die weltweite Nahrungsmittelnachfrage wird, bedingt durch das Bevölkerungswachstum zwi-
schen 2010 und 2050, voraussichtlich um 35% bis 56% steigen. Gleichzeitig wird bereits etwa
ein Drittel der Erdoberfläche für die Landwirtschaft genutzt. Um die landwirtschaftliche Pro-
duktion zu steigern, ohne die Anbaufläche auszudehnen oder den Einsatz von Agrochemikalien
zu erhöhen, sind nachhaltige Intensivierungsmethoden notwendig.

Ein Ansatz der nachhaltigen Intensivierung ist die Züchtung von Hochleistungsgenotypen,
die an spezifische Umweltbedingungen gut angepasst sind. Die Pflanzenzüchtung spielte
eine entscheidende Rolle beim starken Ertragsanstieg seit der Grünen Revolution. Dennoch
stagnieren die Erträge wichtiger Feldfrüchte, darunter Weizen (Triticum aestivum L.), seit den
späten 1990er Jahren. Dies hat erhebliche Auswirkungen auf die künftige Ernährungssicherheit,
da Weizen eines der wichtigsten Grundnahrungsmittel ist. Kalorien aus Weizen liefern bis zu
21% der von Menschen konsumierten Energie.

Es wurde gezeigt, dass der genetische Fortschritt bei Weizen nicht zurückgegangen ist und
unter optimalen Bedingungen weiterhin Ertragssteigerungen erzielt werden können. Allerdings
wurden die genetischen Gewinne teilweise durch den Klimawandel ausgeglichen, der häufigere
ungünstige Wachstumsbedingungen wie Dürre und Hitze in sensiblen Wachstumsphasen mit
sich bringt und zu einem allgemein weniger günstigen Klima für die Landwirtschaft führt,
insbesondere in gemässigten und heissen Klimazonen.

Daher sollten weitere Anstrengungen darauf abzielen, Genotypen und Anbaumassnahmen
an lokale Bedingungen und Klimazonen anzupassen, da Wechselwirkungen zwischen Geno-
typen und Umweltbedingungen (Genotype⇥Environment: G⇥E) sowie dem Management
(Genotype⇥Environment⇥Management: G⇥E⇥M) für eine grosse Variabilität der Kornerträge
verantwortlich sind. Die Entwicklung und Identifizierung optimaler Genotypen für spezifi-
sche Umweltbedingungen ist von entscheidender Bedeutung, um die Lücke zwischen dem
erreichbaren und dem tatsächlich realisierten Ertrag zu schliessen.

Die Pflanzenzüchtung ermöglicht die Entwicklung verbesserter Sorten. Um den gene-
tischen Fortschritt in der Züchtung in höhere Erträge umzusetzen, müssen die am besten
geeigneten Genotypen in spezifischen Umweltbedingungen eingesetzt werden. Daher muss die
Züchtung mit einer umfassenden Charakterisierung der Leistung von Sorten in den jeweiligen
Umweltbedingungen einhergehen, indem Versuche unter verschiedenen Umweltbedingungen
(multi-environment trials: MET) zur Sortenprüfung durchgeführt werden. Die Ergebnisse der
Sortenprüfung werden in jährlichen Listen empfohlener Sorten veröffentlicht, um Landwirten
und anderen Marktakteuren die Auswahl von Sorten zu ermöglichen, die die Marktanforderun-
gen in ihren spezifischen Umweltbedingungen und Böden erfüllen.

Typische Merkmale, die in der Sortenprüfung beobachtet werden, sind Kornertrag bei
15% Wassergehalt, Lagerfestigkeit, Frühreife, Frühzeitigkeit des Ährenschiebens, Neigung zum
Auswuchs, Überwinterung, Pflanzenhöhe, Tausendkorngewicht, Hektolitergewicht sowie die
Resistenz gegen verschiedene Krankheiten wie Mehltau, Rostarten, verschiedene Septoria-Arten
und Ährenfusariose. An geerntetem Getreide werden die Backqualität, der Sedimentationswert
(Zeleny-Test) und der Proteingehalt bewertet. Diese Merkmale werden typischerweise noch
durch Feldbeobachtungen oder Laboranalysen erfasst, was arbeitsintensiv und kostspielig
ist, insbesondere da die Sortenprüfung in METs durchgeführt wird und somit Merkmale
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an mehreren Standorten bewertet werden müssen. In der Züchtung wurden Methoden des
Hochdurchsatz-Phänotypisierens (high-throughput field phenotyping: HTFP) vorgeschlagen
und entwickelt, um die Bewertung von Pflanzenmerkmalen effizienter zu gestalten und neue
Merkmale zu erfassen.

Auch die Sortenprüfung könnte von neuen HTFP-Methoden profitieren, doch viele dieser
Methoden wurden bisher nur experimentell unter relativ kontrollierten Bedingungen getestet
und haben noch einen relativ niedrigen technologischen Reifegrad (technology readiness level:
TRL). Sie wurden daher noch nicht in die tägliche Praxis der Sortenprüfung übernommen. Um
die Lücke zwischen der Grundlagenforschung und den in der Praxis angewandten Methoden
der Sortenprüfung zu schliessen, ist translationale Forschung erforderlich.

Diese Dissertation konzentriert sich auf das Konzept des "Lean Phenotyping" als ein Aspekt
der translationalen Forschung im Kontext der Sortenprüfung. Viele der vorgeschlagenen HTFP-
Workflows sind für die Sortenprüfung aufgrund hoher Anfangsinvestitionen, Betriebskosten
und des hohen Arbeitsaufwands zu teuer, insbesondere da innerhalb von METs mehrere
Standorte gemessen werden müssen. Der Gebrauch von günstigeren Instrumenten oder die
Vereinfachung von Arbeitsabläufen ist oft nicht ohne weiteres möglich, da die Qualität der
gemessenen Merkmale zu gering ist, um eine vorteilhafte Integration in die Sortenprüfung zu
ermöglichen.

Lean Phenotyping wird in diesem Kontext als translationale Forschung verstanden, um
Arbeitsabläufe so zu gestalten, dass Ergebnisse von ausreichender Qualität auch mit erschwing-
licheren Sensoren erzielt oder die Kosten hochwertiger Methoden reduziert werden können. Ein
weiterer Aspekt betrifft die Nutzung neuer Technologien oder Sensoren zur Erfassung neuer
Merkmale, sofern sie einen Mehrwert für die Sortenprüfung bieten. Das ultimative Ziel des
Lean Phenotyping ist die Entwicklung von Methoden mit einem akzeptablen Kosten-Nutzen-
Verhältnis.

Diese Dissertation wurde innerhalb der Agroscope Gruppe "Anbautechnik und Sorten
Ackerbau " durchgeführt, die für die offizielle Sortenprüfung von Weizen und anderen Getrei-
dearten in der Schweiz verantwortlich ist. Die Dissertation widmet sich der translationalen
Forschung zu Phänotypisierungsmethoden für die Sortenprüfung, um diese in Richtung Lean
Phenotyping weiterzuentwickeln. Ziel ist es, den TRL bestehender Phänotypisierungsmethoden
unter realistischen Sortenprüfungsbedingungen zu bewerten und zu erhöhen. Daher wurden drei
optische Lean Phenotyping Methoden entwickelt, angepasst und untersucht: drohnenbasierte
Wärmebildkameras, PhenoCams und Chlorophyllfluoreszenz Sensoren.

Die luftgestützte Thermografie ist eine vielversprechende Methode zur Messung der Bestan-
destemperatur (canopy temperature: CT), um die relative Fitness einer Pflanze in bestimmten
Umweltbedingungen zu bewerten, insbesondere im Kontext von Hitze und Trockenheit. Mit
der Entwicklung drohnenbasierter Wärmebildkameras wurde die luftgestützte Thermografie
leicht zugänglich und erschwinglich. Allerdings erschwert die hohe Variabilität der CT-Daten
solcher ungekühlten Wärmebildkameras die Interpretation erheblich und verhinderte eine
breite Anwendung dieser neuen Technologie. Daher wurde ein Multi-View-Ansatz für drohnen-
basierte Wärmebildkameras adaptiert. Ohne Änderung der verwendeten Ausrüstung, sondern
allein durch eine neuartige und umfassendere statistische Analysepipeline, konnte die zeitliche
und räumliche Variabilität der CT geschätzt und korrigiert werden. Dies ermöglichte eine
spezifischere und konsistentere Messung der Genotypen, wodurch die Interpretierbarkeit der
CT verbessert wurde und thermografische Bildgebung als Phänotypisierungsmethode für die
Weizensortenprüfung interessanter wurde.

Allerdings ist CT ein flüchtiges Merkmal, das kurzfristig von vielen Faktoren beeinflusst
wird. Der Wärmesensor und die CT selbst sind sehr empfindlich gegenüber störenden Umwelt-
einflüssen. Darüber hinaus erzeugen Effekte im Zusammenhang mit der Betrachtungsgeometrie
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Unsicherheiten in den CT-Schätzungen. Diese Effekte überdecken experimentelle Varianz-
quellen wie unterschiedliche Genotypen und Behandlungen. Obwohl CT hauptsächlich als
Proxy-Mass für die stomatäre Leitfähigkeit betrachtet wird, zeigt dieses Merkmal auch phäno-
typische Korrelationen mit anderen Merkmalen wie Pflanzenhöhe oder Bodenbedeckung. Um
ein umfassendes Verständnis von CT als Merkmal zu gewinnen, wurden die Varianzquellen
der drohnenbasierten ungekühlten Thermografie anhand von 99 Flügen eingehend untersucht.
Mithilfe des im vorherigen Schritt entwickelten thermischen Multi-View-Ansatzes konnten
durchschnittlich mehr als 96.5% der ursprünglichen Varianz durch experimentelle und stören-
de Varianzquellen erklärt werden. Die gewonnenen Erkenntnisse unterstützen die Planung,
Durchführung und Interpretation von drohnenbasierten CT-Screenings in der Sortenprüfung.

Während die drohnenbasierte CT ein neues Merkmal darstellt, das für die Bewertung von
Sorten und ihrer Widerstandsfähigkeit gegenüber Trockenheit und Hitze nützlich sein könnte,
wurden in dieser Dissertation auch Methoden zur effizienteren und objektiveren Erfassung
etablierter Merkmale entwickelt. Es ist entscheidend, den Zeitpunkt der phänologischen
Stadien und das Seneszenzverhalten von Genotypen zu kennen, um lokal angepasste Sorten
auszuwählen und das Kulturmanagement entsprechend zu planen. Das Wissen über den
Zeitpunkt der phänologischen Stadien ermöglicht auch eine aussagekräftigere Interpretation
von G⇥E-Interaktionen. Die Erfassung dieser Merkmale durch häufige Feldbesuche ist jedoch
sehr zeitaufwendig. Ein semimobiles PhenoCam-Setup wurde verwendet, um die Phänologie
und Seneszenz vom Ährenschieben bis zur vollständigen Reife zu verfolgen. Eine wirtschaftliche
Analyse ergab, dass PhenoCams für die Beobachtung entfernter Versuchsfelder wirtschaftlich
interessant sind. Somit bieten PhenoCams eine kostengünstige Alternative zu visuellen
Bewertungen der Phänologie und Seneszenz, insbesondere im Kontext von MET.

Ebenso wie die Bewertung des Zeitpunkts der phänologischen Stadien und der Seneszenz
ist die Bewertung von Pflanzenkrankheitsbefällen unter Feldbedingungen zeitaufwendig und
subjektiv. Chlorophyllfluoreszenz (CF) wurde als Werkzeug vorgeschlagen, um Ährenfusariosen
zu beobachten und zu bonitieren. In diesem Kapitel wurden das Potenzial und die Grenzen von
CF-Methoden unter Feldbedingungen untersucht. Ein tragbarer CF-Sensor wurde zunächst in
einem Gewächshausversuch zur Erfassung von Fusarium-Befall eingesetzt; anschliessend wurde
die Methode in einen Feldversuch übertragen und über zwei Vegetationsperioden getestet,
zusammen mit einem CF-Bildgebungsansatz. Die getesteten Methoden funktionierten gut
bei starkem Befall, es wird jedoch vermutet, dass sie aufgrund einer zu geringen Anzahl
von Messungen, bei niedrigen Befallsstärken nicht funktionieren würden. Der Durchsatz der
Methode müsste drastisch erhöht werden, z.B. durch Automatisierung mit Feldrobotern.

Diese Arbeit liefert Methoden und Erkenntnisse zu drei optischen Lean Phenotyping Me-
thoden im Kontext der Weizensortenprüfung. Für die drohnenbasierte Thermografie wurde ein
neuartiger statistischer Ansatz entwickelt, um die hohe Variabilität solcher Daten zu bewältigen,
und dieser wurde angewendet, um die vielfältigen Varianzquellen in CT-Schätzungen auf Basis
thermografischer Bilder zu untersuchen. PhenoCams wurden eingesetzt, um Phänologie und
Seneszenz zu beobachten, und schliesslich wurde das Potenzial der Chlorophyllfluoreszenz zur
Verfolgung der Krankheitsprogression von Fusarium unter Feldbedingungen untersucht.
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1 General introduction

1.1 The need for improved and adapted crop genotypes

With the world population projected to reach 9.7 billion people by 2050, food demand is
expected to increase by 35% to 56% between 2010 and 2050 (Van Dijk et al., 2021) and
humanity is challenged to respond to this growth in demand with an increased food production.
Expanding land under cultivation or intensifying agriculture using more inputs, such as
agrochemicals and fertilizers, increases yield, but both strategies have significant adverse
effects such as environmental pollution, loss of biodiversity, and negative impacts on rural
communities (Kamau et al., 2023). This highlights the need for a sustainable intensification,
to produce “more food with less environmental impact” (Godfray and Garnett, 2014).

One approach of sustainable intensification is to breed high-performance genotypes that are
well adapted to specific environments. Breeding has been instrumental in the sharp increase
in yields since the Green Revolution (T. Fischer et al., 2014; Crespo-Herrera et al., 2017) by
developing new genotypes that are more efficient in the conversion of inputs into yield and
more adapted to more intensive agricultural practices (M. P. Reynolds, Borrell, et al., 2019).
Nevertheless, yields of important field crops, including wheat (Triticum aestivum L.), have
stagnated in important growing regions across the world since the late 1990s (Ray et al., 2012;
Schauberger et al., 2018).

Yet, for wheat, genetic gain was shown to not have declined (e.g. Brisson et al., 2010;
Gerard et al., 2024). Thus, under optimal conditions, with plants growing to their full potential,
increased grain yields can still be realized. However, genetic gains were counteracted in part
by climate change. With a higher frequency of adverse growing conditions such as drought and
heat during sensitive growth stages, climate change leads to climates that are generally less
favorable for agriculture. These trends apply to many regions in temperate climates (Brisson
et al., 2010), but especially to regions already in high food insecurity (M. P. Reynolds, Borrell,
et al., 2019).

This has significant implications for future food security, as wheat is one of the most
important sources of calories for humanity. In 2022, 32% of earth’s surface were used for
agriculture and 1487.9⇥ 10

�6
ha or 8.6% for crop production (FAOSTAT, 2025c). Of the crop

area, 220.4⇥ 10
�6

ha or 14.8% were used for wheat production(FAOSTAT, 2025a). Calories
produced with wheat corresponded to 21% of the energy demand of humanity, assuming
direct human consumption and an average daily per capita energy consumption of 2’353 kcal
(Berners-Lee et al., 2018; FAOSTAT, 2025b).

Thus, further efforts should focus on adapting genotypes and management practices to
local conditions and climates, as interactions between genotypes and environments (G⇥E) but
also management (G⇥E⇥M) are responsible for large variability in grain yields (Herrera et al.,
2020). Developing and identifying optimal genotypes for respective environments is paramount
to close the yield gap, i.e. the difference between the attainable and the realized yield (Schils
et al., 2018; Gerber et al., 2024). To that end, more resources must be allocated in breeding
as one measure to overcome yield stagnation, by developing genotypes resilient to biotic and
abiotic stresses (Hickey et al., 2019; Tester and Langridge, 2010).

1



Chapter 1. General introduction
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Figure 1.1: About 32% of earths land surface are used for agriculture and 8.6% for growing crops
(a). This cropping area is dominated by three main crops. Wheat is grown on about 14.8%, maize on
14% and Rice on 11.3% (b), while the remaining crop cover far less important shares of the cropping

area.

1.2 The importance of variety testing

Breeding goals are specific for different regions. For some mega-environments, resistance to
heat and drought during grain filling are the main breeding goals, for other regions, resistance
to specific diseases or to winter-kill is the main focus of breeding efforts, and very often
it is a location-specific combination of multiple goals (M. P. Reynolds, Pask, et al., 2012).
Within mega-environments, finer adjustments of the breeding goals leads to the development
of genotypes that are highly adapted to very local conditions (Bustos-Korts, Boer, Layton,
et al., 2022; C. J. Yang et al., 2024).

Although plant breeding allows the development of improved varieties, to translate genetic
progress in breeding into higher yields and close the on-farm yield gap (Cooper et al., 2021),
the most suitable genotypes must be used in respective target environments. Thus, breeding
must be paralleled with a thorough characterization of genotype performance in respective
target environments, which is usually conducted with multi-environment trials (MET), where
a set of genotypes is sown in multiple environments and compared to each other (Bustos-Korts,
Boer, Layton, et al., 2022). This MET variety testing is usually done by national or regional
organizations, which publish annual lists of recommended varieties (Levy et al., 2017; Niedbała
et al., 2022; Fang et al., 2024; C. J. Yang et al., 2024).

Only genotypes with improved traits that show trait consistency in diverse environments
are eligible for variety registration (H. E. Ahrends et al., 2018; Voss-Fels et al., 2019). Testing
for “Value for Cultivation and Use” (VCU) is a mandatory step of the crop variety testing
procedure in the European Union (EU) and Switzerland. New varieties are registered and
added to the list of recommended varieties if they show superior yield, quality, or agronomic
properties. VCU testing guarantees that farmers have access to seeds of good quality and with
well-defined properties (Becker, 2011).

To protect the interests of breeders, genotypes must show distinctness, uniformity, and
stability (DUS), to be acceptable as a new variety. In DUS trials, genotypes are tested if they
are different compared to existing varieties and if they are uniform and stable over time at the
population level.

While countries outside EU and Switzerland may have other procedures than VCU and
DUS, many crop variety evaluation programs (CVEP) share the concept that new varieties need
to outperform older varieties in specific aspects (Fang et al., 2024) and must be distinguishable
from them to be accepted for listsf recommended varieties (Cooke and Reeves, 2003).
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1.3. High-throughput field phenotyping (HTFP)

By testing genotypes in respective climates in local soils with locally representative crop
management strategies, variety testing allows agronomists and farmers to decide for varieties
that fit the market goals (C. J. Yang et al., 2024), climatic conditions (D. Reynolds et al.,
2019; Niedbała et al., 2022) and management strategies of individual farms (Voss-Fels et al.,
2019; Rotili et al., 2020; Cooper et al., 2021), leading to higher financial incomes (Levy et al.,
2017; Niedbała et al., 2022).

Typical traits monitored in variety testing are grain yield at 15% water content, lodging
resistance, early maturity, early heading, sprouting, overwintering, plant height, thousand
kernel weight, hectoliter weight, resistance to various diseases such as powdery mildew, rusts,
different Septoria species and Fusarium head blight. On harvested grains, the baking quality,
sedimentation index (Zeleny test), and protein content are evaluated (WBF, 2021). These
traits are typically still assessed by field observations or laboratory analysis (Cooke and Reeves,
2003), which is labor intensive and costly, especially since variety testing usually uses METs
(Eichi et al., 2020) and thus traits must be assessed on multiple sites.

1.3 High-throughput field phenotyping (HTFP)

The field of genomics has evolved rapidly since the 1990s. However, to fully benefit from
the potential of genomics, “plant traits such as growth, development, tolerance, resistance,
architecture, physiology, ... yield and ... individual quantitative parameters ...”(L. Li et al.,
2014) must be properly assessed by phenotyping (Araus and Cairns, 2014; Cobb et al., 2013) .
Therefore, high-throughput plant phenotyping (HTPP) was proposed (Fahlgren et al., 2015;
Crain et al., 2018) and developed (Walter et al., 2015; Sun et al., 2022) for combined use with
genomics in breeding (S. Michel et al., 2023).

For variety testing, the literature is sparse, but some challenges are very similar to those
for breeding, and variety testing is also expected to benefit from new HTPP methods.

Although HTPP includes phenotyping in controlled and field conditions, variety testing
always includes field phenotyping, which is the most challenging phenotyping settings due
to multiple confounding sources of variance, such as spatial and temporal heterogeneity of
traits due to e.g., field gradients, changing weather during measurements or disruptive weather
events. The confounding of multiple sources of variance makes data acquisition but also
interpretation very challenging (e.g. Araus, Kefauver, et al., 2018; Aasen, Kirchgessner, et al.,
2020; M. P. Reynolds, S. C. Chapman, et al., 2020). Nonetheless, high-throughput field
phenotyping (HTFP) is a very active research field (e.g. Ludovisi et al., 2017; Jimenez-Berni,
Deery, et al., 2018; Perich et al., 2020; Roth, Rodríguez-Álvarez, et al., 2021), mostly in the
context of breeding, yet many HTFP approaches are also promising for variety testing.

1.4 HTFP and the need for translational research

However, many of HTFP methods have not yet been established in the daily practice of
breeding or variety testing. For variety testing, digitization has led to improved tools for data
organization and analysis (F. Yang et al., 2023; Fang et al., 2024), and for the integration of
genomic data (Carvalho et al., 2024; Bruschi et al., 2024), as computing power and statistical
software became readily available. Yet, on the side of trait assessment, the impact of new
digital phenotyping methods remained very limited. Many phenotyping approaches have been
developed to obtain information on crop state, morphology, and performance (e.g. Adamsen
et al., 1999; Hunt, Doraiswamy, et al., 2013; Hasan et al., 2019; T. Jensen et al., 2007;
Gracia-Romero et al., 2017; Jimenez-Berni, Deery, et al., 2018; Yue et al., 2019; H. Wang
et al., 2020), for digitalized phenotyping, but few considered the specific needs of variety
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Chapter 1. General introduction

testing. For example, Hu et al., 2024 combined coarse satellite data from wheat variety trials
at small spatial scales with wheat growth modeling and radiative transfer modeling to retrieve
aboveground biomass and assess within-field variability in order to evaluate the quality of
trials in a variety testing MET network.

On the one hand, the gap between the development of basic methods and the applicability
in variety testing is owed to the fact that variety testing organizations have limited resources
(Cullis, A. Smith, et al., 2000), which must be allocated for the assessment of the most relevant
traits. HTFP methods often involve considerable initial investment and must first be learned
(M. P. Reynolds, Borrell, et al., 2019). On the other hand, the developed approaches have often
only been tested experimentally under relatively controlled conditions, in the laboratory or on
a research station, but still have a relatively low technology readiness level (TRL, Table 1.1)
in the range of ⇠ 3 and 5 (cf. Table 1.1). Some phenotyping methods and concepts have
possibly been demonstrated under field conditions (TRL ⇠ 6 - 7), but prototypes have not yet
made it into application in an “operational environment” (European Commission, 2014) or
even day-to-day practice (TRL > 7).

The application of HTPF in practice also requires increased interdisciplinarity, as specific
technical knowledge (e.g. the piloting of drones or the operation of specialized cameras or
sensors) is necessary for the measurements, then, the data generated require more comprehensive
data management, and finally, the meaningful interpretation of the data requires both technical
and agronomic knowledge (Kholová et al., 2021).

Table 1.1: Technology readiness levels (TRL) as proposed by the European Commission; Mankins,
1995; European Commission, 2014).

TRL Desrition

1 basic principles observed
2 technology concept formulated
3 experimental proof of concept
4 technology validated in lab
5 technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)
6 technology demonstrated in relevant environment (industrially relevant environment in the case of key enabling technologies)
7 system prototype demonstration in operational environment
8 system complete and qualified
9 actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)

To close the gap between basic research and methods that are actually applied by variety
testing organizations to finally benefit farmers’ production, “translational research” is necessary
(M. P. Reynolds, Borrell, et al., 2019). “This kind of research is often seen as more complicated
and time-consuming than basic research and less sexy than working at the ‘cutting edge’ where
research is typically divorced from agricultural realities in order to achieve faster and cleaner
results” (CIMMYT, 2019).

1.5 Lean phenotyping for variety testing

This thesis focuses on “lean phenotyping” as one aspect of translational research in the context
of variety testing. Many of the proposed HTFP workflows are just too expensive in terms of
initial investments, operational costs, and labor to be applied in variety testing, especially
as within MET, multiple sites must be measured (Eichi et al., 2020). Switching to cheaper
equipment or simplifying workflows is often not easily possible, as the quality of the measured
traits is too poor for beneficial integration into variety testing.

Lean phenotyping in this context is understood as translational research to design workflows
in such a way that results of sufficient quality can be generated even with less expensive
sensors or that the costs of high-quality methods can be reduced (Fig .1.2). Another aspect
concerns the use of new technologies or sensors to measure new traits, provided that they add
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1.6. What is a good trait in crop performance assessment?

value for variety testing. The ultimate goal in lean phenotyping is to develop methods with an
acceptable balance of costs and benefits (López-Lozano and Baruth, 2019) that are applicable
in a day-to-day variety testing routine.
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Figure 1.2: Cost-Quality considerations in lean phenotyping. The ultimate goals in lean phenotyping
is to develop methods with an acceptable balance of costs and benefits through translational research.

1.6 What is a good trait in crop performance assessment?

The primary target of breeding and variety testing is the selection of genotypes with superior
primary traits such as yield and quality. Both are the result of complex G⇥E⇥M interactions
(Cooper et al., 2021). These primary traits are attained in specific environments (Laidig et al.,
2008). For example, a variety can attain high yields due to late maturity combined with
efficient remobilization of carbohydrates (E. A. Chapman et al., 2021), due to increased water
use efficiency (Rebetzke et al., 2013), or because its leaves were less affected by foliar disease
(Zetzsche et al., 2020). A high-yielding genotype in one environment might perform poorly in
another environment, e.g. due to water stress and primary traits thus suffer from low genotype
specificity, expressed as heritability, over different locations and years (Araus, Slafer, et al.,
2008; Bustos-Korts, Boer, Malosetti, et al., 2019).

For a more complete understanding and a more accurate prediction of primary traits,
secondary traits, also called component traits (Bustos-Korts, Boer, Malosetti, et al., 2019),
can be assessed. A secondary trait is adding value to prediction and decision making when
it’s heritability is higher between locations and years, than heritability of primary traits.
So, there should be variability of the trait between genotypes, and this variability should
be less affected by environmental conditions. Secondary traits should also show a genetic
correlation with a primary trait and the assessment of the secondary trait should be rapid,
reliable, and affordable (Araus, Slafer, et al., 2008; Bustos-Korts, Boer, Malosetti, et al., 2019;
M. P. Reynolds, S. C. Chapman, et al., 2020).

Most of the aforementioned variety testing traits (lodging resistance, early maturity, early
heading, sprouting, overwintering, plant height, thousand kernel weight, hectoliter weight,
resistance to various diseases such as powdery mildew, rusts, different Septoria species and
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Fusarium) can be considered secondary traits. One objective of lean phenotyping for variety
testing is to measure them more efficiently.

1.7 Introducing new traits

Well established and new digital sensors also come with new opportunities to assess new
secondary traits related to plant growth, in addition to traditional variety testing traits. Those
may also include traits related to more environmentally friendly crop production, notably
increased resource use efficiency (RUE) but also more resilient production systems in the face
of a changing climate (Shiferaw et al., 2013; FAO, 2017). Such new traits would support
official genotype testing to contribute to RUE and resilience of cropping systems by improving
variety testing procedures and making available information about the performance of crop
varieties associated with RUE and resilience. Based on such new traits, farmers and other
stakeholders such as processors and mills, could be able to make more informed variety choices
considering local climates as well as biotic and abiotic growing conditions. Thus, as a second
objective of lean phenotyping for variety testing, such new traits are explored and developed.

1.8 Aims and structure of this thesis

The need for translational research in variety testing has been recognized by the European
Union (Invite, 2025; InnoVar, 2025) and the Australian government (GRDC, 2025), and
corresponding research projects have been initiated, underlining the importance of the topic.
This thesis was conducted within the the “Production Technology & Cropping Systems Group”
of Agroscpoe (www.agroscope.admin.ch), which is in charge for the official variety testing of
wheat and other cereals in Switzerland. The thesis is committed to translational research on
phenotyping methods for variety testing to further develop them towards lean phenotyping.
It aims to evaluate and increase the TRL of existing phenotyping methods under realistic
variety testing conditions. Therefore, three optical lean phenotyping methods, drone-based
thermal cameras, PhenoCams, and chlorophyll fluorescence sensors were developed, adapted,
and examined in the following chapters:

Chapter 2 - Improving drone-based uncalibrated estimates of wheat canopy
temperature in plot experiments by accounting for confounding factors in a
multi-view analysis:

With the development of drone-based thermal cameras, airborne thermography, previously
only possible with helicopters or other manned platforms, became easily accessible and
affordable. However, the large variability of the thermal imaging data from uncooled thermal
cameras, mainly due to thermal drift, made the quantitative interpretation very challenging.
In this chapter, a multi-view method was introduced to conduct an image-wise sequential
analysis of thermal images instead of an orthomosaic-based analysis. Knowing the trigger
timing of individual images, thermal drift over the sequence of individual flights could be
estimated, as well as effects related to viewing geometry, and thus be corrected for in a mixed
model approach. With the multi-view method, the consistency and genotype specificity of
canopy temperature (CT) measurements was significantly improved compared to approaches
relying on orthomosaics in a two-year field variety testing trial with winter wheat. Thermal
imaging became more reliable without changing the equipment used but through a novel more
comprehensive statistical analysis of the data, rendering thermal imaging more applicable, and
thus more interesting as a phenotyping method in wheat variety testing.
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Chapter 3 - Multi-view can explain large fractions of variance and their
sources in drone-based thermography on wheat plots:

Understanding a phenotyping method is crucial for a correct interpretation of the results to
avoid erroneous conclusions on physiological relations between the measured trait and the status
of the plant. CT, especially when based on uncooled thermal cameras, is a challenging trait to
measure and interpret, not only due to thermal drift. While CT is mostly considered as a proxy
measurement of stomatal conductance, the trait also features phenotypic correlations with other
traits like plant height or fractional canopy cover and is affected by other short-term sources
of variance in field conditions. Based on the thermal multi-view method presented in Chapter
2, this chapter identified and analyzed manifold sources of variance in CT measurements
from 99 flights with a drone-based thermal camera flown over two years on two different
trials. The experimental sources of variance (genotypes and treatments) were disentangled
from the confounding sources of variance, and together they explained large fractions of the
initial variance of CT. Ignoring confounding sources led to erroneous conclusions about the
phenotypic correlations of CT with other traits. Based on an extensive and diverse dataset, this
chapter allows a comprehensive understanding of CT as a trait, which supports the planning,
conducting, and interpretation of drone-based CT screenings in variety testing.

Chapter 4 - Comparison of PhenoCams and drones for lean phenotyping of
phenology and senescence of wheat genotypes in variety testing:

It is crucial to know the timing of phenological stages and the senescence behavior of genotypes
to select for locally adapted varieties and to plan crop management accordingly. Knowing
the timing of phenological stages also allows for a more meaningful interpretation of G⇥E
interactions, e.g. to distinguish variety adaptation to stresses from stress avoidance. Capturing
these traits with frequent field visits is very time-consuming. In contrast to Chapter 1
and 2, where the potential of a relatively new trait was tested, this Chapter developed an
alternative and cost-effective approach with full field applicability to capture traits which are
well established but generally assessed by visual ratings. A semimobile PhenoCam setup was
used to track phenology and senescence from ear emergence to full maturity. The method was
compared with visual reference methods, with which it was strongly correlated. An economic
analysis revealed that PhenoCams are an interesting option to observe distant experimental
sites. Thus, PhenoCams offer a cost-effective replacement of visual ratings of phenology and
senescence, especially in the context of MET.

Chapter 5 - Evaluating the potential of chlorophyll fluorescence to detect
and rate Fusarium head blight on field experiments for winter wheat variety
testing:

As for evaluating the timing of phenological stages and senescence, the rating of plant disease
infestations under field conditions is time-consuming, and prone to subjectivity due to rater
bias. Chlorophyll fluorescence (CF) was proposed as a tool to track and rate Fusarium head
blight infestations and this chapter explored the potential and limitations of CF methods under
field conditions. A hand-held CF point sensor was used to track Fusarium infestations first
in a greenhouse trial and the method was then transferred to a field trial and tested for two
seasons, together with a CF imaging approach. The tested methods worked well in high-level
infestations, but due to the low number of measurements that can be taken with a certain
time, it is hypothesized that they would fail in low-level infestations and the throughput of
the method would need to be increased drastically, e.g. by automatization with field robots.
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Chapter 6 - General discussion and conclusion:

Finally, the contribution of the different approaches and chapters to lean phenotyping is
discussed together with possible future pathways for the individual approaches, but also for
their integration in future variety testing setups.
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Abstract

Canopy temperature (CT) is an integrative trait, indicative of the relative fitness of a plant
genotype to the environment. Lower CT is associated with higher yield, biomass and generally
a higher performing genotype. In view of changing climatic conditions, measuring CT is
becoming increasingly important in breeding and variety testing. Ideally, CTs should be
measured as simultaneously as possible in all genotypes to avoid any bias resulting from
changes in environmental conditions. The use of thermal cameras mounted on drones allows
to measure large experiments in a short time. Uncooled thermal cameras are sufficiently
lightweight to be mounted on drones. However, such cameras are prone to thermal drift, where
the measured temperature changes with the conditions the sensor is exposed to. Thermal drift
and changing environmental conditions impede precise and consistent thermal measurements
with uncooled cameras. Furthermore, the viewing geometry of images affects the ratio between
pixels showing soil or plants. Particularly for row crops such as wheat, changing viewing
geometries will increase CT uncertainties. Restricting the range of viewing geometries can
potentially reduce these effects. In this study, sequences of repeated thermal images were
analyzed in a multi-view approach which allowed to extract information on trigger timing and
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Chapter 2. Improving drone-based uncalibrated estimates of wheat canopy temperature in
plot experiments by accounting for confounding factors in a multi-view analysis

viewing geometry for individual measurements. We propose a mixed model approach that
can account for temporal drift and viewing geometry by including temporal and geometric
covariates. This approach allowed to improve consistency and genotype specificity of CT
measurements compared to approaches relying on orthomosaics in a two-year field variety
testing trial with winter wheat. The correlations between independent measurements taken
within 20min reached 0.99, and heritabilities 0.95. Selecting measurements with oblique
viewing geometries for analysis can reduce the influence of soil background. The proposed
workflow provides a lean phenotyping method to collect high-quality CT measurements in terms
of ranking consistency and heritability with an affordable thermal camera by incorporating
available additional information from drone-based mapping flights in a post-processing step.

2.1 Introduction

Canopy temperature (CT) of wheat (Triticum aestivum L.) is an integrative trait “being
associated with yield in a range of conditions” (M. P. Reynolds, Pask, et al., 2012). “It is
indicative of the relative fitness of a genotype to the environment” (M. P. Reynolds, Pask, et al.,
2012). Lower CT is associated with higher yield, biomass and generally a higher performing
genotype. CT is tightly linked to stomatal conductance (e.g. Deery, Rebetzke, Jimenez-Berni,
Bovill, et al., 2019) and different traits might lead to low CT, e.g. a root system that increases
water supply to the plant, high intrinsic radiation-use efficiency, photo-protective mechanisms
that increase radiation-use efficiency and green area throughout the growth cycle or a late
senescence and consequently a larger green area during later stages (Perich et al., 2020; M. P.
Reynolds, Pask, et al., 2012). Therefore, CT can be used as an indirect selection criterion for
yield (e.g. Das, S. C. Chapman, et al., 2021).

Thermal measurements have been proposed for breeding programs at least since the 1980s
(Blum et al., 1982; Lepekhov, 2022), but standard procedures with handheld thermometers
have their shortcomings, especially because distortions by rapidly changing environmental
conditions should be avoided (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016; Pask
et al., 2012). Main sources of short-term variability in environmental conditions include wind,
sunlight, clouds, and air temperature (M. P. Reynolds, Pask, et al., 2012). Thus, genotypes
should be measured within a short period, e.g. within 30min (Z. Wang et al., 2023), but
this number is highly dependent on the rate of change in environmental conditions. Thermal
infrared (TIR) cameras mounted on unmanned aerial vehicles are therefore an interesting
option to measure many experimental units in a relatively short time and thus reduce the
short-term variability of measurements.

CT is linked to vapor pressure deficit and consequently air temperature (Idso et al., 1981).
A higher air temperature leads to higher CT differences which increases ratio of genotypic
variability of CT to residual variability of CT. So, thermal surveys pose challenges when
applied in temperate climates where hot and dry conditions with a high vapor pressure deficit
(VPD), are less frequent and therefore CT differences between genotypes less distinct (Messina
and Modica, 2020).

To get accurate CT measurements, calibrated TIR cameras must be used. Cooled TIR
cameras are accurate but heavy and cannot be mounted on a lighttwiweight drone (Deery,
Rebetzke, Jimenez-Berni, James, et al., 2016). Uncooled calibrated TIR cameras must be
calibrated with reference temperature targets (Aragon et al., 2020; Kelly et al., 2019; Nugent
et al., 2013), it takes specific system knowledge to operate them (Perich et al., 2020), but
they still have limited accuracy (Kelly et al., 2019; Perich et al., 2020) and might need
recalibration after having been operating for some months (Aragon et al., 2020). However,
there are uncalibrated TIR cameras that can be operated with standard drones and standard
software. Such sensors are not well suited to measure absolute CT accurately, but they hold
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the potential to measure relative CT consistently (Kelly et al., 2019). Measuring such relative
differences might be sufficient in cases where genotype differences are to be identified (H. G.
Jones, Serraj, et al., 2009), e.g., in breeding and variety testing. Yet, the relative differences
must be consistent for measurements taken within a short interval, e.g. 30min.

Uncooled TIR cameras are prone to thermal drift problems (Kelly et al., 2019; Mesas-
Carrascosa et al., 2018; Z. Wang et al., 2023; Yuan and Hua, 2022) where the TIR measurement
changes are influenced by the temperature of the sensor. This introduces another source of
variance of CT which is not related to the state of the canopy itself or the canopy environment.
Additional confounding effects include vignetting, i.e. distortions caused by the lens optics
where image edges appear darker (or cooler for thermography) than the central regions (Kelly
et al., 2019; Yuan and Hua, 2022). The summation of all effects makes it challenging to derive
accurate temperature data with both uncalibrated or calibrated uncooled TIR cameras (Kelly
et al., 2019; Malbéteau et al., 2021). Research is tackling this issue by different approaches.

Nugent et al. (2013) highlight the importance to include the sensor temperature in the
analysis of TIR images, and Ribeiro-Gomes et al. (2017) and Kelly et al. (2019) demonstrate
how this inclusion can be achieved in field environments. However, sensor temperature is not
always available and Yuan and Hua (2022) proposed a simplified correction for non-uniformity
and vignetting based on a single image taken after a flight. Mesas-Carrascosa et al. (2018)
and Z. Wang et al. (2023) used drift correction methodology based on features that appear
on multiple overlapping images to create corrected orthomosaics. Malbéteau et al. (2021)
corrected for temporal trends by normalizing data of single flight lines to previous flight lines of
the same flight on orthomosaics. As wind is one of the most important environmental drivers
of sensor temperature, Kelly et al. (2019) and Yuan and Hua (2022) examined the relation
between wind and sensor temperature while Malbéteau et al. (2021) showed how different
wind conditions result in different CT estimates.

Perich et al. (2020) used uncorrected orthomosaics to extract plot-based values. They
then proposed including spatial correction with the R-package SpATS (Rodríguez-Álvarez
et al., 2018) to account for spatial and temporal trends simultaneously in a subsequent step.
However, they observed that temporal effects of rapidly changing environmental conditions
remain a challenge. While parts of temporal effects are absorbed in the spatial correction
process and confound the spatial trend and its interpretability, others remain uncorrected and
bias the TIR signal. To overcome these limitations, temporal effects need to be mitigated when
creating the orthomosaics, as done by Malbéteau et al. (2021), Mesas-Carrascosa et al. (2018)
or Z. Wang et al. (2023) prior to orthomosaic analysis. While promising correction approaches
exist for orthomosaics, they are often based on assumptions such as the similarity of surface
temperature within a specific land cover type (Z. Wang et al., 2023). Such assumptions are
not valid in wheat variety testing as CT variances are examined within the same land cover
type. In addition, any artifacts of an erroneous correction are propagated to the analysis in
orthomosaics but the information on the correction applied is not available with the final CT
estimate.

To the best of our knowledge, airborne TIR imaging in agriculture was either based on
single images (e.g. Deery, Rebetzke, Jimenez-Berni, James, et al., 2016) or orthomosaics, i.e.
large composite images of a series of images with large overlap (e.g. Das, J. Christopher, Apan,
Choudhury, et al., 2021; Francesconi et al., 2021; Malbéteau et al., 2021; Messina and Modica,
2020; Perich et al., 2020; Z. Wang et al., 2023). The advantages and disadvantages of these
methods are discussed in Perich et al. (2020). In short, single images are limited in resolution,
and therefore only a limited land surface can be captured at once. When creating orthomosaics,
the information of multiple images has to be blended into a single large orthomosaic and the
different blending methods may lead to different results (Aasen and Bolten, 2018; Malbéteau
et al., 2021; Perich et al., 2020). Furthermore, information is lost in the aggregation process,
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as spots that appear on multiple images with specific viewing geometries are blended into a
single pixel on the orthomosaic.

An alternative is to skip the orthomosaic processing step and work with original image
sequences, a novel method for thermal imaging proposed in this study. To avoid the loss
of information in the orthomosaic blending process, Roth, Aasen, et al. (2018) developed a
method to analyze RGB drone images without the need to merge individual images into an
orthomosaic. Single images can be examined with respect to trigger timing and the geometric
relations between the experimental unit, sun stand, and drone position. Transferring such
an approach to thermal imaging will provide the means to analyze sources of variance in
CT for field experiments. With multi-view imaging, temporal and geometric trends are not
disregarded at the creation of orthomosaics but are used to improve the statistical analysis of
CT data. The information on the correction applied is available with the final CT estimate
and can be consulted when results are inconsistent. All together, multi-view imaging enables
to handle confounding factors that affect the interpretation of CT. Such an informed analysis
is crucial in variety testing and breeding as temporal, spatial, and geometric trends of CT
might mask effects of genotypes or treatments otherwise. By estimating the different sources
of variance, they can be corrected for, revealing the actual effects of the experiment that are
of interest.

Mixed models are a widely used statistical tool to separate and estimate different sources of
variance in agronomic trials (e.g. Gilmour et al., 1997; H. P. Piepho and E. R. Williams, 2010;
Hans-Peter Piepho et al., 2012). Estimating continuous covariate effects such as spatial or
temporal trends is often done with auto-regressions and/or smoothing splines (e.g. Cullis, A. B.
Smith, et al., 2006; Rodríguez-Álvarez et al., 2018; Velazco et al., 2017). It is hypothesized
that post-processing multi-view images with mixed models will improve CT measurements on
wheat in plot experiments. The step of correcting an orthomosaic in pre- or post-processing
can be skipped. Instead, the correction can be integrated in the analysis of the experiment
directly, using common tools to analyze designed experiments, namely, mixed models.

In addition to including covariates in the estimation of CT, knowing the viewing geometry for
each measurement allows for the selection of measurements with preferable viewing geometries.
Das, S. C. Chapman, et al. (2021) and Pask et al. (2012) described the impact of soil on the
measurement of apparent CT. It is hypothesized that by selecting for oblique (i.e. less vertical)
viewing angles and measurements perpendicular to the sowing row direction, the fraction of
plants visible in TIR images can be increased, and the influence of soil on measurements can
be reduced.

This study sought to improve the measurement of genotype related CT variance in the
context of wheat variety testing by a drone-based thermography lean-phenotyping approach.
TIR images from an affordable uncooled and uncalibrated off-the-shelf TIR camera were
georeferenced and information on trigger timing and on geometric relations between the sun,
the region of interest (ROI) and the drone was exploited in a multi-view approach. It was
tested if the integration of such temporal and geometric covariates in mixed models allows
to account for the different sources of variance of CT measurements and thereby to correct
for unwanted sources of variance. We hypothesized that this correction enables an improved
quality of thermal measurements in terms of consistency and heritability with relatively simple
equipment and without the need for in-field reference procedures.
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2.2 Methods

2.2.1 Field experiments and data acquisition

TIR measurements were conducted on wheat variety testing experiments of winter wheat for
two consecutive years (2020–2021 and 2021–2022) on fields of the agricultural research station
of Agroscope, at Changins, Switzerland [46�23055.400N 6

�
14

0
20.4

00E, 425 m.a.s.l., the World
Geodetic System (WGS) 84]. The soil of the experimental site is a shallow Calcaric Cambisol
(Baxter, 2007; Cárcer et al., 2019).

Air temperature, rainfall, radiation, wind speed, wind direction, relative humidity and
VPD were obtained from a weather station of Meteoswiss which was located about 800m from
the experimental site at Changins [46�2403.700N 6

�
13

0
39.6

00E, 458 m.a.s.l., WGS 84].
The two years showed very contrasting weather conditions (Fig. S1.2). While 2021 was

a relatively cool year with almost 700mm of precipitation from the beginning of the year
to harvest, there was just 280mm precipitation for the same period in 2022. The average
temperature between beginning of May and harvest was 2.9

�
C warmer in 2022 than 2021.

Therefore, wheat developed faster in 2022 and heading and harvest occurred earlier.
The measurement periods were between onset of heading and early senescence. The trial

comprised 30 modern registered European winter wheat varieties and is further referred to as
the EuVar trial. The same varieties were sown over the two years. Three treatment regimes
were applied to these genotypes in both years. In the “maximal” treatment, one growth
regulator and one fungicide treatment were applied. In the “medium” treatment, there was just
the growth regulator application and not the fungicide application. In the “minimal” treatment,
neither a growth regulator nor a fungicide were applied. Fertilization and herbicides were
applied according to the Proof of Ecological Performance (PEP) certification guidelines (Swiss
Federal Council, 2013), which represent a minimal standard for best practice conventional
agriculture in Switzerland. Each variety-treatment combination was repeated three times in
plots of 1.05m x 8m each. Each plot contained eight sowing rows of the same wheat genotype
with a spacing of 15 cm between them. The genotypes were randomly distributed within blocks
of 3 by 10 plots and these blocks randomly nested within three treatment replicates. Each
treatment replicate contained three blocks and every block was treated with one of the three
treatments. The 270 plots of the experiment span over 27 rows (which followed tractor track
direction) and 10 columns (Fig. S1.1).

The two experiment-year combinations are further referred to as EuVar21 and EuVar22
according to year of harvest. Table S1.1 gives an overview on the different treatments and the
most important field interventions and Table S1.2 displays details of the chemical products
used.

Flights were conducted between onset of flowering and early senescence at two and four
dates in 2021 and 2022 respectively. On specific dates, multiple flights were conducted at
different time slots. To account for short term variability, within each time slot at least two,
mostly three flights were conducted with the same settings. A group of flights that were
conducted at one time slot and date is further called a flight campaign. In total, 39 flights
were performed (for more details, see Supplementary Materials section S1.5).

A description of the equipment and the settings used and of the flight planning can be
found in Supplementary Materials section S1.6. Heading of drone and TIR camera remained
relatively stable throughout the flight and did not change with flight path direction changes.
The resulting flight duration was between 7 and 9min depending on wind conditions and the
total area recorded. The experiments were neighbored by border plots and other experiments.
To fully profit from the advantages of the methodology proposed in this study, flights covered
not just the experiments but all wheat plots in the respective field surroundings, i.e. border
plots and other experiments on the same field. This allowed to reduce border effects by taking
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advantage of temporal and spatial corrections, as will be described later on. Supplementary
Materials section S1.7 summarizes the pre-flight procedure. In short, the camera was turned
on 15min before each flight in 2021 and 30min in 2022 to allow the temperature signal to
stabilize. The TIR images were saved as radiometric JPEG format.

For post-processing in the Structure-from-Motion-based photogrammetry software Agisoft
Metashape (Agisoft LCC, St.Peterburg, Russia) and to allow time series analysis, thermal
ground control points (GCPs) were distributed in the field in an evenly spaced shifted grid
pattern (for more details, see Supplementary Materials section S1.8).

For the multi-view approach, digital elevation models (DEM) were needed on which the
images could be projected. TIR images often do not provide enough spatial detail to generate
DEMs with sufficient quality (e.g. Malbéteau et al., 2021). TIR based DEMs may appear
flat with no distinct plot pattern. Therefore, flights were also conducted with a Micasense
RedEdge-MX Dual multispectral sensor, which allows for more spatial detail. Although this
sensor produces multispectral data with 10 bands, only the RGB bands were used for this
study, and the data is further referred to as RGB data.

2.2.2 TIR data processing overview

The multi-view approach allowed to include covariates such as trigger timing and viewing
geometry parameters of single measurements in the analysis. To examine if this allowed to better
compensate for temporal and spatial trends, different multi-view approaches were compared to
the standard orthomosaic approach (Fig. 2.1). First, TIR images were georeferenced. TIR data
was then extracted from georeferenced orthomosaics as well as georeferenced single images.
For the multi-view approach, trigger timing was extracted along with covariates related to
viewing geometry for each plot on each image (green section in Fig. 2.1). TIR data was then
treated by different statistical approaches (blue section) and the approaches were compared to
each other (violet section).

2.2.3 TIR image pre-processing

Radiometric JPEG format contains an 8-bit gray scale JPEG image as well as a 14-bit
array with digital numbers (DN), which represent the magnitude of TIR radiation (Kelly
et al., 2019). The DNs in the 14-bit arrays of the radiometric JPEGs were transformed
to TIFF files representing temperature in �

C x 1000 by using a Python 3.8 script (van
Rossum, Guido and Drake, Fred L., 2009) and a modified version of the Flir Image Extractor
(https://github.com/ITVRoC/FlirImageExtractor), which allowed for batched processing.

The 14-bit TIFF files of the radiometric image as well as the RGB images were aligned
in the structure-from-motion-based software Agisoft Metashape Professional (Agisoft LLC,
St. Petersburg, Russia) and georeferenced (for details, see Supplementary Materials section
S1.9). Plot masks were created for each plot in Qgis 3.16 (QGIS Development Team, 2022),
to determine the ROIs from which data was used for analysis. To account for border effects
in the field and for inaccuracies of georeferencing and superimposition of different flights, a
border buffer of 25 cm was applied to all masks on plot width. On plot length, the buffer was
up to 1m, leaving at least a surface of 2.1m

2 to be analyzed in each plot. The plot masks
were saved to GeoJSON format.

Imaging techniques deliver pixel values in a 2-D space. In order to evaluate experimental
units, pixels within ROIs in this 2-D space must be analyzed. Usually, this is done using zonal
statistics, i.e., the pixels within ROIs are reduced to single values using statistical aggregation
functions. In this work, an empirically determined specific percentile for each year was used.

As selection criteria for percentile determination, generalized heritability (Oakey et al.,
2006, Eq. 2.10, Eq. S1.1, Eq. S1.2) of different percentiles was calculated for each flight. The
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Figure 2.1: Overview on the different steps of TIR data processing methods that were compared
in this study. Orthomosaics were composed by different blending modes. After image pre-processing
(green section), TIR information was analyzed on orthomosaics or with different multi-view approaches
(blue section). Plot values were estimated based on multi-view data by using mixed models of
different complexity. In addition, multi-view data was aggregated to plot values by relatively simple
aggregations methods. The results were compared to each other by means of correlation, genotype

ranking consistency and heritability of plot-wise apparent CT (violet).
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values within the ROIs were reduced to a single value by using the respective percentile.
For each percentile, heritabilities were calculated in SpATS (Rodríguez-Álvarez et al., 2018),
which is an easy-to-use tool for spatial analysis commonly used in agricultural research and
thermography (Anderegg, Yu, et al., 2020; Deery, Rebetzke, Jimenez-Berni, Bovill, et al.,
2019; Perich et al., 2020), which also includes a mixed model for experimental design factors.
The resulting percentile-heritability relations were plotted for graphical comparison. Two
quantitative criteria were used to select the percentiles: Select a percentile in the center of a
percentile region where (1) the heritability is close to the maximum, and (2) closely adjacent
percentiles have similar heritabilities, i.e. the heritability is stable in the respective percentile
region. For each year, the optimal percentile was determined. The values within the ROIs
were reduced to a single value by using the optimal percentile for all flights within one year.
One value per plot was then used as plot-wise CT value in further analysis.

The internal temperature of the sensor is constantly changing, due to the interplay of
heating sensor electronics and an ever changing exposure to sun and wind during flights. This
is leading to constantly changing non-uniformity effects which mix up with vignetting and
distort TIR images (Kelly et al., 2019; Yuan and Hua, 2022).

Yuan and Hua (2022) proposed to use a single image taken shortly after a drone flight
with a TIR sensor to correct for these effects. We considered this procedure too complex for
day-to-day operations. Instead, it was tested if a simplified, overall vignetting mitigation could
improve measurement quality. To that end, a mean overall vignetting effect was estimated
by calculating a mean vignetting effect over 413 images in an indoor experiment (procedure
described in detail in Supplementary Materials section S1.10). The image corresponding to a
mean estimated vignetting effect was subtracted from all the TIR images to get vignetting-
corrected images (e.g. Figs. S1.3 & S1.4). Subsequent analysis was conducted on images with
and without vignetting correction for both, the orthomosaic and multi-view methods.

2.2.4 DEM creation

DEMs were created on the basis of aligned images in Agisoft Metashape and could be derived
from thermal data in 2021, but not in 2022. Therefore, DEMs in 2022 were generated from RGB
data. Both methods allowed generating DEMs of sufficient positioning precision (positioning
RMSE vertical: 2.5 cm, horizontal: 1.5 cm based on Agisoft alignment error estimates for
ground control points). For each year, a representative DEM was chosen that was created from
images taken after the wheat stem elongation phase and before early senescence, when the
canopy height remained stable. The quality of the DEMs was checked by visually inspecting
the plausibility of the positioning of the masks projected on single images in multi-view pre-
processing. The projected masks needed to be centered within plots and of rectangular shape
(e.g. Fig. 2.2). In 2021, the DEM was based on the second flight of the thermal campaign
flown on 2021-06-12 at 12:30, at a flight height of 40m. The ground sampling distance (GSD)
of the TIR images was 5.15 cm/pix and the spatial resolution of the DEM was 41 cm/pix.
With this coarse resolution, inconsistencies such as holes in the DEM could be leveled out.
The DEM used in 2022 was based on the data generated on 2022-06-04 with the Micasense
sensor at a flight height of 40m. The GSD of the images was 2.71 cm/pix. The DEM did not
exhibit holes and the spatial resolution of the DEM was set to 2.71 cm/pix too.

2.2.5 Orthomosaic pre-processing

TIR orthomosaics were created by the three blending modes available in Agisoft Metashape,
as described in the Agisoft Metashape professional edition user manual (Agisoft, 2023):
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• Mosaic: A two-step approach where larger features are composed based on multiple
images while details are taken from a single image.

• Average: A weighted average for all pixels on the orthomosaics.

• Disabled: Pixels are taken from a single close-to-nadir image.

The blending modes in orthomosaic composition were compared to each other by means
of generalized heritability (Oakey et al., 2006) similar to Perich et al. (2020). TIR data was
aggregated within ROIs by multiple percentiles and heritabilities were calculated for multiple
percentiles on each flight for the three different blending modes. The resulting percentile-
heritability relations of the three blending modes were plotted for graphical comparison.

The best performing blending mode was then applied to determine the optimal percentile
for data aggregation by zonal statistics. The percentile-heritability relations were analyzed
on all flights within one year. The optimal percentile for each year was applied for all flights
within this year.

2.2.6 Multi-view pre-processing

The camera positions (longitude, latitude, height) and orientations (pitch, roll, yaw) at the
moment of triggering for the single images were estimated in an indirect sensor orientation
approach (Benassi et al., 2017) in Agisoft Metashape after aligning images. Using the
previously estimated trigger positions, the single images were projected on the DEMs (Fig.
2.2) by ray tracing as described in Roth, Aasen, et al. (2018) and Roth, Camenzind, et al.
(2020). This allowed to project geographic coordinates (e.g. EPSG:2056 reference system)
to image coordinates. As a result, plot masks of ROIs were created for each trigger position
(i.e. for each image) where at least one plot was entirely inside the field of view (FOV) of the
camera. As coordinates were identical for 8-bit JPEG images and 14-bit intensity value arrays,
the image-wise masks could directly be applied to the temperature TIFF files. This approach
of identifying the ROIs for each plot on every single image is referred to as multi-view. For
each plot on each TIFF file, all percentiles were extracted with a Python 3.8 script and saved
to a CSV file.

As plot-wise data was extracted for each image, the trigger timing could be determined
from image meta data. By knowing the trigger timing of each image and the position of
the experiment, the position of the sun could be determined as azimuth and elevation an-
gle in Python using a script by John Clark Craig (https://levelup.gitconnected.com/
python-sun-position-for-solar-energy-and-research-7a4ead801777, 2021). As Carte-
sian (i.e. orthogonal) coordinates were used and the position of the sun, the position of the
plot centers and the position and orientation of the camera at the moment when the image
was triggered were known, this allowed to calculate the geometric relations between sun, plot
and drone by trigonometry as listed in Table 2.1 and illustrated in Fig. 2.3.

b

2.2.7 TIR data post-processing

After data extraction, TIR data was processed by different methods with the aim of finding
a robust, yet simple processing method for TIR multi-view data (blue section of Fig. 2.1).
In the following, the different processing steps of the different methods are described. The
presentation of single steps follows the structure of Fig. 2.1. TIR data was processed with
the standard orthomosaic method which served as a baseline. This method was compared to
several multi-view methods, starting with relatively simple multi-view aggregation and going
to approaches including statistical models of increasing complexity to estimate plot-wise CT.
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Figure 2.2: Example of a TIR image, projected on a DEM. The DEM (gray-scale, in the background)
defined the surface on which the TIR image (blue margin) was projected on. Plots were defined for
the whole field (shaded in yellow). Plot shapes that fell entirely within the extent of the TIR image
(green margins) were projected to image coordinates and all plot-wise TIR percentiles were extracted.

(a) Plot position in row direction (b) Plot position in sun direction

Figure 2.3: By knowing the position of the sun, the position of the plot and the position and
orientation of the camera when an image is triggered, different geometric relations can be calculated,
such as the position of the plot relative to the drone in row (or sowing) direction (a) or relative to
the sun (b). The dimensions of interest and related covariates are shown in orange. Important angles
related to drone and sun are named. Small black angle marks and short parallel black lines indicate

perpendicularity and parallelism, respectively.

18



2.2. Methods

Table 2.1: List of covariates calculated from multi-view data and used in the mixed model.

Covariate Description Metric

Trigger timing The time stamp when each TIR image was taken seconds from start of flight
Lateral dist row dir. Lateral distance of the plot relative to the drone in sowing

row direction
meters from planar position of drone

Lateral dist sun dir. Lateral distance of the plot relative to the drone in sun
direction (i.e. orthogonal to principle plane of the sun)

meters from planar position of drone

Longitudinal dist row dir. Longitudinal distance of the plot relative to the drone
in sowing row direction

meters from planar position of drone

Longitudinal dist sun dir. Longitudinal distance of the plot relative to the drone
in sun direction (i.e. in the principle plane of the sun)

meters from planar position of drone

Sensor x X coordinate of the plot center on the sensor plane (image
coordinates)

pixel no. in x from bottom-left

Sensor y Y coordinate of the plot center on the sensor plane (image
coordinates)

pixel no. in y from bottom-left

2.2.7.1 Multi-view simple aggregation post-processing

The orthomosaic method only yielded one value per plot to be analyzed in a final statistical
analysis. In contrast, the multi-view method provided several values for each plot (originating
from different images), which were aggregated by different methods prior to final analysis. As
shown in Fig. 2.1 (blue section), the simplest way to aggregate values from different images j

to plot values ✓p is by calculating the mean or median of all measurements per plot p, and
ignoring the effects of genotype (i), treatment (k) and replication (n),

✓̂p_mean = mean(✓jp) . (2.1)

✓̂p_median = median(✓jp) . (2.2)

A more complex way is to correct for the effect of trigger timing with a simple linear
model simultaneously for all images (Eq. 2.3), e.g., in Base-R (R Development Core Team,
2022). Here, the measured temperature ✓jp of the p

th plot on the j
th image is composed of an

estimated image effect ⌫j , a plot effect �p and an error ejp, ignoring i, k and n,

✓jp = ⌫j + �p + ejp. (2.3)

The image effect ⌫j estimates an image-specific CT contribution at trigger time j. �p

corresponds to a plot-specific CT contribution of the pth plot. In the model fitting process,
the error term is minimized by varying the estimated values of the two effects. The temporal
variance is assumed to be attributed to the image effects. The estimated plot effect can then
be used for further processing as estimate of relative plot CT without the temporal effect,

✓̂p_LM = �p. (2.4)

For the simple linear model, further denoted LM, all the plots within the fields were
analyzed. Different experiments were covered as well as border plots.

2.2.7.2 Multi-view mixed models post-processing

The repeated plot-values originating from the multi-view method allow to model relations to
geometric covariates and trigger timing. Including these relations might increase the explained
variance of TIR measurements.
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To include these covariates, mixed models were applied. With mixed models, a response
variable can be modeled by explanatory categorical factors, covariates and an error term
representing variance that cannot be explained by the model. The data is clustered according
to categorical factors, and regression parameters in mixed models can be cluster specific as well.
This enables for example the modeling of genotype- and treatment-specific responses. The
factors can either be fixed or random. Within the random factors, effects are cluster-specific.
Fixed factors have fixed effects, and regression parameters apply to the whole population at
observation (Hartung and H.-P. Piepho, 2007; Wu, 2010).

Mixed models of varying complexity were fitted in ASReml-R (Butler, 2019). The param-
eters of the mixed model (Eq. 2.5) are explained in Table 2.2. The terms were grouped by
types of terms (“Design-Factor, “Spatial-Autoregression”, “Spatial-Smoothing-Spline”, etc.).
Note that not all models included all term types. Table 2.3 describes the different models
and which term types were included in each model. The index j is written in parentheses to
represent both, models that do consider trigger timing and those that do not (“MM Base”,
“MM Full spatial”).

Modeling started with the baseline “MM Base” model where only experimental design
factors (genotype, treatment, replicate, plot position, plot) were included. This model was
then increased in complexity by iteratively including a subset of additional factors as well
as temporal and geometric covariates (Table 2.1). This led to nested models where simpler
models were fully included in more complex models, culminating in the most complex model,

✓i(j)knp = ✓i + ⌧k + �p + rn + (⌧r)kn+ (Design-Factors) (2.5)
(↵�)c(p)r(p) + ↵c(p) + �r(p)+ (Spatial-Autoregression)
fspl⇥spl

�
c(p), r(p)

�
+ fspl(c(p)) + fspl(r(p))+ (Spatial-Smoothing-Spline)

fspl(j)+ (Temporal-Trend)
fspl⇥spl(�lon,Row,jp,�lat,Row,jp)+ (Row-Direction-Trend)
fspl⇥spl(�lon,Sun,jp),�lat,Sun,jp))+ (Sun-Direction-Trend)
fspl⇥spl(sx,jp, sy,jp)+ (Sensor-Plane-Trend)
ei(j)knp (Residuals)

Just like with the LM, the CT was assumed to be influenced by categorical factors. In
contrast to the LM, more than two factors were included. These factors and their rationale
are described in the following.

In addition to the plot effect, the design factors included genotypes, treatments, replications,
and an interaction between treatment and replication, since treatments could react differently
within replications. For the spatial part, an effect of the spatial coordinates, described as
columns c(p), rows r(p) and their interaction (i.e., a two-dimensional grid) was assumed
to impact the CT values. This impact was assumed to be autocorrelated, i.e. the spatial
effect of the plot at a specific position was assumed to be more closely related to that of its
neighbor plot than to a more distant plot. The “Full Spatial” model contained, in addition
to autocorrelated effects, a spatial model, assuming the effects of columns and rows to follow
independent smoothing splines in both directions, and in addition a two-dimensional smoothing
spline in both directions. With the “Full Spatial” model, it was tested whether a model with
more degrees of freedom in the spatial dimension provides a better fit.

In addition to design factors, temporal and geometric covariates were added. The temporal
trend, defined along the trigger timing in seconds after the start of the respective flight, was
modeled as a smoothing spline. Geometric covariates for three geometric dimensions were
included as three independent two-dimensional smoothing splines. The first two dimensions,
“Row-Direction-Trend” and “Sun-Direction-Trend” (Fig. 2.3), represented the position of the
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plot below the drone, described in a Cartesian coordinate system with the drone position
defined as the origin of the coordinate system. x and y of the coordinate system were the
lateral and longitudinal distances in the respective dimension. The third geometric dimension,
“Sensor-Plane-Trend”, described the position of the plot center on the image with x and y
coordinates, where the origin was bottom left of the image.

The models were fitted for every flight separately, as the impact of covariates was assumed
to vary between flights. As for the LM, all plots within the fields were analyzed. To account
for this in mixed models, varieties were given unique names within each experiment, so the
same variety name did not appear in two different experiments, which reduced the complexity
of the models. A simple additive effect for treatments was assumed for the estimation of
plot-wise CT as some models with an interaction between treatments and genotypes proved to
be too computationally intensive at this stage.

With the Bayesian information criterion (BIC), the quality of the model fit was compared.
BIC was preferred over pure likelihood as it penalizes complex models and therefore over-fitting.
It was also preferred over the Akaike Information Criterion (AIC) as BIC penalizes complex
models with redundant variables stronger than AIC. Lower BIC values indicate preferable
models (Schwarz, 1978; Stoica and Selen, 2004).

After fitting the models (Eq. 2.5), plot-wise CT values were estimated in a similar approach
as for the other, simpler models (Eq. 2.1, 2.2 & 2.4). Specifically, ✓̂p_MM were estimated as
sum of genotype effects (✓i), treatment effects (⌧k), plot effects (�p), and replication effects
(rn),

✓̂p_MM = ✓i + ⌧k + �p + rn . (2.6)

As with the LM, the term related to the temporal trend fspl(j) was not included in the
prediction. In addition, terms related to spatial effects of columns or rows and geometric
trends were discarded. ✓̂p_MM therefore represents the plot values corrected for temporal or
geometric trends and for spatial trends related to columns and rows.

2.2.8 Methods comparison

The final results of the different methods were single plot values per flight. To compare the
quality of the different methods, the plot-wise CT values were compared to each other after a
spatial correction (Fig. 2.1, violet section).

The plot values of the orthomosaic method, the aggregated plot-wise multi-view values
(Eq. 2.1, 2.2), the multi-view values estimated with the LM (Eq. 2.4) and the plot-wise results
from the CT estimations with the mixed models (Eq. 2.6) were first fitted with a spatial model
(Eq. 2.7) in the R package SpATS (Rodríguez-Álvarez et al., 2018). Because of the low absolute
temperature accuracy of uncooled and uncalibrated TIR cameras, the retrieval of accurate
absolute CT is very challenging, especially if larger field trials are covered (H. G. Jones, Serraj,
et al., 2009; Kelly et al., 2019). Therefore, relative temperature differences were analyzed,
as relative temperature differences are commonly used for the grading of plant performance,
assuming that CT rankings are reproducible and consistent between measurements under
similar conditions (H. G. Jones, Serraj, et al., 2009; Prashar and H. Jones, 2014; Das, J.
Christopher, Apan, Roy Choudhury, et al., 2021).

Just CT estimates of plots belonging to EuVar were used as input to the SpATS-models
and plots of other experiments and border plots were skipped at this stage.
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Table 2.2: Terms of the mixed models (Eq.2.5). Note that not all term types are used in all models.

Term type Term Description Part

Design-Factors: ✓i Genotype effect of the i
th genotype

(unique for each experiment within field)
Random

⌧k Treatment effect of the k
th treatment

(unique for each experiment within field)
Fixed

�p Effect of the p
th plot Random

rn Effect of the n
th replication Random

⌧rkn Interaction of the k
th treatment and the

n
th replication

Random

Spatial-Autoregression: (↵�)c(p)r(p) Two-dimensional spatial autocorrelation
model based on row and column position
in the field

Random

↵c(p) One-dimensional autocorrelation model
for columns in the field (orthogonal to
tractor track direction)

Random

�r(p) One-dimensional autocorrelation model
for rows in the field (in tractor track
direction)

Random

Spatial-Smoothing-Spline: fspl⇥spl

�
c(p), r(p)

�
Two-dimensional spatial smoothing
spline model based on row and column
position in the field

Random

fspl(c(p)) One-dimensional smoothing spline
model for columns in the field (orthogo-
nal to tractor track direction)

Random

fspl(r(p)) One-dimensional smoothing spline
model for rows in the field (in tractor
track direction)

Random

Temporal-Trend: fspl(j) Trigger timing smoothing spline along
the j sequential trigger events

Random

Row-Direction-Trend: fspl⇥spl(�lon,Row,jp,�lat,Row,jp) Two-dimensional spatial smoothing
spline model based on longitudinal and
lateral distance of the plot relative to
the drone in row direction

Random

Sun-Direction-Trend: fspl⇥spl(�lon,Sun,jp),�lat,Sun,jp)) Two-dimensional spatial smoothing
spline model based on longitudinal and
lateral distance of the plot relative to
the drone in sun direction

Random

Sensor-Plane-Trend: fspl⇥spl(sx,jp, sy,jp) Two-dimensional spatial smoothing
spline model based on plot center po-
sition on the sensor plane of the thermal
sensor in x and y (image coordinates)

Random

Residuals: ei(j)knp Residual term for the i
th genotype, the

j
th trigger event, the k

th treatment, the
n

th replication and the p
th plot

Random
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2.2. Methods

Table 2.3: Term type combinations used in plot-wise CT estimation with mixed models (Eq.2.5).
Starting with a simple “Base” model, models increase in complexity further down by including different
sets of term types. For detailed information on the terms in each term type, see Table 2.2. The prefix

“M” has been omitted in mixed model names in the table for simplicity.

Mixed model (MM) Term types Description of model

Base Design-Factors
+ Spatial-Autoregression
+ Residuals

Includes the experimental design (genotypes,
treatments, replications) and a simple spatial
model.

Full Spatial Design-Factors
+ Spatial-Autoregression
+ Spatial-Smoothing-Spline
+ Residuals

The “Base” model enhanced by a complex spatial
model in the style of Velazco et al. (2017) which
includes a random term for each row and column,
an auto correlated interaction term and a bi-
variate smoothing spline between the two.

Full spatial + Trigger Design-Factors
+ Spatial-Autoregression
+ Spatial-Smoothing-Spline
+ Temporal-Trend
+ Residuals

”Full spatial” model enhanced by the temporal
dimension of trigger timing.

Trigger Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Residuals

The “Base” model enhanced by the temporal
dimension of trigger timing.

Trigger + RowDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Residuals

Integrates the relative position of the plot in row
(i.e. sowing) direction in the “Trigger” model.

Trigger + SunDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Sun-Direction-Trend
+ Residuals

Integrates the relative position of the plot in sun
direction in the “Trigger” model.

Trigger + RowDir + SunDir Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Sun-Direction-Trend
+ Residuals

Integrates the “Trigger + RowDir” and
the“Trigger + SunDir” models into one model.

Trigger + RowDir + SunDir + Sensor Design-Factors
+ Spatial-Autoregression
+ Temporal-Trend
+ Row-Direction-Trend
+ Sun-Direction-Trend
+ Sensor-Plane-Trend
+ Residuals

Integrates the spatial dimensions of the sensor
plane (image coordinates) in the “Trigger + Row-
Dir + SunDir” model.

23



Chapter 2. Improving drone-based uncalibrated estimates of wheat canopy temperature in
plot experiments by accounting for confounding factors in a multi-view analysis

✓̂p = ✓̂iknp = ✓i + ⌧k +
�
✓n⌧n

�
ik
+ �p + rn+ (base model) (2.7)

⌧rkn+ (repl. ⇥ treat. (just EuVar))
f
�
c(p), r(p)

�
+  c(p) +  r(p)+ (spatial model)

eiknp (error term)

A smooth bi-variate surface which was defined by the positions of the plots within columns
and rows (f(c(p), r(p))) was included in the model together with a random effect for columns
and rows ( c(p) +  r(p)). With SpATS models just covering plots of respective experiments,
they included an interaction between the i

th genotype and the k
th treatment (✓n⌧n)ik. The

remaining terms were equal to the terms in Eq. 2.5 and can be looked up in Table 2.2. While
ASReml-R also provides the functionality to calculate heritabilities and predict single plot
values, the inclusion of the full experimental design as in Eq. 2.7 in one stage proved to be
too computationally intensive due to the interaction term (✓n⌧n)ik. Therefore, the two-stage
approach for the mixed models with a subsequent analysis in SpATS was applied, but in
contrast to the simpler methods in the comparison, most of the spatial correction was done
within the mixed model before SpATS spatial correction. This two-stage approach furthermore
allows a full comparability of the mixed model approach with simpler methods since all
approaches relied on the SpATS model.

From the SpATS formula, plot-wise values are predicted as genotype effect ✓i, treatment
effect ⌧k and the error eiknp, where the error represents variance that could not be explained
with the SpATS model,

✓̂p_SpATS = ✓i + ⌧k + eiknp . (2.8)

To test the quality of CT estimates, Pearson correlation, genotype rank consistency, and
heritability were used as quantitative criteria, as done in other studies (Oakey et al., 2006;
H. G. Jones, Serraj, et al., 2009; Rodríguez-Álvarez et al., 2018).

The correlations were calculated between flights within years. To avoid inflated correla-
tions, dominant treatment effects were removed before correlation calculations by subtracting
estimated treatment effects from plot-wise CT values. If measured under similar conditions,
high correlations between flights taken close to each other are indicative of the consistency of
the method, which means that the ranking of CT estimates remains similar between two flights.
The correlation between flights within the same campaign is therefore an important criterion
of consistency and quality. High correlations between flights taken at distinct times or dates,
i.e. between different campaigns , are indicative of CT consistency as a measurement over time.
The consistency between campaigns might be affected by changes in meteorological conditions,
but also phenology, when taken at different dates. Although strong correlations might also be
expected between campaigns, they are, therefore, less indicative of the consistency of the used
method itself than correlations within campaigns.

Along with the correlations and CT ranking, the genotype ranking consistency between
flights within treatments allows for robust conclusions about genotypes’ CT. To capture this
measure quantitatively, the measurement means per genotype were ranked for each flight within
each treatment, and the consistency of the genotype ranking was examined as the standard
deviation (sd) of the genotype ranking throughout the flights of one campaign, defined as:

�gen_r =

vuut 1

n� 1

nX

i=1

(xi � x)2, (2.9)
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2.2. Methods

where x corresponds to the ranking of a genotype mean of one flight i, x to the mean of
the genotype rank of that respective genotype across all flights within one campaign and n

to the total number of the flights within one campaign. The sd of genotype ranking �gen_r
(Eq. 2.9) provided a tangible metric of ranking consistency, and a lower value indicated greater
consistency. �gen_r was calculated within the three treatments separately. One value was
calculated for each genotype within each treatment for all campaigns of selected methods before
and after correction in SpATS. The values were visualized in box plots for comparison and
pairwise t-tests were applied to examine whether the different methods produced significantly
different �gen_r values.

Heritability served as a measure to determine how well the methods are suitable to detect
genotype-specific differences in CT. It is a measure that quantifies how much of the total
phenotypic variance (i.e. the variance of the observed values, e.g. CT) is explained by the
genotypes (Oakey et al., 2006; Rodríguez-Álvarez et al., 2018). Standard heritability is the
fraction of genotypic variance �2g and the sum of genotypic variance and error variance �2e
divided by the number of replications r:

H
2
s =

�
2
g

(�2g +
�2
e
r
)

. (2.10)

The possible value of heritability ranges from 0 to 1. A high heritability means that a
trait can be selected for, as the variance between genotypes is considerably larger than within
genotypes. A heritability of 0 indicates that the variance is not related to the genotype at all,
and therefore a trait with 0 heritability is not interesting in breeding or variety testing.

The heritability provided in SpATS is an extension of Eq. 2.10 which can be used for more
complex variance structures, e.g., unbalanced designs, the so-called generalized heritability
(Oakey et al., 2006). While Eq. 2.10 showcases the principles of heritability, for the interested
reader, the formula framework of generalized heritability is provided in Eq. S1.1 & Eq. S1.2.
For more details on generalized heritability, see Oakey et al. (2006) and Rodríguez-Álvarez
et al. (2018).

Except for the orthomosaic-based data, weights were included in the fitting process in
SpATS where the weights w were equal to the inverted plot-wise standard error (se) estimates
(w = se

-1) of the respective plot-wise CT estimation (Roth, Rodríguez-Álvarez, et al., 2021).

2.2.9 One-stage approach

All methods described so far were two-stage approaches where plot-wise CT values were
estimated first with a subsequent spatial correction in SpATS. To offer a pragmatic solution,
an additional one-stage approach was tested where the multi-view raw data was directly fitted
in SpATS. To that end, the term ⌫j was added to Eq. 2.7 for the effect of the j

th trigger event
(Eq. 2.11).

✓̂ijknp = ✓i + ⌧k +
�
✓n⌧n

�
ik
+ �p + rn+ (base model) (2.11)

⌧rkn+ (repl. ⇥ treat.)
f
�
c(p), r(p)

�
+  c(p) +  r(p)+ (spatial model)

⌫j+ (trigger timing)
eijknp (error term)

As with the other approaches, plot-wise CT values were then predicted with Eq. 2.8 for
comparison.
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2.2.10 Data quality improvements by data selection

Using a multi-view approach allows to select measurements according to values of geometric
covariates as well as to modify the number of the measurements included in the analysis.

When changing from a nadir oriented view to a more oblique view, the avoidance of the
most nadir oriented measurements leads to a reduction of apparent soil cover and therefore soil
signal in the more oblique measurements (Aasen and Bolten, 2018; Pask et al., 2012; Perich
et al., 2020). Whether and how the selection of a specific viewing-geometry impacts the CT
estimates was tested by excluding most nadir oriented data in a data-treatment experiment.
Pearson correlations and heritability were used to estimate how the nadir exclusion influences
the quality of the results with regard to consistency and genotype specificity. Most nadir
oriented measurements were excluded for every flight in swaths in direction of sowing. Swath
width of exclusion was 0m (i.e. no exclusion), 2m, 4m and 6m from the line parallel to
sowing direction directly below the drone. This led to swath widths of 0m, 4m, 8m and 12m.
The measurements for every flight were then fitted with the “MM Trigger” model (Table 2.3)
and SpATS according to Eq. 2.7 in a two-stage approach. The fitted plot-wise values were
correlated to all other flights of the same swath width of nadir exclusion and heritabilities
were calculated for comparison.

Excluding measurements reduces the number of observations available for the analysis.
To examine the effect of a reduction of the number of observation included in analysis, the
number of observations for each plot in each flight was varied from 1 to 9 observations per
single plot in a data-treatment experiment. The observations were chosen randomly and
the procedure was repeated five times for each number of observation. Values were fitted
with the pragmatic one-stage approach (Eq. 2.11) in SpATS as “MM Trigger” produces very
erratic estimates of temporal trends when number of observations is low. The fitted plot-wise
values were correlated to all other flights of the same number of observations and heritabilities
calculated. Correlation values and heritabilities were grouped over all flights for each number
of observations for comparison.

2.3 Results

2.3.1 TIR data processing and processing comparison

2.3.1.1 Example of selected correction steps

Fig. 2.4 provides an overview on how some of the methods and the spatial correction in SpATS
affected the CT estimates. Three methods were chosen for a comparison. The “Ortho” method
provides a base-line for comparison, “Agg.-Mean” is a multi-view approach without correction
before SpATS, and “MM Trigger” is a multi-view approach using trigger timing as a covariate
for corrections of thermal drift in a mixed model. As case example, relative CT values were
visualized for the first flight of the campaign on 2022-05-18 at 16.00.

The field maps of ✓̂p_Ortho
and ✓̂p_mean

before spatial correction in SpATS contain strong
trends. While these trends at first sight appear to be spatial, they are in reality composed
of both spatial and temporal trends. The CT estimates span wide ranges within genotypes.
After correcting for temporal and also most dominant spatial trends, CT estimates based
on ✓̂p_MM

do not show strong trends anymore and the within-genotype variance decreased.
These “ ✓̂p before SpATS” values were the input values for the spatial correction in SpATS. The
estimates after the spatial correction ✓̂p_SpATS

are show on the right side of Fig. 2.4. No strong
trends could be detected anymore for any of the three methods after spatial correction and
within-genotype variance decreased for all three. The within-genotype variance of ‘MM Trigger”
is already lower before final spatial correction in SpATS than for the “Ortho” method after
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2.3. Results

spatial correction. The ranking of the genotypes is very similar between the three methods
after SpATS, but not before, where ✓̂p_Ortho

and ✓̂p_mean
show similar general trends of ranking

between the two methods but not compared to ✓̂p_MM
.

2.3.1.2 Percentile choice for data aggregation and blending mode choice in
orthomosaic composition

To find the best suited percentile for the aggregation, percentile-heritability relations of all
flights were visualized for both, orthomosaic (Fig. S1.5b & Fig. S1.6b) and multi-view method
(Fig. S1.7).

The median (i.e. the 50th percentile) fulfilled the two criteria of high heritability and sta-
bility of heritability over closely adjacent percentiles in both years. Differences in heritabilities
of different percentiles between the orthomosaic (Fig. S1.5b & Fig. S1.6b) and multi-view
(Fig. S1.7) methods were small. Hence, the 50th percentile was chosen for both methods for
later method comparison. The orthomosaic blending mode “Mosaic” led to the highest and
most stable heritabilities and was therefore chosen for further analysis.

2.3.1.3 Covariates related to trigger timing and viewing geometry

The “Base” model (design factors only) and the “Base + Full Spatial” model failed to fit in the
mixed model stage for 12 out of 39 flights and 9 out of 39 flights, respectively. Just by including
trigger timing in mixed models, models converged for all flights. When comparing BICs of
models, the “Base” model (design factors only) always showed a higher BIC and therefore
higher lack of fit than more complex models that include covariates (Fig. 2.5). Increasing
complexity of the spatial model in the “Base + Full Spatial” model did not improve the models
while adding trigger timing significantly improved the performance in all cases. The inclusion
of “Sun-Direction-Trend” improved most models significantly. “Row-Direction-Trend” slightly
improved the models while considering the position of the plot on the sensor plane (i.e. image
coordinates of the plot center, denoted “Sensor-Plane-Trend”) did not lead to any improvement.

2.3.1.4 Example of thermal drift

A strong drift of TIR measurements along trigger timing, i.e. a strong temporal trend was
observed for all measurements. Patterns were similar for all flights (e.g. Fig. 2.6). Analyzing
the estimated temperature drift with time (fspl(j) in Eq. 2.5) with the “MM Trigger” mixed
model in relation to relative movements along the main flight direction (Fig. 2.6) revealed a
strong link between main direction of flight and direction of TIR drift. A change of temporal
trend coincided very often with a change of motion direction. Temperature frequently changed
more than 10

�
C within one flight line. The direction of this relation was not persistent and

the temporal trend sometimes increased or decreased for the same direction of motion within
a flight campaign or even within a single flight.

2.3.1.5 Consistency of plot-wise CT estimates and genotype CT ranking

As a metric of consistency, correlations of plot-wise values ✓̂p_SpATS
between flights within

years were calculated, as well as the sd of genotype rankings within campaigns.
Plot-wise CT estimation with the best performing yet most complex mixed model “MM

Trigger + RowDir + SunDir + Sensor” was applied to all plots within the field with subsequent
spatial correction in SpATS. The correlations between ✓̂p_SpATS

of different flights ranged from
moderate to very strong, with generally stronger correlations for flights that were taken within
a shorter period (closer to the diagonal of the correlation table) and weaker for flights that
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Figure 2.5: The Bayesian information criterion (BIC) for all flights. With BIC, the quality of the
model fit was compared. Lower BIC values indicate preferable models. Green lines separate different
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Figure 2.6: Estimated thermal drift of TIR measurements throughout the duration of flights for
the three flights of the 13.45 campaign on 2021-07-01 on EuVar21. Rows 1 to 3 represent the three
different flights of the same campaign. Flight plan and sensor orientation were identical for the three
flights which were all conducted within 30min. The colors indicate the motion in direction of the main
flight path. Red indicates flights in one direction and green in the opposite direction of the flight path
grid. For gray points, temporal drift was modeled but there was no corresponding measurement of

motion along the main flight path.

were taken at times further apart. These patterns were consistent over both years (Figs. 2.7 &
S1.8).
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Figure 2.7: Pearson’s correlations of EuVar22 plot values ✓̂p_SpATS
after correction for spatial and

temporal covariates (“MM Trigger + RowDir + SunDir + Sensor” and subsequent fitting with SpATS)
and removing dominant treatment effects. Green lines separate different measurement days, orange

lines different flight campaigns within the same day. All correlations are significant at P < 0.001.
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Mean plot-wise correlations of CT measurements over all dates were calculated for dif-
ferent CT pre-processing and post-processing methods (similar to Fig. 2.7) and correlations
aggregated in box plots for comparison (Fig. 2.8a). As flights were conducted in a specific
phenological window (onset of heading - early senescence), correlations were strong not just
within campaigns but also between campaigns. Consequently, all correlations of one season
were summarized in the same box plot. Correlations were weakest for the orthomosaic method.
Mean correlations of the orthomosaics method were 0.62 and 0.78 in 2021 and 2022, respec-
tively. Correlations were stronger for the median multi-view aggregation method (0.63/0.81
for 2021/2022, respectively), the “LM” (0.68/0.80) and the mean multi-view aggregation
(0.71/0.85). Correlations were strongest for the one-stage SpATS model (0.76/0.86), the mixed
models “MM Trigger” (0.76/0.87) and “MM Trigger + RowDir + SunDir + Sensor” (0.76/0.88)
. Correlations of plot-wise CT measurements were similarly strong for both years within
campaigns (Figs. 2.7, S1.8). Vignetting correction almost did not change the values, and the
values mentioned are those without vignetting correction.

The sd of genotype ranking within campaigns �gen_r (Eq. 2.9) was calculated for all
processing methods (Fig. 2.8b). The values of the method “SpATS (one-stage)” before spatial
correction correspond to unadjusted mean values as for the method “Agg. - Mean”. �gen_r
was lowest after mixed model pre-processing and spatial correction in SpATS in both years
but was similarly low for the “SpATS (one-stage)” approach. Spatial correction had a large
effect for models without mixed model pre-processing. �gen_r was very similar for the “Ortho”
and “Agg.-Mean” method before and after SpATS in both years. The genotype ranking within
campaigns was therefore most consistent for the approaches with mixed model pre-processing,
but similarly consistent for the “SpATS (one-stage)” approach. Mean and median values of
�gen_r for all methods are shown in Table S1.4.

2.3.1.6 Genotypic specificity of apparent CT

Heritabilities were generally high to very high (Fig. 2.9). The aggregation methods “Mean”
and “Median” provided the lowest heritability estimates with the highest variability between
flights of the same campaign, followed by the “Ortho” method. The CT estimation methods
“LM” and “SpATS (one-stage)” mostly showed slightly higher and less variable heritabilities
than the “Ortho” method. Plot-wise CT estimation with the “MM Trigger” method and “MM
Trigger + RowDir + SunDir + Sensor” consistently showed the highest and least variable
heritabilities. Often the “Trigger” model showed slightly higher heritabilities than the more
complex method. The difference between heritabilities of data without and with vignetting
correction was minimal with the average absolute difference between the two being 0.005 over
all methods tested. No clear trend could be observed for the sequence of the individual flights
within a campaign.

2.3.2 Analysis on quantity and quality of observations included in multi-
view models

2.3.2.1 Selection of non-nadir measurements

Excluding measurements that were closest to the line in nadir direction below the drone and
parallel to row direction increased heritability consistently for both years (Fig. 2.10a). The
correlation between the flights within one swath width of nadir-view exclusion got weaker in
general with increasing swath width (Fig. 2.10b).
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Figure 2.8: Consistency of plot-wise CT estimates and genotype CT ranking. (a) Pearson’s correlations
of plot-wise CT measurements ✓̂p_SpATS

within EuVar. Correlations were calculated for each flight
within both years, but not across years. CT was estimated with the orthomosaic method, two different
aggregation methods (“Agg.-Median” & “Agg.-Mean”), the “LM”, one-stage SpATS and two mixed
model methods (“MM Trigger”, “MM Trigger + RowDir + SunDir + Sensor”). Correlations were
calculated for data with and without vignetting correction after spatial correction in SpATS. (b) The
sd of genotype ranking �gen_r (Eq. 2.9) within campaigns was arranged for four different processing
methods and two years before and after spatial correction in SpATS. Each box plot is based on 90
�gen_r values from the 30 genotypes sown within three treatments each year for all campaigns within
one year (7 campaigns in 2021 and 6 campaigns in 2022). Red marks indicate the significance of the
differences between the groups based on a pairwise t-test. Significance levels: NS: p > 0.05; *: p <

0.05; **: p < 0.01; ***: p < 0.001.
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Figure 2.10: Heritabilities (a) and the correlations (b) for all flights, for which data was excluded in
nadir oriented swaths of different widths.

2.3.2.2 Number of observations included in models

Heritabilities were calculated for 1 to 9 randomly chosen observations for each plot. The
procedure was repeated five times for each flight and values were fitted with the SpATS
one-stage approach (Eq. 2.11). When comparing the resulting correlations and heritabilities in
box plots, they consistently increased with increased number of observations for both years
(Fig. 2.11a) but seem to asymptotically approach a maximum. Also the correlation between
the flights increased with the number of observations, indicating that measurements became
more consistent (Fig. 2.11b).

2.3.3 Weather conditions during flights

Flights were conducted in conditions suitable for flying (low wind, dry canopy, no rain). Within
these conditions, no obvious dependence of heritability on environmental parameters such as
temperature, solar radiation, wind speed, wind direction, relative humidity or VPD could be
found (Fig. S1.9 and S1.10).

2.4 Discussion

2.4.1 The performance of multi-view methods

The results demonstrated the large influence of temporal, spatial, and geometrical trends on
CT measurements (e.g., Fig. 2.4), and how different methods lead to different CT estimates.
After a final spatial correction with SpATS, strong trends had largely disappeared for all three
methods, but within-genotype variance still differed significantly between the three methods.
“Ortho” processing showed the largest within-genotype variance. A larger variance within
genotypes reduced the heritability, as it decreased the ratio of genotypic variance, i.e. the
variance caused by different genotypes, divided by the sum of genotypic and unexplained error
variance (Eq. 2.10). From the CT values arranged by genotypes, it therefore became evident
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Figure 2.11: Heritabilities (a) and the correlations (b) for all flights and specific numbers of
observations per flight.

that heritability increased for “Agg.-Median” method and was highest for “MM Trigger”. The
latter contained just a very low within-genotype variance after a final spatial correction. A
decreased within-genotype variance also allows for a more consistent genotype ranking.

The multi-view method improved the genotype ranking consistency of CT within campaigns,
and highly genotype specific CT measurements could be derived in the very contrasting
conditions of the wet and cool year 2021 and the hot and dry year 2022. Using simple
aggregation functions such as the mean and median to aggregate multiple values per plot
showed generally lower heritabilities than using orthomosaics. The results indicate that a
weighted spatial aggregation as done in the orthomosaic generation is superior to simple
aggregation methods, but inferior to multi-view methods including mixed models or the
“SpATS (one-stage)” method.

Both the orthomosaic method and mean and median aggregation do not compensate for
temporal effects. Consequently, the subsequent processing of plot values (e.g., in SpATS) is
assumed to correct for both spatial and temporal trends simultaneously in such situations.
Usually, drones fly perpendicularly or parallel to row directions in experiments. While the
sequence of images is lost when aggregating using the mean or median, nadir oriented parts
of images are getting the highest weight in the orthomosaic blending mode “Mosaic”, which
will partly preserve the triggering sequence. Consequently, a spatial correction of plot values
can correct partially for spatial and temporal trends for blended orthomosaics, but not for
aggregated values when using the mean or median.

Working with multi-view data allows to reduce temporal trends in plot-wise CT estimation.
Including trigger timing in CT estimation was improving model fits and correlations the most
but the fits could not be improved by a more complex spatial model. This shows that models
are correcting for temporal effects and not for spatial effects that are mixed up with temporal
effects. The separation of spatial and temporal trends is possible because even with a flight
path that is parallel to row or column direction, each plot is recorded at multiple drone passes
with opposing flight directions. The conditions on the sensor are not always the same when
flying over the same plot. This becomes evident when examining the temporal pattern of the
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thermal drift e.g. in Fig. 2.6. At about 135 s after flight start, temperature is estimated to be
at a local maximum for the flights 1 and 3 and a local minimum for flight 2, but all three flights
were conducted within 30min. Such large differences can be explained by thermal drift (e.g.
Kelly et al., 2019) but not with large CT changes in the field under relatively stable conditions.
This separation of trends might be the main reason why all methods that included temporal
trends showed strong correlations between plot-wise CT estimates. While the most complex
plot-wise CT estimation with mixed models led to the highest correlations, the relatively
simple CT estimation with the one-stage SpATS model led to good results as well while being
far less complicated and computationally intensive than the mixed models computed with
ASReml-R. The simple model, considering trigger timing and including a simple spatial model,
might be sufficient for many cases.

Nevertheless, high heritabilities and correlations were achieved with all methods and even
with the orthomosaic method, the estimated heritabilities were often higher than what was
reported in comparable experiments (e.g. Deery, Rebetzke, Jimenez-Berni, James, et al., 2016;
Perich et al., 2020). The very high heritabilities in this study might in part be due to the
properties of the experiments such as the chosen genotypes which originated from all over
Europe. This led to a diverse set of genotypes which showed a more heterogeneous behavior
than variety trials with genotypes adapted to conditions in Switzerland. In addition, the
treatments had relatively little effect on the performance of the varieties which increased the
number of effective replicates to nine and in turn led to a more robust estimation of genotypic
variances.

2.4.2 Continuous thermal drift and influence of wind

Our data suggest that thermal drift is continuing throughout the flights, regardless of the
previous stabilization regimen. This indicates that a thermal equilibrium in the sensor is not
reached during the flights (e.g. Yuan and Hua, 2022).

In accordance with Kelly et al. (2019), we assume changing wind conditions on the sensor
to be the main source of temperature drift. While flights were conducted in conditions
with relatively low wind speeds, the wind conditions on the sensor kept changing constantly
throughout the flights, in particular at the turning points of the flight path. Kelly et al.
(2019) had shown that a wind speed difference of as low as 2m s

�1 is sufficient to trigger large
thermal drift. A change in flight direction came with a change of wind direction and speed
the sensor was exposed to and changes in thermal drift often coincided with changes of main
flight direction. Although this is in line with the findings of previous studies (Kelly et al.,
2019; Malbéteau et al., 2021; Yuan and Hua, 2022), we demonstrated the relation between
flight path-related changes of wind conditions on the sensor and CT readings in-flight and
continuously for the first time to the best of our knowledge.

Kelly et al. (2019) and Yuan and Hua (2022) reported the sensor to need several minutes
to reach an equilibrium after changing wind conditions. This is much longer than the interval
between changes in wind conditions caused by changes in the flight path, which is typically
below 1min, and the sensor does not have the time to reach an equilibrium during a flight. It
has been suggested to mount shields to protect the sensor from exposure to wind (e.g. Kelly
et al., 2019). Yet, this would also increase payload and reduce the agility of the gimbal. In
addition, the potential of such a shielding to reduce sensor drift might be limited, as wind is
only one of several potential drivers of sensor temperature.

Drift is most pronounced after turning on the TIR sensors and therefore, stabilization
procedures are suggested in literature. In this work, temperature stabilization period was 15min

in 2021 and was increased to 30min in 2022. This was longer than the 10min recommended for
handheld thermometers in Pask et al. (2012) and in the range of the 30min recommended in
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Jimenez-Berni, P. J. Zarco-Tejada, et al. (2009). Kelly et al. (2019) and Yuan and Hua (2022)
showed that under laboratory conditions, the largest drifts of TIR cameras often occur during
the first 30min. In 2022, heritabilities were generally lower than in 2021, when stabilization
period was shorter. We therefore conclude that other parameters are more relevant for the
quality of drone-based TIR imaging than increasing the temperature stabilization period on
the ground beyond 15min.

Within campaigns, there was no clear trend that first flights showed a lower heritability
than later flights of the same campaign. The suggestion of Kelly et al. (2019) to hover the
drone for 15min prior to measurements to stabilize it with in-flight conditions did not prove
to be helpful for the multi-view approach in our study. Continuous thermal drift throughout
the flight cannot be considered in any pre-flight stabilization procedure alone. Also, in-flight
stabilization procedures, where the drone is hovered over the field prior to measurements,
just help to mitigate effects from rather constant propeller slipstream but not from changing
direction of flight and wind.

2.4.3 Analysis on quality and quantity of observations included in multi-
view models

Multi-view allows to select data according to viewing geometry. When measuring CT of wheat
crops with a handheld sensor, it is recommended to measure at an oblique angle to reduce the
influence of the soil (Pask et al., 2012). By excluding most nadir-oriented measurements in
aerial thermography, the average fraction of plant pixels per measurement can be increased.
Measurement values are therefore more related to actual CT and less to canopy cover and soil
temperature. This is most likely also leading to more accurate (though not necessarily higher)
correlations between flights, as different traits such as stomatal conductance and canopy cover
are unmixed to a certain degree. Heritability and correlation between flights within the same
year also depend on the number of observations included.

The results showed that more observations per plot make the measurements more genotype
specific and consistent. This effect is not unique to multi-view imaging: also in orthomosaic
blending, information of multiple images is aggregated into one orthomosaic. Unlike with
orthomosaics, with multi-view, we can determine the influence of the number of observations by
excluding random observations. Consequently, the added value of repeated measurements per
plot could be estimated, which would allow to estimate the minimum number of measurements
to be included and to plan flights accordingly (flight height and overlap). A trade-off between
maximizing number of observations and optimizing quality by data selection must be found for
individual CT measurement campaigns. When nadir-oriented measurements are excluded, the
number of measurements per plot might become so low that it deteriorates the CT estimates,
which was demonstrated with weakening correlations when swath width of nadir-view exclusion
was increased.

2.4.4 Sensitivity of the approach

The estimated plot-wise CT estimates within single flights span over a range of 2.96
�
C

on average over all flights. Within this range, the measurements were shown to be highly
consistent within the same campaign over the 270 plots of EuVar by means of correlation and
within-campaign genotype ranking consistency. In addition, significant differences could be
found between the 30 genotypes. The high genotype specificity of the CT values was confirmed
by the high heritabilities. This indicates a high sensitivity of our approach for relative CT
differences. This sensitivity is clearly below a relative sensitivity of 1 �

C which is stated in
Mesas-Carrascosa et al. (2018) to be required for TIR measurements in agriculture. However,
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the sensitivity is restricted to relative differences in CT. For absolute values, as required in
many applications for crop physiology, additional in-field calibration would be needed.

Kelly et al. (2019) showed that also uncooled and uncalibrated TIR cameras show a
relatively constant relation (i.e. slope) between DNs (the original raw values of the thermal
camera) and temperature of reference objects. The authors found that mainly the offset is
changing between flights. This supports our findings that the multi-view approach allows to
represent relative temperature differences well, but the estimation of absolute values is prone
to large errors. The narrow ranges of genotypic differences found indicate that the accuracy of
uncooled yet calibrated TIR cameras of ±5

�
C (Kelly et al., 2019; Perich et al., 2020) is not

sufficient without a post-processing correction step.

2.4.5 Correlation and within-campaign genotype ranking consistency as
measure of the methods consistency

In this work, correlations between CT of different flights and within-campaign genotype
ranking were considered as indicators of consistency of the different approaches. Another
option would be to correlate flight data with ground measurements. Nevertheless, ground
reference measurements are subject to drift as well, and consequently should be taken in
the same period as the TIR measurements. Ground reference measurement should also have
the same response time and response pattern to changing environmental conditions as CT
(H. G. Jones, Serraj, et al., 2009).

While measuring variability of CT e.g. between treatments and genotypes just once
is a bad indicator of systematic and consistent CT differences (H. G. Jones, Serraj, et al.,
2009), very strong and significant (P < 0.001) correlations between repeated measurements of
apparent CT in independently processed flights were reached in this work. Together with the
within-campaign genotype ranking, this demonstrates a high consistency and high reliability
of the multi-view method.

2.4.6 Covariates in mixed models

The covariates included in the mixed models were chosen to represent the main trends assumed
to be influencing the apparent temperature. Trigger timing was included to correct for trends
related to sensor drift (Kelly et al., 2019). Lateral and longitudinal distance of the plot from
the drone in sowing row direction were assumed to be related to changing apparent canopy
cover (Aasen and Bolten, 2018; Pask et al., 2012; Perich et al., 2020). Anisotropy of wheat
canopies, i.e. the directional dependence of the reflectance of TIR radiation on the crop surface,
was assumed to be correlated with the lateral and longitudinal distance of the plot from the
drone in sun direction (H. G. Jones, Serraj, et al., 2009; Nicodemus, 1977; Perich et al., 2020).
The x and y image coordinates of the “Sensor-Plane-Trend” were intended to describe sensor
related trends such as vignetting.

2.4.7 Including all plots to avoid border effects

Temporal drift was estimated based on all plot-wise measurements available, i.e. also border
plots and plots of other experiments were included. When a drone is flying over an experiment
in swaths, at the beginning and at the end of the swath, the temporal density of data points
may decrease. For these regions, the estimation of the temporal drift is unbalanced and can
take on extreme values (see extremely warm/cold gray points in Fig. 2.6). When including
all plots in the plot-wise CT estimation models, the estimates of apparent CT within the
experiment of interest are less impaired by the effect of reduced density, as the plots at the
beginning and end of swaths are border plots or belong to other experiments that are not
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in the focus of the study. In addition, the inclusion of other experiments and border plots
increases the data available for more robust estimation of trends. Rodríguez-Álvarez et al.,
2018 for example included 31 trials on one field for estimation of spatial trends before analying
experiments separately.

2.4.8 Image pre-processing and TIR data extraction

Vignetting correction affected neither the correlations between measurements nor the heri-
tabilities of the single flights significantly. Nevertheless, it was important to include it in the
analysis as its spatial patterns potentially might mix up with the covariates related to viewing
geometry. Decreasing the variance that might stem from vignetting previous to modeling
decreased the risk of overestimation of geometry related effects in mixed models which might
be concurrent with vignetting.

The choice of the 50th percentile for plot-wise data aggregation allowed for highly consistent
and heritable CT measurements. Together with nadir-view exclusion, a smart selection of a
fitting percentile contributes to mitigating a bias by the background in mixed pixels. More
reasoning on vignetting and zonal data aggregation by specific percentiles is provided in
sections S1.17 and S1.18, respectively.

2.4.9 Benefits of additional data available in multi-view

For existing approaches of drone-based CT measurement, analysis is usually conducted on
orthomosaics (e.g. Francesconi et al., 2021; Malbéteau et al., 2021; Perich et al., 2020). The
presented image-wise multi-view approach allows for more detailed information on temporal
trends, measurement geometries and uncertainty estimates. Such information is lost to a large
extent when conducting analysis on orthomosaics. Mesas-Carrascosa et al. (2018) and Z. Wang
et al. (2023) also used information of multiple images for an estimate of temporal drift. Mesas-
Carrascosa et al. (2018) retrieved features from overlapping parts of images from multiple
drone passes of the same flight while Z. Wang et al. (2023) just used features from consecutive
images. They both used the differences between the features that appear on multiple images to
correct the orthomosaic for temporal drift. In contrast, we extracted CT of the specific plots
on single images directly. This automatic process enables an efficient information retrieval
directly from overlapping images, which in turn increases the efficiency of trend estimation. In
addition, multiple covariates can be calculated for each measurement, increasing the available
information for a subsequent analysis. Aasen and Bolten (2018) estimated the position of pixels
relative to the sun on single images by using a fixed orientation of the camera during the flight
for hyperspectral information. The multi-view approach allows to calculate such geometric
relations independently of the orientation of the camera. The interplay of wind conditions
and flight direction on CT estimates was examined in Malbéteau et al. (2021). By visualizing
temperature drift in relation to flight direction with a high temporal resolution, their findings
could be complemented with continuous in-flight drift dynamic estimates. Deery, Rebetzke,
Jimenez-Berni, James, et al. (2016), Deery, Rebetzke, Jimenez-Berni, Bovill, et al. (2019) and
Perich et al. (2020) used correlations between measurements at different times and heritabilities
as quality criteria of the experiment, H. G. Jones, Serraj, et al. (2009) used consistency of
genotype ranking, while Malbéteau et al. (2021) used pixel-based standard deviation of the
input-data to check quality. Based on previous studies, here correlations, genotype rankings,
and heritabilities were also used as quality criteria, but the inverted standard error of the
measurements per plot was included for weighting in heritability calculations as an uncertainty
estimate. While the swath based approach of Malbéteau et al. (2021) corrects the input-data
before analysis, with the multi-view approach, the different trends and effects are estimated
in a statistical model. Estimated trends and standard errors are available for an in-depth
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analysis together with multiple covariates, but the input-data remains unchanged, providing
a comprehensive and detailed overview on the quality of the data. While such comparisons
over different experiments have to be done with due caution, correlations and heritabilities in
this study were as high or higher than what was reached in Deery, Rebetzke, Jimenez-Berni,
Bovill, et al. (2019) and Perich et al. (2020) with calibrated TIR cameras. With an uncooled
and uncalibrated TIR camera, correlations and heritabilities higher than 0.95 were reached
by exploiting covariates available through the multi-view approach which allowed to correct
for thermal drift and viewing geometry related effects. Multi-view as a lean phenotyping
approach has therefore the potential to significantly improve CT measurements in the context
of variety evaluation without the need for more expensive equipment or elaborate in-field
reference procedures.

2.4.10 Cheat sheet for drone based multi-view thermography

Finally, based on the findings of this study and complemented from literature (Kelly et al.,
2019; Yuan and Hua, 2022), the most important findings on an optimal procedure to measure
CT in a multi-view approach are summarized in Fig. 2.12. The cheat sheet follows the logic
of the work flow and is divided into the stages before the flight, flight, data extraction and
analysis. If these recommendations are followed, the most important findings of this study can
be incorporated into drone-based CT measurements.

2.4.11 Outlook

Further research might include streamlining the processing for simple implementation and
using the method in combination with a stationary local sensor with a high absolute measure-
ment accuracy for in-field normalization to derive accurate absolute CT values on the whole
fields. Temporal drift information might be included in an orthomosaic blending procedure
where each image gets an offset estimate by multi-view, allowing for more accurate and
consistent orthomosaics. Alternatively, several geometric covariates could be calculated and
their contribution to total variance examined in a multi-view approach. If information on
wind direction and speed on the field are available at a high temporal and spatial resolution,
CT and thermal drift could be related to the influence of changing wind conditions and gusts.
Finally, while the method was developed for wheat phenotyping in variety testing experiments,
it might be suitable for other field crops and even for observations beyond agriculture. Once
the thermal images are aligned and georeferenced, the method is semiautomatic. As simple
requirement, georeferenced polygons of the targeted ROIs must be available, and those ROIs
must be small enough to appear entirely in multiple images of a flight. The back-projection of
ROIs to images does not need any manual intervention, wherefore the whole process could
be automatized. With the data retrieved, mixed models and linear models could be fitted
for non-designed experiments (e.g., land surface monitoring) as well as designed experiments
(e.g., breeding experiments) alike. Larger areas could be covered by flying at higher altitudes.
Those adaptations would pave the way to apply the presented method not just for breeding
and variety testing, but also, e.g., to detect stressed patches in fields to improve irrigation
efficiency, or variable-rate fertilization applications in precision agriculture (Romano et al.,
2011; Messina and Modica, 2020; Chandel et al., 2022).

2.5 Conclusion

In this study, a multi-view approach for consistently measuring relative CT of wheat with a
drone-based uncooled and uncalibrated TIR camera without any in-situ field references was
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Flight planning:

Fly with the long side of the field of view perpendicular to sowing direction.
This maximises the plots that are recorded entirely in non-nadir orientation
and thereby reduces the influence of background (soil).
Thermal drift will likely be the most important source of variance. Fly over
strong gradients (e.g. treatments but also genotypes) at multiple and distinct
points in time and optimise genotype distribution in the experimental design to
avoid confounding of thermal drift and treatment/genotype effects in mixed
models at later stages. 

Need most consistent
results possible or an analysis on

the influence of covariates?
-

 A lot of computational
power is available?

Just extract trigger timing and
fit a relatively simple model
e.g. in SpATS.The model
should include genotypes,
treatments, a spatial
component (row/column),
replications and trigger timing.
This model should allow for
the inclusion of interaction
terms directly (e.g. Eq. 8)*.

Percentile choice:

Choose a percentile for zonal data aggregation by calculating heritability for multiple
percentiles from 0 to 100 with a relatively simple model e.g. in SpATS.
Percentile should be from a stable range where neighbouring percentiles do not vary
strongly.
Do not choose very low or high percentiles. They might be strongly biased by effect
from e.g. canopy cover.
The 50th percentile might be a good choice in most cases. However, if canopy cover
is low, another percentile might be preferable.

Maximise sample size by including all available plots

Include border plots and plots from other experiment that are visible on the same field
on thermal images. With more data available, the estimation of trends in the
modelling section will be more accurate.

Yes

Calculate all covariates and fit a complex
mixed model. The model should include
genotypes, treatments, a spatial
component (row/column), replication,
trigger timing and any covariate of
interest. Be careful with interaction terms
as models get too complex easily. Very
likely, a two stage approach is needed
due to restrictions in computation
capacity*.

No

* Example codes for ASReml-R and
SpATS are provided in supplementary
materials in the sections "S19 SpATS
Code" and "S20 ASReml-R code".Predict plot values or genotype estimates. Also the effect of covariates included in the model can be estimated.

 Flight conditions:

Conduct flights in conditions with low wind and in
absence of strong gusts (Reynolds, Pask, and Mullan,
2012).
Fly when VPD is high to maximise genotype specific
CT differences (Messina and Modica, 2020).
Optimal conditions for flying are often from noon to mid
afternoon (Perich et al., 2020).
Consider that heat and/or drought might impact the
optimal timing as water status of the plant might
change throughout the day.
Apply 15 min. stabilisation time on the ground and 1
min. in-flight prior to measurements. 

Optional: Select data according to
viewing geometry. This applies mainly if
canopy cover changes strongly with a
deviation from nadir view, e.g. in row
crops.

Before the flight: Flight:

Data extraction:

Data analysis:

Figure 2.12: Cheat sheet, giving an overview on most relevant considerations when measuring CT
with a drone based multi-view approach.
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presented. The quality of the measurements was assessed by means of correlations between
measurements taken at different times, genotype ranking consistency between flights and
heritability. Contrary to standard orthomosaic approaches, multi-view allows to calculate
and include several covariates in the analysis which improved the CT estimates in terms of
correlation, ranking consistency and heritability. The trigger timing, describing thermal drift
during a flight, was by far the most beneficial covariate to be included. Integrating other
covariates related to viewing geometry with respect to position of the plot and the sun relative
to the drone showed additional potential to improve CT estimates. The proposed approach
enables the disentanglement of spatial drift from temporal drift.

The ability for detrending CT data, together with the option to select measurements
according to viewing geometry paves the way for using drone-based thermography with relatively
simple equipment as a lean-phenotyping method without complex calibration procedures. Yet,
the method is limited to relative temperature differences and does not correct for errors in
absolute CT values.

To facilitate the implementation of multi-view thermography, a computationally inexpensive
and easy to apply model is provided based on the R-package SpATS. A cheat sheet outlines
the complete procedure to facilitate its implementation.

In future research, the method might be used in combination with a ground-based sensor
with a high absolute measurement accuracy for in-field normalization to derive accurate
absolute CT values. In addition, in situations where an orthomosaic is required, temporal drift
information might be used as image-specific offset information in orthomosaic processing to
create more consistent orthomosaics.

Data availability

A working example of the procedure suggested in this publication including source code and ex-
ample data is provided on github (https://github.com/TreAgron/ThermalMultiviewExample.
git).

Authors’ contribution

Simon Treier: conceptualization, planning and execution of the experiment, data collection,
methodology, software, formal analysis, visualization, writing – original draft. Lukas Roth:
conceptualization, supervision, methodology, review & editing. Juan M. Herrera: project
administration, funding acquisition, conceptualization, planning of the experiment, supervision,
methodology, acquisition, writing – review & editing. Norbert Kirchgessner: conceptualization,
review & editing. Achim Walter, Helge Aasen, Andreas Hund: writing – review & editing.

Funding

This study was in part supported by the two H2020 projects InnoVar and Invite.

Acknowledgments

We thank Johanna Antretter, Fernanda Arelmann Steinbrecher, Ulysse Schaller, Matthias
Schmid and Julien Vaudroz for rating of phenology; Nicolas Vuille-dit-Bille for the support in
collecting and processing drone data; Nicolas Widmer and his team as well as Yann Imhoff for
field management; Margot Visse-Mansiaux for support in setting up the experiments.

41

https://github.com/TreAgron/ThermalMultiviewExample.git
https://github.com/TreAgron/ThermalMultiviewExample.git




3 Analysis of variance and its sources
in UAV-based multi-view thermal
imaging of wheat plots

Simon Treier1,2, Lukas Roth2, Andreas Hund2, Helge Aasen3, Lilia Levy Häner1, Nicolas
Vuille-dit-Bille1, Achim Walter2, Juan M. Herrera1

1 – Production Technology & Cropping Systems Group, Agroscope, Route de Duiller 60,
1260 Nyon, Switzerland

2 – ETH Zürich, Institute of Agricultural Sciences, Universitätstrasse 2, 8092 Zürich, Switzer-
land

3 – Earth Observation of Agroecosystems Team, Agroecology and Environment Division,
Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland

This chapter was resubmitted to Plant Phenomics after revision.

Abstract

Canopy temperature (CT) estimates from drone-based uncooled thermal cameras are prone to
confounding effects, which affects the interpretability of CT estimates. Experimental sources
of variance, such as genotypes and experimental treatments blend with confounding sources of
variance such as thermal drift, spatial field trends, and effects related to viewing geometry.
Nevertheless, CT is gaining popularity to characterize crop performance and crop water
use, and as a proxy measurement of stomatal conductance and transpiration. Drone-based
thermography was therefore proposed to measure CT in agricultural experiments. For a
meaningful interpretation of CT, confounding sources of variance must be considered. In this
study, the multi-view approach was applied to examine the variance components of CT on 99
flights with a drone-based thermal camera. Flights were conducted on two variety testing field
trials of winter wheat over two years with contrasting meteorological conditions in the temperate
climate of Switzerland. It was demonstrated how experimental sources of variance can be
disentangled from confounding sources of variance and on average more than 96.5% of the
initial variance could be explained with experimental and confounding sources combined. Not
considering confounding sources led to erroneous conclusions about phenotypic correlations
of CT with traits such as yield, plant height, fractional canopy cover, and multispectral
indices. Based on extensive and diverse data, this study provides comprehensive insights
into the manifold sources of variance in CT measurements, which supports the planning and
interpretation of drone-based CT screenings in variety testing, breeding, and research.
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Chapter 3. Analysis of variance and its sources in UAV-based multi-view thermal imaging of
wheat plots

3.1 Introduction

Canopy temperature (CT) of wheat (Triticum aestivum L.) is a proxy-measurement of stomatal
conductance (e.g. Anderegg, Aasen, et al., 2021; Deery, Rebetzke, Jimenez-Berni, Bovill, et al.,
2019; Rebetzke et al., 2013; M. P. Reynolds, Pask, et al., 2012) and transpiration (Jiang
and Islam, 1999) that is negatively correlated with yield in well-watered conditions (Deery,
Rebetzke, Jimenez-Berni, James, et al., 2016; R. A. Fischer et al., 1998; Pask et al., 2012;
Rebetzke et al., 2013; Roche, 2015), i.e. a lower CT is generally associated with higher yield.
CT is more sensitive to changes in the water status of plants than other optical measurements
such as the Normalized Difference Vegetation Index (NDVI), and shows a faster response
time to physiological changes in the plant (Baluja et al., 2012; Damm et al., 2022; Messina
and Modica, 2020; P. Zarco-Tejada, González-Dugo, L. Williams, et al., 2013). This makes
CT especially interesting for measuring plant performance in dry and/or hot conditions.
Therefore, it was proposed to be used in cereal breeding (e.g. Anderegg, Aasen, et al., 2021;
Brennan et al., 2007; Deery, Rebetzke, Jimenez-Berni, James, et al., 2016; Deery, Rebetzke,
Jimenez-Berni, Bovill, et al., 2019; Perich et al., 2020; Rebetzke et al., 2013; M. P. Reynolds,
Pask, et al., 2012; Romano et al., 2011), in research and precision agriculture (e.g. Chandel
et al., 2022; Maes and Steppe, 2012; P. Zarco-Tejada, González-Dugo, and Berni, 2012), e.g.,
to detect water stress. Thermal infrared (TIR) cameras mounted on drones allow the efficient
measurement of many experimental units (Deery, Rebetzke, Jimenez-Berni, Bovill, et al.,
2019; Perich et al., 2020). However, various sources of variance can adversely affect TIR
measurements and increase uncertainties when estimating CT. Spatiotemporal and geometric
patterns superimpose with the effects of specific genotypes or treatments (e.g. Kelly et al.,
2019). Therefore, the measurement and interpretation of CT data is not trivial (Perich et al.,
2020). Elaborated measurement procedures and statistical methods are needed to disentangle
the sources of variance that influence CT measurements.

The most important sources of variance and their main drivers/causes are summarized
in Table 3.1. First, CT is sensitive to short-term changes in environmental conditions. Solar
radiation, air temperature, relative humidity of the air, vapor pressure deficit (VPD), and
cloud cover are all interlinked and affect CT measurements directly by changing the heat
balance of the canopy, for example, by fluctuating radiation or indirectly by impacting stomatal
conductance (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016; Pask et al., 2012; Perich
et al., 2020; Rebetzke et al., 2013). Such environmental effects might mask more subtle plant
responses (Damm et al., 2022). To reduce distortions by the environment, it is recommended
to fly in stable conditions, i.e. when there are no clouds or haze and wind speeds are low
with no gusts. However, also under stable conditions, solar radiation and VPD are constantly
changing, and the conditions may differ at the beginning and the end of the flight, particularly
for long-duration flights (Z. Wang et al., 2023).

Due to a limited payload of drones, uncooled thermal cameras are commonly used in
field phenotyping. They often depend on Vanadium Oxide (VOx) microbolometers, which
are arranged in focal plane arrays (FPA) (e.g. Das, J. Christopher, Apan, Roy Choudhury,
et al., 2021; Kelly et al., 2019; Messina and Modica, 2020; Perich et al., 2020; Treier et al.,
2024; Yuan and Hua, 2022). Such cameras are prone to thermal drift, where the measured
temperature varies as a result of short-term temperature fluctuations the FPA of the sensor and
the camera optics are exposed to (Messina and Modica, 2020; Nugent et al., 2013). This holds
true for both radiometrically calibrated and uncalibrated cameras. Thermal drift is known
to be a significant confounding source of variance in CT measurements, and the literature
proposes different approaches to correct for it in data pre-processing (e.g. Kelly et al., 2019;
Mesas-Carrascosa et al., 2018; Z. Wang et al., 2023; Yuan and Hua, 2022) and analysis (Treier
et al., 2024). Kelly et al. (2019) and Yuan and Hua (2022) examined the importance of wind
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3.1. Introduction

Table 3.1: Overview on most important sources of variance of drone-based thermal measurements.

Variance source Variance
driver/cause

Temporal
behaviour

Primary type
of correction

Reference

Solar radiation
Weather Dynamic (short term) Temporal

M. P. Reynolds, Pask, et al. (2012)

VPD⇤ Idso et al. (1981)

Wind M. P. Reynolds, Pask, et al. (2012)

Thermal drift Sensor
temperature Dynamic (short term)

Temporal Nugent et al. (2013)

Non-uniformity
effects

- Nugent et al. (2013)

Field heterogeneity
soil water content,
water logging, soil
compaction etc.

Stable throughout
single flights Spatial Perich et al. (2020)

Treatment effects Field management Stable throughout
single flights Treatment M. P. Reynolds, Pask, et al. (2012)

Plant height

Genotype/Field
management

Stable throughout
single flights

Genotype/
Treatment

Prashar and H. Jones (2014)

Soil cover Aasen, Honkavaara, et al. (2018)

Stomatal
conductance M. P. Reynolds, Pask, et al. (2012)

Phenology Prashar and H. Jones (2014)

Stay green Anderegg, Aasen, et al. (2021)

Rooting depth
(water availability) M. P. Reynolds, Pask, et al. (2012)

Vignetting Sensor/Optics Rather stable Geometric Aasen, Honkavaara, et al. (2018)

BRDF⇤⇤

Viewing geometry Stable throughout
single flights Geometric

Schaepman-Strub et al. (2006)

Apparent
soil cover Pask et al. (2012)

Atmospheric
effects Jimenez-Berni, P. J. Zarco-Tejada, et al. (2009)

⇤Vapour pressure deficit (VPD), ⇤⇤Bidirectional reflectance distribution function (BRDF)

conditions on the sensor as an important driver of sensor temperature and TIR readings. Kelly
et al. (2019), Malbéteau et al. (2021) and Treier et al. (2024) demonstrated how TIR readings
change with relative motion along the main flight direction of the drone as a result of changing
wind conditions the sensor is exposed to.

Thermal drift is not homogeneous throughout the FPA and leads to non-uniformity effects
(e.g. Nugent et al., 2013). Other non-uniformity effects are caused by dark signal noise and
vignetting (Aasen, Honkavaara, et al., 2018). The latter describes the alteration of the signal
in dependence of the path of radiation through the lens optics, leading to distortions where
the edges of the image appear darker (or cooler for thermography) than the central regions
(Aasen, Honkavaara, et al., 2018; Kelly et al., 2019; Yuan and Hua, 2022).

The viewing geometry also alters the TIR readings. The signal is subject to surface
anisotropy, that is, the signal is altered depending on the direction from which it is emitted/re-
flected from the surface (Aasen and Bolten, 2018; Aasen, Honkavaara, et al., 2018; Perich
et al., 2020), which can be described with a bidirectional reflectance distribution function
(BRDF) (Nicodemus, 1977; Schaepman-Strub et al., 2006). Additionally, viewing geometry
alters the fraction of soil visible between rows in row crops. At a more nadir-oriented view,
the fractional canopy cover (FCC) is at a minimum and increases with more oblique viewing
geometry, mainly perpendicular to the sowing rows (Roth, Aasen, et al., 2018). It is therefore
recommended to measure at oblique angles (Deery, Rebetzke, Jimenez-Berni, James, et al.,
2016; Pask et al., 2012; Rebetzke et al., 2013). However, with drone-based cameras, this
is not always possible, and excluding nadir-oriented measurements comes with trade-offs.
Just including measurements from oblique angles is more canopy specific and less related to
FCC, but it also decreases the maximum number of measurements that can be taken per plot
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when less oblique measurements are excluded, which is deteriorating the consistency of the
measurements (Treier et al., 2024).

While the sources of variance of the TIR measurements considered so far included instan-
taneous environmental conditions, the sensor, and the viewing geometry, the experiment at
observation itself constitutes an important source of variance. In the case of wheat variety
testing trials, different genotypes are arranged in the field in blocks of multiple randomly
arranged replications which allow to disentangle effects of field heterogeneity from genotype
effects. Field heterogeneity might be caused by differences in soil water content, soil depth, soil
fertility, water logging, soil compaction, root disease, and other factors (e.g. Araus, Kefauver,
et al., 2018; Deery, Rebetzke, Jimenez-Berni, Bovill, et al., 2019; Rebetzke et al., 2013). For
some studies, different field management practices, e.g., different irrigation or fertilization
regimens, are applied to the genotypes. Genotypes, treatments, and field heterogeneity lead to
distinct phenotypes, and phenotype-specific CT differences might be explained by different
traits and not stomatal conductance alone, although phenotypic traits often are interlinked
with each other. Quantitative trait loci have been shown to be often pleiotropic or co-located
for CT and yield, above-ground biomass, plant height, and other traits (e.g. Mason and Singh,
2014; Rebetzke et al., 2013, citet in Deery, Rebetzke, Jimenez-Berni, James, et al., 2016). CT
is strongly affected by above-ground biomass, morphological parameters such as plant height,
FCC, leaf area index (LAI), rooting behavior, late senescence behavior, and consequently a
larger green area during later stages, and even by the spatial orientation of leafs and spikes
(Anderegg, Aasen, et al., 2021; Anderegg, Kirchgessner, et al., 2024; Oberholzer et al., 2017;
Prashar and H. Jones, 2014; Perich et al., 2020; Rebetzke et al., 2013; M. P. Reynolds, Pask,
et al., 2012). All of these sources are not independent. FCC for example might be caused
by the genotype but also the field management or field heterogeneity, and an increased FCC
might reduce the impact of the viewing geometry as also at nadir view, little soil is visible
when FCC is saturated.

To observe the effects of genotypes and treatments on CT, uncertainties of CT estimates
must be mitigated by estimating and correcting confounding sources of variance. For example
Rebetzke et al. (2013) applied a mixed model and included the time of CT sampling as a fixed
linear effect. Treier et al. (2024) proposed a multi-view approach in which CT estimates were
derived from sequences of thermal images. Unlike approaches where CT estimates rely on
orthomosaics, multi-view allowed for multiple CT estimates per plot and flight and to estimate
covariates related to trigger timing and viewing geometry for each single measurement. The
authors showed how the inclusion of trigger timing as a random effect in linear mixed models
was allowing to increase consistency and genotype-specificity of the CT estimates. The aim of
the study at hand was to empirically demonstrate how the multi-view approach can be used
to disentangle multiple sources of variance and to separate undesired sources of variance from
desired sources in a first step. A second aim was to show why these corrections matter with
respect to the interpretability of the data. To that end, the multi-view method was applied in
two wheat variety testing trials with contrasting field management regimens in two consecutive
years of contrasting meteorological conditions. Complementary measurements were conducted
to test hypotheses on wind conditions on the sensor, canopy cover, LAI, above-ground biomass,
and plant height as important drivers of the thermal signal.

3.2 Methods

3.2.1 Field experiments and data acquisition

TIR measurements were conducted in two winter wheat variety testing experiments for two
consecutive years (2020-2021 and 2021-2022) in the fields of the Agroscope agricultural research
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station, Changins, Switzerland [46�23055.400N 6
�
14

0
20.4

00E, 425 m.a.s.l., the World Geodetic
System (WGS) 84]. The soil of the experimental site is a shallow Calcaric Cambisol (Baxter,
2007; Cárcer et al., 2019).

One trial comprised 30 modern registered European winter wheat varieties and is further
referred to as the EuVar trial. The same varieties were seeded for the two years in three
different treatment regimes. In the “maximal” regimen, one growth regulator and one fungicide
treatment were applied. In the “medium” regimen, there was only the growth regulator
application and not the fungicide application. In the “minimal” regimen, neither a growth
regulator nor a fungicide was applied (see Tables S2.1 and S2.2 for more details). Fertilizers
and herbicides were applied in three splits and at equal rates to all treatments according to
the Proof of Ecological Performance (PEP) certification guidelines (Swiss Federal Council,
2013), which represent a minimal standard for best-practice for conventional agriculture in
Switzerland. Each variety-treatment combination was repeated on three plots. Within single
plots, eight sowing rows of the same wheat genotype were sown with a spacing of 15 cm

between them resulting in an observable canopy of about 1.25m x 6.7m each. Within blocks
of 3 by 10 plots, the genotypes were randomly distributed, and these blocks were randomly
nested within three treatment replicates. Each replicate contained three blocks, and each
block was treated with one of the three treatments. The 270 plots of the experiment span
over 27 rows (which followed the tractor track direction) and 10 columns (Fig. S2.1). This
experiment, the TIR data acquisition and multi-view processing were first described in Treier
et al. (2024), where the same authors demonstrated the robustness of the multi-view approach
and the method was shown to outperform commonly used orthomosaic-based approaches. The
Methods are partially described here and in the Supplementary Materials for clarity, but for
more information, it is referred to the study mentioned.

The second trial, further denoted SwiVar, comprised modern winter wheat genotypes and
mixtures of two genotypes. The genotypes included registered varieties and candidate lines for
inscription in the Swiss list of recommended wheat varieties. In the first year, there were 34
pure genotypes and two genotype mixtures. In the second year, there were 35 pure genotypes
and one mixture. 31 genotypes and one mixture stayed the same between the two years. This
performance trial included two different nitrogen treatment regimens. In one regimen, nitrogen
fertilization was carried out according to common local agricultural practice following the PEP
guidelines. In the second fertilizer regimen, no nitrogen fertilizer was applied. Herbicides were
applied in both treatments according to the PEP guidelines. Each genotype was repeated in
each treatment three times, resulting in 216 plots with the same row spacing as in EuVar and
a canopy of about 1.25m x 4.3m each. Within the treatments, the plots were arranged in a
randomized complete block design and the treatments were grouped into two separate blocks
of 6 x 18 plots due to restrictions in available space and for simplifying nitrogen management
(Fig. S2.2). In 2021, a sowing error occurred in three plots of one replication of SwiVar, which
were seeded with the variety of the border plots and for these three genotypes, there were just
two replications in the fertilized regimen (Fig. S2.2). The three plots were included in the
analysis as genotype “border”. SwiVar22 received an irrigation of 30mm on 2022-05-23 due to
lack of rain (Fig. S2.5).

The different experiment-year combinations are further referred to as EuVar21, EuVar22,
SwiVar21 and SwiVar22 according to year of harvest. Tables S2.1 and S2.2 give an overview
on the different treatments, fertilizer applications and the most important field interventions
while Table S2.3 displays details on the chemical products used.

Air temperature, rainfall, radiation, wind speed, wind direction, relative humidity and
VPD were obtained by a weather station of Meteoswiss which was located about 800m from
the experimental site at Changins [46�2403.700N 6

�
13

0
39.6

00E, 458 m.a.s.l., WGS 84].
2021 was a relatively cool year with almost 700mm precipitation between the beginning of
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the year and harvest, while there was just 280mm of precipitation for the same period in 2022.
The temperature was on average 2.9

�
C warmer from May to harvest for 2022 compared to

2021, and wheat developed faster in 2022 with the heading occurring 6 days earlier (Fig. S2.5).
Harvest was 20 days earlier for EuVar22 compared to EuVar21. SwiVar22 was harvested 13
days before SwiVar21.

Flights were carried out between the onset of flowering and mid-senescence. In 2021, flights
were conducted on two dates in each trial. In 2022, flights were conducted on four dates on
EuVar22 and on six dates on SwiVar22 respectively. On specific dates, multiple flights were
conducted at different time slots. To account for short-term variability, within each time slot
at least two, mostly three flights were conducted with the same settings. A group of flights
that were conducted at one time slot and date is further called a flight campaign. In total,
39 flights were performed on EuVar and 60 on SwiVar (for more details, see Supplementary
Materials sections S2.4 & S2.5). Drone flights generally took place under close to optimal
conditions with relatively low wind, although conditions in 2022 were more optimal than in
2021, when high and semitransparent cloud layers led to fluctuating light intensities for some
flights in 2021 (Figs. S2.6 & S2.7).

The drone flew over the plots at a height of approximately 40m, which allowed for a
ground sampling distance (GSD) of about 5.2 cm/pixel. With a plot width of 1.5m, this
GSD resulted in more than 20 rows of pixels within the plots after excluding the border areas
of the plots while still allowing for relatively short flights. The heading of drone and TIR
camera was set to remain stable throughout the flight and did not change with changes in
flight path direction. The resulting flight duration was between 6 and 9min depending on the
wind conditions and the total area recorded. The settings used resulted in an image pattern in
which each spot in the trial was recorded on at least nine images from different perspectives.
The camera was pointing toward the ground orthogonally (i.e. in nadir orientation). An
uncalibrated DJI Zenmuse XT TIR sensor (SZ DJI Technology Co. Ltd., China) was used and
a detailed description of the equipment and the settings used and of flight planning can be
found in Supplementary Materials section S2.6. The experiments were neighbored by border
plots and other experiments. To increase the number of measurements available for trend
estimation, the flights covered not just the experiments but all wheat plots in the respective
field surroundings, that is, border plots and other experiments on the same field. This helped
reduce border effects by improving temporal and spatial corrections, as described in Treier
et al. (2024). Supplementary Materials section S2.10 summarizes the pre-flight procedure. In
short, the camera was turned on at least 15min before each flight to allow the temperature
signal to stabilize. The TIR images were saved as radiometric JPEG format. Following the
protocol of Treier et al. (2024), no radiometric calibration was applied for later processing and
only the internal calibration provided by the manufacturer was used.

For post-processing in the Structure-from-Motion-based photogrammetry software Agisoft
Metashape (Agisoft LCC, St.Peterburg, Russia) and to allow time series analysis, thermal
ground control points (GCPs) were distributed in the field in an evenly spaced shifted grid
pattern (for more details, see Supplementary Materials section S2.11).

For the multi-view approach, digital elevation models (DEM) were needed on which the
images could be projected. DEMs were based on both, TIR images and RGB images. For
more details on the creation of DEMs, refer to Supplementary Materials section S2.7.

3.2.2 TIR image pre-processing

From radiometric JPEG format, 14-bit TIFF files were derived representing temperature in
�
C x 1000 by using a Python 3.8 script (van Rossum, Guido and Drake, Fred L., 2009), a modi-

fied version of the Flir Image Extractor (https://github.com/ITVRoC/FlirImageExtractor).
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The 14-bit TIFF files of the radiometric images as well as the RGB images were aligned
in the structure-from-motion-based software Agisoft Metashape Professional (Agisoft LLC,
St. Petersburg, Russia) and georeferenced (for details, see Supplementary Materials section
S2.12). Plot masks were created for each plot in Qgis 3.16 (QGIS Development Team, 2022),
to determine the regions of interest (ROIs) from which the data was used for analysis. A
buffer of at least 25 cm was applied on plot width and length to account for inaccuracies in
georeferencing.

The image information was reduced to a single value for each plot in each image by using
the optimal percentile of all pixel values within each plot in each image. The procedure
for finding an optimal percentile was described in Treier et al. (2024). In short, for each
percentile, heritabilities were calculated from a mixed model with the R package SpATS
(Rodríguez-Álvarez et al., 2018). The resulting percentile-heritability relations were plotted
for graphical comparison and optimal percentile selection. The same percentile was used
for the aggregation of all flights on one experiment within one year (for more details, see
Supplementary Materials section S2.8).

3.2.3 Multi-view pre-processing

The single images were projected on the RGB DEMs by ray tracing as described in Roth,
Aasen, et al. (2018), Roth, Camenzind, et al. (2020) and Treier et al. (2024). This allowed the
projection of geographic coordinates (e.g. EPSG:2056 reference system) to image coordinates.
As a result, plot masks of ROIs were created for each trigger position (i.e. for each image),
where at least one plot was entirely inside the field of view (FOV) of the camera. For each
plot on each TIFF file, all percentiles were extracted with a Python 3.8 script.

As plot-wise data was extracted for each image, the trigger timing could be determined
from image meta data. The trigger timing of each image and the position of the experiment was
known while the position of the sun was determined for each measurement as azimuth and ele-
vation angle in Python using a script by John Clark Craig (https://levelup.gitconnected.
com/python-sun-position-for-solar-energy-and-research-7a4ead801777, 2021). As
Cartesian (i.e. orthogonal) coordinates were used and the position of the sun, the posi-
tion of the plot centers and the position and orientation of the camera at the moment when
the image was triggered were known, this allowed to calculate the geometric relations between
sun, plot and drone by trigonometry as listed in Table S2.5 and illustrated in Fig. 3.1 (for
more details, see Supplementary Materials section S2.9).

3.2.4 TIR data post-processing

After data extraction, the contribution of the different sources of CT variance to the total CT
variance was estimated and CT was corrected for confounding sources of variance. Although
the sources of variance might differ, they might be corrected by the same type of correction
(Table 3.1). For example, while variance sources related to weather are ideally avoided by
flying without wind and clouds, they still might affect the measurements in a temporal pattern.
Such temporal variation mixes with the thermal drift, and is thus corrected by the same type of
correction (Z. Wang et al., 2023). Correction for the different types of correction was achieved
in a two-step approach (Fig. 3.2), as the computational burden of a one-stage approach was
too heavy for multi-view data (Treier et al., 2024) and stage-wise approaches are proposed for
the analysis of complex agricultural trials (Hans-Peter Piepho et al., 2012). In a first stage,
the TIR measurements were corrected for non-geometric sources of variance. The residuals of
the first stage were then analyzed to reveal the importance of geometric effects in a partial
least squares regression (PLSR) analysis in a second stage. A plot-wise mean was calculated
as a reference baseline. In the following, the two-stage approach is described in detail.
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Figure 3.1: By knowing the position of the sun, the position of the plot and the position and
orientation of the camera when an image is triggered (a), different geometric relations can be calculated.
The position directly below the drone is in nadir orientation. The vertical angle at which drone and
sun are seen from the observed plot are the elevations of drone and sun respectively. The azimuth of
the sun is the clockwise horizontal angle at which the sun is seen from the observed plot from north
(b). The position of the plot can be described as planar distance between drone and plot in direction
of the sun (b) or in sowing row direction (c). Another option to describe the positon of the plot
relative to the drone is by viewing angles as is shown for angles relative to sun direction (d), but not
shown for the sowing row direction. Elements in the principal optical planes in drone or sun direction
are in bright blue, cardinal direction in dark blue. The dimensions of interest and related covariates
are in orange. Small black angle marks and short parallel black lines indicate perpendicularity and

parallelism respectively.

3.2.4.1 Mixed model

The multi-view method provided several CT estimates for each plot (originating from different
images). For each measurement, covariates related to trigger timing and viewing geometry were
available which were used to analyze sources of variance and to correct the TIR measurements.

A mixed model (Eq. 3.1) was fitted in ASReml-R (Butler, 2019) to correct for temporal
and spatial trends and experimental design factors (experiments, genotypes, treatments,
replications). ASReml-R was chosen over other mixed model software due to its capability to
model complex variance structures, which was important for the best possible consideration
of nested structures (e.g. border plots) and temporal trends in this study. The mixed model
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Figure 3.2: Flow-chart depicting the process of step-wise TIR measurement correction. TIR
measurements and covariates (blue/solid-border parallelograms) were processed in different steps
(purple rectangles) to derive estimates of plot-wise canopy temperature and residuals (red/dashed-
border parallelograms) as well as trends related to trigger timing and viewing geometry (yellow/dotted-

border parallelogram).

used was introduced and tested for robustness in Treier et al. (2024), where the single terms
are explained in detail and mentioned here for clarity. Plot-based repeated CT measurements
✓ijknp for the i

th genotype, j
th trigger event, k

th treatment, n
th replication, and p

th plot
were decomposed in factors related to genotypes (✓i), treatments (⌧k), replications (rn) and
plots (�p) within a field. A temporal trend was modeled as a smooth spline fspl(�j) along
the sequential trigger events �j , where a trigger event j corresponds to a specific thermal
image. A spatial model comprised two one-dimensional autocorrelation parts in row direction
fAR(1)(r(p)) (following tractor tracks) and column direction fAR(1)(c(p)), where fAR(1) is a
first order autoregression function of respective rows and columns at positions of plots in row
direction r(p) and column direction c(p). In addition, a two-dimensional spatial autocorrelation
fAR(1)⇥AR(1)(c(p), r(p)) was included in the spatial model. eijknp are measurement specific
residuals. Genotypes and treatments were given unique IDs for each experiment covered
in one flight, so the same genotype or treatment ID did not appear in the experiment of
interest (i.e., either EuVar or SwiVar) and also surrounding experiments or border plots at
the same time, reducing the complexity of data structure to be handled by the models. The
k experiment-specific treatments therefore also implicitly describe the different experiments.
An interaction between the i

th genotype and the k
th treatment (✓⌧)ik was applied only to

the experiments of interest. For parts of other surrounding experiments and border plots, a
simple additive effect was assumed for genotype and treatment for simplicity and to reduce
computational capacity needed. ASReml-R allows to specify model terms for subsets of data
with the “at()” statement, and the data could be processed differently for plots belonging
to different experiments and border plots with the same ASReml-R model. The interaction
between the k

th treatment and the n
th replication (⌧r)kn was just applied to EuVar, as the

treatments were nested within the replications in EuVar, but not in SwiVar.
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✓ijknp = ✓i + ⌧k + �p + rn + (✓⌧)ik + (⌧r)kn+ (Design-Factors)
fAR(1)⇥AR(1)(c(p), r(p)) + fAR(1)(c(p)) + fAR(1)(r(p))+ (Spatial-Autoregression)
fspl(�j)+ (Temporal-Trend)
eijknp (Residuals)

(3.1)

3.2.4.2 Estimate the temporal trend

Mixed models decompose variance into variance components and the different components can
subsequently be included in models to predict the effects of individual variables. The temporal
trend was estimated as the effect of the j

th trigger event/image along the duration of a single
flight modeled with a smooth spline fspl(�j) in Eq. 3.1.

3.2.4.3 Plot-wise CT estimates

After fitting the models by Eq. 3.1, single plot-wise CT values (✓̂p) were estimated with
different prediction models to estimate the effect and importance of different variables within
the mixed model.

To have a baseline for comparison, the mean plot temperature ✓̂mean
p was calculated on the

measurements of the individual images j available for one plot p without applying the mixed
model or considering any covariates,

✓̂
mean

p = mean(✓jp) . (3.2)

A first mixed model-based prediction model included all variance components of the mixed
models except for the temporal trend �j (Eq. 3.3). It estimated the individual plot-wise CT
values as the sum of genotype effects (✓i), treatment effects (⌧k), plot effects (�p), row rp,
column cp and replication effects (rn) at the position of plot p,

✓̂
t_c

p = ✓̂ikpr(p)c(p)n = ✓i + ⌧k + �p + rp + cp + rn . (3.3)

By discarding the temporal trend in the prediction, the plot-wise estimates were plot-wise
means ✓̂t_c

p adjusted along the temporal dimension and therefore temporally corrected (t_c).
In the next step, the spatial trends of row rp and column cp were discarded in prediction,

✓̂
ts_c

p = ✓̂ikpn = ✓i + ⌧k + �p + rn . (3.4)

The plot-wise estimates ✓̂ts_c

p of Eq. 3.4 were temporally and spatially corrected (ts_c).
To consider possibly strong treatment effects, for each flight, the mean treatment temperatures
were calculated and subtracted from ✓̂

ts_c

p ,

✓̂
t_defl

p = ✓̂ipn = ✓̂ikpn �mean(⌧k) . (3.5)

The plot-wise estimates ✓̂t_defl

p represent the sum of a genotpye, a genotype-treatment
interaction, a plot, and a replication effect after subtracting a mean treatment effect mean(⌧k),
leaving out all other effects of Eq. 3.1. They are temporally and spatially corrected, and
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treatment effects were deflated (t_defl), meaning that only a possible genotype-treatment
interaction is left in the estimate, but not the main treatment effect.

Predictive models (Eq. 3.3, Eq. 3.4 & Eq. 3.5) just comprised plots belonging to EuVar
or SwiVar. As uncooled and uncalibrated TIR cameras provide a low absolute temperature
accuracy, just relative temperature differences between the plots were analyzed from this stage
onward (H. G. Jones, Serraj, et al., 2009; Kelly et al., 2019).

For a comparison of the effects of the single variables, the variance of the plot-wise estimates
derived from the different prediction methods (Eq. 3.2 - Eq. 3.5) was calculated for all flights.

3.2.4.4 Multispectral measurements

The trials were also monitored with an airborne Micasense RedEdge-MX Dual multispectral
camera (MicaSense Inc., Seattle, Washington, USA) throughout the growing season. With
multispectral data, vegetation indices (VI) were calculated to obtain approximative estimates
of LAI and biomass. The images were aligned in Agisoft to generate 10 band orthophotos
covering all the experiments. Details on the spectral properties of the 10 bands of the sensor
are described in Table S2.6. Based on these bands, four VIs were calculated. DVI, SAVI and
EVI (see Table 3.2 for full names and equations) are commonly used VIs to estimate the LAI
of wheat (W. Li et al., 2023) while SAVI was also shown to be correlated with above-ground
biomass (F. Wang et al., 2022). NDVI was calculated as a reference to the emissivity (Diaz
et al., 2021) of the plants. The same masks as for the TIR images were used to mark ROIs on
the multispectral orthomosaics. The 50th percentile (median) was used to aggregate VI values
within single ROIs to single values with a Python 3.8 (van Rossum, Guido and Drake, Fred L.,
2009) script for subsequent analysis (for more details, see Supplementary Materials section
S2.15).

VIs were recorded on multiple dates and the VIs were correlated to CT that was measured
at the date closest to the VI recording.

Table 3.2: Multispectral VIs used to approximate biomass (DVI, SAVI, EVI) and LAI (SAVI) and as
a reference to the emissivity (NDVI).

Index Full name Formula Reference

DVI Difference Vegetation Index DV I = NIR842�Red668 (3.6) Tucker Tucker, 1979

EVI Enhanced Vegetation Index EV I = 2.5· NIR842�Red650

NIR842+6·Red650�7.5·Blue444+1
(3.7) Huete et al. Huete et al., 2002

NDVI Normalized Difference Vegetation Index NDV I =
NIR842�Red668

NIR842+Red668

(3.8) Rouse et al. Rouse et al., 1974

SAVI Soil Adjusted Vegetation Index SAV I = 1.5· NIR842�Red650

NIR842+Red650+0.5
(3.9) Huete Huete, 1988

3.2.4.5 Estimate the spatial trend

The spatial trend of the plots p across the field in row c(p) and column c(p) direction ✓̂r(p)c(p)
was estimated as the difference between the plot-wise CT estimates after a temporal correction
✓̂
t_c

p and after a temporal and spatial correction ✓̂ts_c

p ,

✓̂r(p)c(p) = ✓̂
t_c

p � ✓̂
ts_c

p = ✓̂ikpr(p)c(p)n � ✓̂ikpn . (3.10)
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Assuming the consistency of spatial effects between flights, these plot-wise spatial trends
would be correlated between flights. As a larger number of observations per plot is assumed to
increase the repeatability of the estimations (Treier et al., 2024), spatial trends were calculated
for all flights individually, but also for all flights within a campaign simultaneously. With at
least two flights per campaign, this was increasing the number of observations per plot at least
two-fold.

3.2.5 Geometric effects

As shown in Table 3.1, multiple sources of variance have a geometric effect on CT readings.
They can be caused by vignetting, viewing geometry-related effects, atmospheric effects, and
geometric emission and reflectance patterns (i.e. BRDF).

Two different methods were applied to account for geometric effects. In a first approach,
the covariance of the residuals eijknp of the mixed models (Eq. 3.1) with geometric covariates
was examined by PLSR with the R-package PLS (Mevik and Wehrens, 2007).

The linear relations between geometric covariates (Table S2.5) and residuals were visually
identified in an exploratory data analysis and where necessary, trigonometric transformations
were applied to angular covariates for linearization. Covariates with an apparent linear
relationship to the residuals (Table 3.3) were included in the PLSR model. In addition, the
interaction between the longitudinal distance in the direction of the sun and the sine of the
elevation angle of the drone was part of the PLSR analysis, as it describes the path of light
from the sun to the drone. The inclusion of the two terms without interaction does not describe
the path adequately as positions in front and behind the drone in the direction of the sun get
the same values.

Table 3.3: Covariates with evident trends were identified among all orignial covariates and transfor-
mations were applied to linearize the trends. Several trends can describe the same spatial dimension

(e.g. Lateral in direction of sowing rows).

Linearized covariates Dimension Transformation Name in Model

Sine of the elevation angle of the drone Elevation of the drone Sine Drone-Elevation-sin

Lateral distance in direction of sowing rows
Lateral in direction
of sowing rows

None RowDir-lat-Dist
Absolute lateral distance in direction of sowing rows Absolute value RowDir-lat-Dist-abs
Cosine of lateral angle in direction of sowing rows Cosine RowDir-lat-Angl-cos
Absolute value of lateral angle in direction of sowing rows Absolute value RowDir-lat-Angl-abs

Longitudinal distance in direction of sowing rows
Longitudinal in di-
rection of sowing rows

None RowDir-lon-Dist
Absolute longitudinal distance in direction of sowing rows Absolute value RowDir-lon-Dist-abs
Cosine of longitudinal angle in direction of sowing rows Cosine RowDir-lon-Angl-cos
Absolute value of longitudinal angle in direction of sowing rows Absolute value RowDir-lon-Angl-abs

Lateral distance in direction of the sun
Lateral in direction
of the sun

None SunDir-lat-Dist
Absolute lateral distance in direction of the sun Absolute value SunDir-lat-Dist-abs
Cosine of lateral angle in direction of the sun Cosine SunDir-lat-Angl-cos
Absolute value of lateral angle in direction of the sun Absolute value SunDir-lat-Angl-abs

Longitudinal distance in direction of the sun
Longitudinal in di-
rection of the sun

None SunDir-lon-Dist
Absolute longitudinal distance in direction of the sun Absolute value SunDir-lon-Dist-abs
Cosine of longitudinal angle in direction of the sun Cosine SunDir-lon-Angl-cos
Absolute value of longitudinal angle in direction of the sun Absolute value SunDir-lon-Angl-abs

Interaction between longitudinal distance in direction of the
Sun and sine of the elevation angle of the drone

Interaction
SunDir-Drone-Elevation None Interact.-SunDir-Drone

Trigger timing Time None Trigger-time

Total distance between drone and plot Distance None Dist-tot

The PLSR coefficients were calculated for each covariate and each flight to determine which
covariate explained the most of the variance of the residuals eijknp from the pre-processing
model (Eq. 3.1). Several linearized covariates in the PLSR model described the same spatial
dimension (Table 3.3). With the aims of avoiding redundancy and simplifying the model, the
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model was reduced to contain only relevant dimensions. Relative PLSR coefficient magnitudes
�rel,i were calculated within each flight and each covariate as:

�rel,i =
|�i|P
n

i=1|�i|
, (3.11)

where �i denotes the PLSR coefficient of the i
th of n covariates. To determine the least

descriptive covariates, the medians of relative magnitude of the covariates �i over all flights j
were calculated.

�med,i = med{|�rel,i;j |} (3.12)

Covariates with the lowest median were skipped in a supervised backward feature elimination
until the most descriptive transformation types and dimensions were left in the model (similar
to methods summarized in Mehmood et al., 2012).

In a second approach to account for geometric effects, a generalized ex ante vignetting
correction was applied as described in Treier et al. (2024). A generalized vignetting correction
image was created in an indoor experiment, with its pixel values representing a mean vignetting
effect as relative temperature difference within an image under controlled conditions. The
pixel values of the correction image were then subtracted from the corrsponding pixels of all
TIR images (for more details, see Supplementary Materials section S2.16).

Subsequent analysis with mixed models and PLSR analysis was performed on TIR images
with and without vignetting correction.

3.2.6 Reference measurement and complementary experiments to better
understand phenotypic variability, viewing geometry and thermal
drift as sources of CT variance

The mixed model allowed estimation of the contribution of genotypes, experimental treatment
regimens, spatial trends, and thermal drift to the overall variance. With the PLSR models, the
contribution of viewing geometry to the overall variance was examined. To demonstrate the
relationship between CT and the phenotypic variability of genotypes and treatment regimens,
reference measurements were made on wheat phenotypes similar to Das, J. Christopher, Apan,
Roy Choudhury, et al. (2021). CT was compared with grain yield, FCC, plant height, flag leaf
rolling, flag leaf senescence, and multispectral indices as approximations of LAI and above-
ground biomass (Table 3.2) by means of Pearson correlation. Complementary experiments
were conducted to demonstrate the impact of apparent soil cover and wind on TIR readings
qualitatively.

3.2.6.1 In-field reference measurements of phenotypic traits

Grain yield was measured with a combine harvester. The water content of the grain was
determined with a Dickey-John GAC 2100 grain moisture tester within 24 hours after harvest
and the grain yield per ha was noralized at 15% gravimetric water content.

Plant height was measured with a measuring rod in five randomly chosen spots within
each plot, and the mean taken as plot-wise plant height. It was measured from the soil to the
tip of the ears without considering awns.

With dry conditions, leaf rolling was observed in season 2022 and visually rated in the field
according to Pask et al. (2012). Leaf rolling ratings ranged from 0 to 3 where 0 corresponded
to no rolling, 1 to a loosely rolled leaf (< 33% of leaf rolled), 2 to a moderately rolled leaf (34
- 66% rolled) and 3 to a tightly rolled leaf (> 67% rolled). Flag leaf rolling was compared
with the CT measurement performed on a date closest to the rolling scoring date, and the CT
differences between the groups were examined with a Wilcoxon signed-rank test.

55



Chapter 3. Analysis of variance and its sources in UAV-based multi-view thermal imaging of
wheat plots

On the second flight date of EuVar21, senescence had already progressed. Therefore, flag
leaf senescence ratings are presented for both EuVar21 measurements dates but not for the
other trials. Flag leaf senescence was rated according to E. A. Chapman et al. (2021) and
the ratings correspond to the proportions of senescent yellow leaf area of the flag leaf. 0%

corresponds to a fully green leaf and 100% corresponds to a fully senescent leaf.

3.2.6.2 Qualitative demonstration of impact of apparent soil cover

A handheld calibrated high-resolution thermal camera (VarioCAM High Definition, Jenoptik,
Jena, Germany) was used to demonstrate the influence of apparent soil cover qualitatively.
This camera also included an RGB sensor which allowed a comparison of visible color images
with thermal images of the very same scene.

3.2.6.3 Multi-view analysis of FCC from RGB data to demonstrate the correlation
with CT

To examine the relationship between apparent CT and apparent canopy cover, the FCC was
estimated based on RGB images as proposed by Deery, Rebetzke, Jimenez-Berni, James, et al.
(2016). On 6 June 2022, a flight with a DJI Air 2S drone (SZ DJI Technology Co. Ltd., China)
was performed in both experiments. The flight height was 20m and the speed was limited to
3m s

�1. The front overlap was 65% and the side overlap was 85%. These settings resulted
in a GSD of ⇡ 5.5mm. While such a GSD may be considered too large for a very detailed
examination of apparent soil cover, it is sufficient to demonstrate general trends.

Images were saved in 8-bit JPEG format and 16-bit DNG raw format. The DNG files were
transformed to TIFF file format in Python 3.8 (van Rossum, Guido and Drake, Fred L., 2009).
Using the interactive image analysis tool Ilastik (Berg et al., 2019), pixels of the TIFF images
were segmented into three classes: green plant, senescent plant, and background. With these
classes, FCC could be calculated as:

FCC =
PNgreen plant+PNsenescent plant

PNgreen plant+PNsenescent plant+PNbackground

(3.13)

where PN denotes the number of pixels of a specific class in an area of interest. Multiple
plot-wise FCC values were fitted with the same mixed model in ASReml-R as CT (Eq. 3.1)
but replacing CT by FCC. Adjusted means for plot-wise FCC were estimated, and the FCC
residuals were analyzed with respect to viewing geometry.

3.2.6.4 Geometric patterns of atmospheric effects

TIR readings are also affected by atmospheric effects which depend on the path length between
the sensor and the target (Jimenez-Berni, P. J. Zarco-Tejada, et al., 2009; Meier et al., 2011).
To demonstrate the geometric nature of this effect, a simple data simulation was performed.
Assuming a perfect nadir orientation of the sensor, the point directly below the drone is closer
to the drone than points toward the edges of the image, i.e. the path length between sensor
and plot is increased, which increases attenuation of TIR radiation and decreases transmittance
of the atmosphere. Taking a simplified assumption of an attenuation of 0.001Km

�1 through
the atmosphere (Meier et al., 2011), a theoretical attenuation effect was calculated at two
flight heights (40m and 300m).

3.2.6.5 Fan experiment to determine the influence of wind

Kelly et al. (2019) and Yuan and Hua (2022) described a strong relation between temporal
drift of TIR measurements and wind on the sensor. To confirm this link for the sensor used, a
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fan experiment was set up, inspired by these two studies. The sensor was placed indoors in a
dim environment at room temperature, pointing at a uniform hard foam PVC sheet. A fan
and a lamp were used to cool and heat the sensor respectively. The apparent temperature
of the PVC sheet and the standard deviation of the pixel-wise temperature were analyzed
To examine whether sudden and strong temperature gradients have a sustained influence on
subsequent TIR readings, warm and hot disturbance objects (hands at body temperature and
a water cooker with boiling water) were introduced into the scene several times for several
seconds each (for more details, see Supplementary Materials section S2.17).

3.2.7 Treatment deflation for correlation estimates

Strong treatment effects can be dominant and mask genotype effects, especially when values
are compared by correlations, and the main driver of correlation is a treatment effect. To
avoid inflated correlations of possibly dominant treatment effects, correlations were calculated
on original data, on data after temporal and spatial correction, and on data after a treatment
effect correction. The treatment effects were corrected for by subtracting the mean treatment
effects from the plot-wise values after temporal and spatial correction.

3.2.8 Correction of reference measurement and correlation with CT

In-field reference measurements (yield, plant height, FCC, multispectral indices) were fitted
with mixed models as done with CT. A model similar to Eq. 3.1 but without a temporal
component was fitted in ASReml-R to correct for spatial trends. CT values before spatial
correction (✓̂mean

p & ✓̂
t_c

p ) were correlated with uncorrected reference measurements. CT
after spatial and temporal correction ✓̂ts_c

p was correlated with spatially corrected reference
measurements and treatment deflated CT ✓̂

t_defl

p was correlated with treatment deflated
reference measurements.

3.3 Results

3.3.1 Percentile choice to aggregate pixel values into uncorrected data

For EuVar21, EuVar22 and SwiVar21, the 50th percentile (median) was chosen to aggregate all
pixel values within a ROI into a single value. For EuVar22, the biomass in the non-fertilized
part of the experiment was low, leading to large proportions of visible soil in the thermal
images. Therefore, the 25th percentile was chosen as it better represented CT, containing
fewer background signal from the soil (Fig. S2.8). The resulting uncorrected plot-wise CT
estimates ✓̂mean

p (Fig. S2.9 & Fig. S2.15) contained strong temporal and spatial trends.

3.3.2 Correcting for temporal and spatial trends

The mixed model (Eq. 3.1) allowed the estimation of the impact of sources of variance not
related to viewing geometry. Fig. 3.3a shows an example of the temporal trends fspl(�j)

estimated for the three flights of the SwiVar22 campaign flown on 2022-06-14 at 13:00. All
three flights of the campaign were processed with the mixed model at once. The color of the
line indicates the motion of the drone in the direction of the main flight path. The pattern of
increasing and decreasing temperature seemed to be switching with the direction of motion of
the drone, but this trend did not seem to be persistent, as it can be seen especially with the
third flight, where the patterns of temperature and flight direction did not coincide anymore.
Temporal trend estimates for all flights can be looked up at Fig. S2.10 and Fig. S2.16 for
EuVar and SwiVar respectively. The resulting estimates after removing temporal trends ✓̂t_c

p
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(Eq. 3.3), still contain strong spatial patterns that are not consistent within campaigns (e.g.
Fig. 3.3d for the first flight of the same campaign as in Fig. 3.3a, Fig. S2.11 and Fig. S2.17 for
all estimates ✓̂t_c

p of EuVar and SwiVar, respectively).

3.3.3 Estimating the effect of experimental treatments

After correcting for temporal and spatial trends (Eq. 3.4), plot estimates ✓̂ts_c

p containing
genotype, treatment, and plot effects could be derived. When looking at ✓̂ts_c

p for the same
flight as Fig. 3.3d, a strong treatment effect was evident between the left and right sides of the
experiment, where the cooler left side corresponded to the fertilized part of the experiment and
the hotter right part to the unfertilized part (see Fig. S2.12 and Fig. S2.18 for all estimates
✓̂
ts_c

p of EuVar and SwiVar, respectively).
Mean treatment effects were estimated for all flights of EuVar (Fig. 3.3b, Fig. S2.14) and

SwiVar (Fig. 3.3c, Fig. S2.20) as deviation from the mean experiment temperature. Within
both experiments, the treatment effects were consistent for the two years, but stronger in 2022.
However, for EuVar, the treatment effects were small, with a maximum difference of ⇠0.15

�
C

in 2021 and ⇠0.32
�
C in 2022. The “minimal” regimen featured the lowest temperature, followed

by the “maximal” and “medium” regimen. The differences between the cooler fertilized and
the warmer non-fertilized treatment regimen of SwiVar were larger. In 2021, the maximum
difference was around ⇠0.38

�
C while for 2022, strong treatment effects were observed with a

maximum difference of approximately ⇠4.8
�
C.

3.3.4 Estimating the effect of genotypes and genotype-treatment interac-
tions

When also removing mean treatment effects (Eq. 3.5), estimates were corrected for spatial,
temporal, and main treatment effects. On an experiment scale, estimates ✓̂t_defl

p did not
contain strong spatial trends or treatment effects anymore and appeared relatively flat. The
variance between the plot-wise estimates ✓̂t_defl

p as seen in Fig. 3.3f corresponded to genotypic
effects and genotype-treatment interactions without the main treatment effects (see Fig. S2.13
and Fig. S2.19 for all estimates ✓̂t_defl

p of EuVar and SwiVar respectively).

3.3.5 Impact of correction for non-geometric trends on variance of estimates

Confounding sources of variance, mainly temporal and spatial trends, contributed significantly
more to total variance than experimental sources of variance related to the phenotypes.

When correcting plot-wise CT estimates for temporal effects (✓̂t_c

p ), temporal and spatial
effects (✓̂ts_c

p ) and finally also deflating treatment effects (✓̂t_defl

p ), the variance of the adjusted
plot estimates was constantly decreasing (Fig. 3.4a). The variance of ✓̂t_defl

p , which still
comprised genotypic variance, variance of genotype-treatment interactions, and plot effects,
was orders of magnitude smaller than the initial variance of uncorrected plot estimates ✓̂mean

p .
The mean variance decreased from 2.74K

2 to 0.09K
2 for EuVar21 and from 8.40K

2 to 0.42K
2

for EuVar22. For SwiVar21, variance decreased from 2.75K
2 to 0.02K

2 and from 7.68K
2 to

0.32K
2 for SwiVar22.

The greatest variance reduction occurred with the temporal and spatial correction after
which the variance was below 0.5K

2, except for SwiVar22. The variance was similar for
✓̂
ts_c

p and ✓̂t_defl

p for all experiments but for SwiVar22, where the variance decreased a lot by
treatment deflation, indicating a mild treatment effect for EuVar21, EuVar22 and SwiVar21
but a strong treatment effect for SwiVar22.

58



3.3. Results

1

2

3

0 100 200 300 400

25

30

35

40

25

30

35

40

25

30

35

40

Duration of flight (s) 

Te
m

pe
ra

tu
re

 (°
C

) 

−10

−5

0

5

10

Relative motion in
direction of main
flight path (m)

(a)

−0.2

−0.1

0.0

0.1

2021 2022

Te
m

pe
ra

tu
re

 (°
C

)

Treatment
Maximal
Medium
Minimal

(b)

−2

−1

0

1

2

2021 2022

Te
m

pe
ra

tu
re

 (°
C

)

Treatment
Fertilized
NotFertilized

(c)

2

4

6

0 10 20 30 40
Row in field (orthogonal to sowing dir.)

C
ol

um
n 

in
 fi

el
d 

(s
ow

in
g 

di
r.)

32
34
36
38
40

Estimated
Temperature (°C)

(d)

2

4

6

0 10 20 30 40
Row in field (orthogonal to sowing dir.)

C
ol

um
n 

in
 fi

el
d 

(s
ow

in
g 

di
r.)

34

36

38

40

Estimated
Temperature (°C)

(e)

2

4

6

0 10 20 30 40
Row in field (orthogonal to sowing dir.)

C
ol

um
n 

in
 fi

el
d 

(s
ow

in
g 

di
r.)

−2

−1

0

1

2

Estimated
temperature
deviation
from mean (°C)

(f)

Figure 3.3: Sources of CT variance not related to viewing-geometry: Thermal drift of TIR mea-
surements for the three flights of the campaign on 2022-06-14 at 13:00 was contextualized with the
motion in the direction of the main flight path (a). The three rows are the three individual flights
within the campaign. The colors indicate the motion in the direction of the main flight path. Purple
indicates flights in one direction, and yellow indicates flights in the opposite direction of the flight path
grid. For gray points, thermal drift was estimated on the basis of the mixed model, while there was no
corresponding measurement of motion along the main flight path. For the estimation of the trends,
all three flights were included in the same mixed model (Eq. 3.1). The box plots indicate the mean
treatment effects for all flights in both years for EuVar (b) and SwiVar (c). After correcting the first
flight of the campaign shown in (a) for temporal trends, the adjusted estimates ✓̂t_c

p (Eq. 3.3) still
contain significant, apparently spatial trends (d). After correction CT estimates for temporal and
spatial trends (Eq. 3.4), plot estimates ✓̂ts_c

p contained the genotype, treatment, and plot effects (e).
When also subtracting mean treatment temperatures (✓̂t_defl

p , Eq. 3.5), just genotype- and plot-effects
were left and the interaction effect between treatment and genotype (f).

3.3.6 Impact of correcting CT for non-geometric trends on correlation
between CT and phenotypic traits

Yield, plant height, four multispectral indices (DVI, EVI, NDVI, SAVI) and in 2022 also FCC
were measured as phenotypic reference traits, as they represent possible physiological sources
of CT variance for EuVar (Figs. S2.21 & S2.22) and SwiVar (Figs. S2.23 & S2.24). In EuVar21,
senescence ratings were performed. Flag leaf rolling was rated in 2022 as an indicator of
drought stress. In-field reference measurements were compared with CT of corresponding
flights by Pearson correlation. Uncorrected CT values were correlated with the uncorrected
reference measurements. Corrected CT was correlated with corrected reference measurements
and treatment deflated CT was correlated with treatment deflated reference measurements.
For yield, plant height, and FCC, a general overview of the correlations with CT is presented
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in Fig. 3.4b - Fig. 3.4d. For each trial in each year, two flights conducted at two distinct dates
were analyzed for each experiment before treatement deflation (Figs. 3.5a, c, e, g) and after
(Figs. 3.5b, d, f, h).

3.3.6.1 Correlation between CT and yield

Yield at 15% gravimetric water content was correlated with CT in conditions with and without
water limitation and in the presence of weaker and stronger treatment effects. Significant
correlations tended to be more consistent over all flights after applying different corrections.

Correlations were increased by the different corrections in the wet year 2021 for the
relatively heterogeneous set of genotypes of EuVar21. Uncorrected CT ✓̂

mean
p was significantly

correlated with yield only for 7 out of 22 flights and correlations were negative and weak to
moderate (Fig. 3.4b). After correction (✓̂ts_c

p ), correlations were weak to strong and significant
for all 22 flights (p  0.01).

For the same genotypes in the dry year (EuVar22), uncorrected CT for 15 out of 17 flights
was significantly and negatively correlated with yield with weak to strong correlations. After
temporal and spatial correction, only 6 flights showed a weak significant correlation with yield.
Therefore, the correlation between CT and EuVar22 yield was mainly driven by spatial trends.
For both trials of EuVar, deflation of treatments (✓̂t_defl

p ) had little effect.
For the less heterogeneous genotypes of SwiVar, the trends were similar for both years.

Initially, SwiVar21 and SwiVar22 showed a very broad range of correlations between yield and
uncorrected CT values ✓̂mean

p . After correction (✓̂ts_c

p ), more correlations were significant and
mostly negative, except for SwiVar21, where two correlations were positive. For SwiVar22, all
32 flights were significantly and negatively correlated with yield. However, after deflating the
treatment effects (✓̂t_defl

p ), correlations were no longer significant for SwiVar in both years.
The differences between the data with and without vignetting correction were small, except

for the ✓̂ts_c

p values of EuVar22, where correlations with yield were relatively random. To have
a more robust estimate of the reliability of these correlations, CT was also estimated based on
all flights within campaigns (Fig. S2.25) and then correlated with yield. The general pattern
of correlations was similar to that based on individuals flights.

Correlations of selected flights (Fig. 3.5) are in accordance with this general pattern with
strongest and most highly significant correlations for EuVar21 (p  0.001). The correlation in
SwiVar was strongly driven by treatment effects, and the correlations were no longer significant
after deflating treatment effects.

3.3.6.2 Correlation between CT and plant height

Significant correlations between CT and plant height were negative for all flights (Fig. 3.4c).
For all experiments, the correlations became stronger and more flights became significantly
correlated with plant height after the corrections. After correcting for temporal, spatial and
treatment effects, all flights were significantly correlated with plant height except four EuVar21
flights. Deflating treatment effects did not change the correlations much for EuVar, but led to
more negative correlations for the less heterogeneous genotypes of SwiVar in both years, but
especially during the hot season of SwiVar22.

Looking at selected flights (Fig. 3.5), the correlation between CT and plant height was
weaker and less significant in the trial with heterogeneous genotypes during the wet year
(EuVar21), compared to all other trials, which showed all highly significant correlations (p 
0.001), except for SwiVar22, where this was the case only after treatment deflation.
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(a) (b)

(c) (d)

Figure 3.4: Variance of CT estimates after different corrections steps and relationship between CT
and in-field reference measurements: (a) Comparison of the variance of uncorrected plot-wise estimates
(Eq. 3.2) over all flights with CT estimates after correcting with the mixed model (Eq. 3.3, Eq. 3.4
& Eq. 3.5) Significant differences between correction steps are indicated based on a pair-wise t-test.
Significance levels: ns: p > 0.05; *: p  0.05; **: p  0.01; ***: p  0.001; ****: p  0.0001. Note
that a logarithmic scale is used! The CT estimates without and with correction were also correlated
to in-field reference measurements, namely (b) yield, (c) plant height and (d) FCC. Just correlations
significant at p  0.01 are shown. The number above the boxplots indicates the number of significant

correlations included in the respective box plots.

3.3.6.3 Correlation between CT and FCC

As for plant height, the correlations with FCC became more significant and stronger with the
corrections applied (Fig. 3.4d & Fig. 3.5). For EuVar22 and for SwiVar22, CT of all flights
was significantly correlated with FCC after temporal and spatial correction. For EuVar22,
treatment deflation did not much change the correlations. For SwiVar22, correlations became
stronger with treatment deflation, indicating a genotypic effect as the driver of the correlation
between CT and FCC, partially masked by a strong treatment effect.
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3.3.6.4 Correlation between CT and multispectral vegetation indices

VIs were negatively correlated with CT for all trials (Fig. 3.5) and the correlations were highly
significant (p  0.001) except for SwiVar21 before treatment deflation (p > 0.01). Correlations
were always higher with the CT measurements taken closer to the date of the VI measurements.

3.3.6.5 Impact of flag leaf rolling on CT

When grouping CT estimates according to flag leaf rolling ratings of the dry year 2022,
significant differences of CT could be observed for some flights. For EuVar22 flights on 2022-06-
10 at 12:00 (Fig. 3.6a), CT was significantly different between leaf rolling rating groups for CT
estimates before and after applying a treatment deflation on CT values (✓̂ts_c

p & ✓̂
t_defl

p ). For
SwiVar flights on 2022-06-10 at 13:00 (Fig. 3.6b), differences were significant before treatment
deflation (✓̂ts_c

p ) but not after (✓̂t_defl

p ) and lower flag leaf rolling ratings were associated with
higher temperatures. The differences were only significant after treatment deflation for the
flights on 2022-06-17 at 16:40 (Fig. 3.6c) but not before. The differences between the flag leaf
rolling rating groups after treatment deflation were generally small (< 0.40K). For most other
dates, differences were not significant (Figs. S2.32 - S2.34).

3.3.6.6 Impact of senescence on CT

Flag leaf senescence was just rated for the two dates of EuVar21. The senescence ratings for
2021-06-11 were compared with the CT of 2021-06-12 at 17.00 (Fig. 3.6d) but the correlation
was not significant. The senescence ratings for 2021-07-02 were strongly correlated (r = 0.69,
p  0.001) with the CT of 2021-07-01 at 13.45 (Fig. 3.6e).

3.3.7 Phenotypic correlations between reference measurements

Correlations between in-field reference measurements with CT were discussed above, yet
possible correlations between reference measurements as summarized in Fig. 3.5 must also be
considered.

Plant height and yield were never correlated except for weak but significant correlations in
SwiVar22 prior to treatment deflation (p  0.01).

Yield was only weakly correlated with VIs for EuVar21 and for SwiVar22 before treatment
deflation (p  0.001), but significant correlations were always weaker than correlations between
yield and CT for corresponding dates.

FCC and yield showed a weak but significant correlation (p  0.001) in EuVar22 and in
SwiVar22 before treatment deflation (p  0.01).

3.3.8 Spatial CT trends in the field

Based on estimates of single flights, the spatial field trend estimates ✓̂r(p)c(p) were not consistent.
The sign of the correlations between flights changed randomly, (Fig. S2.26 - Fig. S2.31). Spatial
trend estimates based on all flights within campaigns appeared random for EuVar21 (Fig. 3.7a,
Figs. S2.36a & S2.38) but more consistent for EuVar22, SwiVar21, and SwiVar22. For EuVar22
(Fig. 3.7b, Figs. S2.36b & S2.39) spatial field trends of campaigns were positively correlated
except for the campaign on 2022-06-11 at 15:15 and correlations were highly significant.
SwiVar21 flights (Fig. 3.7c, Figs. S2.37a & S2.40) showed moderate to very strong correlations
within the 2021-06-19 flights. Within 2021-06-28, the correlations were positive and negative,
while the positive correlations were stronger and more significant. The correlations between
flights on 2021-06-19 and 2021-06-28 were positive for 16 out of 20 correlations and were weak
to strong and highly significant in most cases. The four negative correlations were very weak to
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Figure 3.6: Impact of flag leaf rolling and senescence on CT. Corrected CT differences from mean
were grouped for campaigns on specific dates and flight times by their flag leaf rolling rating for EuVar
on 2022-06-10 (a) and SwiVar on 2022-06-10 (b) and on 2022-06-17 (c) before (✓̂ts_c

p ) and after (✓̂t_defl
p )

applying a treatment deflation on CT estimates. The numbers above the individual columns indicate
the flight number of the flights within the campaigns of CT measurements. For EuVar on 2022-06-09
and SwiVar on 2022-06-17, all ratings were larger than 0. Leaf rolling ratings were conducted on the
same day as flights or the day before. The significance of differences between groups of leaf rolling
ratings was highlighted in red. Significance levels: ns: p > 0.05; *: p  0.05; **: p  0.01; ***: p 
0.001. Senescence ratings of EuVar21 for 2021-06-11 were compared with the CT of 2021-06-12 at 17.00
(d) and the senescence ratings for 2021-07-02 were compared with the CT of 2021-07-01 at 13.45 (e).

weak and significant at p  0.001 just in two cases. Within SwiVar22 (Fig. 3.7d, Figs. S2.37b
& S2.41), the correlations ranged from strong to very strong (p  0.001) within days and from
moderate to strong between different days. Weaker correlations were often not significant at p
 0.05. Two correlations were negative but significant at p  0.001.

The variance of the spatial trend estimates within flights var(✓̂r(p)c(p)) was much stronger
in 2022 compared to 2021 for both trials (Fig. 3.7e). The mean var(✓̂r(p)c(p)) was 1.09K

2 for
EuVar21 and increased to 2.87K

2 for EuVar22. The mean var(✓̂r(p)c(p)) was lower in SwiVar
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but also increased from 0.32K
2 for SwiVar21 to 0.76K

2 for SwiVar22.

3.3.9 PLSR modeling of TIR residuals to better understand geometric
sources of variance of apparent CT

3.3.9.1 TIR residuals and geometric trends

After pre-processing with the mixed model in ASReml, the residuals were analyzed for geometric
patterns. Looking, for example, on the residuals of the flight of the SwiVar campaign on
2021-06-19 at 12:30 (Figs. 3.8a - 3.8c), a gradient along the lateral “distance in direction of
sowing rows” (Fig. 3.8a) can be seen. The dimensions “distance in direction of sun” (Fig. 3.8b)
and “distance on the sensor” (Fig. 3.8c) showed very similar patterns and the main difference
was a rotation around the origin of the respective dimensions. For the first flight of the SwiVar
campaign on 2022-06-18 at 11:40 (Figs. 3.8d - 3.8f), distinct patterns can be seen with respect
to the dimensions “distance in direction of sowing rows” (Fig. 3.8d), “distance in direction of
sun” (Fig. 3.8e) and “distance on the sensor” (Fig. 3.8f). The residuals were more positive
below the camera and more negative with more oblique viewing geometries and patterns were
very similar again between the dimensions with a rotation around the origin. Although these
patterns were not always the same between the flights, they were always very similar between
the three dimensions of one flight. Also, after vignetting correction, the patterns remained
very similar to patterns before vignetting correction (not shown).

The theoretical atmospheric effect was almost zero for a flight height of 40m (Fig. 3.8g) but
became larger at a flight height of 300m (Fig. 3.8h). The pattern at flight height 300m was
very similar to the geometric trends at 2022-06-18 (Figs. 3.8d - 3.8f) but also to the vignetting
effect (Fig. S2.3). While the real atmospheric effect could not be described within this study,
this demonstrates the point-symmetric nature of this effect but also its negligible order of
magnitude at low flight heights.

3.3.10 PLSR modeling of geometric CT trends

The residuals eijknp of the mixed model (Eq. 3.1) were used as input of the PLSR model.
Table 3.4 summarizes how much of the variance of eijknp within single flights could be explained
using geometric covariates in PLSR.

Of the 20 initial covariates included in the PLSR models (Table 3.3), 9 were selected in a
supervised selection for use in further processing. The relative PLSR coefficient magnitudes �i of
the selected covariates are shown in Fig. 3.8i. The four covariates “RowDir-lat”, “RowDir-long”,
“SunDir-lat” and “SunDir-lon” were the most important in PLSR, followed by “Interact.-SunDir-
Drone”. The absolute values of the four covariates (“RowDir-lat-abs”, “RowDir-long-abs”,
“SunDir-lat-abs” and “SunDir-lon-abs”) were less important in PLSR for most flights with
values around 0%. However, for some flights, especially in 2021, they reached values of up to
10%.

The median values of the explained variance ranged from 20.3% to 59.2% when just
including 9 covariates and not applying vignetting correction. They were generally highest in
SwiVar21 while they were lowest in EuVar21. EuVar22 and SwiVar22 showed intermediate
values. When only using 9 instead of 20 covariates, the explained variance was 4.0% lower on
average. The explained variance without ex ante vignetting correction was on average 10.9%

higher compared to data with vignetting correction applied. The differences without and with
vignetting correction were greater for SwiVar than for EuVar.

Fig. 3.8j compares the residual variance of mixed models and PLSR to initial variance of
CT values and variance of initial CT values corresponds to 100%. The proportion of variance
explained with mixed models was always larger when ex ante vignetting correction was applied,
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Figure 3.7: Pearson correlations between estimates of spatial trends ✓̂r(p)c(p) for individual campaigns.
Spatial trends were estimated according to Eq. 3.10 for (a) EuVar21, (b) EuVar22, (c) SwiVar21 and (d)
SwiVar22. Estimates were based on all flights within individual campaigns. The variance of estimates
of spatial trends is summarized in (e). Significance levels: *: p  0.05; **: p  0.01; ***: p  0.001.
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while the variance of the initial CT values was very similar (Fig. 3.4a). This holds also true
for the variance explained after PLSR but the differences between data with and without
vignetting correction became smaller. The mean proportion of residual variance after mixed
models ranged from 2.98% to 9.61%. After PLSR, the mean proportion of residual variance
ranged from 2.46% to 3.51%, i.e. by combining mixed models and PLSR, 97.54% to 96.49%

of initial CT variance could be explained on average. Details for the reduction in variance of
single flights are shown in Fig. S2.42 - Fig. S2.45.

Table 3.4: Explained variance of residuals eijknp by PLSR fitting after pre-processing with the
mixed model (Eq. 3.1). PLSR fitting was done with all 20 lineralized covariates and a reduced set of
nine selected covariates. Mean and median values were calculated over all PLSR models of the two
experiments EuVar and SwiVar for data with and without vignetting correction (VC) over the two

years.

Explained variance of residuals (%)

Number
of covariates

2021 2022

without VC with VC without VC with VC

EuVar
20

mean 30.9 20.8 50.8 42.9
median 30.4 21.5 47.5 39.2

9
mean 24.4 17.8 48.6 41.1
median 20.3 18.6 45.9 37.6

SwiVar
20

mean 62.6 45.3 51.3 40.9
median 65.3 43.9 56.0 45.6

9
mean 57.6 41.9 47.9 37.7
median 59.2 41.1 52.3 42.3

3.3.11 Reference measurement to better understand the sources of variance
in apparent CT

3.3.11.1 Fan experiment to determine the influence of wind

The fan experiment showed a strong reaction of the sensor to heating and cooling (Fig. 3.9).
The apparent temperature of the PCV sheet dropped immediately by more than 20

�
C upon

switching on the lamp and rose again to a temperature of about 10
�
C below the previous

temperature. During the next 15min, it slowly increased. As soon as the fan was turned off,
the temperature rose by more than 30

�
C and immediately decreased again and continued

to decrease for 5min until the fan was turned off and the temperature dropped again until
the fan was turned on again. The same pattern was repeated three times until the lamp was
finally turned off and the temperature stabilized anew. Strong temperature gradients between
monitored objects themselves did not cause any drift. The introduction of warm and hot
objects did increase the standard deviation of the pixel-wise temperature as long as the objects
were within the FOV but did not appear to cause a drift of the apparent temperature or an
increased standard deviation for any longer than the period during which disturbance objects
were present inside the FOV.

3.3.11.2 Qualitative demonstration of impact of apparent soil cover on CT

For most situations, soil was warmer than the vegetation which was especially evident when
looking into the rows perpendicularly (e.g. Figs. 3.10a & 3.10b). From an oblique viewing
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Figure 3.8: Geometric trends of CT estimates of first flights of SwiVar campaigns on 2021-06-19 at
12:30 (a - c) and on 2022-06-18 at 11:40 (d - f). CT residuals of the mixed model (Eq. 3.1) are plotted
with respect to lateral and longitudinal distance of the plot seen from the drone in sowing row direction
(a & d), sun direction (b & e) and the position of the plot center on the focal plane array of the TIR
sensor, i.e. the x/y coordinates of the thermal images (c & f). A theoretical atmospheric effect is
shown for two different flight heights (g) 40m and (h) 300m. (i) shows the PLSR coefficients of the
9 selected linearized geometric covariates which indicate the relative importance of the covariates in
PLSR modelling to explain the variance of the CT residuals after the mixed models. (j) summarizes
the variance after the mixed models (multiple for each plot in each flight) and after PLSR modelling

expressed as % of initial variance.
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Figure 3.9: TIR drift (a) and standard deviation of pixels-wise temperature on the PVC sheet (b)
during the fan experiment. During the stabilization period, warm objects were introduced into the
FOV three times (first three vertical blueish shadings), and then hot objects were introduced into
the FOV for three times (subsequent three larger shadings). At about 75min, the heating lamp was
turned on (first vertical purple line). The fan was then turned on (red lines) and off (yellow lines)

three times before the lamp was turned off (second vertical purple line).

angle, the FCC decreased and so did the average apparent CT in the respective area.

3.3.11.3 Multi-view residuals of FCC from RGB data to demonstrate viewing-
geometry dependency of CT

The apparent FCC showed a distinct pattern with a lower apparent FCC in the center and
a higher apparent FCC toward the edges of the images (Fig. 3.10c) which is related to the
more oblique viewing angles. After fitting the FCC values for design factors in a mixed model
(Eq. 3.1, but for CT instead of FCC), the residuals showed a distinct pattern with regard
to position relative to row direction (Fig. 3.10d). They were lowest when following a line
parallel to row direction directly below the drone (lateral distance in the direction of sowing
= 0). When diverging perpendicularly from this line in both directions (i.e. with increasing
lateral distance perpendicular to the direction of sowing), the residuals became more positive,
i.e. FCC increased. A similar yet less distinct effect could be observed along this line with
increasing residual values when diverging from the position on the soil directly below the drone
(with increasing longitudinal distance parallel to direction of sowing). Areas with low FCC
coincided with warm areas, and spatial trends were often very similar between the two traits
(cf. Fig. 3.10d and Figs. 3.8d - 3.8f).
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Figure 3.10: FCC trends in relation to viewing geometry: The same scenery is shown on an RGB
image (a) and a TIR image (b). This shows how the soil is warmer than the plants. To demonstrate
how the apparent fractional canopy cover (FCC) changes with viewing geometry, RGB images were
labeled in Ilastik software to segment images into plant (purple) and background (yellow) (c). The
resulting images were analyzed by the multi-view method to get FCC for each plot in each image. The
FCC values were fitted with a mixed model (Eq. 3.1, but for CT instead of FCC) for design factors.
The residuals of the model are shown in (d) in relation to the position of the plot relative to the sowing

row direction for SwiVar22.

3.4 Discussion

This study used the multi-view approach (Treier et al., 2024) to discuss the manifold sources
of variance in airborne thermal imaging, based on data from two very different wheat variety
testing trials followed over two seasons, characterized by very contrasting meteorological
conditions. The discussion of the different sources is structured according to the primary type
of correction (Table 3.1).

3.4.1 Temporal correction of CT

Temporal trends contributed the most to the total variance of CT estimates. Fig. 3.3a
illustrated the magnitude of temporal trends, which can be several times larger than genotype-
specific differences (e.g. Kelly et al., 2019; Treier et al., 2024; Z. Wang et al., 2023). Temporal
correction reduced the variance of CT estimates the most (Fig. 3.4a) which is in line with
Z. Wang et al. (2023). This demonstrates the importance of proper handling of temporal
trends in thermal measurements, as has been highlighted in several publications (e.g. Kelly
et al., 2019; Malbéteau et al., 2021; Treier et al., 2024; Z. Wang et al., 2023; Yuan and Hua,
2022). Z. Wang et al. (2023) elaborated on the distinction between thermal drift and the
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temporal variation of land surface temperature (LST). Thermal drift is caused by the thermal
camera when the temperatures of FPA, lens, and camera body change. The wind on the sensor
cools them and exposure to sunlight as well as the sensor’s electronic heats them, leading to
fluctuation temperature readings even when facing toward a target with an actual constant
temperature (e.g. Aragon et al., 2020; Kelly et al., 2019; Messina and Modica, 2020; Treier
et al., 2024; Z. Wang et al., 2023). This interaction was confirmed for the sensor used in this
study with a fan experiment (Fig. 3.9). In accordance with findings in Kelly et al. (2019), the
warming of the sensor led to a decrease in the apparent temperature of the target and vice
versa. As internal processes of TIR cameras are proprietary information of the manufacturers,
the reasons for this are difficult to determine (Budzier and Gerlach, 2015; Kelly et al., 2019).
The thermal signal reacted within seconds after a change of wind conditions (fan) or thermal
radiation (heating lamp). In contrast to thermal drift, temporal variation corresponds to
actual changes in the temperature of a given target that can be caused by wind, changing
air temperature, VPD, solar illumination, changing water status of the plant and the plants
physiological response to such changes (e.g. Idso et al., 1981; Perich et al., 2020; Rebetzke
et al., 2013; M. P. Reynolds, Pask, et al., 2012; Z. Wang et al., 2023). The impact of temporal
variation was reduced in this study by flying in weather conditions that were rather stable
throughout single flights (Kelly et al. (2019); Figs. S2.6 & S2.7). Nevertheless, also in stable
conditions, LST changes, but these changes are comparably slow and if measurements are taken
within a short interval, e.g., within 30min, the temporal variation in LST is relatively low
(Z. Wang et al., 2023). A typical flight time in this study was 7 to 9min, a 3 flight campaign
lasted about 25min, and therefore a large proportion of temporal trends can be assumed to
be thermal drift, and temporal variation contributed relatively little to total variance of CT
estimates.

3.4.2 Spatial correction of CT

Thermal imaging was proposed to estimate spatial field heterogeneity caused, for example,
by variability of soils, soil water content, or soil-borne pathogens, and to improve the inter-
pretability of other phenotypic measurements (e.g. Deery, Rebetzke, Jimenez-Berni, James,
et al., 2016; Deery, Rebetzke, Jimenez-Berni, Bovill, et al., 2019; Messina and Modica, 2020).
In contrast to hand-held infrared thermometers, many experimental plots and larger areas
can be measured simultaneously and repeatedly in a short period with airborne thermography.
Handheld infrared thermometers are also prone to thermal drift, but with just one measurement
taken at a time, the temporal and spatial trends are challenging to separate from each other
in a statistical analysis (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016). Revisiting the
same spot multiple times in a short interval (e.g. 30min) improves the estimation of the real
relative temperature of the spot and thus of spatial trends, since the temporal variation of
the CT can be assumed to be relatively small and temporal trends are mainly thermal drift
(Z. Wang et al., 2023). When working with uncorrected images in orthomosaic approaches,
each plot is measured multiple times. The temporal and spatial effects are reduced by leveling
them out in orthomosaic blending. Perich et al. (2020) accounted for the remaining temporal
and spatial variance together in a mixed model, and they stated that it remains challenging to
unravel the two. Multi-view offers an opportunity to alleviate this limitation as measurements
are analyzed individually (Treier et al., 2024), but as shown in this study, a spatial trend
estimate based on a single flight showed little reliability (Fig. S2.28 - Fig. S2.31). As claimed by
Z. Wang et al. (2023), increasing the number of observations per plot led to a more consistent
estimation of the spatial trends (Fig. 3.7a - Fig. 3.7d). To further improve the estimation of
spatial trends, it is proposed to conduct at least two flights over the field with different flight
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paths, orthogonal to each other. This reduces the probability of artifacts due to the repeated
occurrence of similar temporal patterns when following the same flight plan.

In 2022, the spatial trend ✓̂r(p)c(p) was more pronounced than in 2021. Thus, the variance of
the spatial trend was greater in 2022 than in 2021 (Fig. 3.7e), indicating a stronger expression
of the spatial trend. 2021 was a wet year and a sufficient water supply can be assumed
throughout the growing season. The spatial trends were therefore relatively weak. Such weak
trends are more difficult to reproduce, as little differences in the estimation lead to different
trends. In such homogeneous conditions, the multi-view approach might fail to detect the
weak spatial trends reliably. At the same time, the correct estimation of weaker trends is also
less important because their impact on final results becomes negligible. 2022 was hot and dry,
and spatial trends in water status were observed in the field. A more pronounced spatial trend
can be estimated more easily and reliably.

However, simultaneous accounting for temporal and spatial trends was shown to lead to
highly consistent CT estimates even when based only on a single flight (Treier et al., 2024).

3.4.3 CT variance reduction by temporal and spatial trends

After the temporal and spatial correction, the experimental effects remained, i.e., the effects
of genotypes and treatments, as well as the effects of viewing geometry.

The added variance of these effects was much smaller than the initial variance of the
temperature estimates, with the exception of SwiVar22, which showed a strong treatment
effect (Fig. 3.4a). Agricultural research is usually interested in the effects of genotypes and
treatments. This shows the importance of reducing the effects of unwanted sources of variance.
Only through the appropriate consideration of large confounding influences, more subtle effects
actually under observation within an experimental setup can truthfully be estimated (Damm
et al., 2022).

3.4.4 Correlation of CT with in-field reference measurements of phenotypic
traits

In accordance with the literature (Rebetzke et al., 2013; M. P. Reynolds, Pask, et al., 2012),
yield and CT were negatively correlated in conditions without water limitation. This was
only the case in 2021 as 2022 was a hot and dry season. The correlations were stronger and
more significant in EuVar21 compared to SwiVar21. While the effect of fertilizer application
in SwiVar21 was rather small, it appeared to be the main driver of the correlation between
corrected CT and yield. In the EuVar trial, a relatively diverse set of European genotypes was
tested, while in SwiVar, varieties of the Swiss variety list and candidates for registration in
the variety list were tested. It can be assumed that the phenotypic variability between the
varieties was greater in EuVar than in SwiVar. With more pronounced differences between
estimates, stronger correlations are more easily achieved.

There was a consistently negative correlation between CT and plant height. This could in
part be caused by effects related to canopy architecture, e.g. increased LAI and a stronger
exposure to wind (e.g. Z. Wang et al., 2023), but also by genetic co-locations of quantitative
trait loci for CT and plant height (e.g. Rebetzke et al., 2013). The correlations were more
pronounced in SwiVar after treatment deflation, indicating a masking effect of fertilizer
treatment on the genotypic correlation between CT and plant height.

Although just measured in 2022, the trends for FCC were similar to those of plant height,
with stronger correlations after treatment deflation. The constant correlation between FCC
and plant height also indicates that they can be interlinked. Furthermore, with decreasing
FCC, the effect of mixed pixels can be expected to increase, especially if the GSD is larger

72



3.4. Discussion

than the size of the plant organs (H. Jones and Sirault, 2014), shifting the CT estimate toward
the temperature of the soil background.

The flag leaf rolling is a protective mechanism of wheat to reduce transpiration losses. It
reduces the amount of incident radiation intercepted by the plant and traps air within the
leaf, reducing the VPD at the border layer (Pask et al., 2012). It was used as an indicator of
the level of drought and heat stress to which the wheat was exposed. Although CT differences
between groups of different flag leaf rolling ratings were significant for some dates, these
differences remained relatively small (< 0.40K) after treatment deflation. Differences before
treatment deflation were large for SwiVar on 2022-06-10 (Fig. 3.6b) and lower flag leaf rolling
ratings were associated with higher CT estimates, which is counter-intuitive. To understand
this, the interaction between CT estimates, water use, and above-ground biomass must be
analyzed. In 2022, it was evident from field observations that the above-ground biomass
in the unfertilized part of SwiVar was much lower than in the fertilized part. The lower
biomass was confirmed by reference measurements, as FCC but also multispectral indices that
approximated above-ground biomass and LAI were lower in the unfertilized part (Fig. S2.24).
At the same time, flag leaves expressed stronger rolling in the fertilized part compared to
the unfertilized part (Fig. S2.35), indicating the plants experienced a stronger water deficit
in the fertilized part (Pask et al., 2012). The lower biomass presumably led to a lower total
transpiration in the unfertilized part and saved soil water, which in turn allowed plants to
maintain unrolled leaves longer into the season compared to the fertilized part, where available
water was exhausted earlier. This illustrates well the complex interactions between phenotypes,
water status, transpiration, and CT. At the same time, this highlights the importance of
environments for the contextualization of the expression of CT as a trait. In 2021 almost the
same set of genotypes was sown as in 2022 and the treatments were identical, but led to a
much more pronounced treatment effect in 2022 with lower FCC, above-ground biomass and
LAI.

The correlation between CT estimates and reference measurements was strongest between
CT and multispectral vegetation indices (Fig. 3.5). This correlation was strongest in EuVar21,
when the correlations between CT and yield were also strongest. CT was often negatively
correlated with yield and plant height, but yield and plant height were not correlated except
for a weak correlation in SwiVar22. The impact of the treatments on correlations was small
for EuVar21, EuVar22 and SwiVar21. These results support the findings of Pask et al. (2012),
Rebetzke et al. (2013) and Roche (2015), that CT and yield are especially correlated when
conditions are not water limited.

Multiple sources of phenotypic variability, genetic or related to treatment, are associated
with CT, and this must be taken into account in the analysis (Maes and Steppe, 2012; Rebetzke
et al., 2013). It was demonstrated how correlations can be driven or masked by the treatment
effect. For example, yield was only correlated with CT before treatment deflation in SwiVar22
but the genotypic correlation between plant height and CT only became evident after treatment
deflation. The correlation of CT with plant height and FCC was consistently stronger than the
correlation with yield, except for EuVar21. This might indicate that a plant height effect was
masking the yield effect on CT in many cases. It remains unclear why plant height and CT
showed a weaker correlation in EuVar21 but the FCC measurement of 2022 were consistently
correlated with plant height. FCC was not estimated in 2021 but canopies were observed to
be very dense in this season. This might have led to saturated FCC with values near 1 (i.e.
100% canopy cover), which might have reduced the effect of plant height on CT, unmasking
the correlation between CT and yield.

Although FCC and CT were correlated, the treatment effect of FCC in SwiVar22 was not
as evident as for CT (cf. Fig. S2.24g and Fig. S2.15). This was possibly caused by saturation
of the FCC where the canopy appears largely closed even on the unfertilized part, with an
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FCC near 1, but is still less dense than the canopy of the fertilized part. Through the less
dense canopy, the soil background could have a larger impact on CT (Das, S. C. Chapman,
et al., 2021; Deery, Rebetzke, Jimenez-Berni, Bovill, et al., 2019; Pask et al., 2012), making
the nadir-oriented measurements appear hotter compared to the more oblique measurements
(Perich et al., 2020). The interactions of CT and soil-background can change with increasing
temperatures throughout the day. The soil may be cooler than the plant in the morning and
warmer later in the day (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016).

For the second EuVar21 flight date on 2021-07-01, senescence had progressed for some
genotypes while it was still in early stages for other genotypes (Fig. 3.6e). The strong correlation
between senescence ratings and CT underlines the importance of considering phenology in the
timing of CT estimates (Anderegg, Kirchgessner, et al., 2024; Lopes and M. P. Reynolds, 2010;
Rebetzke et al., 2013). However, the 2021 season was characterized by frequent precipitation,
and days with optimal conditions for CT estimates (no clouds, little wind) were rare. For
logistical reasons, it was therefore not possible to conduct the second measurement day earlier
and with a less pronounced senescence. Such meteorological and logistical constraints avoiding
optimal measurement timing are a common problem in agricultural research, breeding, and
variety testing. However, CT measurements during intermediate leaf senescence stages also
showed similar correlation patterns, notably with yield, and with measurements taken earlier
in the season (Treier et al., 2024). Although measurements taken at the same phenological
stage are optimal, this is indicating that conclusions drawn from CT show a certain robustness,
even when the sample population shows some phenological heterogeneity, e.g. in cases where
measurement before onset of senescence is not possible.

The correlation with yield was always stronger for CT than for the multispectral indices
(DVI, EVI, SAVI). Now, the indices were chosen as approximate measurements of above-ground
biomass and LAI and not yield. In addition, correlation with NDVI was not shown, yet NDVI
was closely associated with the indices used (Figs. S2.21 - S2.24). Nevertheless, this underscores
the potential of airborne CT for yield prediction in remote sensing, also for temperate climates.

3.4.5 Estimating geometric effects by PLSR modeling

Geometric effects on CT within one image were cited to be as high as 3.5
�
C (Perich et al.,

2020) and the range of residual values with geometric patterns were larger than 4
�
C in this

study (Fig. 3.8). The geometric patterns of the residuals were in some cases point-symmetric
(e.g. Fig. 3.8d - 3.8f) and sometimes looked similar to those of vignetting (Fig. S2.3) and
path-length dependent atmospheric effects (Fig. 3.8h) or FCC (Fig. 3.10d). These three effects
were very similar in shape and they are all possible causes for these patterns, however, they
cannot be disentangled further with this method. The causes and effects of vignetting are well
presented in literature (e.g. Aasen, Honkavaara, et al., 2018; Yuan and Hua, 2022; Kelly et al.,
2019). Atmospheric effects might be negligible when flown at low altitudes (Künzer and Dech,
2013; Messina and Modica, 2020), however, at higher altitudes they might become important
(Jimenez-Berni, P. J. Zarco-Tejada, et al., 2009), as shown in Figs. 3.8g & 3.8h. This study
assumed an oversimplified length-dependent model. For higher altitudes, the attenuation could
be estimated based on MODTRAN radiative transfer models (Jimenez-Berni, P. J. Zarco-
Tejada, et al., 2009; Jimenez-Berni, P. Zarco-Tejada, et al., 2009; Maes, Pashuysen, et al., 2011;
Maes, Huete, et al., 2017). In addition to flight height, the strength of the atmospheric effect
on the measured temperature depends primarily on atmospheric pressure, air temperature, and
humidity (Meier et al., 2011; Schläpfer et al., 2022). FCC residuals showed a similar spatial
pattern as CT residuals after processing with a mixed model (Eq. 3.1) and it is likely that
FCC also contributed to CT variance, where CT associated with a lower FCC appeared higher.
FCC therefore affected the genotypic variability of CT as was shown with correlation between
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CT and FCC, but also the residual FCC pattern. Geometric effects on CT can be expected to
be more pronounced for canopies with lower FCC, as their apparent FCC changes from low to
almost closed canopy for oblique viewing geometries. In contrast, for almost closed canopies
with an almost saturated FCC towards 1, this change is very limited (Fig. 3.10c). Like plant
height, FCC is a structural trait of the wheat canopy, and structural traits interact with CT.
Other structural traits not considered in this study but with a potential impact on CT include
LAI or leaf angle (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016; Deery, Rebetzke,
Jimenez-Berni, Bovill, et al., 2019; Maes and Steppe, 2012; P. Zarco-Tejada, González-Dugo,
L. Williams, et al., 2013).

Often, the residuals also contained more axisymmetric and continuous trends. Such trends
could be caused by BRDF or unilaterally warmed spikes. However, such trends usually feature
a gradient parallel to the principal plane of the sun (Bai et al., 2023; Perich et al., 2020).
This was not always the case (see, e.g., Fig. 3.8a - 3.8c). This could possibly be caused by
an interaction of sowing row direction and incident sunlight, where the spacing between the
sowing rows allows light to penetrate the canopy and warm the plant from one side, but not
from the other (e.g. H. G. Jones, Stoll, et al., 2002). Another possible explanation is the
camera orientation not being perfectly nadir. With a slightly tilted camera, some geometric
effects would still be concentric with the image center (e.g. vignetting), while other effects
like FCC would not align with the center of the image anymore. The concentric and eccentric
patterns would then combine into a less point-symmetric pattern with a more continuous
appearance.

In PLSR modeling, covariates without absolute value transformation are better suited
to describe continuous effects, while covariates after absolute value transformation rather
correspond to point-symmetric effects. Based on PLSR coefficient magnitudes, continuous
effects (initial covariates without absolute value transformation) were generally more important
in explaining residual variance than point-symmetric effects (absolute covariate values) and
PLSR coefficient magnitudes for point-symmetric effects were close to zero for most cases
(Fig. 3.8i).

PLSR modeling allowed the explanation of a significant proportion of residual variance
(Table 3.4) as geometric effects. It should be noted that the proportion of variance that can
be explained by PLSR also depends on the magnitude of the initial variance. However, in
this study no clear correlation between initial variance and variance explained by PLSR could
be shown. Yet, it is hypothesized that the relatively large proportion of residual variance
explained by PLSR in SwiVar2021 was due to the relatively low overall variance in this trial,
which increased the proportion of residual variance in overall variance. The proportion of
explained variance was consistently greater on data without vignetting correction, indicating
that vignetting correction and PLSR were reducing initial variance of the same geometric
dimensions, i.e. PLSR was also modeling vignetting. The proportion of variance that was
accounted for by vignetting correction could therefore not be explained by PLSR, which was
decreasing the proportion of residual variance explainable by PLSR.

However, the contribution of residual variance to total variance was relatively small
(Fig. 3.8j). Especially point-symmetric effects such as vignetting and FCC seemed to have little
impact on total variance, as demonstrated by the low importance of absolute coefficient values
in PLSR modeling. The relatively small impact of vignetting correction was also supported
by the low difference of the proportion of residual variance explained by PLSR between the
data with and without vignetting correction. This difference in explainable residual variance
was only 10.9% and it is hypothesized that this percentage is also an approximation of
the total importance of vignetting correction. Furthermore, vignetting correction had little
impact on total variance (Fig. 3.4a) but also on the correlation of CT with other phenotypic
traits (Figs. 3.4b - Fig. 3.4d). The contribution of residual variance to total variance might
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vary depending on the cropping system under observation. A row crop with a larger inter-
row spacing or a poor plant development associated with a lower FCC might feature more
pronounced FCC patterns and therefore stronger geometric trends of CT. Kelly et al. (2019)
and Perich et al. (2020) report that such geometric effects are more important when analyzing
CT based on single images. When CT analysis uses multi-view or orthomosaics, plot estimates
are based on multiple images or selected for most nadir-oriented views, both reducing the
geometric impact on plot-wise estimates.

3.4.6 Unexplained residual variance of CT

The sequential application of mixed models and PLSR models could explain a large proportion
of variance. But there will always remain unexplained residual variance and though the
contribution of residual variance to total variance might be negligible, some possible causes
of residual variance are mentioned in the following. Residual variance could be caused by
non-geometric non-uniformity effects that neither the vignetting correction nor the PLSR
could account for. Also, non-continuous effects impacting CT like temporal CT inconsistencies
due to gusts might not be accounted for as well as the sensor noise beyond thermal drift, i.e.,
dark signal noise (Aasen, Honkavaara, et al., 2018). The canopy may also feature holes, caused,
for example, by heterogeneous emergence, damage from rodents, or previous sampling events,
which could have different impacts on CT estimates depending on viewing geometry (Deery,
Rebetzke, Jimenez-Berni, James, et al., 2016).

3.4.7 Emissivity and CT variance

An important determinant of CT variance that is often ignored in airborne thermography
of crops is emissivity. Emissivity compares the TIR radiation emitted by a surface with the
TIR radiation emitted by a black body at the same temperature (Fuchs and Tanner, 1966;
Jacob et al., 2004; Messina and Modica, 2020). Two objects of different materials can have
the same temperature, but if they have different emissivities, they appear to have different
temperatures in thermal images. Messina and Modica (2020) summarizes multiple factors
that influence emissivity: color, chemical composition, surface roughness, moisture content,
field of view, viewing angle, spectral wavelength, etc. (Campbell and Wynne, 2011; Jacob
et al., 2004; J. Jensen, 2009). The emissivities cited in the literature vary, but in general, for
healthy leafy vegetation, an emissivity of 0.99 can be assumed (Diaz et al., 2021), where for
dry vegetation, emissivity from 0.88 to 0.94 were reported. Water has an emissivity of 0.99
and dry soil an emissivity of around 0.92 (Jacob et al., 2004; Lillesand et al., 2015; Meier
et al., 2011). Stressed vegetation generally has a lower emissivity than healthy vegetation, and
plant emissivity is highly sensitive to water content (Chandel et al., 2022). Diaz et al. (2021)
assumed an emissivity of 0.99 when the NDVI of the respective pixel was above 0.5. NDVI was
below 0.5 for some measurements at the last measurement date of EuVar21 (Fig. S2.21c) and
SwiVar21 (Fig. S2.23c). Therefore, different emissivities would have to be assumed for different
plots of the same measurement flight. This would come with the necessity of estimating the
correct emissivity for the specific plot, which can lead to large differences in CT estimates. For
example, when an object has a temperature of 20 �

C, under the assumption of an emissivity of
0.99, it would appear to be 293.15K*0.99 = 290.22K or 17.07

�
C. Assuming an emissivity of

0.98, the apparent temperature would be 293.15K*0.98 = 287.29K or 14.14 �
C. The difference

between the two emissivity assumptions of only 0.01 corresponds to 2.93
�
C, which is about

the range of genotype-specific differences in the experiments of this study and is therefore far
too large to study genotype-specific differences of CT.

To avoid the introduction of errors by estimating erroneous emissivity values for individual
plots, it might thus be more appropriate to assume a constant emissivity for all measurements,
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when no absolute CT values are needed. The absolute value of CT is particularly important
for physiological investigations, where absolute values are needed to approximate physiological
quantities such as transpiration rate or gas exchange. If, on the other hand, relative CT is
compared, the absolute value plays a lesser role. For this study, for example, an emissivity of 1
was assumed. A stressed vegetation, in most situations, would have a higher CT and at the
same time a lower emissivity. The effect of assuming a too high emissivity would thus lead to
a too low estimate of temperature on the thermal image, and the question remains whether
differences of apparent CT on thermal images arise from differences in CT or from a varying
emissivity.

In addition, emissivity might also be affected by FCC and LAI. The emissivity of soil can
be significantly lower than the emissivity of healthy vegetation, and low FCC, or low LAI,
even at a relatively high FCC, might impact the emissivity of a plot, biasing the CT estimates.
Cheng and S. Dong (2024) demonstrated for satellite data that the error of emissivity estimates
is lower when the emissivity of the soil background is closer to the emissivity of the vegetation,
and when the LAI of the vegetation is higher. Sobrino et al. (2005) explored the dependence
between emissivity and viewing angle and described that the level of the angular dependency
is related to LAI.

However, measuring emissivity in the field is a very tedious task that cannot be easily
implemented (Almawazreh et al., 2025). It must be measured at night (Sugita et al., 1996), or by
shielding the vegetation with boxes to exclude environmental radiation from the surroundings
(Rubio et al., 1997). Thus, in many field studies, the emissivity is ignored (Deery, Rebetzke,
Jimenez-Berni, James, et al., 2016; Deery, Rebetzke, Jimenez-Berni, Bovill, et al., 2019; Perich
et al., 2020; Anderegg, Aasen, et al., 2021) while other assume a fixed emissivity (often 1), as
in this study (Al Masri et al., 2017; Mahlein et al., 2019; Almawazreh et al., 2025).

For satellite-based estimates of LST, model-based approaches to determine emissivity were
proposed (Sobrino et al., 2005; Meng et al., 2017; Cheng and S. Dong, 2024), e.g. based
on NDVI estimates. To the best of the authors knowledge, there are no similar studies
for drone-based CT estimates. Yet, the study of Treier et al. (2024) provides the tool to
estimate CT in dependence of viewing geometry. In addition, Roth, Aasen, et al. (2018) used
the multi-view approach to determine the LAI of soybean. These two approaches could be
combined with emissivity estimates to promote a more robust understanding of the interaction
of CT, emissivity, viewing geometry, and LAI.

3.5 Conclusions

Canopy temperature is affected by manifold sources of variance which interact with each other.
Multiple sources of variances were reviewed based on extensive field data and by using the
previously suggested multi-view approach in this study. Experimental sources of variance
(genotypes and treatments) were impacted by meteorological conditions in the growing season.
To reveal the relation between CT and other traits, corrections for confounding sources of
variance (e.g. thermal drift, spatial trends, geometric effects) were applied. Temporal trends
were consistently the most important confounding source of variance, followed by spatial
trends. Estimation of spatial trends and their disentanglement from temporal trends remain a
challenge, but a path to improved estimation of the spatial trends by flying multiple times with
different flight paths was proposed. Phenotypic relationships can be masked or result from
artifacts of random but concurrent instantaneous trends. After correction for disturbing trends,
the correlation between phenotypic traits was accentuated. Not applying such corrections
might thus entail misleading conclusions on phenotypic relationships with CT. Plant height
and FCC were shown to be important phenotypic drivers of CT in many situations and were
more correlated with CT than yield, except for well-watered conditions and a diverse set of
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genotypes. However, CT was constantly more correlated with yield than multispectral proxy
measurements of above-ground biomass and LAI. Although other CIs may be better suited
to estimate yield, this highlights the potential of CT to enhance in-season yield estimates in
temperate climates, for example, to avoid losing all the information of an experiment due to
a hail storm close to harvest. Flag leaf rolling had a relatively small but significant impact
on CT. Complex interactions of above-ground biomass, flag leaf rolling as drought symptom,
water use by the canopy, and CT were demonstrated. Treatment effects can be considerable
and modify other phenotypic traits and their interaction with CT. Geometric trends were
shown to have distinct patterns for flights and campaigns, but they explained a relatively low
proportion of total variance. Temporal, spatial, genotypic, treatment related and geometric
effects together explained the largest part of the initial variance, leaving just a small proportion
unexplained. It is hypothesized that many insights on the sources of variance of uncalibrated
airborne thermography that were gained in this study are transferable to other crops and
other climatic conditions (especially hotter). In cooler conditions, the correlation between
CT and yield might be limited due to lower transpirational demands of the plants, leading to
lower genotype specific differences of CT. As the study was conducted with wheat, a row crop
with relatively large inter-row spaces, following the rationales outlined in this study should
also lead to meaningful results in the analysis of other crops with low FCC. At the same
time the rather ephemeral character of CT and its strong interaction with the environment
should always be kept in mind, as they entail a limited transferability of CT information
between different environments. Nevertheless, within the different environments in this study,
multi-view thermography served as a means to foster a comprehensive and empirically backed
understanding of variance components in drone-based CT estimates. This facilitates the
planning, conduct, and interpretation of drone-based CT screenings in variety testing and
breeding.
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Abstract

In variety testing and breeding of wheat (Triticum aestivum L.), it is crucial to know the
timing of phenological stages and the senescence behavior of genotypes to select for locally
adapted varieties. Knowing the timing of phenological stages also allows for a more meaningful
interpretation of measurements such as yield, quality or disease ratings. In the presence of
stresses, only a combined characterization of phenology and environmental conditions will
permit to unravel stress resistance and stress avoidance. Capturing these traits visually in
the field is very time-consuming. Here, a semimobile PhenoCam setup was used to track
phenology and senescence from ear emergence to full maturity. PhenoCams mounted on
field masts took images of wheat plot trials on a daily basis. In a partial least squares
regression (PLSR) analysis, temporal features of multiple vegetation indices were combined
in one model to track phenology and senescence. The method was compared with visual
reference methods and repeated drone flights with a multispectral camera. Achieved Pearson’s
correlation between visual reference methods and PhenoCam predictions was stronger than 0.8,
often stronger than 0.9, for most stages. An economic analysis showed that PhenoCams are
economically interesting, especially to observe remote experimental sites. Thus, PhenoCams
offer a cost-effective replacement of visual ratings of phenology and senescence, in the context
of multi-environment trials.
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4.1 Introduction

In variety testing, breeding, and research of bread wheat genotypes (Triticum aestivum L.),
it is crucial to know the timing of phenological stages and the senescence behavior of the
individual genotypes:

The temporal characterization of plant development allows selecting genotypes better
adapted to local climates and soils. For example, early flowering behavior allows plants to
escape early summer drought and heat stress during the sensitive stage around meiosis (e.g.
Rogger et al., 2021), whereas later flowering behavior allows plants to escape late frosts around
meiosis (Langer et al., 2014). As the climatic conditions in Central Europe are changing, the
use of adapted wheat genotypes can be a strategy to mitigate adverse effects on yield and
reduce production risks (Holzkämper et al., 2015; Rogger et al., 2021). According to Asseng,
Ewert, Rosenzweig, et al. (2013), wheat yield is more prone to uncertainty with increasing
levels of CO2 and temperature. For every 1

�
C increase in temperature above the temperature

optimum, there is an estimated decrease in wheat yield of 6%, and yield becomes more variable
in space and time (Asseng, Ewert, Martre, et al., 2015). Consequently, a diversity of wheat
germplasm must be maintained and developed to provide a diverse set of adaption strategies
to grow wheat in future climate conditions (Kahiluoto et al., 2019).

In field experiments, genotypes with a different phenological development may not be
exposed to the same stresses in the same year. Knowing the timing of phenological stages thus
allows for a more meaningful interpretation of other measurements such as yield. For example,
low radiation at jointing, booting (Jia et al., 2021), young microspore stage (10 - 12 days
before heading, H. Yang et al., 2020), ear emergence (Welbank et al., 1968), anthesis (Ford
and Thorne, 1975), and throughout grain filling (Jia et al., 2021) can significantly reduce yield,
mainly due to a lower number of grains per ear and, therefore, a reduced sink size for carbon
accumulation. Low radiation can also reduce photosynthesis (Mu et al., 2010) and damage the
photosynthetic system (H. Yang et al., 2020). However, this relationship is not straightforward
and a moderate radiation reduction can also increase the yield, depending on the genotpye
(H. Li et al., 2010). The young microspore stage is generally sensitive to stresses (B. Dong
et al., 2017; H. Yang et al., 2020), and heat or drought during anthesis also adversely affect
yield (Farooq et al., 2014; Mahrookashani et al., 2017). So, in years with low radiation, heat,
or drought conditions, some genotypes might have avoided adverse conditions by an earlier or
later phenological development.

With regard to the characterization of disease resistance of different genotypes, specific
weather conditions are conducive to various wheat diseases during specific phenological stages
(e.g. Ferrigo et al., 2016). Only a combined characterization of phenology and environmental
conditions, i.e. a thorough envirotyping, will permit a disentanglement of disease resistance
from disease avoidance due to different phenological development.

As a complement to standardized agronomic measurements, such as yield, baking quality,
overwintering, plant height, thousand kernel weight or disease ratings (WBF, 2021), Vegetation
indices (VI), obtained from spectral measurements, are increasingly being used to estimate
crop productivity. VIs were shown to be best correlated with yield at specific phenological
stages, usually shortly after flowering in the case of wheat. In this context, knowing the
phenology is also critical for comparing VIs (e.g. Longchamps and Philpot, 2023; Naito et al.,
2017; D. Wang et al., 2022). It allows for a temporal normalization of spectral measurements
as the spectral signatures depend not only on genotypes but also on the phenological stages.

Similarly to phenology, the senescence behavior of wheat was shown to be a selection
criterion for higher-yielding genotypes (Hund et al., 2019). Genotypes showing a late onset
of senescence followed by a rapid progression of senescence produced higher grain yields
under water-limited conditions. The so-called stay-green behavior combines a prolonged
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photosynthetic activity with a rapid and efficient translocation of nutrients and sugars from
other plant organs to the grain (Anderegg, Yu, et al., 2020; Cao et al., 2021; J. T. Christopher,
Veyradier, et al., 2014; J. T. Christopher, M. J. Christopher, et al., 2016). In contrast,
maintaining a green canopy late into the growing season, but without a rapid and efficient
translocation of sugars and nutrients, might be associated with lower yield in the absence of
water-limited conditions (Anderegg, Yu, et al., 2020; Kipp et al., 2014).

Knowing the end of senescence is important, as the varieties in breeding and variety testing
trials are not mature and senescent at the same time, but are typically all harvested on
the same date. A genotype that has been senescent for, e.g. ten days before harvest, but
remains in the field in humid conditions might have low grain quality and higher loads of
mycotoxins due to black head molds (Hershman, 2011; Lorenz, 1986; Poursafar et al., 2016).
Also, particularly when humid conditions occur in combination with cooler temperatures, the
breaking of seed dormancy could lead to pre-harvest sprouting (Gao et al., 2013; Zhou et al.,
2017), and consequently to the degradation of starch, lipids, and proteins in grains (Yan et al.,
2023). Genotypes senescent for a longer period before harvest might also be prone to grain
shedding (Aasen, Kirchgessner, et al., 2020).

Finally, it is also important to know the maturity behavior of a genotype to plan optimal
crop rotations (Montazeaud et al., 2016). For example, a wheat genotype with early maturity
might allow a following legume cover crop to develop more biomass (Blackshaw et al., 2010).
In double-crop systems with wheat and soybean as widely used in the U.S., an earlier wheat
harvest can be followed by an earlier soybean sowing, increasing both growth and yield of the
latter (Parvej et al., 2020).

For all these reasons, it is crucial not only to perform an adequate envirotyping but also
to associate information on environmental conditions with the phenological characterization
of genotypes (Costa-Neto et al., 2023; Elmerich et al., 2023) for a comprehensive view of
differences in yield and quality.

Estimating the timing of phenological and senescence stages visually in the field requires
frequent field visits of experts during the period when these stages usually occur. This is very
time-consuming and therefore expensive (Montazeaud et al., 2016; Velumani et al., 2020),
especially as breeding and variety testing trials are usually conducted in several locations to
account for genotype by environment (G⇥E) interactions. These visual assessments also suffer
from observation-bias in case the assessments are done by different experts. To overcome the
drawbacks of visual field ratings, methods are being developed to screen the progression of
plant development in a more automated and objective manner. Adamsen et al. (1999) used
a digital camera to describe wheat senescence 20 years ago. Sadeghi-Tehran et al. (2017)
used digital images generated with a field scanner to detect wheat heading and flowering.
Burkart et al. (2018) extracted simple VI dynamics from single images taken with a drone
100 m above a barley field throughout the growing season and then compared these dynamics
with the timing of the phenological stages. In the study of Anderegg, Yu, et al. (2020),
the senescence dynamics of more than 300 winter wheat varieties were tracked with a radio
spectrometer. The authors state that compared with spectral tracking, visual assessment
remains the gold standard method as it showed a closer correlation with yield than the VIs
derived with the spectral methods, but the latter offer the potential for up-scaling to very
large breeding trials, where visual ratings are no longer feasible. J. T. Christopher, Veyradier,
et al., 2014; J. T. Christopher, M. J. Christopher, et al., 2016 and Montazeaud et al., 2016
used a hand-held Greenseeker to measure the normalized difference vegetation index (NDVI)
and applied dynamic models to describe the stay-green properties of wheat such as delayed
onset of senescence and an accelerated senescence rate. Cao et al. (2021) compared the ability
of more expensive drone-based multispectral cameras with cheaper drone-based RGB cameras
to track senescence and stay-green. They concluded that while multispectral sensors allow
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for a more accurate characterization of senescence parameters (e.g. onset, midpoint and
conclusion of senescence and senescence rate)s, cheaper RGB sensors also allow for tracking
senescence behavior. Whereas these approaches showed promising results, radio spectrometers
and multispectral drone-based sensors are expensive. In addition, for drone-based approaches,
the images have to be processed with specific photogrammetric software, and all approaches
still need frequent field visits.

By monitoring plants with fixed-position cameras that take images at a high frequency
(typically several times a day), the need for frequent visits to the study site can be overcome.
Such fixed-position systems were applied to derive information on dynamic traits of plants
(e.g., timing of phenological stages), yet, most of these PhenoCam studies focused on forests,
ecology, or ecophysiology of larger systems. Typically, these studies are based on camera
platforms, installed above tree canopies (e.g. Hella Ellen Ahrends et al., 2009; T. F. Keenan
et al., 2014; Andrew D. Richardson, Jenkins, et al., 2007; Andrew D. Richardson, Braswell,
et al., 2009), inside canopies (e.g. Kurc and Benton, 2010) or opportunistically profit from
webcams pointing at relevant vegetation (e.g. Graham et al., 2010; Ide and Oguma, 2010).
Andrew D Richardson et al. (2013) and Andrew D. Richardson, Hufkens, et al. (2018) based
their work on the PhenoCam Network (https://phenocam.nau.edu/).

In agriculture, there is plenty of research that describes protocols for obtaining information
on crop state (e.g. Adamsen et al., 1999; Hunt, Doraiswamy, et al., 2013), morphology (e.g.
Hasan et al., 2019) and performance (e.g. T. Jensen et al., 2007; Gracia-Romero et al., 2017;
Yue et al., 2019; H. Wang et al., 2020) from digital images derived from different sources. The
use of fixed-position digital repeat PhenoCams is gaining interest in agriculture too. Naito
et al. (2017) used PhenoCams mounted on masts at 8m above rice fields, which combined
RGB and NDVI images and took images daily from late vegetative stage to dough stage. They
estimated traits related to rice yield such as shoot biomass and grain weight under different
nitrogen treatments. Bhatti et al. (2024) installed an NDVI PhenoCam at 6m above ground
for gap filling of satellite-based NDVI time series. Thereby, they improved the classification of
crops on satellite maps. This is one example in which PhenoCams were used to bridge the
spatial and temporal gap between satellite data and close-up images (Browning et al., 2017;
Andrew D. Richardson, 2019).

A limited number of studies apply PhenoCams to track phenology in agricultural exper-
iments. Most of these phenology studies featured one genotype of one species per image,
and the literature on the application of digital repeat photography in the context of variety
characterization is sparse (Aasen, Kirchgessner, et al., 2020). Taylor and Browning (2021) used
opportunistic images of the PhenoCam network to estimate different phenological stages of
corn, wheat / barley, soybean, and alfalfa. Guo et al. (2022) tracked maize phenology in RGB
images from masts of different heights. Liu et al. (2022) installed RGB timelapse cameras on
sticks 1.5m above the canopy to estimate the effects of cropping systems on crop phenology.
On wheat, Zhu et al. (2016) established a fixed-position digital repeat imaging workflow on
three varieties sown in three environments. In their approach, cameras were installed 5m

above the ground and high-resolution images were analyzed with computer vision algorithms
to detect ears upon emergence. Velumani et al. (2020) installed 47 fixed-position cameras in
four different environments. With each camera only covering a relatively small area of one
single variety, they generated high-resolution images that were analyzed with deep learning
algorithms to detect heading and flowering.

To our knowledge, only Aasen, Kirchgessner, et al. (2020) used PhenoCams to describe
the timing of the phenological stages of nine soybean genotypes where multiple genotypes
appeared on one image. Brocks, Bendig, et al. (2016) and Brocks and Bareth (2018) mounted
a pair of two RGB PhenoCams on a platform, 10m above the ground and applied stereo vision
to create 3-D surface models to estimate above-ground biomass on nine barley cultivars but
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not to track plant development.
Typically, for such PhenoCam examinations, images are taken throughout the growing

season at high temporal resolution, i.e. daily to several times per day (Aasen, Kirchgessner,
et al., 2020). The greenness, or generally the dynamic of the color changes of the plant canopy
is then tracked with the help of VIs (Hufkens, Trevor F. Keenan, et al., 2016; Andrew D.
Richardson, Braswell, et al., 2009), such as the green chromatic coordinate (GCC) and the VI
dynamics are analyzed (e.g. Ide and Oguma, 2010; Migliavacca et al., 2011; Browning et al.,
2017).

The platforms mentioned so far were of rather stationary nature or limited in height to
several meters above ground (⇠ 6m). Field trials, especially in the context of multi-location
trials, are usually conducted on different fields in subsequent seasons to allow for adequate
corp rotation. Therefore, a PhenoCam should be ideally mounted on a mobile mast.

With an increasing distance between the camera and the plot, a better spatial resolution
of the camera is needed. This was limiting in the past, but in recent years, digital imaging
technology has improved a lot, increasing the signal-to-noise ratio and spatial resolution of
cameras. At the same time, solar-powered cameras became available, and the data storage
capacity increased. This development made compact and fully autonomous time lapse cameras
commercially available that can work for weeks up to months without any intervention. Using
such cameras for digital repeat imagery, mounted on mobile yet relatively high masts and
in combination with the application of bespoke image analysis protocols allows to derive
information on plants with a high temporal resolution at relatively low hardware costs and
without the need of frequent field visits. Such a PhenoCam setup might therefore offer the
potential to breeders and examination offices to get continuous information on dynamics of
crop growth and senescence with high temporal resolution and precision (Aasen, Kirchgessner,
et al., 2020).

Previous studies often focused on one VI at a time to track plant development and senescence
(e.g. Anderegg, Yu, et al., 2020; Cao et al., 2021). Now, the progression of phenology and
senescence usually leads to different changes in plants at different stages. For example,
chlorophyll breakdown might be difficult to visually detect at the beginning of senescence,
where 50% of leaf chlorophyll can be lost before visual yellowing and chlorosis (E. A. Chapman
et al., 2021). At the same time chlorophyll breakdown is a very dominant visual feature during
later stages of senescence. It might be well tracked with visible band VIs like GCC but also
multispectral VIs like NDVI, which are both related to chlorophyll absorbance. Anthocyanins,
carotenoids, and sometimes colorless chlorophyll breakdown products (A. Fischer and Feller,
1994; Hörtensteiner, 2006) or changes in water content can lead to a change of the spectral
signature beyond changes in greenness. Therefore, VIs that focus not only on greenness and
chlorophyll, but on changes in other spectral bands in the visible and non-visible spectrum
could confer complementary information on the development of the plant (Anderegg, Yu, et al.,
2020; Cao et al., 2021). As an example of a VI that reflects the dynamics of the breakdown of
two pigment types, the plant senescence reflectance index (PSRI) uses chlorophyll/carotenoid
ratio (Anderegg, Yu, et al., 2020; Merzlyak et al., 1999).

VIs might also be combined. For example, Anderegg, Yu, et al. (2020) used a random
forest regression based on multiple VI-derived senescence dynamics parameters to predict yield
and grain protein content. Guo et al. (2022) integrated textural and spectral dynamics of RGB
images into a single analysis to track the phenology of maize. Longchamps and Philpot (2023)
applied pairs of normalized difference metrics of two VIs, one primarily related to chlorophyll
concentration, one primarily related to water content, to track the phenology of corn and
soybean.

The scope of this research is to establish and evaluate a PhenoCam-based lean phenotyping
workflow to monitor wheat phenology and senescence. Overall, the hypothesis is tested that
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such a workflow can become superior to conventional approaches in variety testing. Therefore,
in detail, (I.) a mobile mast-based PhenoCam setup will be introduced, suitable for high-
throughput field phenotyping in the context of wheat-variety testing. (II.) A method to
pre-process and analyze multiple VI dynamics at once will be suggested, to predict the timing
of different stages of plant development. (III.) The PhenoCam method will be compared with
different types of visual reference field ratings and VIs based on drone images (RGB and
multispectral). (IV.) The cost effectiveness of the different methods will be analyzed in a
simple economic calculation example.

4.2 Materials and Methods

This study was carried out on a wheat variety testing trial over three consecutive seasons (2020-
2021, 2021-2022, 2022-2023). During this period, the fields were observed with PhenoCams
and visual field ratings were collected as reference measurements. As technical benchmark
methods, additional drone flights were conducted. The methods were compared to each other
in terms of performance and cost. A conceptual overview of the study is provided in Fig. 4.1.

4.2.1 Field experiments

The winter wheat variety testing experiment (Fig. 4.2a) was sown at Agroscope agricultural
research station, Changins, Switzerland [46�23055.400N 6

�
14

0
20.4

00E, 425 m.a.s.l., the World
Geodetic System (WGS) 84]. The soil of the experimental site is a shallow Calcaric Cambisol
(Baxter, 2007; Cárcer et al., 2019). The trial consisted of 30 modern registered European
winter wheat varieties and is further referred to as the EuVar trial. The same varieties were
sown in three different treatment regimes for the three seasons. In the “maximal” regimen,
one growth regulator and one fungicide treatment were applied. In the “medium” regimen,
there was only the growth regulator application and not the fungicide application. In the
“minimal” regimen, neither a growth regulator nor a fungicide was applied. Tables S3.1 and
S3.2 give a detailed overview of the different treatments. Fertilizers and herbicides were
applied in three splits and at equal rates to all treatments according to the Proof of Ecological
Performance (PEP) certification guidelines (Swiss Federal Council, 2013), which represent
a minimal standard of good practice for agriculture in Switzerland. Each variety-treatment
combination was repeated on three plots. Within single plots, a wheat genotype was sown
in eight rows, with a spacing of 15 cm between them, resulting in an observable canopy of
about 1.25m x 6.7m each. Within blocks of 3 by 10 plots, the genotypes were randomly
distributed and these blocks were randomly nested within three treatment replicates. Each
replicate contained three blocks, and each block was treated with one of the three treatments.
The 270 plots of the experiment span 27 rows (which followed the tractor track direction) and
10 columns (Fig. S3.1). In total, the experiments were 79m long (in tractor track direction)
and about 55m wide. The first two seasons of this experiment were first described by Treier
et al., 2024, but the main characteristics are also described here for clarity.

4.2.2 PhenoCam setup

Tikee PRO 2 / 2+ (Enlaps SAS, Montbonnot-Saint-Martin, France) solar powered autonomous
time lapse camera systems (Fig. 4.2b) were installed in the field on TekMast VMS-21-M mobile
field masts (Teksam Company NV, Genk, Belgium) at 12m above ground (Fig. 4.2a). The
masts were stabilized with ropes from three sides and the anchor pins were reinforced with
ground screws (Fig. S3.2). Each camera system carried two cameras with CMOS RGB sensors
(4608 x 3456 pixels) which had a fixed horizontal angle of 90� between them. According to
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Figure 4.1: Overview of the workflow of the study: (a) Image data was acquired with PhenoCams
and converted to different image- and data types. Drone images were aligned into orthomosaics.
For PhenoCams and drone data, plot masks were created. (b) From all plots on all images, various
vegetation indices (VIs) were calculated. (c) From VI values, semiparametric and parametric temporal
features were derived. (d) Visual field reference ratings were carried out for three types of ratings
(phenology, flag leaf senescence and plant senescence). VI based temporal features were then used to
predict the timing of visual ratings in partial least squares regression (PLSR) models. These models
also allowed to determine the most relevant temporal features for PLSR prediction. (e) To also compare
the cost structure of the different methods, conceptual economic modeling was carried out. (f) The

methods were compared to each other in terms of performance and cost.
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full width at half maximum specifications, the spectral sensitivity of the sensors was highest
from 430 nm to 500 nm for the blue spectral band (B), from 475 nm to 600 nm for the green
band (G) and from 580 nm to 660 nm for the red band (R). The two cameras of one system
together covered an angle of 220� horizontally and overlapped for central parts of these 220

�

regions (Fig. 4.2d). Two masts with two camera systems each (eight cameras in total) were set
up on the narrow side of the experiment at a distance of 30m (in 2022) to 45m (in 2021 and
2023) from each other, but only four cameras covered different parts of the EuVar experiments.
These four cameras were oriented from north-east to south-west. With a vertical opening angle
of 90�, the cameras were installed obliquely pointing toward the ground, covering at least the
region from the base of the masts to the edge of the fields in the direction of the horizon.

The masts were installed in the field shortly after sowing and uninstalled when the wheat
was mature, one day before harvest or after harvest. The cameras were programmed to take
images every 2 hours in the period from 7:00 to 17:00 every day to cover the period of daylight
from spring onward. Images were saved in DNG raw format on SD (Secure Digital) cards
plugged into the cameras. As the Tikee PRO 2 camera model allowed for a maximal memory
size of 128 GB, the cards had to be replaced once during the duration of the experiment,
for which the masts had to be lowered. This was done about two weeks before the expected
heading date.

4.2.3 Image file format

Images were saved in 16-bit DNG raw format. This format is data-heavy (34 MB/image),
and to test whether the lighter 8-bit JPEG (Joint Photographic Experts Group) format (15.9
MB/image) also allows for similar quality, DNG images were transformed to JPEG format in
Python.

4.2.4 Multispectral measurements

In parallel to mast recordings, the trials were also monitored with an airborne MicaSense
RedEdge-MX Dual multispectral camera (MicaSense Inc., Seattle, Washington, USA). The
camera was carried by a DJI Inspire 2 drone (SZ DJI Technology Co. Ltd., China). The flight
height was 60meter in 2021 and 40meter in 2022 and 2023, resulting in a ground sampling
distance (GSD) of 3.98 cm and 2.71 cm, respectively. The side overlap was set to 80%, the
flight speed was limited to 5m s

�1 and an image was taken at an interval of 2 s in 2021 and
1 s in 2022 and 2023, resulting in a front overlap of approximately 80% for the two flight
configurations. Images of a calibrated MicaSense reflectance panel were taken at the beginning
and the end of each flight. Flights were conducted throughout the growing seasons. From
shortly before heading (BBCH 59; Lancashire et al., 1991) to the end of senescence, the flights
were flown at higher temporal intervals of weekly to several times a week (Fig. 4.3). The
images were saved in a raw TIFF image format.

Agisoft Metashape Professional software (Agisoft LLC, St. Petersburg, Russia) was used
to align images, to generate 10 band orthomosaics (Fig. 4.2d) covering the whole experiment.
Details on the spectral properties of the 10 bands of the sensor are described in Table S3.3. The
reflectance panel used for calibration featured a QR code and Agisoft provides the functionality
to detect this code and conduct a calibration of the targets autonomously.

4.2.5 Mask creation

To define regions of interest (ROI) on images, plot masks (Fig. 4.2c) were created for each
plot appearing on each camera in each year. First, orthogonal masks were created based on
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Figure 4.2: Overview on the PhenoCam setup and data. Masts (a) were installed in the field carrying
camera systems (b) to create at least five images a day (e.g. c & e - g). (d) Two masts with two
camera systems pointing toward the experiment of interest were installed at the narrow side of the
experiment, partially covering the same plots from different angles as indicated by the opaque circle
segments. In the back of (d), an orthomosaic is shown as it was created for every drone flight. Plot
masks were created and adjusted for perspective view for PhenoCam images (c) or adjusted to field
plots for drone-based orthomosaics (d). The colors of the masks in (c) and (d) indicate weather a plot

was part of the experiment (blue) or a border plot to separate different treatments (red).

a CSV file, specifying row and column position of the plot and corresponding meta infor-
mation (e.g. genotypes, treatments, etc.) of the plots. This was achieved with a Python
3.8 script (van Rossum, Guido and Drake, Fred L., 2009), using the “ogr” module of the
“GDAL” library (GDAL/OGR Contributors, 2024) and defining approximate plot dimensions
in the image coordinate system (that is, pixel coordinates) directly in the script. Then a
homography transform was applied to the shape coordinates to achieve a perspective view.
The homography matrix was estimated based on four corresponding points between orthog-
onal masks and perspective images, using a Python script provided by Socretquuliqaa Lee
(https://gist.github.com/Socret360/bcefb0f95cfc20800ea3409f40b8bb58). The trans-
formed coordinates were calculated as the dot product of the orthogonal shape coordinates
with the homography matrix. The masks were then manually adjusted in QGIS (QGIS
Development Team, 2022) to match a base image. To account for border effects in the field and
for inaccuracies of referencing and superimposition of different images, buffers were applied
to masks. As a consequence of perspective, the masks had very different sizes, and shape
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Figure 4.3: Overview on measurements and meteorological conditions in the three experimental
seasons. (a) - (c) show the general weather conditions during the growing seasons 2021 to 2023
from sowing until after harvest. Red shows the mean air temperature, and the shades indicate daily
temperature minima and maxima. The vertical purple lines indicate the dates of flights, the green
and orange lines the dates of phenology and senescence ratings respectively. Cumulative precipitation
is shown as a rising blue line. During the period shaded in red, heading was observed in the field.

Harvest dates are marked by black lines.
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buffers between masks were adjusted based on individual visual judgment, resulting in shapes
corresponding to approximately 50% of the surface of the plots. The masts shook slightly
in the wind, resulting in differences in the position and orientation of the cameras. Thus,
the masks needed adjustment over time. To that end, well-illuminated reference images were
selected throughout the growing season, which were taken between 10:30 and 12:30. The masks
were then manually adjusted for these reference images in QGIS based on the masks from the
base image, saved to GeoJSON format again, and used as reference masks for the respective
reference image and all subsequent images until a new reference image was available.

Georeferenced masks for drone data analysis (Fig. 4.2d) were created similarly as masks
for PhenoCams, but in the Swiss CH1903+ / LV95 - EPSG:2056 coordinate reference system
(CRS) and without homography transform. Border buffers of 25 cm and up to 1m were left
on plot width and length, respectively.

4.2.6 Index calculation and index value extraction

A large number of color VIs were proposed for different applications in agronomy and were
compiled and compared in various publications (e.g. Anderegg, Yu, et al., 2020; Anderegg,
Tschurr, et al., 2023; Cao et al., 2021; Hasan et al., 2019; Hunt, Doraiswamy, et al., 2013;
W. Li et al., 2023; D. Wang et al., 2022). In this study, a multitude of described VIs were
calculated from color bands (Fig. 4.1b) in the visual RGB color space (Table 4.2) and for
multispectral drone images also from the infrared range (Table 4.3).

Each pixel within each plot featured a value for each VI. To aggregate these values to
single values per plot and VI, zonal statistics were applied by calculating the mean, the 50th

percentile (or median), the 90th, the 98th and the 99th percentile of the pixel values within
the individual masks. Higher percentiles were included as for most VIs, higher values are
associated with plants and choosing a high percentile can help to avoid exposed soil within
plots that affects VI values (Deery, Rebetzke, Jimenez-Berni, James, et al., 2016). The 98th

and the 99th percentile are close to maximal values (i.e. the 100th percentile), but not as
sensitive to artifacts and disturbances.

4.2.7 Extraction of temporal features

The values of these VIs often follow characteristic dynamics throughout the growing season
(e.g. Figs. 4.2e - 4.2g). For very early stages such as emergence (BBCH 09; Lancashire et al.,
1991) or the three-leaf stage (BBCH 13), no corresponding temporal behavior of VIs, e.g. a
sudden and pronounced increase in VI values, could be observed based on visual inspection.
Therefore, the analysis conducted in this study focused on the stages from heading (BBCH 59)
to senescence. Heading occurs typically after mid-May or around 210 days after sowing (DAS)
and to reduce the amount of data to be handled, as well as to simplify the automatic feature
extraction, the data was limited to the relevant period. Thus, to extract semiparametric
(Fig. 4.1c) temporal features from VIs, only VI values from one month before expected heading,
i.e. 180 DAS, up to one or two days before harvest were considered. To derive smooth
VI dynamics, either the rolling mean, a Savitzky-Golay filter, spline smoothing, and locally
estimated scatter plot smoothing (loess) were applied to the data (e.g. Bhatti et al., 2024; Guo
et al., 2022; Hufkens, Melaas, et al., 2019; Klosterman et al., 2014). The maximal and minimal
values of the smoothed dynamics from the four different smoothing types were defined as 100%
and 0%, respectively, and two temporal features were extracted as the time in DAS when the
value reached 10% and 2%, respectively, similar to J. T. Christopher, Veyradier, et al. (2014),
where 10% was defined as conclusion of senescence. An overview of the temporal feature types
is presented in Table 4.1. For VIs with increasing values toward maturity and senescence,
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the VI values were reflected over the DAS axis (i.e. the x-axis) so that the maximum always
appeared earlier than the minimum.

Table 4.1: Overview and description of temporal features. The temporal features were calculated for
all VIs and data aggregation methods (i.e. mean and different percentiles).

Temporal feature Description Feature class

D1LocMax_1 1st derivative of Gompertz, 1st local maximum

Gompertz derivative

D2LocMax_1 2nd derivative of Gompertz, 1st local maximum
D2LocMin_1 2nd derivative of Gompertz, 1st local minimum
D3LocMax_1 3rd derivative of Gompertz, 1st local maximum
D3LocMax_2 3rd derivative of Gompertz, 2nd local maximum
D3LocMin_1 3rd derivative of Gompertz, 1st local minimum
D4LocMax_1 4th derivative of Gompertz, 1st local maximum
D4LocMin_1 4th derivative of Gompertz, 1st local minimum
D4LocMax_2 4th derivative of Gompertz, 2nd local maximum
D4LocMin_2 4th derivative of Gompertz, 2nd local minimum

LoessMax Loess⇤ smoothed curve at maximum
Loess smoothing with
threshold

LoessMin Loess⇤ smoothed curve at minimum
Loess0.02 Loess⇤ smoothed curve at 2% of max-min range
Loess0.1 Loess⇤ smoothed curve at 10% of max-min range

Rolling0.02 Rolling mean at 2% of max-min range Rolling mean smoothing
with thresholdRolling0.1 Rolling mean at 10% of max-min range

Sav.Gol0.02 Savitzky–Golay smoothed curve at 2% of max-min range Savitzky–Golay smoothing
with thresholdSav.Gol0.1 Savitzky–Golay smoothed curve at 10% of max-min range

Spline0.02 Smoothing spline at 2% of max-min range
Spline smoothing with
threshold

Spline0.1 Smoothing spline at 10% of max-min range
SplineMax Smoothing spline at maximum
SplineMin Smoothing spline at minimum
⇤locally estimated scatter plot smoothing (Loess)

These semiparametric approaches allow capturing very dynamic seasons, but do not imply
growth dynamics and are more prone to overfitting if the measurement noise is very high
(Roth, Rodríguez-Álvarez, et al., 2021). Thus, in addition, parametric temporal features were
derived from Gompertz models (Fig. 4.1c, e.g. Anderegg, Yu, et al., 2020; E. A. Chapman
et al., 2021). First, for each measurement, the accumulated thermal time from sowing was
calculated in growing degree days (GDD) as

Ttherm,h =

nX

h=1

(
Tmax,h+Tmin,h

2·24 � Tbase
24 , if Tmin,h > Tbase,

0, if Tmin,h 6 Tbase,
(4.1)

where Tmax,h and Tmin,h are the maximum and minimum temperatures of the nth hour h after
sowing. Tbase was assumed to be 0

�
C (G. McMaster, 1997). 24 hourly means sum up to the

GDD of one day.
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Table 4.3: Multispectral vegetation indices. The numbers behind the band names in the formulas
indicated the wavelengths of the spectral bands used.

Index Full name Formula Reference

ARI1 Anthocyanin reflectance index 1

Green560
� 1

RedEdge705
(4.29) Gitelson, Merzlyak, and Chivkunova (2001)

ARI2 Anthocyanin reflectance index NIR842 ·
⇣

1

Green560
� 1

RedEdge705

⌘
(4.30) Gitelson, Merzlyak, and Chivkunova (2001)

DVI Difference vegetation index NIR842�Red668 (4.31) Tucker (1979)

EVI Enhanced vegetation index 2.5· NIR842�Red650

NIR842+6·Red650�7.5·Blue444+1
(4.32) Huete et al. (2002)

NDRE Normalized difference red edge index NIR842�RedEdge717

NIR842+RedEdge717
(4.33)

Gitelson and Merzlyak (1994);
Barnes et al. (2000);
Tang et al. (2022)

NDVI Normalized difference vegetation index
NIR842�Red668

NIR842+Red668
(4.34) Rouse et al. (1974)

NDVI717 Normalized difference vegetation index
RedEdge717�Red668

RedEdge717+Red668
(4.35) Rouse et al. (1974)

PSRI705 Plant senescence reflectance index
Red650�Green531

RedEdge705
(4.36) Merzlyak et al. (1999)

PSRI717 Plant senescence reflectance index
Red668�Green560

RedEdge717
(4.37) Merzlyak et al. (1999)

PSRI740 Plant senescence reflectance index
Red650�Green531

RedEdge740
(4.38) Merzlyak et al. (1999)

SAVI Soil adjusted vegetation index 1.5· NIR842�Red650

NIR842+Red650+0.5
(4.39) Huete (1988)

SR Simple ratio
NIR842

Red668
(4.40) Birth and McVey (1968);

Jordan (1969)

Then, data was selected for the relevant growth period by just considering data from
180 DAS to harvest. VI values were reflected over the DAS axis again where necessary, but
this time ensuring that the minimum appeared earlier than the maximum. The data was
then smoothened with a loess function to extract the minimum (LoessMin) and maximum
(LoessMax) of the the smoothened VI data. The original VI values that appeared before
LoessMin were set to the LoessMin value, and the values appearing after LoessMax were set
to the LoessMax value. These restricted VI values should ensure that the model captures the
main slope and is not dampened by high VI values before LoessMin or a possible decrease in
VI after LoessMax. In addition, the data was shifted in such a way that LoessMin was 0 and
the restricted VI data started to increase around 0 GDD. This translation of the restricted VI
data ensured that the value range was suitable for fitting a Gompertz model,

I = ae
�be

�ct
, (4.41)

with the package “nls.multstart” (Padfield and Matheso, 2020) in R (R Development Core
Team, 2022). In the model, I represents the VI value at time t. a is the asymptote and
was restricted to values from 0.9 to 1.1 · LoessMax. b is a location parameter that mainly
affects the starting point of the curve. Parameter c impacts the slope and the starting point.
The Gompertz parametrization allowed for a monotonously increasing dynamic, from which
temporal features were derived by calculating the first four derivatives of the fitted Gompertz
model. Local minima and maxima of the derivatives were determined and the timing of the
local minima and the maxima as well as of LoessMin and LoessMax were extracted. The
timing was then transformed from GDD back to DAS to use the same temporal unit as for
the semiparametric method. These procedures were performed individually for the mean and
the different percentiles used for aggregation of the VI values for each VI in each plot.
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This procedure was also adopted for drone-based VI. As for the visual ratings, VI values
were smoothed with a penalized smoothing spline in the “pspline” package, with degrees of
freedom set to two thirds of the number of measurements, and interpolated for single days.
From daily VI values, semiparametric and parametric temporal features were then extracted
as for PhenoCam data, just without the different smoothing approaches.

4.2.8 In-field calibration panels

Color VIs can be based on raw digital numbers (DN) of images, or reflectance values can be
derived from DNs with calibration panels. To this end, five calibration panels were installed in
the field (Fig. 4.2c) throughout the growing season (just from 2021-05-26 for the first year).
Reflectance values of the individual panels were measured in the field on 2023-06-28 (black:
5.2%, dark gray: 10.3%, gray: 16%, light gray: 24%, white: 50.3%) with a field portable
spectroradiometer PSR + 3500 (Spectral Evolution Inc., Haverhill, Massachusetts, USA). The
wheat and weeds around the panels were removed periodically to guarantee a direct line of
sight from the PhenoCams onto the panels. If panels were heavily stained, e.g. after a heavy
rainfall, they were cleaned. To avoid sustained staining, the panels were mounted on a wooden
structure about 15 cm above the ground from season 2022 onward.

The reflectance panels needed to be detected in the single images. To avoid another manual
adjustment as for the plot masks, a semi-autonomous pipeline was developed in Python 3.8
(van Rossum, Guido and Drake, Fred L., 2009). The coordinates of an approximate region
where the panels were to be found within the images were provided with the images in a CSV
file. Within these regions, the five panels were detected by searching for areas of homogeneous
textures. To that end, the variance of the Laplacian transform was calculated and an Otsu
threshold was applied using the packages “OpenCV” (Bradski and Kaehler, 2000) and “NumPy”
(Harris et al., 2020). From the resulting filtered variance images, connected components that
fell within a specific pixel size range were selected. The minimum and maximum pixel size
was determined for each camera-year combination individually with respect to the size of
panels in the images. If five connected components were found, they were ordered by intensity
and correlated with the reflectance values of the panels. If the coefficient of determination
r2 exceeded 0.88, the calibration was considered valid and the DN values were transformed
into reflectance values using the empirical line method. 0.88 was selected as threshold, as it
allowed a very strong correlation (r > 0.938) between DN and reflectance without being too
restrictive and disregarding too many values, thereby decreasing the temporal resolution of
reflectance-based VI values too much. In total, 14051 images were taken and for 3929 images,
calibration data was directly available. For the 3929 images of the second camera of the same
camera system, the calibration equation was taken from the first image. For 2592 images
where no calibration was available from the same camera system, the calibration equation of
an image of another camera was used if taken within the same period (± 15min), and with
the same ISO setting and exposure time. For 3601 images, no suitable calibration information
was found and no reflectance was calculated for those cases, reducing the temporal resolution
of reflectance-based VI values to 81% compared to DN-based VI values.

4.2.9 Visual field reference ratings

Three types of in-field reference ratings were conducted in parallel to PhenoCam observations
and flights (Fig. 4.1d), and recorded using the Field Book app (Rife and Poland, 2014):
Phenology (“BBCH”), flag leaf senescence (“SenLeaf”) and plant senescence (“SenPlant”).

Phenology was rated according to the BBCH scale (Lancashire et al., 1991). The rating
interval was two to four days during the heading period and decreased to approximately weekly
toward complete maturity.
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The senescence rating of the flag leaf was carried out according to the scale of Pask
et al. (2012), where 0% corresponds to a fully green leaf and 100% to a fully senescent leaf
(Fig. 4.4a).

The plant senescence rating (Fig. 4.4b) was inspired by the plot senescence of Anderegg,
Yu, et al. (2020) and the peduncle and ear senescence rating of E. A. Chapman et al. (2021).
The plot rows were opened manually and the senescence of the whole plant was rated from 0%

(fully green plant) to 100% (completely senescent plant). Field ratings were performed mostly
in 5% steps except for very late ratings from 95% onward. The last 5% were rated in smaller
steps and mainly related to changes around the ears bases and peduncles. 100% ratings was
only achieved when the ears base as well as the peduncles were completely senescent.

The single rating events for phenology and both types of senescence are visualized in Fig. 4.3.
All visual ratings were in DAS. To allow for daily resolution, the values were smoothed with
a penalized smoothing spline in the R package “pspline” (Ripley and Ramsey, 2024), with
degrees of freedom set to two thirds of the number of measurements, and interpolated for
single days. The rating of a specific reference level was given the DAS value of the day on
which the interpolated value exceeded a specific reference level for the first time.

(a)

(b)

Figure 4.4: Senescence rating scales. (a) Flag leaf senescence, according to Joshi et al. (2007) and
Pask et al. (2012). (b) Plant senescence scale. The percentage depicts senescent proportion of all pixels.

Figure (a) was inspired by an image of the John Innes Centre and the University of Nottingham.
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4.2.10 Partial least squares regression (PLSR) models to predict phenology
and senescence from temporal features

As the temporal features used as predictors were expected to be highly correlated, PLSR was
preferred over other approaches such as random forest regression. Random forests are prone
to overfitting when using highly correlated data (e.g. Gregorutti et al., 2016) and PLSR was
shown to produce more generalizable predictions than random forests (e.g. Lee et al., 2017).
Recursive feature elimination (RFE) can be applied to increase generalizability and the risk of
overfitting (Gregorutti et al., 2016; Darst et al., 2018), however, PLSR does not need a lot of
computational capacity, whereas repeated RFE can be very computationally intensive.

Feature selection

The temporal features extracted previously for each plot were used as input data in a PLSR
analysis (Fig. 4.1d) with the R package “PLS” (Mevik and Wehrens, 2007). Because many
VIs were tested based on multiple aggregation percentiles and the mean aggregation, the
number of features as predictor variables in PLSR initially exceeded the number of observations.
Although PLSR analysis is suitable for this situation (Carrascal et al., 2009), the number of
temporal features was reduced based on the magnitudes of the relative PLSR coefficients �rel,i,
which were calculated for each temporal feature type as:

�rel,i =
|�i|P
n

i=1|�i|
, (4.42)

where �i denotes the PLSR coefficient of the i
th of n temporal features. PLSR started with

the full set of temporal features available for all plots. The features with the lowest �rel,i

were skipped in a backward feature elimination until the most predictive features were left in
the model similar to methods summarized in Mehmood et al., 2012. At the beginning, 200
temporal features were dismissed at each iteration. With the decrease in features, the number
of dismissed features continuously decreased. When e.g. 345 features were left, 5 temporal
features were dismissed at each iteration, just 2 features when 280 features were left and just
1 feature for the last iterations from 100 features down to 15 features. The PLSR used 10
components and 10 segments for cross-validation. With each model, the different levels of the
reference rating types were predicted using the full set of observations and were correlated
with the reference rating. With this procedure, it was determined that the correlations were
relatively stable above 200 temporal features but started to weaken below, and the number of
temporal features was set to 200 for the next step.

100 times repeated cross validation

For each level of each type of reference measurement (BBCH, SenLeaf, SenPlant), in the
previous step, a set of 200 temporal features was selected. This reduction in features allowed
for a computationally efficient cross-validation. For each reference level, the data was now
randomly split by two split approaches. For the first approach, the PLSR models were
trained with 75% of randomly chosen observations and tested with the remaining 25% of
the observations. For the second approach, PLSR models were trained with the observations
of 19 genotypes and tested on the observations of 11 genotypes. The maximum number of
components of the PLSR model was set at 15, and the optimal number of components in the
range of 1 to 15 was selected for each model individually with the “selectNcom” function. As
model accuracy metric, Pearson’s correlation between predictions and reference measurements
was used. This procedure was repeated 100 times for each reference level, with the split into
training and validation data repeated each time. The correlation coefficients and standard
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deviation of the coefficients within 100 repetitions were used to characterize the quality of the
PLSR models.

Importance estimation of VIs and feature types

Temporal features were extracted on the basis of multiple semiparametric and parametric
methods to capture dynamics, further named feature types. In addition, temporal features were
based on various zonal statistics (mean and multiple percentiles) for pixel-value aggregation,
and on various VIs. To estimate the importance of the different feature types, aggregation
methods and VIs, the sums of magnitudes of the relative PLSR coefficients were calculated
within three reference classes. The classes were generically defined for the three reference
types as early, when reference levels, i.e. values that the different reference types could
assume, ranged from 10 to 25, intermediate for values 40 to 70, and late for values 85 to
100. To achieve robust importance estimates, coefficients were summed up for the different
reference values of the reference classes for all iterations of cross-validation and the different
groups of comparison. Comparison groups were either feature types, aggregation methods or
VIs. �rel,sum,ref.class,group was the sum of the 100 relative PLSR coefficients �rel,i of the 100
repetitions k of cross-validation (only 75%/25% train/test data split) for all reference levels j
within one reference class, and one comparison group,

�rel,sum,ref.class,group =

nX

j=1

100X

k=1

200X

i=1

�rel,i,j;k, (4.43)

where �rel,i,j;k was the relative PLSR coefficient of the i th out of 200 temporal features, of the
k th out of 100 repetitions of the j th reference level within a reference class. Finally, coefficient
sums were normalized to the range from 0 to 1.

4.2.11 Heritability of predicted values

In addition to Pearson’s correlation, heritability of PLSR-predicted values was calculated as
quality criterion, using the R package “SpATS” (Rodríguez-Álvarez et al., 2018). This package
allows to provide information on the location of measurements within the experiments as
row and column coordinates to a mixed model , which are then used for a spatial correction.
After spatial correction, the generalized heritability according to Oakey et al. (2006) could be
calculated.

In generalized heritability, the effective dimensions EDg are divided by the difference
between the number of genotypes mg and the number of zero eigenvalues ⇣g:

H
2
genral. =

EDg

(mg � ⇣g)
, (4.44)

with

EDg = (mg � 1)
�
2
g

(�2g +
�2
e
r
)

. (4.45)

Heritability was calculated for every tenth iteration in the previous cross-validation for
each year individually.
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Table 4.4: Equations used for cost estimations. The cost of the methods was calculated by summing
the equations in this table as indicated with ⇥ in the “Method” columns. The terms used in the

equations are described in Table 4.5.

Description Equation

Method

Visual
Rating

Drone
RGB

Drone
Multi-

spectral

Pheno-
Cam

Staff cost round trips nmeasurement · Costrating,staff · (2 ⇤ tdrive) · ndays,rating ⇥ - - -

Vehicle cost round trips nmeasurement · Cost
-dist · dist-t · (2 ⇤ (tdrive � 0.4)) · ndays,rating ⇥ - - -

Staff cost rating nmeasurement · Costrating,staff · trating ⇥ - - -

Cost drone and sensor Costdrone,sensor - ⇥ - -

Initial processing cost nseasons · (Cost
-t
tech,staff

+ Cost
-t
comput.) · tproc.init. - ⇥ ⇥ ⇥

Staff cost round trips nmeasurement · Cost
-t
tech,staff

· (2 ⇤ tdrive) - ⇥ ⇥ -

Vehicle cost round trips nmeasurement · Cost
-dist · (2 ⇤ (tdrive � 0.4)) · dist-t - ⇥ ⇥ -

Staff cost drone piloting nmeasurement · Cost
-t
tech,staff

· tflight - ⇥ ⇥ -

Storage cost images nmeasurement · Cost
-GB
storage · Sizedata,images - ⇥ ⇥ -

Storage cost photogrammetry nmeasurement · Cost
-GB
storage · Sizedata,photogrammetry - ⇥ ⇥ -

Cost image handling nmeasurement · (Cost
-t
tech,staff

+ Cost
-t
comput.) · tproc. - ⇥ ⇥ -

Computation cost processing nmeasurement · Cost
-t
comput. · tcomput. - ⇥ ⇥ -

Cost drone Costdrone - - ⇥ -

Cost drone sensor Costsesnor - - ⇥ -

Cost field masts Costmasts - - - ⇥

Cost time lapse cameras Costcameras - - - ⇥

Initial processing cost nseasons · (Cost
-t
tech,staff

+ Cost
-t
comput.) · tproc.Init - - - ⇥

Staff cost round trips nseasons · nvisits,PhenoCam · npersons · Cost
-t
tech,staff

· (2 ⇤ tdrive) - - - ⇥

Staff cost vehicle nseasons · nvisits,PhenoCam · Cost
-dist · (2 ⇤ (tdrive � 0.4)) · dist-t - - - ⇥

Staff cost setup & dismounting nseasons · nvisits,PhenoCam · Cost
-t
tech,staff

· tsetup,dismounting · nperson - - - ⇥

Storage cost images nmeasurement · ncameras · 35images · Cost
-GB
storage · Sizedata - - - ⇥

Cost image handling nmeasurement ·ncameras ·35images ·(Cost
-t
tech,staff

+Cost
-t
comput.)·tproc.,image - - - ⇥

Computation cost processing nmeasurement · ncameras · 35images · Cost
-t
comput. · tcomput. - - - ⇥

4.2.12 Method cost comparison

For a schematic comparison of the economic cost of the different methods (Fig. 4.1e), different
cost components were estimated based on personal experience. The cost components were, e.g.,
material costs, staff cost, operation / processing cost, transportation cost, but also continuous
data storage costs (e.g. Q. Huang et al., 2024; Marinello, 2023). A detailed listing of the
components is shown in Table 4.4. The values of the components are dependent on the
number of measurements nmeasurement and the costs were estimated for the four methods
“Visual Rating”, “Drone RGB”, “Drone Multispectral” and “PhenoCam”. The total costs for
one method correspond to the sum of the different components applicable for the different
methods, as indicated by ⇥ in the “Methods” columns in Table 4.4. 15 measurements were
assumed to correspond to one season. Some costs were associated with field visits, which were
necessary for every measurement of “Visual Rating”, “Drone RGB”, “Drone Multispectral”,
but just twice for the “PhenoCam” method for setup and dismounting. 35 PhenoCam images
were taken each week. Once a week was about the average measurement frequency of visual
ratings and drone flights, although this frequency can vary from three times a week to biweekly,
depending on the phenological stage. Thus, 35 PhenoCam images were assumed to correspond
to one measurement of the other methods. For each measurement or field visit, it was assumed
that two times 0.4 h would be needed to load and unload the equipment to/from the car for
each round trip. Otherwise, a travel speed of 80 kmh

�1 was assumed, which was relevant
for the calculation of the travel costs, depending on the distance covered. Calculations were
conducted for two scenarios with 700 plots and 1400 plots, respectively, and three different
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Table 4.5: Explanation of terms in cost estimation equations of Table 4.4. The terms are grouped by
methods. Terms in method “Universal” are used in two or more methods. Where applicable, values
used in the cost estimation are provided for two scenarios (700 plots & 1’400 plots) and different
methods. Values are in Swiss francs (CHF). In December 2024, one CHF corresponded to 1.06 € and

1.11 $ (www.xe.com).

Method Term Description
Value (if fixed)

700 plots 1400 plots

Universal

nmeasurements Number of measurements. - -

nseasons Number of seasons, corresponds to
nmeasurements divided by 15 and rounded
down.

- -

dist
-t Distance covered within one hour of drive. 80 kmh

�1
80 kmh

�1

tdrive Time to get to the experimental site (one-way).
For the time of round trips, this time is multi-
plied by two.

- -

(tdrive � 0.4) The negative offset of 0.4 h penalizes the dis-
tance covered during the first hour of driving
for loading and unloading the equipment.

- -

Cost
-dist Cost per km driven. 0.6 CHF km

�1 0.6 CHF km
�1

Cost
-t
tech,staff

Cost of one technical staff for one hour. 78 CHFh
�1 78 CHFh

�1

Cost
-t
comput. Cost of one hour computing. 3 CHFh

�1 3 CHFh
�1

Cost
-GB
storage Cost to store one GB for 10 years. 2.76 CHFGB

�1 2.76 CHFGB
�1

Sizedata,images Size of image data per measurement generated
with drones or of single images for the Pheno-
Cams.

5 GB⇤/17 GB⇤⇤/0.016 GB⇤⇤⇤ 10 GB⇤/34 GB⇤⇤/0.016 GB⇤⇤⇤

Sizedata,photogrammetry Just applies to drone flights: Size of photogram-
metric projects of the drone measurements per
measurement.

11 GB⇤/18 GB⇤⇤ 22 GB⇤/36 GB⇤⇤

tproc.init. Time for initial processing, e.g. creating georef-
erenced image masks, setting up the processing
pipeline etc.

7 h
⇤/8 h⇤⇤/16 h⇤⇤⇤ 14 h

⇤/16 h⇤⇤/32 h⇤⇤⇤

tproc. Processing time after initial processing. 1 h
⇤/3 h⇤⇤/1 s⇤⇤⇤ 2 h

⇤/6 h⇤⇤/1 s⇤⇤⇤

tcomput. Computation time of data per measurement
(drones) or per image (PhenoCam).

2 h
⇤/5 h⇤⇤/1min

⇤⇤⇤
4 h

⇤/10 h⇤⇤/1min
⇤⇤⇤

tflight Time needed to cover 700 and 1’400 plots re-
spectively with droneflights.

2 h 4 h

Costrating

ndays,rating Number of days to complete the rating for
one measurement, but not necessarily full days.
Determines the number of round trips per mea-
surement.

1 2

Costrating,staff Cost of one rating staff for one hour. 61 CHFh
�1 61 CHFh

�1

trating Time needed for one measurement of all plots. 5 h 10 h

CostRGB,drone

Costdrone,sensor Cost of drone with integrated camera system,
e.g. DJI Mavic 3 Pro (SZ DJI Technology Co.
Ltd., China).

1’700 CHF 1’700 CHF

CostMultispec.,drone

Costdrone Cost of drone that can carry a Micasense
RedEdge-MX DUAL sensor, e.g. DJI Ma-
trice 350 RTK (SZ DJI Technology Co. Ltd.,
China).

9’300 CHF 9’300 CHF

Costsesnor Cost of Micasense RedEdge-MX DUAL sensor
(MicaSense Inc., Seattle, Washington, USA).

9’500 CHF 9’500 CHF

CostPhenoCam

ndays,setup,dismounting Number of days to either set up or dismounting
the PhenoCams.

1 2

nvisits,PhenoCam Number of times to visit the experimental site
for the setup and for the dismounting of the
PhenoCams.

2 2

ncameras Number of cameras (two cameras per system,
four per mast in our setup).

8 16

npersons Two people are needed for the setup and dis-
mounting of the PhenoCams.

2 2

Costmasts Cost of two or four Teksam field masts. 24’000 CHF 48’000 CHF

Costcameras Cost of 4 or 8 autonomous time lapse camera
systems (8 and 16 cameras in total), e.g. En-
laps Tikee 3 Pro+. (Enlaps SAS, Montbonnot-
Saint-Martin, France)

6’800 CHF 13’600 CHF

35images 35 images of the PhenoCam correspond to one
measurement of the other methods.

- -

tproc.,image Time needed to handle and process one image. 1 s 1 s

tsetup,dismounting Time needed to setup or dismounting the cam-
eras.

6 h 12 h

⇤RGB drone, ⇤⇤Multipsectral drone, ⇤⇤⇤PhenoCam
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distances of the experiments of the research station, which changed the equipment needed and
the time necessary for traveling and rating or flying. The terms used and assumed values for
the two plot number scenarios are shown in Table 4.5. Calculations were performed for 1 to
90 measurements or 0 to 6 seasons. The storage cost values were estimated to be 0.023 CHF
GB/month based on the official price listing of standard google cloud storage on Swiss-based
servers (Google, 2024), assuming a storage duration of 10 years.

4.2.13 Weather data recording

The air temperature and daily precipitation were obtained from a Meteoswiss (Federal Office
of Meteorology and Climatology, https://www.meteoswiss.admin.ch) weather station which
was located about 800m from the experimental site at Changins [46�2403.700N 6

�
13

0
39.6

00E,
458 m.a.s.l., WGS 84].

4.3 Results

4.3.1 Mast setup

PhenoCams were installed at 12m above the ground, this was a compromise since the first
tests started at 20m, but after observing the behavior of the masts under windy conditions,
the masts were lowered to 12m, which allowed a stable and continuous operation throughout
the season. The ropes loosened over time due to constant back and forth in the wind and had
to be tightened manually from time to time.

The footprint of the mast ropes occupied a circular area with a diameter of 20m. This was
a significant obstacle to agricultural treatment operations in the field. In addition, experiments
could not be carried out in the area between the anchorages of the stabilizing ropes.

The calibration panels needed to be cleaned regularly, as they were visited by animals
(Fig. S3.3), which left footprints, or were polluted by splashing water during rains. The field
fauna also nibbled on the ropes of the masts. Although the wheat and weeds around the
calibration panels were generously removed, panels were shaded by the plants, especially in
spring in the morning or evening.

To protect the camera systems from birds, spikes had to be installed to prevent them from
using the cameras as a vantage point for hunting mice. Without spikes, bird droppings would
have covered the solar panels and the camera lens itself.

4.3.2 Mask creation

As a result of masts slightly shaking in the wind throughout the season, of viewing geometry
changes due to tightening the ropes of the mast and of the wheat growing, the plot masks
needed to be adjusted for images throughout the season. This step was very time-consuming,
as it had to be done for four cameras in each year. An approach using scale-invariant feature
transformation (SIFT; Lowe, 2004) in OpenCV (Bradski and Kaehler, 2000) failed due to
incremental error propagation, resulting in inaccurate plot shapes after about ten images.

4.3.3 Index dynamics from different sensors and image formats

27 RGB VIs were calculated from PhenoCam and drone-based data. For drone-based data,
12 additional multispectral VIs were calculated. Example data of two RGB VIs, VARI
and ExGR Zhang, is shown in Fig. 4.5, based on JPEG DNs and JPEG-based reflectance.
For PhenoCam data, the VI based on JPEG DNs (e.g. Figs. 4.5a & 4.5b) showed a higher
variability compared to reflectance-based VIs and the latter appeared smoothed, with this effect
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being stronger for ExGR Zhang than for VARI. However, in general, the temporal dynamics
appeared very similar between JPEG DN and JPEG reflectance data. The same VIs based
on DNG raw DNs instead of JPEG DNs could look different with more variability and less
pronounced temporal dynamics (Fig. S3.4).

VIs based on drone data appeared to be smoother than the ones derived from JPEG
PhenoCam data, but to have similar temporal dynamics (e.g. Figs. 4.5c & 4.5d).

However, the patterns described before were not found for all VIs. For example, IKAW VI
dynamics were more similar between PhenoCam DNG raw data and drone data than between
PhenoCam JPEG and drone data. In addition, IKAW showed less pronounced temporal
dynamics, especially for JPEG-based VIs (Fig. S3.5).

The maintenance of PhenoCams resulted in small changes in PhenoCam orientation.
Consequently, the VI time series of plots at image borders could be interrupted at maintenance.
(e.g. Plot_102 Fig. 4.5).

4.3.4 Temporal feature count overview

From the VI data, 758 to 2217 different temporal features could be derived depending on the
different sensors, image formats and data treatments (Table 4.6). Most temporal features
could be found for the of observations of the “Drone Multispectral” data, followed by “Drone
RGB”, which represents a subset of the “Drone Multispectral” set. This was followed by the
PhenoCam-based JPEG and finally the DNG methods. For the latter two, more temporal
features were found for the Reflectance option than for the DN option.

Only features that were available for a large proportion of observations were included in
PLSR. Automated feature extraction was more effective on JPEG data than on DNG data,
which led to a decrease in features from JPEG to DNG.

For drone-based methods, 810 observations were available for PLSR modeling as in each
of the three years, 270 plots were observed. In contrast, plots could appear on multiple
PhenoCams in the same season, and, on average, each plot was recorded by 2.6 cameras,
although plots on the edges of the field were just recorded from one camera. Camera-plot
combinations with 1500 or more missing temporal features were excluded. 2101 observations
were available for PhenoCam JPEG data and 2092 for DNG.

Table 4.6: Number of temporal features and observations for different sensors, image formats and
data treatments

Method No. of temporal features No. of observations

JPEG DN 1005 2101
JPEG Reflectance 1226 2101
DNG DN 758 2092
DNG Reflectance 837 2092
Drone RGB 1452 810
Drone Multispectral 2217 810

Using PLSR In a first feature selection round, 200 temporal features were selected for each
field reference type and reference level. If using less than 200 features, correlations between
PLSR prediction and field reference levels started to decrease (Fig. S3.11).

4.3.5 Comparison of PLSR prediction performance of different methods

Eight methods to predict plant development, depending on the different sensors, image formats
and data treatments, were compared individually by Pearson’s correlation for the different
reference rating types. The mean correlations for all cross-validation data with reference rating
values across 100 iterations for each reference level were summarized in boxplots (Fig. 4.6).
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Figure 4.5: Example of VI data derived from PhenoCams (a & b) and a drone-based camera (c & d)
for two VIs (VARI and ExGRZhang) and four plots during the seasons 2022. The temporal axis is in
days after sowing (DAS). For the PhenoCam data, greenish points in the PhenoCam image are initial
VI values and lines represent smoothed data of different smoothing methods (dark yellow: rolling
mean; dark blue: loess smoothing; yellow: Savitzky–Golay; light blue: spline smoothing). In plots
with multiple lines of the same color, multiple cameras observed the same plot. Data is shown for
unprocessed data (“DN”) and for calculated reflectance values . For the drone data, the initial VI
values are blue dots. Greenish lines represent a smoothed spline interpolated for a daily temporal
resolution. The colored vertical lines indicate specific levels of visual field reference ratings as observed
on the respective plots: Solid blue line indicates the heading date (BBCH 59), the dashed blue lines
indicate plant senescence levels of 10% and 90% respectively. The yellow lines correspond to flag leaf
senescence at 10% and 90%. The black lines toward the end mark the harvest date. The first vertical

black line for the PhenoCam data shows the date of PhenoCam maintenance.
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Six methods were based on PhenoCam data, three each for JPEG and DNG data formats.
For both formats, a method was based on calibrated reflectance data, one on DN and one on
both data types. Two methods were based on calibrated drone data in the multispectral and
RGB color space.
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Figure 4.6: Overview on Pearson’s correlation of PhenoCam- and drone-based predictions of timing
of phenology (BBCH), flag leaf senescence (SenLeaf) and plant senescence (SenPlant) with field
reference measurements. Values above boxplots indicate mean values. (a) Mean correlations for all
cross validation data (only 75%/25% train/test data split in cross-validation) with reference rating
values across 100 iterations for each reference level. The mean standard deviations of these correlations
across 100 iterations for each reference level �r is shown in (b). In the method names of the x-axis
labels, “PheCam” and “Drone” indicate the platform of image acquisition, “RGB” and “MulSpec” the
color space of the features. “Reflect” indicates that only calibrated reflectance data (reference panels)
was used as opposed to “DN” for the use of digital numbers. “All” means that “Reflectance” and “DN”
data was used. “JPEG” and “TIFF” indicate the image data format used. Pairwise t-tests were applied
to examine whether the different methods produced significantly different results. Pairing was by
reference levels of the three reference types. Significance levels: NS: p > 0.05; *: p < 0.05; **: p <

0.01; ***: p < 0.001.

Models based on multispectral drone data were best correlated with reference levels for all
reference rating types (Fig. 4.6a), followed by RGB drone data. PhenoCam methods showed
slightly weaker correlations compared to drone-based VIs, when “All’ data types (DN and
Reflect) were used, but almost no difference between JPEG and DNG. The JPEG DN method
was slightly inferior to using both data types but superior to the remaining three methods
“Reflect_JPEG”, “DNG_DN” and “Reflect_DNG”.

The standard deviation of these correlations �r (Fig. 4.6b) revealed that higher correlations
were also more consistent as �r was lower for higher correlations, except for the correlation
between SenLeaf reference type and drone-based RGB methods.
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4.3. Results

4.3.6 Detailed comparison of selected methods

As the JPEG based PhenoCam methods seemed to perform slightly better than the DNG
based models, they were compared to drone-based methods in more detail. When correlating
the PLSR predictions for all reference levels of the different reference types (Fig. 4.7a), the
correlations were very strong (r > 0.8) and even stronger than 0.9 for the later levels of the
BBCH scale and the intermediate levels of SenLeaf and SenPlant in 100-times repeated cross
validation. Early BBCH stages and early as well as late senescence stages showed weaker
correlations in general. The correlations were consistently higher for drone-based methods,
except for later stages for SenLeaf, where drone-based predictions in the RGB color space
showed high variability. When PLSR models trained on the training data were applied to
predict all observations, the correlations were stronger and more consistent than when only
predicting and correlating the test data set in cross-validation. When using the 75%/25%
train/test data split in cross-validation, correlations were slightly higher (0.02 on average)
compared to 19 genotypes/11 genotypes train/test cross validation with standard deviation
increasing by only 0.01 between the two. Therefore, the remaining analysis was just conducted
on cross-validation data based on a 75%/25% data-split.

When correlating separately for the three years, the correlations were weaker in general,
but the trends remained similar. Correlations were weak to very weak for early SenPlant and
weak to strong for late stages of all reference types. For SenLeaf and early stages of SenPlant,
correlations were weaker in 2023 than in the other two years. SenPlant showed weaker overall
correlations in 2022. Correlation of BBCH did not show a distinct year-wise pattern except
for weak correlations for the latest BBCH levels in 2022.

The root mean square error (RMSE) was similarly low for both senescene rating types
in 2021 and 2023 with slightly higher RMSE for earlier stages in 2022 (Fig. S3.7). As for
correlations, no distinct year-wise pattern was found for RMSE of BBCH.

To better understand the reason behind varying correlations in dependence of the different
years, the temporal density of the reference measurements was examined (Fig. 4.8). Later
stages of BBCH occurred in a short period in 2022 compared to the other tow years. Stages of
senescence and especially SenLeaf occurred in a shorter interval for most reference levels in
2023.

4.3.7 VI and feature type importance

Normalized relative PLSR coefficient sums norm.�rel,sum were analyzed to determine the
importance, i.e. predictiveness of VIs and feature types. For PhenoCam “JPEG DN” format
(Fig. 4.9a), the VIs of the ExGR type and especially ExGR Zhang were the dominant features.
For BBCH and early SenLeaf, VARI was also important. For BBCH, GCC played a crucial
role too and the G_R_Ratio for SenLef. In SenPlant, GLI was an important feature. In
contrast, for the PhenoCam “DNG raw DN” format (Fig. 4.9c), ExGRZhang, although still
important, was just the dominant feature for late BBCH and intermediate to late SenPlant.
Otherwise, GCC and RGBVI were important for BBCH. ExRg, MGRVI, MNVI, and RGBVI
were predictive for SenLeaf and ExRg and MNVI also for SenPlant. The predictiveness of VIs
varied from early to late reference classes.

The local maximum of the first derivative of the VIs D1LocMax_1 was an important feature
type in the prediction of all reference types and values for “JPEG DN” and “DNG raw DN”
data (Fig. 4.9b & 4.9d), while the first local minimum of the second derivative D2LocMin_1

and the first local maximum of the third derivative D3LocMax_1 were increasingly important
from early to late reference stages. For other feature types, a similar but less pronounced
trend from early to late could be observed. For the different data aggregation methods no
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Figure 4.8: Temporal density of interpolated reference observations of all three reference rating types
by year for generically selected reference levels. The temporal axis is in days after sowing (DAS).

clear trend could be found but the 50th percentile and/or the mean were generally among the
most important aggregation methods (Fig. S3.10).

For drone-based data from the RGB colorspace (Fig. S3.8a), BCC, GCC, IKAW, MGRVI,
MNVI, RCC and RGBVI were especially predictive and the same feature types (D1LocMax_1,
D2LocMin_1, D3LocMax_1) but also D4LocMax_1 and the nonparametric temporal features
Spline0.02 and Spline0.1 were important (Fig. S3.8b).

In the multispectral color space (Fig. S3.9a), in addition to BCC and IKAW, mostly
multispectral VIs became dominant, such as DVI, NDRE, NDVI, PSRI7717, PSRI7740 and
SAVI. Most predictive feature types were similar to drone-based RGB data (Fig. S3.9b).

4.3.8 Method cost comparison

The cost estimates for the different methods were highly dependent on the number of plots
observed, the number of measurements and seasons carried out, and the distance of the
experimental site from the research station.

The visual field reference rating, closely followed by the RGB drone method, had the lowest
initial costs (Figs. 4.10a & 4.10b). The costs then increased almost linearly with the number
of measurements. For the 700 plots scenario, visual rating was cheaper than the RGB drone
for all driving distances and this difference increased with the number of measurements. In the
1400 plots scenario, for 0.5 h of driving, the visual rating was slightly cheaper than the RGB
drone, but for 1.5 - 3 h of driving time, the RGB drone method was cheaper and this difference
increased with the number of measurements. The method with the next-highest initial cost
was multispectral drones, for which the costs increased almost linearly with the number of
measurements. The marginal costs for additional measurements were higher for multispectral
measurement, compared to the RGB drone method and the visual rating (Table. 4.7). The
PhenoCam method had the highest initial cost. In contrast, additional measurements had
only a slight effect on costs. New costs arose, above all, for the setup and dismantling of the
camera systems. However, these seasonal costs were higher than with the other methods. For
non-PhenoCam methods, the costs were relatively low at the beginning of a new season. Only
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new flight plans had to be created and new plot masks had to be drawn for the analysis of the
images of drone-based methods. The different travel times had a relatively little effect on the
PhenoCam method, while they led to significantly different costs for drone flights and visual
ratings. In the 700 plots scenario, at around 30 measurements or 3 seasons, the PhenoCams
became cheaper compared to multispectral drones, and around 90 flights or 6 seasons, they
became cheaper compared to RGB drones except for the 0.5 h driving distance. These general
patterns were similar for the 1400 plots scenario, but it took more measurements until the
PhenoCam method became cheaper than drone-based approaches.

Looking at cost structures, transport was an important cost factor from 1.5 h driving time
onward and the most significant cost driver for visual field reference ratings, especially in the
1400 plot scenario, as the field needed to be visited twice to complete the rating of all plots.
Another scenario would be to stay overnight in a hotel, which would also lead to higher costs,
but this scenario was not included here. The sum of measurements cost (i.e. drone piloting)
and the image processing cost for the RGB drone was similar compared to the measurement
cost of visual ratings in the 700 plots scenario. For 1400 plots, the RGB drone was cheaper for
1.5 h or more driving time, as it could cover more plots in a shorter period without the need of
an overnight stay or a double visit to complete the measurements.

The multispectral drone method came with higher processing costs, and as large data
volumes were produced in multispectral imaging, the storage of the images became an important
cost driver in addition to higher initial material costs. It was the most expensive method after
6 seasons in all scenarios.

Table 4.7: Marginal cost of different methods after 90 measurements for the 700 plot and the 1400
plot scenario.

Method Driving
Distance
(h/one-way)

Marginal costs (CHF)

700 Plots
Scenario

1400 Plots
Scenario

Rating
0.5 376 764
1.5 594 1328
3 921 2174

PhenoCam
0.5 227 456
1.5 273 562
3 342 721

Drone - RGB
0.5 407 732
1.5 659 1048
3 1037 1522

Multispectral
0.5 635 1188
1.5 887 1504
3 1265 1978

PhenoCams had by far the highest initial material costs. On the other hand, the transporta-
tion costs were low, as only two field visits were necessary for set up and dismounting, assuming
no technical incidents occurred. Although each PhenoCam could shoot many images per day,
the total amount of data was very manageable compared to drone measurements, especially
multispectral. Even if the initial processing costs were relatively high, as plot masks had to be
corrected for perspective and adapted to shaking cameras and growing vegetation, the overall
processing costs remained relatively low. Thus, once the material was acquired, the cost for
additional measurements was relatively cheap, making this the most economical method for
scenarios of 3 h driving time after 6 seasons. In the 1.5 h driving time scenario, PhenoCam
costs were comparable to RGB drones and to visual field ratings after 6 seasons. Just for the
1400 plots scenairo, PhenoCams remained more expensive compared to RGB drones. Yet,
due to the low marginal costs of additional measurements (Table. 4.7), PhenoCams would
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Cost estimates for 700 plots
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Figure 4.10: Overview of cost development and coast types in dependence of number of measurements
and seasons. (a) & (b) show the estimated total costs with repsect to number of measurements. 15
measurements were assumed to correspond to one year, and years are marked with vertical gray lines.
Line types indicate different distances of experimental site from research station in hours (one-way).
Line colors indicate different methods that were compared to each other in this study. (c) summarizes

these costs by cost types for one to six seasons of 15 measurements each.
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become the cheapest method with additional seasons, which would finally also be the case for
1 h driving time at a high number of seasons to measure.

4.4 Discussion

4.4.1 Ability of PhenoCams to track phenology and senescence in field
conditions

The PhenoCams allowed the tracking of phenology and senescence over three seasons with high
reliability and genotype specificity under field conditions in real a variety testing experiment.
Field phenotyping is known to be one of the most challenging phenotyping settings due to
confounding effects, such as spatial and temporal variability of traits due to e.g., heterogeneous
field conditions, changing weather throughout a measurement campaign, or disruptive weather
events, which can make data acquisition but also interpretation very challenging (e.g. Araus,
Kefauver, et al., 2018; Aasen, Kirchgessner, et al., 2020; M. P. Reynolds, S. C. Chapman,
et al., 2020). For example, in this study, shaking cameras, dust and dirt, changing illumination,
non-continuous VI dynamics due to drought/rain interplay, memory restrictions of autonomous
cameras, trade-offs in the experimental setup due to the needs of field operations and animal
interference made it complicated to operate the cameras and analyze the images. Nevertheless,
strong correlations with visual field reference ratings and high heritabilities for PhenoCam-based
traits were attained in field conditions.

The quality of the predictions derived from PhenoCams was slightly inferior to drone-
based predictions, and especially to multispectral predictions. Nevertheless, PhenoCams are a
promising tool for the field phenotyping of dynamic traits. They allow to increase the temporal
resolution of image acquisition considerably, even at remote experimental sites.

4.4.2 Quality of predictions from PhenoCam and drone setups

Comparison of PhenoCam data with drone-based multispectral data was conducted to estimate
the benefit of bands from near-infrared and red-edge regions to track plant development.
Comparison with drone-based RGB data allowed estimation of effects related to viewing
geometries.

The better performance of the drone-based VIs compared to PhenoCams might be largely
due to the near-optimal conditions under which the drone measurements took place. Plots
were observed at a close to nadir view, with rather homogeneous viewing geometries, while in
PhenoCams, plots were seen from extremely different viewing geometries and distances. In
plots close to the PhenoCam, single plants, even plant organs, were distinguishable in a rather
nadir oriented view. For the most distant plots, a single pixel corresponded to several plants
and only plot-wise mean color properties could be tracked from a very lateral view on the
upper part of the canopy. The timing of flying was, whenever possible, close to noon, also
allowing for relatively homogeneous illumination of images between flights. This increased
the signal-to-noise ratio compared to PhenoCams, where images were taken at a much higher
frequency but with a large variability of illumination and viewing geometries.

PhenoCams covered many plots with two or even three cameras. Although the same plot
was observed, the viewing geometry and distance from the camera were often very different,
especially with regard to the path of light from the sun via the plot to the camera. The plots
were subjected to a bidirectional reflectance changes (Nicodemus, 1977; Schaepman-Strub
et al., 2006) for the different cameras. Nonetheless, based on a visual comparison (Figs. 4.5
& S3.5) and high heritability (Fig. 4.7c), the different cameras tracked similar VI dynamics
for the same plot, as VIs normalize and reduce the effects of bidirectional reflectance changes
(Aasen, Kirchgessner, et al., 2020; Sonnentag et al., 2012).
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4.4.3 Quality of predictions in different years

Although the prediction correlations were lower for SenLeaf in 2023 than for the other years
(Fig. 4.7b), the RMSE of the predictions was lower or similar than in the other years (Fig. S3.7).
At the same time, correlations for SenLeaf in 2022 were strong despite a relatively high RMSE.
This might be explained by the extended duration during which specific SenLeaf levels occurred
in 2022 and short duration in 2023, as shown by the temporal density of selected rating levels
(Fig. 4.8). When levels occur in a relatively short period, strong correlations are more difficult
to attain and weaker for the same RMSE compared to situations with a more temporally
dispersed occurrence of the same rating level.

This highlights that the quality of the method is also affected by G⇥E interactions, as
meteorological conditions that promote rapid plant development and senescence lead to weaker
correlations. That is also the rationale why data from the three years was used to train the
PLSR models. The meteorological conditions and therefore the development of the plants
contrasted strongly for the three years. A low predictive performance would be expected when
predicting a wet year from dry years, and also the two dryer seasons had a very different
phenological development.

In addition, VI dynamics are directly affected by meteorological conditions. For example,
2022 was a hot and dry year, which caused the flag leaves to roll. After rain events, the
leaves were able to recover slightly, which could lead to a short-term flattening of the temporal
dynamics toward maturity. This might be a valid explanation of noncontinuous trends e.g.
for the VIs VARI, ExGR Zhang and NDVI in 2022, where in June, the slope of declining VIs
flattened out after significant rains or even increased again (Figs. S3.6).

4.4.4 Quality of predictions in different stages

The prediction accuracy of PLSR models for the early or late phenology and senescence stages
were often low. This might be related to the small phenotypic changes that these early and late
stages are associated with, which might be too small to be detected from cameras at distance.
In addition, in this study, multiple raters conducted the ratings over years but also within
years, inevitably leading to rater bias. Later stages of phenology are tedious to track, as they
require the manual inspection of some grains in each plot and are limited in precision to track
small changes between rating events (Anderegg, Yu, et al., 2020). This is also true, especially
for the early and late stages of senescence. Visual scoring methods are subjective and can be
affected by foliar diseases, abiotic foliar damage, and other confounding influences, leading to
phenotypic heterogeneity within plots (e.g. E. A. Chapman et al., 2021; J. T. Christopher,
M. J. Christopher, et al., 2016; Kipp et al., 2014). Thus, the precision limitation of visual
scoring itself is likely to limit the precision of the approach (Anderegg, Yu, et al., 2020).

Finally, later stages of phenology do not address the external phenotypes of the plants but
the state of the grains, which cannot be visually seen without opening the husk. The high
predictiveness of the RGB but also multispectral VIs is thus rather surprising and most likely
the result of a relationship between external visual features and grain-internal processes.

4.4.5 Comparing VIs from different image formats and data treatments

Even within data from the same sensor, VIs can show very distinct patterns depending on
image format and data treatment (e.g. Fig. S3.5). JPEG DN method was shown to be superior
to JPEG reflectance and both DNG raw methods in this study while inferior to the combined
use of DN and reflectance in the same PLSR analysis, though the differences were rather minor
(e.g. Fig. 4.6).

112



4.4. Discussion

JPEG format images are derived from raw images after Bayer matrix decomposition by
multiple transformations, such as white balance application, gamma correction, and dynamic
range compression. These transformations increase the contrast in images and lead to a
visually enhanced nonlinear representation of light intensities. The nonlinear nature of these
transformations also leads to changes in VI dynamics. With gamma correction exponents <1,
which make images appear brighter, changes for high values in the linear format represent
smaller changes for nonlinear JPEG. For lower values, changes in the linear DNG raw format
lead to larger changes in nonlinear JPEG. With ratios including high/low values and especially
both, the ratios can look very different between linear and nonlinear formats. If VI formulas
include sums/differences, the VIs can even change from positive to negative or vice versa.
Indices like VARI, ExGR did not seem to be affected a lot, while indices like IKAW did. These
transformations thus can amplify VI dynamics, which might be an explanation why automated
feature extraction was more effective on JPEG data than on DNG raw data in this study.

4.4.6 Practical challengers of calibration panels in field conditions

The continuous use of reflectance calibration panels in a field setting is prone to disturbances.
Even when regularly cleaning calibration panels, it was inevitable that their reflectance changed
over time due to dirt, sun-bleaching, and a change of wet and dry conditions. In addition,
they were sometimes shaded by surrounding plants or weeds that grew between them, which
could not be immediately removed.

Despite these adverse influences and a reduced temporal resolution of reflectance-based
VI values, smooth reflectance patterns were achieved in this study (Figs. 4.5 & S3.5). Yet,
the calibration panel setup could be improved. The panels could be installed higher above
the ground, but they would still need regular cleaning, which would undermine the main
benefit of PhenoCams: i.e., the reduced need for frequent field visits. Thus, using uncalibrated
JPEG might be the sweet spot between quality and effort when tracking plant development in
a lean-phenotyping approach with day-to-day applicability. Although JPEG-based VIs are
not a representation of real physical property such as reflectance, they were shown to be as
predictive as reflectance based on a linear DNG raw format. However, 8-bit JPEG produces
far less data than linear 16-bit raw formats and is a widely used image standard that can be
easily handled and visualized. In summary, the use of calibration panels, which are expensive
and time-consuming in application, can be omitted without a major loss of predictive quality.

4.4.7 Comparing color spaces and RGB sensors

Cao et al. (2021) showed the superiority of multispectral VIs over RGB VIs and that they
could reveal more detailed phenotype changes but were also more sensitive to rainfall than
RGB VIs, which also seemed to be the case in our study (e.g. Fig. S3.6). In the study at hand,
the drone-based PLSR prediction from RGB VIs was often almost as strongly correlated with
visual reference ratings as those from multispectral measurements, which is in line with Cao
et al., 2021, who showed that multispectral and RGB VIs together only slightly outperformed
the pure RGB VIs. However, the robustness of the prediction (�r ), seemed more affected,
especially for later stages of SenLeaf.

This study only used RGB-bands from a narrowband multispectral camera for RGB-based
VIs, but Cao et al. (2021) compared a low-cost integrated RGB camera of a DJI Phantom 4
drone with more expensive MicaSense multispectral narrowband sensors for their ability to
track stay-green phenotypes in wheat. RGB VIs based on the cheaper sensor better classified
senescence types than the RGB VIs from the more expensive narrowband sensor in their study.
Thus, it is highly likely that the method presented herein would lead to results of similar or
better quality as in this study, when applied to drone-based low-cost RGB camera data.
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4.4.8 Combining multiple temporal features in a PLSR analysis

Differences in absolute values of spectral bands or VIs depend not only on the phenology of a
plant but also on morphology and canopy structure (Anderegg, Yu, et al., 2020), leaf pigments
and epicuticular waxes (Tafesse et al., 2022) and viewing geometry (Aasen, Kirchgessner,
et al., 2020). However, relative changes over time, i.e. the dynamics of the VIs are stable and
suitable for the extraction of temporal features (Aasen, Kirchgessner, et al., 2020; Anderegg,
Yu, et al., 2020).

Pigments such as chlorophyll, anthocyanins, and carotenoids are formed and degraded
at specific times during plant growth (A. Fischer and Feller, 1994; Hörtensteiner, 2006)
and these changes are temporally correlated with dynamic changes in VIs. At different
developmental stages, different VI-based temporal features of different VIs are best correlated
with physiological processes of the plant. Thus, it is reasonable to base the analysis not on
absolute VI values but their dynamics and not to use a single VI for all stages of phenology and
senescence, but to combine multiple VIs in an analysis. With this rationale, using temporal
features in a PLSR analysis is a promising new approach. PLSR can be used to handle datasets,
where the number of predictor variables is higher than the number of observations, and where
the predictor variables are strongly correlated (Carrascal et al., 2009), which can be expected
for the different temporal features used as predictor variables in this study.

Thus, selecting the 200 most predictive features was not meant to avoid overfitting but
to reduce computational effort in the 100 times repeated cross-validation. In PLSR analysis,
overfitting can be avoided by choosing a number of PLSR components that is significantly
smaller than the number of predictor variables. With a maximum number of 15 components
in our PLSR models, the ratio predictors/components was � 139 for PhenoCam data (2092 or
2101 observations and 15 or fewer components), and � 54 for drone data (810 observations
and 15 or fewer components). Thus, the number of observations was much larger than the
number of components, and no overfitting would be expected.

While the 75%/25% train/test data split in cross-validation led to slightly better pre-
diction accuracy, also 19 genotypes/11 genotypes train/test cross-validation allowed for high
correlations between predictions and visual reference measurements. The development of
11 randomly chosen genotypes, and thus also 99 plots, unseen in training, were accurately
predicted by PLSR models in 100 repetitions for each reference level, which demonstrates the
generalizability of the method and argues against overfitting. An increased set of genotypes in
training could further increase the generalizability of the PLSR prediction.

As the temporal features used as predictors were expected to be highly correlated, PLSR
was preferred over other approaches such as random forest regression. Random forests are
prone to overfitting when using highly correlated data (e.g. Gregorutti et al., 2016) and PLSR
was shown to produce more generalizable predictions than random forests (e.g. Lee et al.,
2017). Recursive feature elimination (RFE) can be applied to increase generalizability and the
risk of overfitting (Gregorutti et al., 2016; Darst et al., 2018), however, PLSR does not need a
lot of computational capacity, whereas repeated RFE can be very computationally intensive.

4.4.9 Cost and measurement frequency of different methods

PhenoCams were the cheapest method for tracking phenology and senescence after five seasons
when considering an experimental site with a driving distance of 3 h (one-way). While the
initial costs of PhenoCams for hardware and the efforts for setup were fairly high, they were
allowing for an almost unlimited increase of the temporal resolution of image acquisition to
hourly or even beyond without significantly increasing data acquisition costs. In contrast,
for visual field ratings and drone-base approaches, every additional measurement came at
considerable marginal costs.
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The main driver of cost for additional measurements of the next cheapest approaches
(visual ratings and RGB drones) were the round trips, necessary for each measurement.

In contrast, PhenoCams need - assuming no technical incidents occur - just two field
visits for setup and dismantling and if images could be transmitted via mobile networks, SD
cards would not need to be changed when full. DNG raw format used in this study was too
data-heavy to be transmitted to a server via a mobile network. However, it was shown that the
JPEG format-based VIs allowed the tracking of senescence and phenology even slightly better
than those based on DNG raw format. 8-bit JPEG format is lighter and can be transmitted
to servers; thus, no SD card change would be necessary in such a setup, and also no storage
limitation would hinder frequent image acquisition. An image in JPEG could be transmitted
every 10min, maximizing the probability of capturing good quality images on many days.
Such a JPEG based setup also would make it possible to follow the seamless operation of
the cameras almost in real time, without the need to visit the PhenoCams in person. Using
PhenoCams with JPEG format therefore offers many benefits without a major loss in quality.

Tschurr et al. (2024) argued, that at higher temporal resolution, RGB VIs can make up for
lower spectral resolution. Such comparisons are difficult for multiple reasons. E.g. Tschurr
et al. (2024) did not include the DVI, PSRI and SAVI multispectral VIs in their study, which
all showed high predictiveness in this study and PSRI was approximating visual senescence
ratings best also in Anderegg, Yu, et al. (2020). In addition, the study at hand confirmed the
number of field visits as an important cost driver in the context of remote field experiments
(Barreto et al., 2024; Montazeaud et al., 2016; Velumani et al., 2020) . The marginal costs for
the RBG drone at 0.5 h, 1.5 h and 3 h driving distance were 407, 659 and 1037 CHF respectively
in the 700 plots scenario. For the 1400 plot scenario, the cost was again significantly higher
(Table 4.7). Thus, additional measurements came at a price, and if multispectral sensors
need to be flown less often, this could lead to multispectral VIs being the economically more
favorable option despite higher marginal costs, depending on the difference in the number of
flights required compared to RGB VIs. Multispectral becomes particularly interesting if the
sensor has already been procured to measure other plant traits.

In addition, drone flights must be organized along with other activities, and the logistics of
a field season can be very demanding, as many tasks can only be completed in good weather
conditions. Due to time constraints, it is often not possible to fly in optimal conditions or
to fly at all, especially in rainy periods and for distant experiments. Multispectral drones
therefore also have an advantage in these aspects, due to the lower number of flights required
in dense field seasons, thereby allowing for more flexibility in planing and a lower workload.
PhenoCams, on the contrary, might capture an image during that rare 20min of a day under
suitable conditions without the need of intervention. Further improvements in the PhenoCam
setup and pipeline could lead to an additional shift in balance in favor of PhenoCams.

However, with the same argumentation, autonomous drone systems might shift the balance
in favor of drones again. Although these systems were strongly restricted by regulation some
years ago in many countries (Aasen, Kirchgessner, et al., 2020), the legislation changed in some
countries and such systems can be operated, drastically facilitating the logistics of distant
experiments and increasing the probability of a high frequency of flights in fair meteorological
conditions.

The cost comparison did not include additional benefits of the methods. Especially
multispectral VIs come with additional information on the plant state such as general health,
nitrogen content, etc. It is challenging to put a price tag on this type of information, but the
aspect should not be neglected in such considerations.

Finally, the cost considerations presented herein are meant to serve as a conceptual
framework that is allowing to approximate real costs and to reason about most relevant cost
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structures. They are not meant to be precise representation of true costs, which are even more
complex.

4.4.10 VI and feature type importance in PLSR modeling without ex-ante
knowledge on phenology

Normalized relative PLSR coefficient sums norm.�rel,sum were used to describe the importance
of different VIs and feature types in respective PLSR models. They are an integrative measure
as they also are impacted by the number of temporal features in the input data of the
PLSR models. This depended a lot on how well the VIs could be smoothed with the different
smoothing functions or fit with a Gompertz function. Many studies usually normalize dynamics
with ex ante knowledge about phenology, e.g. by calculating the days after anthesis (e.g.
Anderegg, Yu, et al., 2020; J. T. Christopher, Veyradier, et al., 2014; J. T. Christopher, M. J.
Christopher, et al., 2016; Cao et al., 2021). This requires preceding tracking of phenology.
The methods developed and examined in this study were meant to work without the need for
supplement ratings. The method relied on a clear VI dynamic from an early minimum to a
late maximum or vice versa. VIs that did not follow such a clear dynamic may have failed in
the automated analysis procedure, may thus be underrepresented in the PLSR input data,
and may never reach high norm.�rel,sum values. Yet, norm.�rel,sum still is a valid metric to
describe the overall usefulness of a VI to the process presented.

As seen before, different sensors, image formats, and data treatments can lead to different
VI dynamics. That is why between methods, different VIs and feature types were most
predictive. In addition, the input data was highly correlated and with correlated data, small
changes in the data can lead to the preference of one feature over the other.

Within one data type or image format, the temporal features of the input data in the PLSR
models were the same for the PLSR model of the different reference rating types (BBCH,
SenLeaf, Sen Plant) and classes (Early, Intermediate, Late). Changes in norm.�rel,sum for
VIs and feature types between reference rating types and classes showed that for different
phenotypic processes and stages, different temporal features were most useful, indicating that
the tracking of such processes should not rely on one but multiple VIs.

4.4.11 Mask creation

Creating the plot masks was a tedious and time consuming task, as the cameras were shaking
and manual adjustments for multiple plot mask files were necessary throughout the season.
This was made even more difficult by the lens distortion of the cameras, which meant that the
plot mask had to be not only rotated and shifted in QGIS, but sometimes also adjusted in
size and shape.

Using SIFT to automatically adjust plot mask failed due to image-to-image error propaga-
tion. This was most likely caused by growing vegetation, which changed the appearance of the
scenery and maybe most importantly the shadow patterns between the plots. Shadows are
often strongly contrasted visual features and have a high importance in SIFT.

4.4.12 Recommendation for PheonCam setup and pipeline improvement

Based on the experience gained in this work, the following recommendations are given on how
the PhenoCam setup and pipeline could be improved in the future.

• Establish an automated digital image stabilization to compensate for shaking cameras.
• Enable co-registration of images with mask and adjustment to a growing vegetation to

decrease initial processing efforts.
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• Implement reliable image-wise quality estimates in pre-processing, e.g. brightness,
blurriness, visibility, direct sun, etc. to sort out inferior quality images.

• Adapt viewing geometry to field specific conditions, to avoid sky and direct sun in the
images for more homogeneous illumination.

• Adapt viewing geometry of cameras to reduce “lost” image sections that do not cover
the field but neighboring terrain.

• Maintain narrow optical opening angles towards the horizon, as wide opening angles
make plot recognition at the far end of the experiment difficult.

• Use masts that are less prone to shaking in windy conditions.
• Position the masts on the wide side of the field, ideally at two opposite locations, to

decreases the maximal distance between PhenoCams and plots.
• Use masts with a smaller footprint, that could even be installed inside the field without

impeding field operation and cover the experiment at 360
� and not just from one side.

• Use JPEG format, which can be transmitted with mobile networks and sent to a server.
• Adapt the rationale for temporal feature extraction specifically for different VIs and data

types.

4.5 Conclusion

A mobile PhenoCam was installed in a wheat variety testing trial for three consecutive seasons.
The aim was to track phenology from heading onward and senescence at plant and flag leaf
levels. With a PLSR approach, multiple temporal features of different Vis were analyzed in
one model. A high prediction accuracy for all phases was attained for all developmental stages,
and the prediction accuracy of a drone-based multispectral sensor only slightly outperformed
PhenoCams. Uncalibrated JPEG images were sufficient to track plant development, and in
future setups, images could directly be transmitted via mobile networks, which allows for an
almost real-time tracking of plant development even at remote experimental sites. A cost
analysis showed that transfers between experimental sites became an important cost driver
for visual ratings and drone-based methods. PhenoCams came at a higher initial material
investment, but tracked plant development at a lower marginal cost and became the cheaper
option over time, with an increasing number of measurements. Thus, the proposed PhenoCam
setup, combined with a PLSR analysis based on temporal features, is a cost-effective lean-
phenotyping method to replace visual ratings of phenology and senescence in multi-environment
trials.
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Abstract

Fusarium head blight (FHB) is a fungal disease caused by diverse Fusarium species and
affecting various cereals. It reduces yield and quality of cereal crops, leading to significant
economic losses. A major issue with Fusarium spp. are the various mycotoxins produced
by the fungi, such as the vomitoxin deoxynivalenol (DON), which is the toxin related to
the highest economic losses in cereal production. Cropping resistant genotypes is one of
the most promising means of controlling the disease and to reduce DON. It’s often used in
combination with agronomic and chemical control strategies. As testing for DON is expensive
and destructive, visual ratings are usually conducted to identify resistant varieties in field trials,
which is tedious, time-consuming and subjective. Chlorophyll fluorescence (CF), detected
with handheld point-measurement devices or CF cameras was proposed to detect Fusarium in
the field, yet, the applicability of such methods in day-to-day practice under field conditions
remained limited. In this study, a hand-held CF device, the FluorPen, was used to track
Fusarium infestations first in a greenhouse on a trial comprising four wheat varieties. The
method was then transferred to a field trial with 16 wheat varieties and tested for two seasons,
together with a CF imaging approach, using a FluorCam. While FluorPen and FluorCam
allowed to detect high infestation levels and to tell resistant from susceptible varieties, the
FluorPen failed in low-level infestations and the FluorCam could not be tested on low-level
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infestation. In addition, FluorPen and FluorCam depended on dark adaptation to create
optimal conditions for CF measurements. Dark adaptation is very time consuming, as the
samples need to be shaded or - as in this study - detached from the plant and transferred to
a dark place for measurements. Thus a rapid FluorPen protocol with full field applicability
without dark adaptation was tested. The higher efficiency of the rapid FluorPen protocol came
at the cost of more variable measurements. Rapid CF distinguished well between healthy and
infested tissue in high-level infestations, but it is hypothesized, that all methods tested in the
field would fail at low-level infestations due to a too low number of measurements.

5.1 Introduction

Fusarium head blight (FHB) is a fungal disease caused by diverse Fusarium species and
affects various cereals. It reduces yield and quality of cereal crops, leading sometimes to
significant economic losses for farmers (McMullen et al., 1997; Windels, 2000). A major issue
with Fusarium spp. are the various mycotoxins produced by the fungi, which have adverse
effects on health of humans and livestock (Ferrigo et al., 2016). The vomitoxin deoxynivalenol
(DON) is the toxin related to the highest economic losses in cereal production (Munkvold,
2017). Harvest products contaminated with DON are subject to steep price discounts, as
they are subject to regulatory limits (Wilson et al. 2018). Agronomic and chemical control
of Fusarium spp. is only partially effective. Cropping resistant genotypes is one of the most
promising means of controlling the disease (Peiris, Bockus, et al., 2016). For example, in
Germany, breeding for disease resistant genotypes was an important driver of yield gain in
recent years (Zetzsche et al., 2020). Resistant genotypes are often combined with chemical
and agronomic control strategies (Wilson et al., 2018). While the aim of avoiding Fusarium
spp. infestation in the fields is mainly to avoid contamination of the crop with toxins, direct
detection of DON is not possible and resistance selection is usually based on visually observable
symptoms. Detecting such symptoms is tedious and time consuming (Almoujahed et al.,
2022; Bannihatti et al., 2022) and could be subjective due to rater bias (Elke Bauriegel and
Herppich, 2014; Mahlein et al., 2019; Hong et al., 2022). In addition, correlation of Fusarium
spp. symptoms and DON content is often rather weak (Schlang et al., 2008; Ajigboye et al.,
2016), as several types of resistance contribute to the reduction of DON accumulation (Martin
et al. 2017). At the same time, the detection of DON by the standard laboratory method
of liquid chromatography coupled with mass-spectrometry is troublesome, destructive, and
expensive (Peiris, Bockus, et al., 2016) as is the detection by enzyme-linked immunosorbent
assay (ELISA) (Levasseur-Garcia, 2018; Wilson et al., 2018). Therefore, fast and cost-effective
methods to detect genotypes that do not accumulate high levels of DON would facilitate the
assessment of plant resistance to DON accumulation in breeding and variety testing programs.
Attempts were made to detect FHB and related toxins in cereals by exploiting information of
hyperspectral reflectance (E. Bauriegel et al., 2010; E. Alisaac et al., 2018; Almoujahed et al.,
2022; Vincke et al., 2023), computer vision on RGB images (Qiu et al., 2019; Su et al., 2021;
Hong et al., 2022), thermal imaging (Al Masri et al., 2017) or chlorophyll fluorescence (CF)
(Ajigboye et al., 2016; Sunic et al., 2023) and different combinations of these methods (e.g.
Mahlein et al., 2019; L. Huang et al., 2020; Mustafa et al., 2023). On field scale, drones were
proposed to detect infested field areas (Francesconi et al., 2021; H. Zhang et al., 2022) e.g.
for exclusion from harvest (Elke Bauriegel and Herppich, 2014) or early detection for a more
successful chemical treatment (Francesconi et al., 2021; Elias Alisaac and Mahlein, 2023).

In kernels and flour, DON detection was proposed with near-infrared and mid-infrared
spectroscopy (Peiris, Pumphrey, et al., 2010; Almoujahed et al., 2024) and hyperspectral
imaging (Elias Alisaac, Behmann, et al., 2019).
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FHB infections cause tissue colonization with hyphae and, consequently, the plugging of
plant vessels and the degradation of plant tissue. This changes the physiology and photosyn-
thesis of plant organs and affects the reflectance, transpiration, and fluorescence of the tissue.
Such alterations are ultimately detectable by the aforementioned methods (Elke Bauriegel and
Herppich, 2014; Al Masri et al., 2017). These methods are therefore indirect measurements
as they do not directly detect the presence of fungal tissue or toxins but rather the effect of
the pathogens on the plant. An exception is reflectance, as it might change due to a change
in plant physiology, as well as due to the presence of fungal material (e.g. pinkish mycelium;
Qiu et al., 2019). Nevertheless, these sensor-based methods might be more sensitive or more
objective and thus informative than visual ratings.

CF is a technique for indirectly estimating the efficiency and status of the photosynthetic
apparatus. It has been applied for a wide range of examinations of plants and their response
to stressors and environments (Pask et al., 2012). Ajigboye et al. (2016) used a portable
handheld fluorometer to detect various Fusarium species and to describe the progress of
disease in a greenhouse experiment on a single wheat variety and Sunic et al. (2023) used a
similar approach on six wheat genotypes, but also in a potted experiment. Elke Bauriegel,
Giebel, et al. (2011) used CF imaging to measure the impact of Fusarium culmorum on the
photosynthetic status of wheat ears. They analyzed CF image time series of a pot experiment
on a single variety and conducted in-field measurements on three varieties. While a handheld
portable fluorometer is easy to apply and relatively inexpensive, using CF imaging provides
information on spatial patterns of CF values, and these patterns might be more informative
than mere CF values of isolated spots.

Although these studies have shown the potential of CF to distinguish infected tissue from
healthy tissue, its application in variety testing or breeding poses some specific challenges. A
higher number of genotypes needs to be screened in field environments, which increases the
workload and thereby logistical challenges, especially in the context of multilocation trials.
Also adverse effects of outdoor conditions, like restrictions of accessibility due to weather or
field heterogeneity must be taken into account. An important drawback of CF is that samples
must be dark adapted for measurements. This can be done by sheltering samples before and
during measurements or by measuring indoors, however, both methods come with a significant
increase of measurement logistics efforts.

This study tested the suitability of CF to characterize Fusarium spp. infestations on wheat
spikes at a plot level in field experiments. A hand-held FluorPen and a CF imaging device,
the FluorCam, were tested. The different tools come with different benefits. A handheld CF is
relatively cheap and easy to apply, and no special pre-processing of data is required to obtain
results related to Fusarium spp. infestation. A CF imaging device provides spatial information
on infections, but the measurement protocol is more complex to implement and pre-processing
of images is necessary to obtain results related to Fusarium spp. infestation. Both methods
require a dark adaptation of the samples for optimal results.

5.2 Methods

The study consists of four main parts. A greenhouse experiment was conducted to examine the
potential of a FluorPen FP110 (Photon Systems Instruments, Drásov, Czech Republic) to track
disease progression on four varieties. The FluorPen FP110 is a portable battery-powered Pulse-
Amplitude-Modulation (PAM) fluorometer that provides multiple fluorescence measurement
protocols and the OJIP protocol with dark adaptation was used for the greenhouse experiment
(Fig. 5.1a). The approach was then transferred to a real wheat variety field experiment in
a destructive approach, in which for each measurement event, the wheat tillers were cut off,
placed in water and transferred to a dark environment for dark adaptation before running
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the OJIP protocol with the FluorPen (Fig. 5.1b). The same spikes were also analyzed with
the FluorCam CF imaging device. (Fig. 5.1c). Finally, a simple Fv/Fm protocol was applied
to spikes directly in the field without dark adaptation to estimate the potential of CF under
realistic field conditions (Fig. 5.1d).

5.2.1 Greenhouse experiment

Seeds of the four Swiss wheat varieties CADLIMO, CH-NARA, MONTALBANO and PIZNAIR
were seeded in small pots on 2020-11-19 and transferred to a growth chamber on 2022-11-23
for initial plant establishment. The potting soil, contained 25 percent mineral soil, 60 percent
white peat and 15 percent perlite (custom mixture, Ricoter Erdaufbereitung AG, Aarberg,
Switzerland). On 2020-11-26, the plots were transferred to a cold chamber for vernalization.
Twelve plants of each variety were replanted in larger pots with a volume of 3 L and transferred
to the greenhouse on 2021-01-29. Inoculum of Fusarium culmorum was collected in the fields
of Changins in previous years and most virulent strains were propagated on sterilized oat
husks. Inoculation was conducted on six plants of each variety on the main tiller on 2021-04-09,
when most of the plants were flowering with visible yellow anthers. For inoculation, a conidia
solution with demineralized water was adjusted to 10

6conidia mL
�1 using a hemocytometer

(Ajigboye et al., 2016). Cotton balls about the size of a wheat grain were formed and dipped
into the solution and then gently placed inside a lateral floret (F3 or F4 according to Wilhelm
and G. S. McMaster, 1996) of a spikelet in the center of the spike (S5, S6 or S7 according to
Wilhelm and G. S. McMaster, 1996). As a control, cotton balls just dipped in demineralized
water were used for healthy plants. In total, the experiment comprised six healthy and six
inoculated plants of four varieties, or 48 plants in total.

The plants were then placed inside a greenhouse and exposed to 100% humidity for 72 h,
which was maintained with a water nebulizer. Visual ratings of infestation severity on different
spikelets along the spike were then performed on 15 occasions, from 3 days after inoculation
(DAI) to 46 DAI, when all spikes were completely bleached and the disease symptoms were no
longer distinguishable from the senescent spikes, similar to the work of Peiris, Bockus, et al.,
2016, which examined the DON content of kernels in different spikelets with near-infrared
spectroscopy. Five spikelets were labeled with red paint (Fig. 5.1a). The “Center” spike
represented the site of inoculation. “Mid-Tip” and “Tip” represent the spikelets at two and
four positions above the inoculation site, “Mid-Base” and “Base” the spikelets at two and four
positions below. Rating was according to the rating scheme of Mahlein et al. (2019), where a
perfectly healthy spikelet corresponds to a value of 0% and a completely infected and bleached
spikelet to a value of 100%. As bleaching related to senescence is very similar to bleaching
related to early states of Fusarium infestations, senescent spikes were rated according to the
same scale. On nine plants, no visual signs of infection could be found at eleven DAI. A
moistened plastic bag was placed over these spikes for 72 h to reinforce the development of the
disease. After this treatment, all sites of inoculation developed visible Fusarium symptoms.

In parallel to visual ratings, CF measurements were performed with a handheld portable
fluorometer (FluorPen FP110, Photon Systems Instruments, Drásov, Czech Republic) with
the fast induction fluorescence rise protocol, named OJIP (PSI Photon Systems Instruments,
2021), which was proposed to track Fusarium development on wheat by Ajigboye et al., 2016.
For a thorough description of the OJIP protocol and its parameters, see Strasser et al. (2000).
The pots were transferred to a completely dark place prior to measurements and were adapted
to dark for at least 20min. Measurements were then conducted with a weak headlight and by
avoiding directly pointing the light beam at the location of measurements. A leaf clip was
positioned on the flat side of each spikelet and the FluorPen smoothly pressed onto the leaf clip
for the OJIP measurements, which took approximately 10 s for each spikelet. The saturating
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Figure 5.1: Overview on the experimental parts of the study: The OJIP protocol of the FluorPen was
tested on five spike positions on potted wheat plants of four genotypes in a greenhouse experiment and
with dark adaptation prior to measurements (a). The approach was then applied to a field experiment
in a destructive approach, where for each measurement event, wheat tillers were cut off, put into water
and transferred to a dark environment for dark adaptation before running the OJIP protocol with the
FluorPen (b). The same spikes were also analyzed with the FluorCam CF imaging device (c). Finally,
a simple Fv’/Fm’ protocol was applied to spikes directly in the field without dark adaptation. The

icon on the top-left indicates, whether dark adaptation was applied (d).
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illumination was emitted with 2850 µmolm
�2

s
�1 at 470 nm, the actinic illumination pulse

was at 300 µmolm
�2

s
�1 and fluorescence was detected between 667 nm and 750 nm. The

suitability of the different OJIP parameters to distinguish infested from healthy tissues was
tested by analysis of variance (ANOVA), with the model

ParameterOJIP ⇠ Inoculation treatment+ Spikelet position+ V ariety, (5.1)

where effects were considered significantly different at p < 0.01. Visual ratings and OJIP
parameters were compared by visual inspection of the data and by correlation. Statistical
analysis was conducted in R (R Development Core Team, 2022).

The FluorPen assigned a continuous number to each measurement. The Field Book app
(Rife and Poland, 2014) app was used to record this number for the corresponding samples for
a correct attribution of the data in later analysis.

At physiological maturity, the grains were harvested for individual spikelets and weighed.
The rate of Fusarium damaged kernels (FDK) was calculated as the proportion of kernels
with Fusarium symptoms out of the total number of kernels per spikelet. DON content was
estimated by ELISA for individual spikelets of inoculated plants. As very small amounts of
grains were harvested from individual spikelets, the grains were crushed in a mortar and then
placed in 1.5mL Eppendorf tubes together with a steel grinding ball. The Eppendorf tubes
were then placed in a custom-made container and ground to fine flour in a ball grinder. After
each sample, the material used was thoroughly cleaned to avoid cross-contamination. By
weighing the Eppendorf tubes when they were empty and after the ball was removed, the flour
available for ELISA was determined. The flour was then diluted to meet the concentration
needed for ELISA analysis. With just very small amounts of dilution, filtration of the dilution
would have caused too much loss. The solution was thus separated from the solid parts of the
flour in a centrifuge by rotating for 3min at 5’000 rotations min

�1. The concentration-adjusted
solution was then pipetted on the ELISA kit (RIDASCREEN®FAST DON, r-biopharm AG,
Pfungstadt, Germany), with a detection range between 0.2 and 6mg DON kg

�1 flour. From
previous experience, it was known that the DON load for strongly infested samples was often
above this range and heavily infested samples were diluted again by a factor of 10 to stay
within the detection range of the ELISA kit.

To relate the DON loads of the samples to the OJIP parameters, the concept of area under
the disease-progress curve (AUDPC; Jeger and Viljanen-Rollinson, 2001) was used. The area
under the curve (AUC) was normalized for each variety by dividing the AUC values by the
mean of the AUC of the healthy samples of each variety. The normalized AUCnorm of the
inoculated samples was then correlated with the DON loads.

5.2.2 Field experiments

Field experiments (Fig. 5.1b) were sown at Agroscope agricultural research stations in two
locations within Switzerland. At Changins [46�23055.400N 6

�
14

0
20.4

00E, 425 m.a.s.l., the World
Geodetic System (WGS) 84], experiments were sown in the seasons 2020-2021 and 2021-
2022. The soil of the experimental site is a shallow Calcaric Cambisol (Baxter, 2007; Cárcer
et al., 2019). At Cadenazzo [46�9036.8200N 8

�
56

0
5.05

00E, 203 m.a.s.l., the World Geodetic
System (WGS) 84] there was an experiment only in the season 2020-2021 on a Eutric Fluvisol
(Baxter, 2007; Gallet et al., 2003). The three experiments are further referred to as CHA21,
CHA22 and CAD21. The trials comprised 16 wheat varieties currently or recently inscribed in
the Swiss national variety catalog with different levels of tolerance towards Fusarium head
blight (Table S4.1). 13 varieties were winter wheat (ARINA, AXEN, BARETTA, BODELI,
CADLIMO, CH-NARA, DIAVEL, MONTALBANO, PIZNAIR, POSMEDA, ROSATCH,
SCHILTHORN, VARAPPE) and three spring wheat (ARPILLE, FIORINA, QUARNA). Each
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Figure 5.2: Overview on measurements and meteorological conditions in the two experimental sites in
2021 (a & c) and in 2022 at Changins only (b) from sowing until after harvest. Red shows the mean air
temperature, and the shades indicate daily temperature minima and maxima. Cumulative precipitation
is shown as a rising blue line. The vertical green lines indicate the dates of FluoPen measurements
according to the OJIP protocol with dark adaptation and purple indicates FluorCam measurements.
Blue lines indicated rapid Fv’/Fm’ parameter measurements without dark adaptation where the dottet
line in 2022 indicates an approach targeted on symptomatic areas of the spike. Orange lines mark
dates when visual ratings of infestation were conducted. Short black lines indicate inoculation dates.
During the period shaded in red, flouring (BBCH 61 - 69, Lancashire et al., 1991) was observed in the

field. Harvest dates are marked by black lines at the end of the seasons.
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variety was sown in plots in two treatments; “FUS” (with inoculation) and “CON” (control).
Within single plots, a wheat variety was sown in eight rows, with a spacing of 15 cm between
them. Between the plots, separation gaps were kept free of wheat. The gaps were 0.3m between
the long side of the plots and 1m direction of sowing. This resulted in plots of about 1.25m x
4.6m each. Each variety-treatment combination was replicated on four plots. The replications
were arranged in blocks of 4 ⇥ 4 plots and blocks separated with additional border plots. The
four blocks of each treatment were arranged in a 4 ⇥ 2 pattern and the total of 128 plots of the
experiment span 16 rows (which followed the tractor track direction) and 8 columns. The single
plots were arranged in enhanced random designs, which were generated with the R package
DiGGer (Coombes, 2009; http://nswdpibiom.org/austatgen/software). The design was
identical for CHA21 and CAD21 (Fig. S4.1) but differed for CHA22 (Fig. S4.2). In total, the
experiments were about 54m long (in tractor track direction) and about 30m wide. Fertilizers
and herbicides were applied in three splits and at equal rates to all treatments according
to the Proof of Ecological Performance (PEP) certification guidelines Swiss Federal Council,
2013, which represent a minimal standard for best practice for conventional agriculture in
Switzerland. Tables S4.2 and S4.3 provide more detail of the different treatments.

The air temperature and daily precipitation were obtained from Meteoswiss weather stations
(Federal Office of Meteorology and Climatology, https://www.meteoswiss.admin.ch), which
were located about 800m from the experimental site at Changins [46�2403.700N 6

�
13

0
39.6

00E,
458 m.a.s.l., WGS 84], and in direct vicinity of the experiment at Cadenazzo.

The meteorological conditions for the different years and sites are presented in Fig. 5.2
for the period from sowing to harvest together with the timing of inoculation events and
measurement campaigns.

5.2.3 Inoculation of field trials

To carry out artificial inoculations in the field, the same Fusarium culmorum inoculum was used
as for the greenhouse trial. For CHA21, conidia (Karlsson et al., 2021; Pellan et al., 2021) were
dissolved in demineralized water and adjusted to 10

�6 conidia mL
�1 with a hemocytometer

(Ajigboye et al., 2016). The plots were individually inoculated with a backpack sprayer and
a flat fan nozzle with 0.35L of conidia solution per plot. The first inoculations were made
when the first signs of flowering (yellow anthers) were observed for the first time and were
repeated every two to four days. To consider differences in flowering time, the first inoculation
occurred at different dates for different plots and, in total, inoculation was conducted at six
different dates (2021-05-27, 2021-05-29, 2021-06-01, 2021-06-05, 2021-06-07, 2021-06-09, cf.
Fig. 5.2a), where the same plot was just inoculated three times. To ensure humid conditions
for the establishment of the disease, an irrigation system was installed in the field that covered
the entire experiment with eight 360

� impact sprinklers (Fig. 5.1b). Sprinklers were turned
on for more than 15min before inoculation and for several 15min intervals in the morning
after inoculation events on days without rain with a total irrigation rate of approximately
200Lmin

�1 for the entire field (or ⇠ 0.06Lm
�2

min
�1).

2022 was a hot and dry season (Fig. 5.2b), and the inoculation regimen was modified.
Inoculation was carried out for five days in all plots (2022-05-18, 2022-05-20, 2022-05-22,
2022-05-23, 2022-05-25, cf. Fig. 5.2a) with a concentration of 0.5⇥ 10

6conidia mL
�1, starting

on the date the first flowering was observed in the field. To create a humid field environment,
the eight sprinklers were on for up to two hours before inoculation. Inoculation was carried
out in the evening close to or after sunset to reduce exposure of conidia to radiation and to
profit from more humid conditions throughout the night. In the morning after inoculation,
the sprinklers were again on for several 15min intervals to maintain humidity until noon.
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At Cadenazzo, a motorized 12 L backpack sprayer equipped with a 5-nozzle bar was used to
disperse a solution of 106conidia mL

�1 for inoculation on three dates (2021-05-25, 2021-05-28,
2021-05-31, cf. Fig. 5.2c). Approximately 5-6 hours after inoculation, a pass with the same
sprayer with only water was conducted to maintain humidity on the spikes.

5.2.4 Reference rating on field trials

Fusarium infestation was rated using the scales proposed in Moll et al. (2000), where the the
wheat spikes were rated to be at 0% when no symptoms were visible and at 100% when the
whole spike was infested. From each plot, 15 spikes were rated, resulting in 60 spikes per
variety and treatment, and 1’920 rated spikes in total for each measurement campaign. For
CHA21, there were three rating campaigns (2021-06-12, 2021-06-16, 2021-06-22, cf. Fig. 5.2a),
while there were two each for CHA22 (2022-06-02, 2022-06-06, cf. Fig. 5.2c) and CAD21
(2021-06-03, 2021-06-13, cf. Fig. 5.2c).

5.2.5 OJIP on field experiment in a destructive approach

Dark adaptation is time-consuming and often not practical. For this experiment, a semifield
approach was applied. Wheat tillers were detached from the plants in the field, below the top
node. The detached internodes with the spikes were placed in plastic test tubes that were
filled with water (Fig. 5.1b) and transferred to a relatively cool and shaded room for dark
adaptation. The OJIP protocol was then applied to the detached spikes after dark adaptation.

As CF is related to the state of the photosynthetic apparatus, it was tested whether
detaching the spikes from the tillers leads to a systematic difference between detached and non-
detached spikes. To that end, three plants of each variety and treatment from the greenhouse
trial were taken and two secondary tillers (those not used for the principle experiment) were
labeled. One secondary tiller was detached below the top node and placed in water. The
spikes still on the plant as well as the spikes on the detached internodes were then measured
nine times throughout the next 26 h with the OJIP protocol.

There were six OJIP campaigns for CHA21 (2021-06-07, 2021-06-11, 2021-06-16, 2021-06-21,
2021-06-29, 2021-07-06, cf. Fig. 5.2) and two for CAD21 (2021-06-03, 2021-06-13). In both
sites of 2021, three spikes per plot were measured in randomly chosen positions at the top of
the spikelet (around spikelet S10 according to Wilhelm and G. S. McMaster, 1996) and in the
central part of the spike (around spikelet S7 according to Wilhelm and G. S. McMaster, 1996).
For each field-measurement campaign, new spikes were harvested. In CHA22, there were only
two OJIP measurement campaigns (2022-06-02, 2022-06-06, cf. Fig. 5.2), but ten spikes per
plot were measured instead of three for CHA21 and measured in the central part of the spike.
Again, the suitability of the different OJIP parameters to distinguish infested from healthy
tissues was tested by analysis of variance (ANOVA), with the model

ParameterOJIP ⇠ Inoculation treatment+ V ariety, (5.2)

where effects were considered significantly different at p < 0.01. This ANOVA model was also
applied for both CF methods described in the following.

In CHA21, the OJIP measurements covered the period from inoculation to early senescence
and AUCnorm could be calculated. AUCnorm of the inoculated samples was then correlated
with the DON loads.

5.2.6 FluorCam measurements

Although the CF imaging device, a Rover FluorCam FC1000-R (Photon Systems Instruments,
Drásov, Czech Republic) would allow for entering the field, the sequential dark adaptation
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of 128 plots for at least 20min was considered too time consuming and not practical. Thus,
FluorCam measurements were conducted in a dark room.

The detached spikes were placed on a Styrofoam background at a distance of 37 cm from
the rover sensor panel (Fig. 5.1c). The FluorCam could not run the OJIP protocol, which
requires extremely high frame rates of the camera systems. Thus, the widely used ratio of
variable fluorescence Fv and maximal fluorescence Fm (PSI Photon Systems Instruments,
2021) was used instead of the more complex OJIP protocol. The Fv/Fm protocol is fast (⇠
10 s) and describes the maximum quantum yield of primary PSII photochemistry in dark
adapted samples. Please, see Ajigboye et al. (e.g. 2016) and Strasser et al. (2000) and PSI
Photon Systems Instruments (2021) for more details on the protocol. Shutter time was set
to 5 µs, and the sensitivity was 35. The super pulse was set to 100%, which corresponded to
2983 µmolm

�2
s
�1 at a distance of 25 cm from the slight source. For an efficient operation,

two people carried out the measurements. One person operated the FluorCam, while the other
handled the samples. The CF data were saved as TAR files.

For analysis, the TAR files were decompiled with a custom Python 3.8 (van Rossum, Guido
and Drake, Fred L., 2009) script. CF images were then processed using the Python package
“OpenCV” (Bradski and Kaehler, 2000) and “NumPy” (Harris et al., 2020). CF images taken
throughout the different phases of the Fv/Fm protocol were offset against each other according
to the FluorCam protocol. Variable fluorescence Fv was calculated as the difference between
the fluorescence in the absence of photosynthetic light F0 and the maximum fluorescence after
the saturation pulse Fm and used to form the ratio Fv/Fm.

Raw Fv/Fm images were then filtered with an automatic Otsu threshold and cleaned from
noise by morphological erosion. Connected components were detected with “OpenCV” to create
masks for single spikes. Holes within the masks were filled with morphological dilation in one
and two directions. The masks were then applied to the initial Fv/Fm images for a spike-wise
analysis. With advanced infestations of the spikes and towards senescence, the spikes were not
always recognized as whole on Fv/Fm images. In such situations, connected components with
the highest overlap perpendicular to the direction of the rachis were considered as one spike.

With disease progression, the area of the spikes with photosynthetic activity became smaller
and the intensity of Fv/Fm decreased. To capture these two effects in one metric, the median
Fv/Fm per spike was multiplied by the area per spike expressed in numbers of pixels. The
spike-wise index Area⇥med(Fv/Fm) was then normalized by the mean index value per variety
and year to allow for a representation of very different value ranges on one scale.

5.2.7 FluorPen in the field without dark adaptation

With the experience gained through applying the FluorPen and FluorCam in the destructive
experiment, it became very evident that the time-consuming logistics of cutting tillers and
transferring them to a dark environment represent a major obstacle to the everyday use of
this technology. Thus, a workflow without dark adaptation was tested with the FluorPen
device (Fig. 5.1d). Spikes were chosen at random and measured with the “Qy” protocol of the
FluorPen in the central part of the spike to derive the Fv’/Fm’ parameter, which in contrast to
Fv/Fm describes the maximum quantum yield of primary PSII photochemistry in light adapted
samples. The spikes were shaded during the measurement by the body of the person taking
the measurement, as illustrated in Fig. 5.1d. In addition, measurements were taken on the side
facing away from the sun. In CHA21, the method was tested on just two dates (2021-06-21,
2021-06-24 10, cf. Fig. 5.2a). In CHA22, the method was applied more extensively on four
dates (2022-05-31, 2022-06-09, 2022-06-17, 2022-06-21, cf. Fig. 5.2b). Ten spikes per plot were
measured at random positions in the middle to upper part of the spikes (⇠ S6-S11 according
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to Wilhelm and G. S. McMaster, 1996), resulting in 40 spikes per variety and inoculation
treatment.

As a random selection of the measurement spot might miss the infestation of an otherwise
infested spike, a targeted measurement was performed on 2022-06-03 with the FluorPen pointed
at the symptomatic areas of randomly selected symptomatic spikes.

In CHA22, the Fv’/Fm’ measurements covered the period from inoculation to early
senescence and AUCnorm could be calculated. AUCnorm of the inoculated samples was then
correlated with the DON loads.

5.2.8 DON and FDK estimation on field trials

In field trials, DON was estimated on flour samples for individual plots. All inoculated
replication plots were sampled. It was known from previous trials that, as long as no symptoms
were detected by visual ratings, the DON levels of the control plots were below the detection
limit of 0.2mg DON kg

�1 flour. Thus, only one plot per variety was tested for DON among
the control plots as a check measure. 5 g of ground wheat flour was soaked in 100mL of
demineralized water and the containers were shaken thoroughly and regularly for at least 5min.
The dispersion was then filtered through Whatman No. 1 filter and 50 µL were transferred
to RIDASCREEN®FAST DON ELISA kits (r-biopharm AG, Pfungstadt, Germany). Again,
strongly infested samples were diluted once more by a factor of 10 to remain within the
detection range of the ELISA kit.

FDK proportion was visually determined by examining 100 randomly selected kernels from
a well-mixed subsample of the harvested grains.

5.2.9 Experimental design and measurement sequence

When quantitative measurements span a long period, i.e. several hours, temporal trends
might impact the measured values. It is therefore important not only to have an adequate
replicated experimental design, but also to plan measurements accordingly. The sequence
of measurements, from visual ratings to FluorPen and FluorCam destructive experiments to
FluorPen field measurements, always followed a snake-pattern sequence through the plots
within the field, ensuring that no more than eight plots of one inoculation treatment were
measured in a row. This constant switch between inoculated and healthy spikes ensured to
avoid artifacts by the confusion of a potential temporal trend with treatment effects.

5.3 Results

5.3.1 Greenhouse trial

Artificial inoculation of the four varieties used in the greenhouse trial caused Fusarium
symptoms to start at the central spikelet (Fig. 5.1a) and spread, first to the top of the spike
and later also toward the base, before senescence led to a complete bleaching of the spike
(Fig. 5.3). The symptom succession of more susceptible genotypes (e.g. CH-NARA), was more
rapid compared to more resistant genotypes (e.g. PIZNAIR).

When measuring these spikes with the FluorPen and the OJIP protocol, all OJIP parameters
allowed the detection of significant effects (p < 0.01) between inoculation treatments (“Treatm.”),
varieties (“Variety.”), and spikelet positions (“Spikel.”) according to an ANOVA analysis
(Eq. 5.1), for most DAI (Fig. 5.4). For the interaction “Treatm. ⇥ Spikel.”, differences were
significant for most OJIP parameters but only from 3 DAI to 32 DAI. “Treatm. ⇠ Variety”
was significantly different for most of the OJIP parameters from 35 DAI to 43 DAI. ‘Spikel. ⇥
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Figure 5.3: Succession fo Fusarium culmorum infestation in the greenhouse trial for two varieties
(CH-NARA & PIZNAIR) and two inoculation treatments (FUS: Fusarium; CON: Control.) from 4 to

44 days after inoculation (DAI).

130



5.3. Results

Variety” and “Treatm. ⇥ Spikel. ⇥ Variety” were just significantly different for relatively few
parameters and DAI.

Especially the parameters Area, Fix Area, HACH Area, Fm, Fm/F0, Fv, Fv/F0, 'D0
,

'E0
, 'P0

and 'Abs seem promising based on a visual inspection. Although some parameters,
e.g. 'E0

, might slightly outperform Fv/Fm, the latter is a widely used CF parameter which
can be obtained from more simple CF protocols than OJIP. It was thus chosen for further
investigation.
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Figure 5.4: p-values of ANOVAs for 3 to 46 days after inoculation (DAI) on the greenhouse experiment
for the factors “Treatm.”, “Variety” & “Spikel.” and their interactions. Significance levels: NS: p >

0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001. Colors indicate significance at p < 0.01.
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Fv/Fm and visual ratings showed a very similar temporal development (Fig. 5.5) and
well represent the disease progression based on visual inspection (cf. Fig. 5.3 & Fig. 5.5).
The variability of Fv/Fm was mostly lower than that of visual ratings and more importantly
showed a higher temporal continuity. On the central spike, where the inoculation took place,
significant differences could be detected between inoculated and healthy plants after as early
as 3 DAI. CH-NARA is known to be very susceptible to Fusarium (Strebel, Levy Häner,
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Figure 5.5: Fv/Fm and visual ratings for the greenhouse trial for four varieties and the five spikelet
positions from 3 to 46 days after inoculation (DAI). Values are summarized by varieties and treatments
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restricted for the range from 0 to 1 (Fv/Fm) and 0 to 100 (VisRating) respectively. FUS: Fusarium;

CON: Control.

132



5.3. Results
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Figure 5.6: Correlation between visual ratings and Fv/Fm values for the greenhouse experiment.
Values were grouped by variety, treatment, spikelet position and measurement event (DAI). Group-wise
means were correlated with each other. Each dot represents the mean of the six replications of one
genotype, in one treatment on one DAI and for one spikelet position. DAI: Days after inoculation.

Watroba, et al., 2024), which is clearly visible in both, visual ratings and Fv/Fm values. The
disease developed rapidly in the central spikelet and symptoms were detectable on the upper
spikes (Mid-Tip, Tip) after approximately 12 DAI and on the lower spikes (Mid-Base, Base)
after approximately 18 DAI. Infestations were stronger on top spikelets than for the lower
spikes, which is characterized by a larger difference between the curves of the two inoculation
treatments (FUS & CON). On the other three genotypes, trends were not as pronounced.
MONTALBANO, which is supposed to be a resistant variety, showed a larger difference
between inoculation treatments than the somewhat susceptible two varieties CADLIMO and
PIZNAIR. Symptoms on upper and lower parts of the spike developed at the same time.
CADLIMO and PIZNAIR maintained low Fusarium rating scores and a high Fv/Fm value
long into the season and bleaching only started approximately 10 days before the onset of
senescence of the spikes after 20 DAI. Visual rating and Fv/Fm started to increase/decrease
at the same time for the individual varieties and treatments, thus, CF could not detect the
Fusarium infestation presymptomatically.

Of the nine spikes that had not developed symptoms up to 11 DAI, four were PIZNAIR,
three were CH-NARA, one was CADLIMO, and one was MONTALBANO. This could have
contributed to the mild infestation of PIZNAIR, while the infestation of CH-NARA was,
nevertheless, severe.

When visual ratings and Fv/Fm were grouped by treatment, variety, and measurement
events, and group-wise means correlated with each other, the very strong correlation (r2 =
0.96) confirmed the good correspondence between the two (Fig. 5.6). The strong correlation
was also driven by clusters of data points with visual ratings of 0 and 100 respectively. But
also after removing points with 0 or 100 ratings from the data, the correlation remained very
strong (r2 = 0.82, Fig. S4.3).

The DON content, as visual ratings and CF parameters, was also highest for the central
spikelets of the inoculated treatment and in general for the variety CH-NARA (Fig. 5.7a). In
contrast to visual ratings and Fv/Fm, the DON concentration of upper spikelets was very low,
except for CH-NARA. For lower spikelets, the DON concentration was very similar, regardless
of the differences for visual ratings and Fv/Fm. The “Base” spikelet of CH-NARA accumulated
almost no DON.

Grain weight was generally lower for the inoculated spikelets. The difference was generally
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Figure 5.7: Spikelet-wise DON content (a), grain weight (b) and FDK rate (c) for the greenhouse
experiment. The red line in (a) shows the legal limit of 1250 µg DON kg

�1 flour (Zorn et al., 2018).

most pronounced on the “Center” spikelet and the least pronounced on the “Base” spikelet
(Fig. 5.7b). FDK rate was close to or at 100% for almost all inoculated spikelets (Fig. 5.7c).
AUCnorm was only correlated with DON for inoculated samples and the correlation was
moderate (r2 = 0.35).
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Figure 5.8: Correlation between DON content and AUCnorm of Fv/Fm values for single spikelets of
the greenhouse trial. Only samples within the inoculated treatment were correlated.

5.3.2 Field trial - Infestation levels according to visual ratings

Inoculations worked well in all field experiments and led to very strong infestations in Changins
in the rather wet year 2021 (Fig. 5.2a & S4.4) as well as in the hot and dry year 2022 (Fig. 5.2b,
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S4.5 & S4.12). At Cadenazzo, infestation levels were low to intermediate, although the season
was wet too (Fig. 5.2c & S4.6).

5.3.3 Field trial - FluorPen with dark adaptation
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Figure 5.9: Fv/Fm values of the destructive experiment over time for spikes measured on plants
(PLANT) and for detached spikes (CUT). Three spikes of four varieties were measured on two positions

each, resulting in 24 sequences of measurements for detached and connected spikes respectively.

To measure whether detaching the spikes for measurements had a systematic effect on
Fv/Fm, three tillers (upper internode with spike) per variety of the greenhouse experiment
were detached from the plant and put in water. Fv/Fm values of detached tillers were not
systematically different compared to spikes still attached to the plant (Fig. 5.9). There was
considerable variability between the measurements, but the variability was not attributable to
whether the spikes were detached or not for 26 h after being detachable from the plant, based
on a visual inspection of the data.

ANOVA p-values of the OJIP parameters (Eq. 5.2) on the CHA21 field trial showed a
similar pattern as for the greenhouse experiment with Fv/Fm being a promising parameter to
distinguish inoculation treatments, varieties, and their interaction (Fig. 5.10). Thus, also for
the field trial, the Fv/Fm parameter was further investigated.

Fv/Fm from the OJIP protocol was not significantly different for inoculated and non-
inoculated plots for the first date of measurement at Changins in 2021 (2021-06-07, Fig. 5.11).
Already at the second date (2021-06-07) the more susceptible varieties (e.g CH-NARA,
Table S4.1) started to show significant differences between inoculation treatments, which were
even more pronounced for later measurement dates up to senescence. More resistant genotypes
such as e.g. ARINA or ROSATCH developed significant differences between treatments only
later, before the differences between treatments narrowed again in the senescence process.

In Cadenazzo, all OJIP parameters were significantly different for the factor “Variety” at
p < 0.01. For “Treatm.” and “Treatm. ⇥ Variety”, parameters were not different for most
situations (Fig. S4.7). Only fj and fo were significantly different for “Treatm. ⇥ Variety” on
2021-06-17. Fv/Fm from the OJIP protocol was not significantly different for neither of the
two measurement events (Fig. 5.12).

In 2022, OJIP with dark adaptation was only carried out at Changins and on two dates,
but with 10 spikes per plot. The effects were again significant for most OJIP parameters for
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Figure 5.10: p-values of ANOVA on OJIP parameters of dark adapted measurements on field samples
at Cadenazzo in 2022 for the factors “Treatm.”, “Variety” and their interaction. Significance levels: NS:

p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001, and colors indicate significance at p < 0.01.

inoculation treatments, varieties, and their interaction on the first date and for almost all
parameters on the second date (Fig. S4.8 & Fig. S4.9).

5.3.4 Field trial - FluorPen without dark adaptation

The first field tests of the rapid in-field protocol to measure Fv’/Fm’ parameter without
dark adaptation at Changins in 2021 revealed that even suboptimal conditions without dark
adaptation were allowing the derivation of CF parameters with significant differences between
inoculation treatments.

Fv’/Fm’ parameter was significantly affected by the inoculation treatments, varieties and
their interaction at p < 0.01 for both dates, except for the inoculation treatment on 2021-06-24
(Fig. S4.10 & Fig. S4.11).

In 2022, the Fv’/Fm’ parameter was significantly affected by the inoculation treatments,
varieties and their interaction at p < 0.01 for all dates dates (Fig. 5.13 & Fig. 5.14).

When measurements were performed with a targeted rapid Fv’/Fm’ protocol, the differences
between inoculation treatments became even more evident (Fig. 5.15). The differences between
treatments were more perceivable in the targeted approach on 2022-06-03 compared to a
random approach on 2022-06-09 (Fig. 5.14) based on a visual comparison of boxplots, regardless
of the fact that for the latter, symptoms were already six days more advanced. Inoculation
treatments, varieties and their interction had a significant effect on Fv’/Fm’ according to
ANOVA at p < 0.001 (Eq. 5.2) .
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Figure 5.11: Fv/Fm parameter of OJIP data, Changins 2021. The 16 tiles represent the 16 wheat
varieties tested over time. Dates are the individual measurement events. Inoculation treatments
are indicated by color. 3 spikes were measured on spikelets toward the tip of the spike and on a
central spikelet for each plot, resulting in n = 24 measurements from four replication per variety and

inoculation treatment for each date of measurements (768 measurements for each date in total).
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Figure 5.12: Fv/Fm parameter of OJIP data, Cadenazzo 2021. The 16 tiles represent the 16 wheat
varieties tested over time. Dates are the individual measurement events. Inoculation treatments
are indicated by color. 3 spikes were measured on spikelets toward the tip of the spike and on a
central spikelet for each plot, resulting in n = 24 measurements from four replication per variety and

inoculation treatment for each date of measurements (768 measurements for each date in total).
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Figure 5.13: p-values of ANOVA on rapid Fv’/Fm’ parameter without dark adaptation at Changins
2021 for the factors “Treatm.”, “Variety” and their interaction. Significance levels: NS: p > 0.05; *: p

< 0.05; **: p < 0.01; ***: p < 0.001, and colors indicate significance at p < 0.01.
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Figure 5.14: Rapid Fv’/Fm’ parameter without dark adaptation, Changins 2022. The 16 tiles
represent the 16 wheat varieties tested over time. Dates are the individual measurement events.
Inoculation treatments are indicated by color. 10 spikes were measured on a spikelet from the central
spike for each plot, resulting in n = 40 measurements from four replication per variety and inoculation

treatment for each date of measurements (1’280 measurements for each date in total).
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Figure 5.15: P-values of rapid Fv’/Fm’ parameter in 2022 Changins field trials when using a targeted
approach. The FluorPen was positioned on areas of the wheat spikes with visible Fusarium symptoms.
10 spikes were measured on a spikelet from the central spike for each plot, resulting in n = 40
measurements from four replication per variety and inoculation treatment (1’280 measurements in

total).
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(a)

(b)

Figure 5.16: Rover FluorCam data for the varieties ARINA (a) and CH-NARA (b). CF images were
taken on three dates for control (non-inoculates) and inoculated spikes. The columns on the left show
each treatment show raw values of Fv/Fm in the figure). Columns on the right show the masks for the

individual connected components found on on the CF images and used for analysis.
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Figure 5.17: Area⇥med(Fv/Fm)norm index from FluorCam images of spikes for Changins in seasons
2021 and 2022. The 16 tiles represent the 16 wheat varieties tested over time. Dates are the individual
measurement events. Inoculation treatments are indicated by color. In 2021, 3 spikes were measured
for each plot, resulting in n = 12 measurements from four replications per variety and inoculation
treatment for each date of measurements (384 spikes for each date of 2021 in total). In 2022, 10 spikes
were measured for each plot, resulting in n = 40 measurements from four replications per variety and

inoculation treatment for each date of measurements (1’280 spikes for each date of 2022 in total).

141



Chapter 5. Evaluating the potential of chlorophyll fluorescence to detect and rate Fusarium
head blight on field experiments for winter wheat variety testing

5.3.5 Field trial - Rover data

CF imaging with the stationary rover FluorCam data allowed to well track the development of
Fusarium symptoms and to distinguish heavily infested from healthy spikes. In CF images
(e.g. Fig. 5.16), non-inoculated spikes maintained higher Fv/Fm values on the whole spikes
and the Fv/Fm intensity decreased only toward maturity, but still, the whole spikes showed
photosynthetic activity. For the very resistant variety ARINA, the Fv/Fm intensity decrease
was very similar between non-inoculated and inoculated spikes. For the very susceptible variety
CH-NARA, the decrease was much more pronounced for the inoculated spikes. Already on
2022-06-01, inoculated CH-NARA spikes featured patches without photosynthetic activity. On
2022-06-08, already large proportions of the spikes showed little to no photosynthetic activity.
Finally, on 2022-06-15, photosynthetic activity was mainly limited to the peduncles and culms.

Area⇥med(Fv/Fm)norm summarized the photosynthetic activity and the status of PSII
in one metric, which was used to analyze the results statistically (Fig. 5.17). When comparing
the two varieties ARINA and CH-NARA just examined on CF images, (Fig. 5.16), Area⇥
med(Fv/Fm)norm values remained similar for ARINA up until the last measurement date
in both years and even on the last date, the quartiles of boxplots of the two inoculation
treatments still overlapped. In contrast, the quartiles of CH-NARA did not overlap on the
second date already.

The ANOVA analysis (Eq. 5.2) showed, that the inoculation treatment significantly
impacted the Area⇥med(Fv/Fm)norm values except for the first measurement dates in each
year. The interaction of inoculation and variety always had a significant effect, while the
variety had a significant effect on the values on most but not all dates at p < 0.001 (Fig. 5.18).
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**
***
*

**
***
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***
***

Treatm. Variety Treatm. x Variety

2022−06−15
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0.0075

0.0100
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Figure 5.18: p-values of ANOVA on Area ⇥ med(Fv/Fm)norm index for the factors “Treatm.”,
“Variety” and their interaction. Significance levels: NS: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p <

0.001, and colors indicate significance at p < 0.01.

5.3.6 Field trial - DON content

DON content was above the legal threshold of 1250 µg DON kg
�1 flour (Zorn et al., 2018) for

all varieties in CHA21 and CAD21 except for the variety QUARNA in CAD21 (Fig. 5.19a). In
CHA21, even the non-inoculated control plots were close to or above the threshold, though the
visual rating just revealed a mild infestation of some spikes in the control treatment (Fig. S4.4).
BARETTA, CH-NARA, MONTALBANO and POSMEDA were above the threshold in CHA22,
while the other varieties were around the threshold.

In CHA21, CH-NARA showed the highest concentration of DON, but even QUARNA,
which showed the lowest DON concentration, was about 16 times above the threshold. Also in
CHA22, CH-NARA showed the highest DON concentration, which was in line with the visual
ratings, which were also highest for CH-NARA inf CHA21 and CHA22 (Figs. S4.4 & S4.5).
Also BARETTA, MONTALBANO and POSMEDA were among the most contaminated in
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Figure 5.19: Deoxynivalenol (DON) (a) and proportion of Fusarium damaged kernels (FDK) (b) on
field trials. Columns indicate different treatments, rows different years and locations. The red line in
(a) shows the legal Swiss limit of DON concentration of 1250 µg DON kg

�1 flour (Zorn et al., 2018).

both years at Changins, although they showed rather intermediate visual ratings. For CAD21,
FIORINA featured the highest DON concentration, although it showed very low visual ratings.

FDK proportion corresponded well to the DON content for CHA21, but for CHA22 and
CAD21, the correspondence was low. Only CH-NARA in CH22 showed an exceptionally high
DON concentration and FDK proportion at the same time.

5.3.7 Field trial - DON content and AUC

If measurements covered the infestation period from inoculation to senescence, the plot-wise
AUCnorm could be calculated and correlated with the DON content. This was the case for
Fv/Fm measured with the OJIP protocol on dark adapted samples on CHA21 (Fig. 5.20a)
as well as for the Fv’/Fm’ parameter derived from the rapid in-field approach without dark
adaptation on CHA22 (Fig. 5.20b). The correlation was significant (p < 0.01), negative and
moderate in both cases, with r

2 = 0.22 for Fv/Fm on CHA21 and r
2 = 0. 18 for Fv’/Fm’ on

CHA22. Only samples within the inoculated treatment were correlated.

5.4 Discussion

In this study, the different CF methods were tested for their suitability to track Fusarium
culmorum infestations on wheat. An initial greenhouse trial with measurements with the
FluorPen at high temporal resolution, revealed the close relationship between visual ratings
and CF parameters such as Fv/Fm. Due to the need for dark adaptation to derive good-quality
CF measurements, transfer to field conditions was and remains challenging.

All CF devices and protocols used in this study were able to track infestations with
Fusarium culmorum in the greenhouse, but also in field conditions, when infestation levels
were high. This was the case for the greenhouse experiment and for both years in Changins
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Figure 5.20: Correlation between AUCnorm and DON content for OJIP based Fv/Fm parameter
from dark adapted measurements of CHA21 (a), and for rapid Fv’/Fm’ without dark adaptation of

CHA22 (b). Only samples within the inoculated treatment were correlated.

(Figs. S4.4 & S4.5). However, when infestation levels were lower, as in Cadenazzo (Figs. S4.6),
the FluorPen failed to find significant differences between treatments.

This was most likely due to the relatively low number of spikelets per plot measured
with the FluorPen (n = 3). However, also the visual rating, which was done more quickly
and thus allowed more spikes per plot to be rated (n = 15), was limited in capturing low
levels of infestation. Nevertheless, even the lower infestation levels at Cadenazzo led to DON
concentrations around the legal threshold or above, while they were far above the threshold in
CHA21. DON concentration in CHA22 was very similar to CAD21, although visual symptoms
were much more severe in CHA22.

Thus, the number of spikes measured per plot is the limiting factor, rather than the
precision of the approach, as infected spikes might escape detection when not all spikes are
infested. This was also confirmed with the targeted rapid Fv’/Fm measurements, where the
difference between the inoculation treatments was increased by selecting an infested area of
the spike for measurements. For visual field ratings, alternative nonlinear rating scales are
known, where a score from 0 to 9 does not represent infestation levels from 0% to 100% but 9
rather distinct classes of infestation, similar to what was used on leaf level in V. Michel (2001)
and on spike level in Mustafa et al. (2023). However, the human eye is capable of detecting
the one single symptomatic spike within a plot. Digital phenotyping approaches would need
to scan all spikes with a perfect accuracy to achieve the same result, which would take an
unrealistic amount of time for all known approaches.

There are new approaches for the phenotyping of Fusarium spp. under field conditions
that are not spike-by-spike, but image-based and do not depend on dark adaptation. Hong
et al. (2022) analyzed RGB images with deep learning and attained a classification accuracy of
93.69%, which might be sufficient for an accurate tracking of the disease at higher infestation
levels, but not at lower levels. However, for a correct characterization of genotype resistance
toward Fusarium spp., low levels of infestation must also be monitored correctly. Still, RGB
sensors have major advantages over other sensors. They are relatively inexpensive and can
capture images quickly, which enables fast measurements and thus the coverage of large areas
in a short time (Grishina et al., 2024).

In the context of CF, Lauterberg et al., 2024 proposed a new CF imaging approach,
based on theoretical non-photochemical quenching, which does not need dark adaptation
but can be applied in daylight with fluctuating light conditions. Although the respective
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study was conducted on drought stress, it can be hypothesized that it would also allow
to detect Fusarium infestations. However, while drastically decreasing the time required
for measurements, individual measurements still take more than 5min, which is still long,
considering that measuring a field experiment as used in the study at hand, consisting of 128
plots, would take approximately 11 h.

The use of hyperspectral imaging, in contrast, comes with the benefit of additional spectral
features that can be exploited, but with the disadvantage of large volumes of data that have to
be processed, which is more time-consuming, as demonstrated by Almoujahed et al. (2022). In
their study, which included eight varieties, they also showed that the classification accuracy for
different varieties ranged from 74.1% to 99%. A variety-dependent accuracy might bias the
resistance classification and thus make a sensible application of such an approach problematic.

Drone-based approaches have a high performance with regard to field surface covered
per time; however, for genotype characterization, their precision might be very limiting. For
example, in Francesconi et al., 2021, the minimal infestation level detected was 20%. At this
level, a DON content above the legal threshold might be expected, as seen in the CAD21
trial, where the DON threshold was mostly reached, while the average infestation level was
below 20%. In addition, the drone supported hyperspectral imaging approach of H. Zhang
et al. (2022) reached an accuracy of 85% when classifying regions into the three classes “mild”,
“moderate” and “severe”, without a differentiation of “mild” infections and healthy. Thus,
while such approaches might have the potential to inform field management decisions (e.g.
Elke Bauriegel and Herppich, 2014; Francesconi et al., 2021; Elias Alisaac and Mahlein, 2023),
they not yet proved the sensitivity needed to characterize resistance levels in wheat variety
testing.

Nevertheless, the different methods tested in this study had different advantages and
disadvantages, which are discussed below.

5.4.1 FluorPen with dark adaptation in the greenhouse

In the greenhouse experiment, infestations could be observed with high temporal resolution.
With a known infestation site, the disease progression along the spike could be tracked. Like
that, experience with the FluorPen in optimal dark adapted conditions could be gained before
transferring the method to the field.

The CF parameters corresponded well to the visual ratings. However, even though CF has
the potential to detect changes in plant status that are usually hidden to the human eye (Valcke,
2021) no presymptomatic detection was possible, which would matter in the context of early
detection for timely fungicide treatment (Francesconi et al., 2021; Elias Alisaac and Mahlein,
2023). CF parameters became increasingly similar between inoculation treatments toward the
late stages of senescence. It therefore can be hypothesized, that CF based approaches have
little specificity for Fusarium spp., and cannot distinguish between Fusarium and senescence
or other diseases that affect the wheat spike in a similar way, such as Microdochium nivale
(Vincke et al., 2023).

Multiple OJIP CF parameters were well suited to distinguish between inoculated and
healthy spikes as early as 5 DAI. Some OJIP parameters were also distinguishing between
genotypes, especially for dates shortly after inoculation. Thus, CF values not only depend on
the level of infestation, but must always be interpreted with respect to genotypes, as the CF
parameters are genotype specific (Keller et al., 2019).

While AUC of Fv/Fm was correlated with DON content, the relationship between DON
content and symptoms is not straightforward. For example, spikelets above the inoculation site
showed similar visual rankings and Fv/Fm values compared to spikelets below the inoculation
site (Fig. 5.5), but rather low DON concentrations on infected spikelets (Fig. 5.7a). Furthermore,
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PIZNAIR had relatively low visual Fusarium ratings but a very similar DON content as CH-
NARA, which had high Fusarium ratings. At the same time, the reduction in grain weight
(Fig. 5.7b) and the FDK proportion (Fig. 5.7c) were not directly related to the rating severity.
Furthermore, when comparing AUCnorm with DON, very high DON content was associated
with very high AUCnorm values and vice versa (Figs. 5.8 & 5.20), which significantly weakened
the correlation between the two. This confirms other studies which concluded that visual
Fusarium spp. symptoms are not a reliable predictor of DON content (Schlang et al., 2008;
Ajigboye et al., 2016; Mesterhazy, 2020).

The use of plastic bags to reinforce infestations on asymptomatic spikes would have been a
severe bias if the greenhouse experiment had been about resistance characterization. However,
the goal of the experiment was to test the FluorPen and the correspondence between visual
observations and CF parameters, for which symptomatic spikes were absolutely necessary.

Applying the FluorCam in addition to the FluorPen to the spikes of potted plants would
have allowed for a more quantitative comparison between the two devices. However, the
FluorCam required the horizontal alignment of the samples. Aligning spikes of plants in pots
horizontally carries the risk of damaging them and having to end the measurement series
prematurely, which is why we only tested FluorPen in the greenhouse experiment.

5.4.2 FluorPen with dark adaptation in the field

The transfer of the method to the field came with multiple challenges. The larger, but still
relatively small number of varieties tested needed to be replicated in a well-designed experiment,
to avoid artifacts of spatial heterogeneity or temporal trends of CF parameters throughout
the day to impact the results. This led to a large number of spikes being measured. Shading
of hundreds of samples from multiple genotypes and replications prior to measurements is
impractical in a day-to-day variety testing routine. Thus, the destructive approach was applied
as a compromise where samples from a field were measured under controlled conditions.

While CF values are highly variable over time and sensitive to physiological changes of
the plant, CF parameters with relatively little variation within genotypes and inoculation
treatments were derived from detached spikes.

When AUCs were calculated from Fv/Fm values on CHA21, moderate correlations with
DON were achieved, confirming the basic functioning of the method. But even though the
destructive approach worked, and Fv/Fm was shown to well track visual ratings, the approach
failed to find a difference between inoculation treatments in low infestations. This is most
likely due to the limited number of CF measurements taken within each plot. With several
dozens, no to say hundreds of measurements per plot, the sensitivity of the approach could
possibly be increased, but again, this would to be too labor-intensive for a day-to-day variety
testing routine.

5.4.3 FluorCam with dark adaptation in the field

These considerations also apply to the FluorCam approach. However, the FluorCam images
provide a spatially integrated analysis of the spikes instead of the point measurements of the
FluorPen. This reduces the risk of missing the infection on a spike. The relatively simple index
Area⇥med(Fv/Fm)norm allowed one to characterize infestation levels. With a more bespoke
image analysis pipeline and the inclusion of deep learning, the segmentation and analysis of
CF parameter intensities could be improved (e.g. Almoujahed et al., 2022; Bannihatti et al.,
2022; Hong et al., 2022).

Yet, the measurements were similarly time-consuming as the FluorPen measurements with
dark adaptation. Equipping an autonomous field phenotyping mobile (Qiu et al., 2019; Xu
and C. Li, 2022) that could operate at night in dark adapted conditions with a FluorCam
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(Lorence and Medina Jimenez, 2022) would allow efficient application of CF imaging. Also,
fusion of CF data with other data types such as RGB or hyperspectral images could increase
the performance (C. Zhang et al., 2022; Mustafa et al., 2023), efficiency and sensitivity of the
approach, as e.g. segmentation of objects in a single-channel image like CF images is more
challenging than on three-channel RGB images.

5.4.4 FluorPen without dark adaptation as a rapid field protocol

The rapid Fv’/Fm’ protocol without dark adaptation was tested because both methods
with dark adaptation, FluorPen and FluorCam, were utterly time-consuming. Compared to
Fv/Fm with dark adaptation, Fv’/Fm’ showed a higher variability of the data within varieties
and inoculation treatments. Nevertheless, it was significantly different between inoculation
treatments, varieties, and treatment ⇥ variety interactions in high level infestations. When
AUC were calculated from Fv’/Fm’ values on CHA22, also moderate correlations with DON
were achieved. The correlation was weaker than the for Fv/Fm values in CHA21, but this
might have largely been due to much lower DON concentrations found in CHA22 compared to
CHA21.

When using a targeted approach with the FluorPen pointing at the symptomatic parts of
the spike, the difference between inoculated and healthy spikes was even more pronounced.
This confirmed the findings of the FluorPen and FluorCam procedures with dark adaptation,
where CF well tracked the visual symptoms of Fusarium spp. symptoms, but the problem lied
in finding the symptoms on field plots, where hundreds of spikes would need to be measured at
low infestation levels, to find symptomatic ears and statistically significant differences between
infested and noninfested plots.

5.4.5 Inoculum used

FHB can be caused by different Fusarium species and is very often associated with Fusarium
graminearum and Fusarium culmorum (H. Buerstmayr et al., 2009; M. Buerstmayr et al.,
2020; Miedaner et al., 2008; Oldenburg and Ellner, 2015; Trail, 2009). However, resistance to
Fusarium graminearum is highly correlated to resistance to Fusarium culmorum (E. Alisaac
et al., 2018; Mesterhazy, 2020). In addition, both produce very similar symptoms and a
microscopic examination is needed for a distinction between the two. Thus, if a phenotyping
approach is capable of identifying wheat genotypes resistant to one Fusarium species, the
genotype is highly likely to also be resistant to the other species. This study only used
Fusarium culmorum as this Fusarium species is abundant on farms around the Agroscope
research station in seasons with conducive conditions and as Fusarium culmorum is easily
cultivated to produce inoculum for artificial inoculations.

5.5 Conclusion

Many studies are concerned with improving the precision and throughput of Fusarium detection,
but few approaches are truly designed for day-to-day practice under field conditions in the
context of disease resistance in variety testing. In this study, a simple FluorPen for tracking
Fusarium culmorum infestations was first tested extensively in the greenhouse and the findings
were then transferred to a field trial, where field grown spikes were harvested and measured
indoors. In addition, these harvested ears were also measured with a FluorCam CF imaging
device. Both methods were able to detect high infestation levels, but both were also time
consuming to apply, and it became apparent that a much higher number of measurements
would be necessary to correctly characterize low infestation levels. Consequently, a rapid CF
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approach with the FluorPen and a full-field protocol without dark adaptation was tested,
which increased the efficiency but also variability of measurements. Thus, the trade-off between
precision and throughput persisted. However, this trade-off is not unique to the CF methods
presented but also applies to all known methods. Here, RGB images, together with light and
fast but precise computer models, are a promising option to increase throughput. But such
models still need to be developed first. For a high precision of Fusarium characterization, the
combination of CF sensors, e.g. with RGB cameras could be optimized and implemented on
autonomous phenotyping mobile for an increased throughput.
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As stated in the Introduction, translational research such as the development of lean pheno-
typing approaches is time-consuming and bound to ignore many shortcuts and simplifications
that would be perfectly acceptable for basic research. One of the biggest challenges is the
collection of high-quality reference ground-truth data over multiple seasons, which is very
time-consuming. Nevertheless, in this thesis, three methodologies of optical lean phenotyping
were introduced, improved, or tested in the context of lean phenotyping (Fig. 1.2) for wheat
variety testing. In this chapter first, the contribution of individual methods to the field of lean
phenotyping is debated and how they could be further pursued. Then, some general challenges
of lean phenotyping will be discussed. It will be shown how the methodologies are interlinked
and how they could be parts of a larger phenotyping concept for the future of variety testing.

6.1 Contribution to the field of lean phenotyping and possible
future pathways

The starting situation for all the approaches presented here was similar. Although publications
had already demonstrated some potential for the individual approaches, many challenges
remained, and it was unclear how the approaches could be utilized in daily practice of variety
testing.

6.1.1 Drone-based lean phenotyping of canopy temperature

Airborne thermal imaging has been proposed for plant phenotyping for many years. Relatively
heavy radiometrically calibrated thermal cameras must be carried by helicopters or larger
drones, but they do not need calibration panels in the field (Deery, Rebetzke, Jimenez-Berni,
James, et al., 2016). When lightweight sensors are used, they are more prone to disturbances,
and radiometric calibration panels in the field are needed. Both complicate the day-to-day
operation of airborne thermography. A helicopter is expensive to use, while distributing and
measuring calibration panels during flight comes with additional work in the field as well as in
post-processing. On top of that, field management, is disrupted if such panels are installed in
the field.

The approach used in this thesis can be applied with an off the shelf drone with an
already well-integrated thermal camera system. Thus, initial material and integration costs
are relatively low and no specific technical knowledge is needed other than to pilot the drone
and to use the correct camera settings to acquire the thermal data. With this equipment,
relative canopy temperature (CT) differences can be reliably measured even without the use
of field reference panels. This significantly increases the TRL of airborne thermography and
reduces the hurdles for technology adoption by variety testing organizations, since the method
proposed in this thesis itself could be largely automated.

Overcoming the need of reference panels would also allow for an automatization of the
whole process, since no staff is needed in the field during measurements. DJI is providing
autonomous drone docking stations (e.g. DJI Dock 3, SZ DJI Technology Co. Ltd., China)
that can be operated remotely and allow full automatization of flying the drone, recharging it,
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and downloading and transferring data to a server. These stocks are compatible with drones
carrying a thermal camera (e.g. DJI Matrice 4TD, SZ DJI Technology Co. Ltd., China),
which would allow for much higher flexibility in choosing the time of flying and possibly
could increase temporal resolution of the measurements. These drones use real-time kinematic
positioning (RTK) systems which allow for a precise flight, reducing also the need for ground
control points for georeferencing. In addition, they carry an RGB camera and thermal and
RGB information could be recorded at the same time, enabling an integrated analysis of CT
together with structural traits such as fractional canopy cover or plant height. The use of such
drone docks has become legal recently in Switzerland, as long as certain minimum requirements
for the surroundings, such as distance from inhabited areas, are met.

In situations where absolute CT values are needed, a single stationary thermal infrared
sensor pointing at a relatively small fraction of the canopy could allow for the referencing
of relative CT measurements from the unreferenced multi-view approach. Together with
an air temperature sensor, which is integrated in the DJI dock, this would also allow the
calculation of indices related to crop water status, such as the crop water stress index (CWSI;
Idso et al., 1981) or the standardized canopy temperature index (SCTI; Das, J. Christopher,
Apan, Choudhury, et al., 2021 ). Such indices might be more closely related to corp water
status than simple relative CT differences.

In conclusion, the automated multi-view thermography approach in conjunction with such
drone docks offers a very interesting option for variety testing organizations for adopting a
new trait.

6.1.2 Comprehensively understanding canopy temperature as a trait is
crucial for its application in lean phenotyping

While canopy temperature is most commonly understood as a proxy measurement of stomatal
conductance, it is a very complex secondary trait. There are many different sources of variance
to be considered in analysis, especially when using a uncalibrated thermal camera.

A thorough understanding of the multiple sources of variance is important for a meaningful
application of airborne thermography. These sources were described in the scientific literature,
but it was difficult to gain an overview and a feeling for the importance of the different variance
sources, as the different phenomena were described in separated, unrelated works and thus a
tangible data example, allowing comparison of different effects, was lacking.

The aim of Chapter 3 was to connect the method of Chapter 2 with agronomic trials
through a demonstration of its application in multiple trials with distinct treatments, and
to relate CT with other primary and secondary wheat traits for a comprehensive study on
determinants of CT in agricultural experiments. The multi-view approach presented in Chapter
2 made it possible to analyze and visualize confounding sources of variance, but Chapter 3
also integrated yield and multiple secondary traits into the analysis. As an applied review
on sources of variance of CT, backed by rich experimental data, Chapter 3 enables potential
users of airborne thermography to grasp many relevant aspects of the method in a condensed
form. This will hopefully prevent practitioners from making conceptual errors in the execution
and analysis of CT measurements.

It should be noted that while canopy temperature is often recommended in research on
drought and heat tolerance, the phenotypic correlation between canopy temperature and yield
within treatments was higher in the rather humid season 2021 than in the dry season 2022.
This is in line with Bustos-Korts, Boer, Malosetti, et al., 2019, where in an early drought
scenario, the phenotypic correlation of green canopy and biomass with yield was reduced
compared to a scenario with only mild or no water stress. This highlights the complexity of
G⇥E interactions and of the relation between primary and secondary traits. To be useful
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in the identification of drought and heat tolerant genotypes, this complexity must be better
understood for the context of temperate but warming climate of Switzerland and Central
Europe. The trials in Chapter 3 only comprised a limited number of genotypes measured in
only two seasons. With an increased number of seasons and genotypes covered, the relationship
between CT, other secondary traits, and primary traits, especially in hot and dry conditions,
might be further examined, e.g. with mixed models similar to Rebetzke et al., 2013.

That said, it remains the question of the value of drone-based thermography for wheat
variety testing beyond the identification of drought- and heat-tolerant wheat genotypes. Within
this thesis, the significant correlations between CT and yield were always stronger compared
to correlations between multispectral indices and yield. Thus, CT is a good indicator of
within-season plant performance, which is interesting per se, but also in the context of events
that lead to partial or complete trial losses toward the end of the season (e.g. thunderstorms,
hail or errors in the operation of machinery). With high-quality in-season measurements,
such measurements could partially compensate for the loss of complete trials and enhance
multi-environment trial (MET) statistics.

6.1.3 Lean phenotyping of phenology and senescence

In contrast to drone-based thermography, where the adoption of a relatively new trait was
proposed for wheat variety testing, Chapter 4 was concerned with the development of a
field-applicable lean phenotyping approach to measure classical variety testing traits in an
automatic manner. A big advantage of such an approach would be the elimination of frequent,
recurring field visits for the assessment of phenology and senescence. In contrast to previous
studies, the PhenoCam approach presented here covered a whole variety testing trial at once,
and not only single genotypes. The mast used allowed for a semimobile setup, which could
be installed in a new location for each of three consecutive seasons and not a fixed setup as
used e.g. in Aasen, Kirchgessner, et al., 2020. While still being at the prototype level, the
full concept of PhenoCams was demonstrated under real variety testing conditions, which
increased the TRL of the approach considerably.

The data quality of the JPEG (Joint Photographic Experts Group) image format was also
shown to be sufficient to track phenology and senescence. This makes data transfer with mobile
networks possible and the handling of SD (Secure Digital) cards obsolete, further improving
the TRL. In addition, this allows for the continuous observation of the fields in almost real
time. Trial problems can be detected in a timely manner and field visits planned according to
the phenological progression of the trials, as observed by PhenoCams.

Most of the proposed improvements on the PhenoCam methodology, such as digital
image stabilization and image quality assessment, are easily implemented by people with the
appropriate knowledge. However, it might be more difficult to find a mast setup with a lower
footprint that is still high enough, stable, and affordable. Here, a possible alternative would
be the installation of a fixed phenotyping tower with a height of, for example 40m. With such
a mast in the center of a research field, plots could be observed at a less oblique angle in a
circular area with a diameter of about 400m (depending on plot size). Such a setup would
lead to less flexibility and to higher initial costs, but it would also allow for more reliable
recording of continuous measurements.

The DJI drone docking stations that were already mentioned for airborne thermography
could also be an interesting option to derive RGB images of the experiment at a high temporal
resolution. One option would be to create orthomosaics at a high temporal resolution, without
the need for frequent field visits. But already having maybe three to four drone flights per
day, weather permitting, taking only single overview images of individual experiments with a
near-optimal viewing geometry could be an interesting alternative to PhenoCams.
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6.1.4 Chlorophyll fluorescence as a tool for disease detection in lean phe-
notyping

The aim of translational research for lean phenotyping is to examine and develop phenotyping
methodologies towards a higher TRL. However, sometimes its role is also to highlight short-
comings of proposed approaches, which have to be overcome before an approach can be further
pursued.

Chlorophyll fluorescent (CF) can be used to well track Fusarium symptoms on single spikes.
But to detect and quantify the disease at relevant infestation levels in the field, high precision
but also high throughput is necessary. To our knowledge, no such method is currently available.
In the near future, the use of neural networks to analyze RGB images seems most promising, as
RGB images can be recorded inexpensively and processed with a reasonable effort. Including
technologies like hyperspectral imaging or chlorophyll fluorescence imaging might help to
increase the precision of detection, but this always comes at the cost of significantly higher
initial investments and lower throughput.

6.2 Multidisciplinarity of lean phenotyping and limited resources

What all of the methods had in common was their multidisciplinary nature. Some manufactur-
ing skills were required to set up the PhenoCams, although mostly consumer grade hardware
was used. Software engineering skills were required for the image analysis pipelines. The
operation of the drones and the processing of the photogrammetry data contained remote
sensing user aspects. Geographical information systems (GIS) were used to organize and
analyze the data. The analysis of the extensive measurement data required advanced statistical
methods. Finally, these data had to be interpreted meaningfully and critically in the agronomic
context of wheat variety testing.

Co-operation with many specialists and experts was therefore essential for the success of
the individual methods. Many aspects of the different methods could have been refined or
automated with more resources and time. Experts in the disciplines mentioned above would
have had much to contribute to the quality and efficiency of the methods. However, this was
not possible due to the limited time and resources available for this thesis. Yet, this reflects
the reality of variety testing. Resources must be used in a targeted and needs-based manner.
Variety testing requires methods that work and create added value. The high initial investment
costs, even if they would pay off later, can be seen as a major obstacle to the implementation
of lean phenotype in variety testing.

6.3 System integration and new technologies

This thesis addressed three lean typing methods in four separate chapters. An important next
step would be the combination of these and other approaches in an integrated phenotyping
setup. For example, PhenoCam could be used to determine optimal timing for thermal
camera flights and will also enhance the interpretation of thermal data through a phenological
characterization. The same holds for the screening of Fusarium or other diseases and other
traits, where knowing the timing of the phenological development but also, for example, the
exact date when a damage occurs in the field, would help to make more sense of the collected
data.

One downside of digital phenotyping is the huge amount of data produced, as analyzing and
organizing such large amounts of data is challenging (Coppens et al., 2017). Nevertheless, an
integrated phenotyping setup offers the possibility of collecting good quality data at different
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locations in a standardized way. Here, too, digitalization offers new possibilities for structuring
and evaluating the data.

Analyzing multiple features simultaneously is challenging, but can reveal emergent infor-
mation. For example, Roth, Binder, et al., 2024 showed how the dynamics of trait values
are more valuable for breeding than the mere trait values at individual dates. The same
applies to contextualization with weather data (F. Yang et al., 2023), which is now available
for many regions of Central Europe with high temporal and spatial resolution. In particular,
the differentiation between avoidance and tolerance to biotic and abiotic stresses could be
improved in this way. Since this dissertation began in June 2020, great progress has been
made in many technologies but especially deep learning. This has opened up new possibilities
in the analysis of images, but also of data in general. Although new challenges arise in the
computer-aided search for emergent dynamics (M. Yang et al., 2024), these new approaches
offer new opportunities to analyze high-dimensional data from breeding and variety testing.

Based on such computer models, intelligent decision support systems could be developed
to define suitable genotypes for appropriate environments (F. Yang et al., 2023). Such support
systems might also be helpful, since the period between harvest and publication of lists of
recommended varieties for the next season or for breeding, the period before selection decision,
is short (Roth, 2021).

On the side of trait assessment, high spatial resolution satellite images offer new oppor-
tunities to observe field trials (Pinto et al., 2023; Hu et al., 2024), although they depend on
cloud-free conditions during relevant crops stages, which can be a limitation in Central Europe.
An alternative approach are autonomous field robots that are less dependent on cloud-free
conditions (Xu and C. Li, 2022).

6.4 Use of new variety testing traits to inform breeding

While breeding and variety testing go hand in hand to enable farmers to grow high-performing
and locally adapted varieties, it is very important that these two processes remain separate.
Breeding is very often done by private companies, while variety testing is often public. If variety
testing was carried out by breeding companies, they could promote their own varieties, but
objective judgment is of great importance. Nevertheless, data generated in variety testing is very
valuable for breeding. In METs, different sets of genotypes are sown over the years in different
locations under different cropping systems. This generates many G⇥E⇥M combinations, which
can be used for a better understanding of G⇥E⇥M interactions. If secondary traits such as
CT, fractional canopy cover or an improved assessment of plant development were included in
such variety testing data, it could further improve the understanding of yield formation for
breeding purposes (Bustos-Korts, Boer, Malosetti, et al., 2019).

6.5 Data dissemination

The best data is of no use, if it is not shared with the relevant stakeholders. The Grains
Research and Development Corporation (GRDC) of the Australian government is exemplary
in this respect. It not only compiles lists of recommended varieties from the national variety
trials (NVT), but also makes the results of the trials directly available online in a user-friendly
format (https://nvt.grdc.com.au/trial-results). In addition, it operates an app with
which the data can be searched according to criteria such as sowing time, trial region or variety
(https://app.nvt.grdc.com.au/lty/table). With additional new traits, as described in the
previous section, such data could be further enriched.
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Chapter 6. General discussion and conclusion

6.6 Transferability to other crops

Airborne multi-view thermography and PhenoCams were developed and tested on wheat
in this thesis, but the methods should be transferrable to other crops. For other cereals,
multi-view thermography would suffer from the same drawback of soil visible between rows
and confounding CT estimates. For crops with almost full canopy closure, such as soybeans,
the application of this method should even be more easy. When applying PhenoCams to
other crops, the plant development traits would differ, but the hardware, and mostly even the
analysis pipeline, would stay the same. Only the temporal features selected from the RGB
space would change.

6.7 Conclusion

This work provides methodologies and insight for three optical lean phenotyping methods in
the context of wheat variety testing. It would not be realistic to go from TRL one to nine in
one step, but we pushed the TRL of both drone-based thermography and PhenoCams towards
a higher level. We always did so with a strong focus on future applicability, without shying
away from addressing or highlighting the challenges of workflows and methods, which is crucial
for translational research. For drone-based thermography, a multi-view analysis workflow was
proposed, with which the large temporal variability of thermal imaging can be estimated and
corrected for, thereby improving the consistency and genotype specificity of CT estimates. This
method was then applied to better understand the manifold sources of variance in CT estimates
in wheat plot experiments. A strong link between CT and yield was found in conditions
without water limitation and phenotypic correlations with other traits such as FCC and plant
height were consistently significant and often strong. By applying multi-view thermography
on more genotypes in more environments, a better understanding of the interaction of the
different traits and their impact on the correlation between CT and yield could be obtained
in the future. With PhenoCams, we improved a mobile setup and workflow to observe the
temporal development of phenology and senescence in wheat, which are important for selecting
varieties that are well adapted to local conditions. In addition, PhenoCams can be used to
better contextualize other measurements, e.g. to determine whether a variety performs well
due to stress avoidance or stress tolerance. Finally, chlorophyll fluorescence with a hand-held
device but also with a chlorophyll camera was shown to be applicable to detect strong levels
of Fusarium infestations on field experiments and to discriminate resistant genotypes from
susceptible ones. However, the method lacks throughput, which must be increased to detect
lower yet relevant levels of Fusarium infestations. We hope to have contributed our little part
to the future of variety testing by increasing the quality and efficiency of phenotyping methods.
This would finally lead to better information available to producers and enable them to close
the on-farm yield gap by sowing varieties that are well aligned with local environments and
production targets.
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S1 Supplementary Materials -
Improving drone-based uncalibrated
estimates of wheat canopy temperature
in plot experiments by accounting for
confounding factors in a multi-view
analysis

S1.1 Experimental design of EuVar

Column No.

21 3 27 13 17 16 3 23 11 30 26 27 13 26 18 2 8 29 13 6 10 14 23 30 17 13 25 10
9 4 13 10 14 2 27 17 22 24 2 10 2 16 29 21 30 13 30 23 7 25 21 12 26 16 18 9

22 8 1 6 7 1 28 13 6 21 17 12 15 6 11 15 5 10 1 15 18 17 10 19 5 30 15 8
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11 17 20 8 25 22 20 2 16 18 13 15 12 30 14 1 3 26 21 20 28 2 24 8 11 28 14 4
24 2 14 28 27 21 1 29 18 11 22 7 20 9 5 7 22 18 3 9 4 16 26 9 10 12 23 3
19 6 15 18 11 9 30 25 5 3 16 20 24 10 17 4 14 17 24 27 8 3 22 6 19 8 27 2
16 18 5 29 4 24 21 8 24 8 25 5 25 7 1 28 24 12 11 16 26 28 13 20 3 24 7 1
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1 17 21 24 17 10 21 3 9 23 14 1 30 2 10 18 9 28 8 10 19 1 14 23 23 16 7 1

Row No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Treatments: maximal medium minimal

EuVar22

Rep 1 Rep 2 Rep 3

EuVar21

Rep 1 Rep 2 Rep 3

Figure S1.1: The experimental design of EuVar for the two years. The numbers inside the blocks
indicate the genotypes.
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S1.2 Details on Field treatments

Table S1.1: Overview of trial treatments and most important field interventions for all trials. "too
wet" indicates that treatments were intended but could not be applied as conditions were too wet and

heavy machinery could not enter the field.

Herbicides Fertilization [kg/ha]

Experiment Treatment Sowing
date

Harvest
date

Monocot.
1st

Monocot.
2nd

Dicot. Growth
regulator Fungicide N CaO MgO SO3

EuVar21

Minimal

2020-10-22 2021-07-20 Archipel® too wet too wet

- -

140 15 9 -Medium Moddus® -

Maximal Moddus® Amistar®

EuVar22

Minimal

2021-10-15 2022-06-30 Archipel®
Othello
Star®

Cleave®/
Express Max®

- -

140 23 36 30Medium Moddus® -

Maximal Moddus® Amistar®

Table S1.2: Chemical compositions of field treatments and quantities applied.

Procuct Active ingredient(s) Application rate [g/ha] Producer

Archipel®
Iodosulfuron-methyl-sodium 9

SyngentaMesosulfuron-methyl 9
Mefenpyr-diethyl 27

Moddus® Trinexapac-ethyl 125 Syngenta

Amistar®
Azoxystrobin 200

SyngentaCyproconazole 80

Othello Star®

Iodosulfuron-methyl-sodium 9

Bayer
Mesosulfuron-methyl 9
Mefenpyr-diethyl 27
Thiencarbazone-methyl 7.5

Cleave®

Fluroxypyr 90
SyngentaFluroxypyr-meptyl 130

Florasulam 23

Express Max®
Metsulfuron-methyl 5

SyngentaTribenuron-methyl 5
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S1.3 Overview on flights

Table S1.3: Overview on number of thermal measurements per date.

Year Date No. of flights

2021
2021-06-12 13
2021-07-01 9

2022

2022-05-14 3
2022-05-18 3
2022-06-04 6
2022-06-11 5
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S1.4 Environmental conditions
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(a) Weather overview of growing seasons 2021
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(b) Weather overview of growing seasons 2022

Figure S1.2: (a) and (b) show the general weather conditions during the growing seasons of the
years 2021 and 2022 from January until after harvest. The red line shows the mean air temperature
measured at 2m above the ground and the shades indicate daily air temperature minima and maxima.
Green dashed lines represent the measurement dates. Cumulative precipitation is shown as rising blue
line. During the period shaded in red, heading was observed in the field and harvest dates are marked

by black lines.

S1.5 Flight campaigns

Optimal conditions for TIR imaging surveys are a clear blue sky, hot temperatures and little
or no wind (Perich et al., 2020). In 2021, weather conditions were often sub-optimal for flying
(rain and cloud cover throughout the growing season) (Fig. S1.2a). On rare days with suitable
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weather, as many flights as possible were done on one experiment before, during and after
solar noon.

2022 was a very hot and dry year (Fig. S1.2b). The phenological window suitable for
flying was short but within this window, conditions were often suitable for TIR imaging.
Consequently, in season 2022, flights were conducted on more days but on individual days,
with less flights per day than in 2021. Based on results of 2021, flights were restricted to
times after 12:00 in 2022. Fig. S1.2 provides an overview on when TIR measurements were
conducted within the growing season while S1.9 and S1.10 show, on what time of day the
flights were conducted during the single days. In total, 39 flights were conducted (Table S1.3).

S1.6 Camera settings and flight planning

Flights were conducted with a DJI Matrice 200 drone (SZ DJI Technology Co. Ltd., China)
that carried a DJI Zenmuse XT TIR sensor equipped with a 9 mm, f/1.4 lens. Pixel resolution
of 640 x 512 was achieved by individual uncooled VOx microbolometers arranged in a focal
plane array. The field of view (FOV) was 69° x 56°. Temperature was measured in the
wavelength range from 7.5� 13.5 µm and thermal sensitivity was < 50mK. In high gain mode,
the camera could measure temperature in the range from -25 �

C to +135
�
C. The absolute

measurement accuracy was ± 10
�
C according to manufacturer. The external parameters

were set in DJI Pilot software (SZ DJI Technology Co. Ltd., China) to the same values for
all flights using DJI default settings. Scene emissivity was set to 100%, background and
air temperature were set to 22

�
C. The sensor provided the option of periodical flat field

correction throughout measurement to reduce the noise of non-uniformity effects. This periodic
compensation would reduce comprehensibility of drift effects. In addition, Kelly et al. (2019)
showed that non-uniformity correction alone was not sufficient to correct for drift effect during
flights. Flat field correction was therefore deactivated following Mesas-Carrascosa et al. (2018).

Flights were planned with DJI Pilot software. The drone flew over the plots at a height of
approximately 40m on a path that was defined as a way-point mission. This allowed for a
ground sampling distance (GSD) of about 5.2 cm/pixel. With a plot width of 1.5m, this GSD
allowed to have more than 20 rows of pixels within plots after excluding border areas of the
plots while still allowing for relatively short flights. Exposure interval was 2 s. These settings
resulted in an image pattern where each spot in the trial was recorded at least on 9 images
from different perspectives. The camera was pointing toward the ground orthogonally (i.e. in
nadir orientation).

While mission planing often is done by defining a minimal front- and side overlap, this was
not possible due to software restrictions for the drone�sensor combination used. In addition,
using way-point flight planning with a fixed exposure interval allowed for a manually defined
camera heading throughout the flight. Therefore, the heading of drone and TIR camera
remained relatively stable throughout the flight and did not change with flight path direction
changes. Flight speed was limited at 4m s

�1.

S1.7 Flight operation

In 2021, the camera was turned on at least 15min before each flight to allow the temperature
signal to stabilize. In 2022, an additional set of batteries was used and the stabilization
period was increased to 30min. In situations, where the battery was not sufficient anymore
to complete all flights, the temperature stabilization was not repeated after a rapid battery
change. After the first flight campaigns in 2021, a rather strong drift of apparent temperature
was noticed that seemed to be particularly strong during the beginning of flights. To reduce
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initial drift, the drone was further hovered above the wheat field for about one minute in
addition to previous temperature stabilization on the ground before the measurement flight
sequences were started.

S1.8 Thermal ground control points

GCPs were produced following Perich et al. (2020) by gluing triangles of 2mm thick aluminum
sheets on polystyrene foam plates. These plates had an extent of 1m x 0.5m or 0.5m x 0.5m.
Unlike in Perich et al. (2020), the aluminum sheets were left blank as was done in other TIR
surveys (e.g. Mesas-Carrascosa et al., 2018; Aragon et al., 2020) and not painted black. This
avoided large temperature gradients in the FOV and reduced possible adjacency effects of hot
objects (Aragon et al., 2020; Zheng et al., 2019).

S1.9 Georeference images

The 8-bit JPEGs of the radiometric image as well as the RGB images were aligned in
the structure-from-motion-based software Agisoft Metashape Professional (Agisoft LLC, St.
Petersburg, Russia). TIR images feature a low spatial resolution and are therefore difficult
to georeference. No precise GPS device to measure GCP positions was available and an
indirect referencing approach was used. One RGB project served as a reference project and
was referenced by the positioning information from the drone available for each image in the
meta data. The GCP coordinates were extracted from this project and used to reference all
other projects of one year. Conventional GCPs are difficult to detect on TIR images and on
one RGB project, the RGB GCPs were visible together with the thermal GCPs. The locations
of the thermal GCPs were then extracted from this RGB project and used to reference the
thermal projects. This allowed for a correct geographic orientation and a absolute positioning
precision within 2m horizontally and vertically according to a quality check in Qgis (QGIS
Development Team, 2022). With this procedure all TIR flights were georeferenced in the
Cartesian Swiss coordinate system EPSG:2056 (CH1903+LV95) which allowed to precisely
superimpose the aligned images of the different flights. Relative positioning precision between
flights was estimated to be 15 cm or smaller based on marker position error estimates in
Agisoft.

The 8-bit JPEGs were preferred over the 14-bit TIFF images in the process of aligning
images as they provide better contrast and contain meta information on TIR camera position
and orientation during triggering, which allows to get a valid alignment more reliably. However,
these 8-bit JPEG are just a non-linear, visually augmented interpretation of TIR with a value
range of 0 to 255 and could not be used for analysis of temperature. As pixel position remained
consistent between the two formats, 8-bit JPEG images were replaced by 14-bit TIFF files
after alignment for further temperature analysis.

S1.10 Vignetting correction procedure

To generate the base for an overall vignetting correction, the drone was located indoors with
the TIR sensor pointing at a hard foam PVC sheet. The distance between sensor and sheet
was about 40 cm and the sheet fully covered the FOV of the camera. Ambient air temperature
was 22

�
C and there was no direct light on the PVC sheet. The ambient light in the room was

reduced to mitigate artifacts from light. The PVS foam was put inside the room 5 hours prior
to use to reach temperature equilibrium.
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The camera was started to stabilize. After 1 h, TIR images of the PCV sheet were taken at
an interval of 5 s during more than 30min. A vignetting correction image was then calculated
as the pixel-wise mean of these 413 images in Python 3.8.

(a) Before correction (b) After correction

Figure S1.3: (a) shows an image of a homogeneous PVC sheet that was part of the set used to create
an vignetting correction image. A vignetting pattern is clearly visible with a cooling trend toward the
edges. (b) shows the same image after correction was applied. The vignetting was clearly mitigated

and the image of the PVS sheet now appears flat with almost no trends visible.

(a) Before correction (b) After correction

Figure S1.4: (a & b) show an example image taken during a fligth before and after vignetting
correction.
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S1.11 Generalized heritability formula framework

In generalized heritability, the effective dimensions EDg are divided by the difference between
the number of genotypes mg and the number of zero eigenvalues ⇣g:

H
2
genral. =

EDg

(mg � ⇣g)
, (S1.1)

with

EDg = (mg � 1)
�
2
g

(�2g +
�2
e
r
)

. (S1.2)
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S1.12 Blending mode selection
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(b) Blending mode: Mosaic
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(c) Blending mode: Disabled

Figure S1.5: (a - c) show the heritability of the orthomosaic method for each pixel value percentile
for each flight conducted on EuVar21. The orthomosaics were created with three different blending

modes average (a), mosaic (b) and disabled (c).
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(a) Blending mode: Average
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(b) Blending mode: Mosaic
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(c) Blending mode: Disabled

Figure S1.6: (a - c) show the heritability of the orthomosaic method for each pixel value percentile
for each flight conducted on EuVar22. The orthomosaics were created with three different blending

modes average (a), mosaic (b) and disabled (c).
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S1.13 Multi-view percentile choice
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(b) EuVar22

Figure S1.7: (a & b) show the heritability of the multi-view method for each pixel value percentile
for each flight conducted on EuVar.
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S1.14 Correlations
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Figure S1.8: Pearson’s correlations of plot-based CT measurements within EuVar21 were derived
after plot-wise CT estimation with the most complex mixed model “MM Trigger + RowDir + SunDir

+ Sensor” and subsequent fitting with SpATS. All correlation are significant at P < 0.001.
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S1.15. Campaign-wise genotype ranking consistency

S1.15 Campaign-wise genotype ranking consistency

Table S1.4: The sd of genotype ranking within campaigns �gen_r was calculated for all the methods
and models. Mean and median values for each method are shown for each year before and after
spatial correction in SpATS. ( *The values of the method “SpATS (one-stage)" before spatial correction

correspond to unadjusted mean values as for the method “Agg. - Mean".)

Year SpATS Method/Model mean �gen_r median �gen_r

2021

before

Ortho 6.54 6.52
Agg. - Median 6.60 6.44
Agg. - Mean 6.35 6.31
LM 7.41 7.02
SpATS (one-stage) 6.35* 6.31*

MM Trigger 4.00 3.67
MM Trigger+ RowDir+SunDir+ Sensor 4.06 3.81

after

Ortho 4.61 4.44
Agg. - Median 5.22 5.00
Agg. - Mean 4.58 4.45
LM 4.30 4.04
SpATS (one-stage) 3.97 3.50
MM Trigger 3.94 3.49
MM Trigger+ RowDir+SunDir+ Sensor 3.97 3.60

2022

before

Ortho 7.21 7.02
Agg. - Median 7.48 7.54
Agg. - Mean 7.36 7.33
LM 5.00 5.10
SpATS (one-stage) 7.36* 7.33*

MM Trigger 3.16 3.02
MM Trigger+ RowDir+SunDir+ Sensor 3.12 3.06

after

Ortho 3.46 3.40
Agg. - Median 3.72 3.54
Agg. - Mean 3.41 3.29
LM 3.32 3.14
SpATS (one-stage) 3.13 3.02
MM Trigger 3.07 2.79
MM Trigger+ RowDir+SunDir+ Sensor 3.02 2.72
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S1.16 Weather data
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Figure S1.9: (a - b) show the detailed weather conditions on measurement days in 2021. Solid lines
show means, shades are means ± SD and dashed lines the maxima for 10min intervals. The vertical
lines indicate the different flights of EuVar and heritabilities are indicated at the bottom of the weather

charts.
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(d) Weather 2022-06-11

Figure S1.10: (a - d) show the detailed weather conditions on measurement days in 2022. Solid
lines show means, shades are means ± SD and dashed lines the maxima for 10min intervals. The
vertical lines indicate the different flights of EuVar and heritabilities are indicated at the bottom of

the weather charts.
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S1.17 Considerations on vignetting correction and stabilization

Vignetting correction is proposed to improve accuracy of TIR measurements and to mitigate
problems during alignment of TIR images (Yuan and Hua, 2022). In this work, no influence of
vignetting correction on the success of alignment was observed. Vignetting correction also did
not increase the correlations of plot-wise CT estimates between flights or heritability.

The vignetting correction effect on correlation and heritability is yet not well understood.
Yuan and Hua (2022) propose to use a single TIR image taken shortly after landing for applying
vignetting correction individually to every flight. They state that wind direction and speed
do not change vignetting and non-uniformity patterns. However they used just two opposing
wind directions (left and right from the sensor) and let the signal stabilize for several minutes.
As mentioned for the stabilization procedure, the temperature keeps oscillating significantly
during the flights. While it was not possible to estimate vignetting and non-uniformity effects
within flights, it is assumed that the strong oscillation during the flight also leads to changes
in the vignetting patterns at least short-term. It was shown that changes in thermal drift
happened usually within less than 1min from each other and an equilibrium was never reached.
This is limiting the potential of applying the same vignetting correction to all images across
entire flights.

Different stabilization procedures are suggested to reduce non-uniformity effects and
vignetting (e.g. Jimenez-Berni, P. J. Zarco-Tejada, et al., 2009; Kelly et al., 2019; Yuan and
Hua, 2022), the problem is that surrounding conditions of the drone keep changing. According
to our personal experience, the most elaborate initial stabilization procedures remain very
limited at mitigating non-uniformity effects and vignetting once the drone took off.

For the measures considered here, the multi-view method seemed to deal with vignetting in
a way that does not make ex-ante vignetting correction prerequisite and could be dropped for
further TIR analysis for most experiments. Kelly et al. (2019) mention that vignetting is more
problematic in single image analysis than when working with orthomosaics and seemingly also
with a multi-view approach. Nevertheless, vignetting correction shows patterns very similar to
CT patterns related to viewing geometry. Therefore, vignetting correction in a probabilistic
manner might help to avoid an overestimation of the importance of viewing geometry related
covariates in mixed models.

S1.18 Mixed pixels and zonal data aggregation by specific per-
centiles

With a GSD of 5.2 cm, individual wheat plants could not be recognized in this study, as
ears, culms and leaves of wheat are smaller than the GSD. Consequently, pixels in images are
mixed pixels, containing TIR information from both, different wheat organs and background
soil. Between the sowing rows and on spots with poor plant development, the contribution of
background to the value of a single pixel is larger than within sowing rows. When aggregating
pixel values per ROI by simply calculating the mean, genotype-specific canopy cover values
will bias the CT estimate, estimating CT to be more biased towards the temperature of the
background when genotype specific canopy cover is lower. Using specific percentiles allows
to compensate for mixed-pixel problems to a certain extent. In accordance with Perich et al.
(2020) it was shown that the 50th percentile is suitable for most of the situations.

Deery, Rebetzke, Jimenez-Berni, James, et al. (2016) proposed to use a function that
excludes the hottest and coolest pixels. They argued that, depending on the daytime and
meteorological conditions, soil might be hotter or cooler than the canopy. By limiting the
analysis to a range of central percentiles, the disturbing influence of soil can be covered in
both situations. Following the same argumentation, Perich et al. (2020) used the median
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S1.19. SpATS Code

as aggregation function, which does not require assuming an upper and lower threshold. In
this work, the two approaches were combined: By using an empirically determined specific
percentile for each year, the influence of soil signal was minimized.

S1.19 SpATS Code

The code below is an example for a one-stage SpATS model where just trigger timing is
considered in addition to the spatial model and experimental design factors. An “f” at the end
of a variable name indicates that the variables were defined as factors.

SpATS_fit <− SpATS( response = TempImgPlot ,

random = ~ Rowf + Col f + P lo t f + TriggerTimingf + Genotypef : Treatmentf ,

f i x ed = ~ Treatmentf + Repf ,

s p a t i a l = ~PSANOVA(Row, Col , nseg = c (nX, nY) , nest . div = c ( 1 , 1 ) ) ,

genotype = ‘ ‘Genotypef ’ ’ , genotype . as . random = TRUE,

data = df_for_correct ion ,

weights = df_for_correct ion$weights ,

c on t r o l = l i s t ( maxit = 100 , t o l e r an c e = 1e−03, monitor ing = 0))

Table S1.5: Variable explenation from SpATS code example

Variable Explanation

TempImgPlot Aggregated temperature for each plot per image
Genotypef Genotype as factor
Treatmentf Agricultural treatment as factor
Plotf Unique plot ID as factor
Row Plot sequence perpendicular to direction of sowing
Col Plot sequence in direction of sowing, i.e., along columns
Rowf Row as factor
Colf Column as factor
Repf Replication as factor
TriggerTimingf Time stamp of image in seconds after flight start as factor
nX & nY number of segments for smoothing splines

S1.20 ASReml-R Code

The code below is an example code for an ASReml-R model that includes trigger timing as
well as viewing geometry in direction of the sun and in sowing row direction. Knot points
have to be set so the models do not become too heavy. An “f” at the end of a variable name
indicates that the variables were defined as factors.

as . base <− asreml (

f i x ed = TempImgPlot ~ Treatment ,

random = ~ Genotypef +

ar1 (Rowf ) : ar1 ( Col f ) +

id ( Col f ) + id (Rowf ) +

id ( Repf ) +

id ( Treatment ) : id ( Repf ) +

id ( P l o t f ) +

sp l ( Col ) : s p l (Row) +

sp l ( TriggerTiming ) +

sp l ( Longitudinal_dist_from_ex_pos ) : sp l ( Lateral_dist_from_ex_pos ) +

sp l ( Longitudinal_dist_sun_direct ion ) : sp l ( Latera l_dist_sun_direct ion ) ,

r e s i d u a l = ~ id ( un i t s ) ,

knot . po in t s = l i s t (

Longitudinal_dist_from_ex_pos = seq (

min ( df_single_fl ight$Longitudinal_dist_from_ex_pos ) ,

max( df_single_fl ight$Longitudinal_dist_from_ex_pos ) ,
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l ength . out = 10

) ,

Lateral_dist_from_ex_pos = seq (

min ( df_single_fl ight$Lateral_dist_from_ex_pos ) ,

max( df_single_fl ight$Lateral_dist_from_ex_pos ) ,

l ength . out = 10

) ,

Longitudina l_dist_sun_direct ion = seq (

min ( d f_s ing l e_f l i ght$Long i tud ina l_di s t_sun_di rec t ion ) ,

max( d f_s ing l e_f l i ght$Long i tud ina l_di s t_sun_di rec t ion ) ,

l ength . out = 10

) ,

Latera l_dist_sun_direct ion = seq (

min ( d f_s ing l e_f l i ght$Late ra l_d i s t_sun_di rec t i on ) ,

max( d f_s ing l e_f l i ght$Late ra l_d i s t_sun_di rec t i on ) ,

l ength . out = 10

) ,

TriggerTiming = seq (0 , max( d f_s ing l e_f l i ght$Tr iggerTiming ) , 4)

) ,

data = d f_s ing l e_ f l i gh t

)
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Table S1.6: Variable explenation from ASReml-R code example

Variable Explanation

TempImgPlot Aggregated temperature for each plot per image
Genotypef Genotype as factor
Treatment Agricultural treatment if applied
Plotf Unique plot ID as factor
Row Plot sequence perpendicular to direction of sowing
Col Plot sequence in direction of sowing, i.e., along columns
Rowf Row as factor
Colf Col as factor
Repf Replication as factor
TriggerTiming Time stamp of image in seconds after flight start
Longitudinal_dist_from_ex_pos Distance of the plot center from the drone in direction of sowing
Lateral_dist_from_ex_pos Distance of the plot center from the drone perpendicular to direction of sowing
Longitudinal_dist_sun_direction Distance of the plot center from the drone in sun direction
Lateral_dist_sun_direction Distance of the plot center from the drone perpendicular to sun direction
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S2.1 Experimental design - EuVar
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Figure S2.1: The experimental design of EuVar for the two years. The numbers inside the blocks
indicate the genotypes.
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S2.2 Experimental design - SwiVar
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Figure S2.2: The experimental design of SwiVar for the two years. The numbers inside the blocks
indicate the genotypes.
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S2.3 Details on Field treatments

Table S2.1: Overview of trial treatments and most important field interventions for all trials. "too
wet" indicates that treatments were intended but could no be applied as conditions were to heavy

machinery could not enter the field.

Herbicides Fertilization (kg/ha)

Experiment Treatment Sowing
date

Harvest
date

Monocot.
1st

Monocot.
2nd

Dicot. Growth
regulator Fungicide N CaO MgO SO3

EuVar21

Minimal

2020-10-22 2021-07-20 Archipel® too wet too wet

- -

140 15 32 30Medium Moddus® -

Maximal Moddus® Amistar®

SwiVar21
Fertilized

2020-11-07 2021-07-20 Archipel® too wet too wet
- - 140 15 32 30

Not fertilized - - - - 23 30

EuVar22

Minimal

2021-10-15 2022-06-30 Archipel®
Othello
Star®

Cleave®/
Express Max®

- -

140 23 37 30Medium Moddus® -

Maximal Moddus® Amistar®

SwiVar22
Fertilized

2021-10-15 2022-07-06 Archipel®
Othello
Star®

Cleave®/
Express Max®

- - 140 5 26 30

Not fertilized - - - - 23 30

Table S2.2: Details on fertilizer application with split N applications.

Fertilization (kg/ha)

Treatment N Application split Date N CaO MgO SO3

EuVar21 All

- 2021-02-22 - 23 30
1 2021-02-23 50 - - -
2 2021-03-24 60 10 6 -
3 2021-04-20 30 5 3 -

SwiVar21
Fertilized

- 2021-02-22 - - 23 30
1 2021-02-23 50 - - -
2 2021-03-24 60 - - -
3 2021-04-20 30 - - -

Not fertilized - 2021-02-22 - - 23 30

EuVar22 All

1 2022-02-08 50 8 5 -
- 2022-03-03 - - 23 30
2 2022-02-23 60 10 6 -
3 2022-04-28 30 5 3 -

SwiVar22
Fertilized

- 2022-03-03 - - 23 30
1 2022-03-11 50 - - -
2 2022-03-30 60 - - -
3 2022-04-28 30 - - -

Not fertilized - 2022-03-03 - - 23 30
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Table S2.3: Chemical compositions of field treatments and quantities applied.

Procuct Active ingredients Application rate (g/ha) Producer

Archipel®
Iodosulfuron-methyl-sodium 9

SyngentaMesosulfuron-methyl 9
Mefenpyr-diethyl 27

Moddus® Trinexapac-ethyl 125 Syngenta

Amistar®
Azoxystrobin 200

SyngentaCyproconazole 80

Othello Star®

Iodosulfuron-methyl-sodium 9

Bayer
Mesosulfuron-methyl 9
Mefenpyr-diethyl 27
Thiencarbazone-methyl 7.5

Cleave®

Fluroxypyr 90
SyngentaFluroxypyr-meptyl 130

Florasulam 23

Express Max®
Metsulfuron-methyl 5

SyngentaTribenuron-methyl 5
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S2.4 Overview on flights

Table S2.4: Overview on number of thermal measurements per date and project

Year Project Date No. of flights

2021

EuVar 2021-06-12 13

SwiVar 2021-06-19 15

SwiVar 2021-06-28 13

EuVar 2021-07-01 9

2022

EuVar
2022-05-14

3
SwiVar 6

EuVar
2022-05-18

3
SwiVar 6

EuVar
2022-06-04

6
SwiVar 3

EuVar
2022-06-11

5
SwiVar 3

SwiVar 2022-06-14 8

SwiVar 2022-06-18 6

S2.5 Flight campaigns

Optimal conditions for TIR imaging surveys are a clear blue sky, warm temperatures, and
little or no wind (Perich et al., 2020). In 2021, the weather conditions were often suboptimal
for flying (rain and cloud cover throughout the growing season) (Fig. S2.5a). On rare days
with suitable weather, as many flights as possible were conducted on one experiment before,
during, and after solar noon.

2022 was a very hot and dry year (Fig. S2.5b). The phenological window suitable for
flying was short, but within this window conditions were often suitable for TIR imaging.
Consequently, in season 2022, flights were conducted on more days but on individual days,
with fewer flights per day than in 2021. Flights were carried out between late morning and
mid-afternoon as suggested by Deery, Rebetzke, Jimenez-Berni, James, et al. (2016), and
Perich et al. (2020), with only some exceptions, where flights were also taken later in the day.
Based on the results of 2021, flights were restricted to times after 12:00 in 2022. Fig. S2.5
provides an overview on when TIR measurements were conducted within the growing season,
while Figs. S2.6 and S2.7 show, at what time of day, the flights were conducted during the
single days. In total, 99 flights were performed (Table S2.4).

S2.6 Camera settings and flight planning

The flights were carried out with a DJI Matrice 200 drone (SZ DJI Technology Co. Ltd.,
China) that carried a DJI Zenmuse XT TIR sensor equipped with a 9 mm, f/1.4 lens. Pixel
resolution of 640 x 512 was achieved by individual uncooled VOx microbolometers arranged in
a focal plane array. The field of view (FOV) was 69° x 56°. The temperature was measured
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S2.7. DEM creation

in the wavelength range of 7.5�13.5 µm and the thermal sensitivity was < 50mK. In high
gain mode, the camera could measure the temperature in the range of -25 �

C to +135
�
C. The

absolute measurement accuracy was ± 10
�
C according to the manufacturer. The external

parameters were set in the DJI Pilot software (SZ DJI Technology Co. Ltd., China) to the
same values for all flights using the default DJI settings. The scene emissivity was set to
100%, background and air temperature were set to 22

�
C. The sensor provided the option of

periodical flat-field correction throughout measurement to reduce the noise of non-uniformity
effects. This periodic compensation would reduce the comprehensibility of drift effects. In
addition, Kelly et al. (2019) showed that the non-uniformity correction alone was not sufficient
to correct for the drift effect during flights. The flat field correction was therefore deactivated
following Mesas-Carrascosa et al. (2018).

The flights were planned with DJI Pilot software. The exposure interval was 2 s. While
mission planing often is done by defining a minimal front- and side overlap, this was not
possible due to software restrictions for the drone�sensor combination used. In addition, using
way-point flight planning with a fixed exposure interval allowed for a manually defined camera
heading throughout the flight. Therefore, the heading of drone and TIR camera remained
relatively stable throughout the flight and did not change with flight path direction changes.
The flight speed was limited to 4m s

�1.

S2.7 DEM creation

TIR images often do not provide enough spatial detail to generate DEMs of sufficient quality
(e.g. Malbéteau et al., 2021; Treier et al., 2024). Thermal images have lower pixel resolution
and contrast compared to RGB images (Boesch, 2017). TIR based DEMs may therefore appear
flat with no distinct plot pattern. Thus, DEMs were also based on the RGB data of Micasense
RedEdge-MX Dual camera (MicaSense Inc., Seattle, Washington, USA) which allows for more
spatial detail.

DEMs were created on the basis of aligned images in Agisoft Metashape and were derived
from thermal data in 2021, but not in 2022, when DEMs were generated from RGB data.
Both methods allowed generating DEMs of sufficient positioning precision (positioning RMSE
vertical: 2.5 cm, horizontal: 1.5 cm based on Agisoft alignment error estimates for ground
control points). For each year, a representative DEM was chosen that was created from
images taken after the wheat stem elongation phase and before early senescence, when the
canopy height remained stable. The quality of the DEMs was checked by visually inspecting
the plausibility of the positioning of the masks projected on single images in multi-view
pre-processing. The projected masks needed to be centered within plots and rectangular in
shape. For EuVar21, the DEM was based on the second flight of the thermal campaign flown
on 2021-06-12 at 12:30 and for SwiVar21, the DEM was based on the third flight of the thermal
campaign flown on 2021-06-19 at 16:30 with a flight height of 40m for both flights. The ground
sampling distance (GSD) of the TIR images was 5.15 cm/pix and the spatial resolution of
the DEMs was 41 cm/pix and 16 cm/pix for EuVar21 and SwiVar21 respectively. With this
coarse resolution, inconsistencies such as holes in the DEM could be leveled out. The DEMs
used in 2022 were based on flights with the Micasense sensor at a flight height of 40m at
2022-06-04 and 2022-05-18 for EuVar22 and SwiVar22 respectively. The GSD of the images
was 2.71 cm/pix. The DEMs of 2022 did not exhibit holes, and the spatial resolution of the
DEM was set to 2.71 cm/pix too.
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S2.8 TIR image pre-processing

Radiometric JPEG format contains an 8-bit gray scale JPEG image as well as a 14-bit
array with digital numbers (DN), which represent the magnitude of TIR radiation (Kelly
et al., 2019). The DNs in the 14-bit arrays of the radiometric JPEGs were transformed
to TIFF files representing temperature in �

C x 1000 by using a Python 3.8 script (van
Rossum, Guido and Drake, Fred L., 2009) and a modified version of the Flir Image Extractor
(https://github.com/ITVRoC/FlirImageExtractor), which allowed for batched processing.

Plot masks were created for each plot in Qgis 3.16 (QGIS Development Team, 2022), to
determine the ROIs from which data was used for analysis. To account for border effects in the
field and for inaccuracies of georeferencing and superimposition of different flights, a border
buffer of 25 cm was applied to all masks on plot width. On plot length, the buffer was up to
1m, leaving at least a surface of 2.1m

2 to be analyzed in each plot. The plot masks were
saved to GeoJSON format.

Imaging techniques deliver pixel values in a 2-D space. In order to evaluate experimental
units, pixels within ROIs in this 2-D space must be analyzed. Usually, this is done using
zonal statistics, that is, the pixels within ROIs are reduced to single values using statistical
aggregation functions. In this work, an empirically determined specific percentile for each year
was used.

The procedure for finding an optimal percentile was described in Treier et al. (2024). In
short, for each percentile, heritabilities were calculated in a simplified mixed model in SpATS
(Rodríguez-Álvarez et al., 2018). The resulting percentile-heritability relations were plotted for
graphical comparison. Two quantitative criteria were used to select the percentiles: Select a
percentile in the center of a percentile region where (1) the heritability is close to the maximum,
and (2) closely adjacent percentiles have similar heritabilities, i.e. the heritability is stable in
the respective percentile region. For each experiment in each year, the optimal percentile was
determined. The values within the ROIs were reduced to a single value by using the optimal
percentile. One value per measurement (for multiple measurements per plot) was then used as
plot-wise CT value in further analysis. The same percentile was used for the aggregation of all
flights on one experiment within one year.

S2.9 Multi-view pre-processing

The camera positions (longitude, latitude, height) and orientations (pitch, roll, yaw) at the
moment of triggering of individual images were estimated in an indirect sensor orientation
approach (Benassi et al., 2017) in Agisoft Metashape after aligning images. Using the estimated
trigger positions, the single images were projected onto the DEMs by ray tracing as described
in Roth, Aasen, et al. (2018), Roth, Camenzind, et al. (2020) and Treier et al. (2024). This
allowed for the projection from geographic coordinates (e.g. EPSG:2056 reference system)
to image coordinates. As a result, plot masks of ROIs were created for each trigger position
(i.e. for each image) where at least one plot was entirely inside the field of view (FOV) of the
camera. As coordinates were identical for 8-bit JPEG images and 14-bit intensity value arrays,
the image-wise masks could be directly applied to the temperature TIFF files. This approach
of identifying the ROIs for each plot on every single image is referred to as multi-view. For
each plot on each TIF file, all percentiles were extracted with a Python 3.8 script and saved
to a CSV file.
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S2.10. Flight operation

S2.10 Flight operation

In 2021, the camera was turned on at least 15min before each flight to allow the temperature
signal to stabilize. In 2022, an additional set of batteries was used and the stabilization period
was increased to 30min. In situations where the battery was not sufficient anymore to complete
all flights, the temperature stabilization was not repeated after a rapid battery change. After
the first flight campaigns in 2021, a rather strong drift of apparent temperature was noticed
that seemed to be particularly strong during the beginning of flights. To further reduce initial
drift, the drone was hovered above the wheat field for about one minute in addition to the
previous temperature stabilization on the ground before the measurement flight sequence was
started.

S2.11 Thermal ground control points

GCPs were produced following Perich et al. (2020) by gluing triangles of 2mm thick aluminum
sheets on polystyrene foam plates. These plates had an extent of 1m x 0.5m or 0.5m x 0.5m.
Unlike in Perich et al. (2020), the aluminum sheets were left blank as was done in other TIR
surveys (e.g. Mesas-Carrascosa et al., 2018; Aragon et al., 2020) and not painted black. This
avoided large temperature gradients in the FOV and reduced possible adjacency effects of hot
objects (Aragon et al., 2020; Zheng et al., 2019).

S2.12 Georeferencing images

The 8-bit JPEGs of the radiometric image as well as the RGB images were aligned in
the structure-from-motion-based software Agisoft Metashape Professional (Agisoft LLC, St.
Petersburg, Russia). TIR images feature a low spatial resolution and are therefore difficult
to georeference. No precise GPS device was available to measure GCP positions, and an
indirect referencing approach was used. One RGB project served as a reference project and
was referenced by the positioning information of the drone available for each image in the
meta-data. The GCP coordinates were extracted from this project and used to reference all
other projects of one year. Conventional GCPs are difficult to detect in TIR images, and in one
RGB project, the RGB GCPs were visible together with the thermal GCPs. The locations of
the thermal GCPs were then extracted from this RGB project and used to reference the thermal
projects. This allowed for a correct geographic orientation and a absolute positioning precision
within 2m horizontally and vertically according to a quality check in Qgis (QGIS Development
Team, 2022). With this procedure all TIR flights were georeferenced in the Cartesian Swiss
coordinate system EPSG:2056 (CH1903 + LV95), which allowed one to precisely superimpose
the aligned images of the different flights. The relative positioning precision between flights
was estimated to be 15 cm or smaller based on marker position error estimates in Agisoft.

The 8-bit JPEGs were preferred over the 14-bit TIFF images in the process of aligning
images, as they provide better contrast and contain meta information on TIR camera position
and orientation during triggering, which was allowing for a valid alignment more reliably.
However, these 8-bit JPEG are just a nonlinear, visually augmented interpretation of TIR
with a value range of 0 to 255 and could not be used for analysis of temperature. As the pixel
position remained consistent between the two formats, 8-bit JPEG images were replaced by
14-bit TIFF files after alignment for further temperature analysis.
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S2.13 Covariates related to viewing geometry

Table S2.5: List of all covariates calculated from multi-view data

Covariate Description

Angle Sun-Plot-Drone The angle between sun, plot and drone
Azimuth drone The Azimuth of the drone, seen from the plot (horizontal planar clockwise angle from north)
Azimuth sun The Azimuth of the sun, seen from the plot
Azimuth diff Difference between the two Azimuth angles of sun and drone
Elevation sun The vertical angles from the horizon to the sun
Elevation drone The vertical angles from the horizon to the drone
Lateral angle row dir. Lateral angle of the plot relative to the drone in sowing row direction
Lateral angle sun dir. Lateral angle of the plot relative to the drone in sun direction
Longitudinal angle row dir. Longitudinal angle of the plot relative to the drone in sowing row direction
Longitudinal angle sun dir. Longitudinal angle of the plot relative to the drone in sun direction
Lateral dist row dir. Lateral distance of the plot relative to the drone in sowing row direction
Lateral dist sun dir. Lateral distance of the plot relative to the drone in sun direction (i.e. orthogonal to principle plane of the sun)
Longitudinal dist row dir. Longitudinal distance of the plot relative to the drone in sowing row direction
Longitudinal dist sun dir. Longitudinal distance of the plot relative to the drone in sun direction (i.e. in the principle plane of the sun)
Trigger timing The time stamp when each TIR image was taken
Sensor x X coordinate of the plot center on the sensor plane (image coordinates)
Sensor y Y coordinate of the plot center on the sensor plane (image coordinates)
Total dist. Total distance between drone and plot center

S2.14 Spectral properties of the Micasense RedEdge-MX Dual
Camera System

Table S2.6: Specification of the ten bands of the Micasense RedEdge-MX Dual Camera System

Micasense band-
name

Band variable Center wave-
length (nm)

Band width
(nm)

Micasence
Band Suffix

Coastal Blue Blue444 444 28 6
Blue Blue475 475 32 1
Green Green531 531 14 7
Green Green560 560 27 2
Red Red650 650 16 8
Red Red668 668 14 3
Red Edge Red_Edge705 705 10 9
Red Edge Red_Edge717 717 12 5
Red Edge Red_Edge740 740 18 10
Near IR NIR842 842 57 4

S2.15 Multispectral measurements

The sensor was carried by a DJI Inspire 2 drone (SZ DJI Technology Co. Ltd., China). The
flight height was 60meter in 2021 and 40meter in 2022 resulting in a ground sampling distance
(GSD) of 3.98 cm and 2.71 cm, respectively. The side overlap was set to 80%, the flight
speed was limited to 5m s

�1 and an image was taken every 2 s, resulting in a front overlap of
approximately 70% and 60% for the two flight heights, respectively.

S2.16 Vignetting correction

This procedure was explained in detail in Treier et al. (2024) and for the sake of clarity, the
method is described here again. To generate a vignetting correction image, the drone was
located indoors with the thermal sensor pointing to a hard foam PVC sheet. The distance
between the sensor and the sheet was about 40 cm and the sheet completely covered the FOV
of the camera. The ambient temperature was 22

�
C and there was no direct light on the PVC
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S2.17. Fan experiment to determine the influence of wind

sheet. The ambient light in the room was reduced (turned off in the respective section of the
room) to mitigate artifacts of light. The PVC sheet was placed inside the room 5 hours prior
to use to reach temperature equilibrium.

The camera was started to stabilize. After 1 h, TIR images of the PCV sheet were taken
at an interval of 5 s for more than 30min. A vignetting correction image was then calculated
as the pixel-wise mean of these 413 images in Python 3.8. The pixel valvues of the resulting
correction image were subtracted from corresponding pixel values of all TIR images of all
flights to obtain vignetting-corrected images. Fig. S2.3 shows an image that was taken after
the camera was running for more than 70min before and after correction.

(a) Before correction (b) After correction

Figure S2.3: (a) shows an image of a homogeneous PVC sheet that was part of the set used to create
a vignetting correction image. A vignetting pattern is clearly visible with a cooling trend toward the
edges. (b) shows the same image after correction was applied. Vignetting was clearly mitigated and

the image of the PVC sheet now appears flat with almost no trends visible.

S2.17 Fan experiment to determine the influence of wind

The drone with the thermal camera was placed indoors at an ambient air temperature of
20

�
C and the thermal camera pointed to a hard foam PVC sheet (Fig. S2.4) similar to what

was done for the vignetting correction. The distance between the sensor and the sheet was
about 120 cm. At a distance of 90 cm and an angle of about 45

� a fan was placed, pointing
in the direction of the camera. The fan generated a wind speed of about 3 - 3.3m s

�1 at the
sensor. At a distance of 67 cm and an angle of 90�, a Philips Attralux spot (230V, 150W)
pointed to the camera as an artificial source of heat. The spot did not point inside the FOV
of the camera but just heated it up from the side. The ambient light in the room was reduced
to minimize disturbances from other sources of light.

The camera was started for stabilization and images were taken from the beginning. To
examine whether sudden and strong temperature gradients have a sustained influence on
subsequent TIR readings, warm and hot disturbance objects (hands at body temperature and
a water cooker with boiling water) were introduced into the scene for several seconds 35min

after camera startup. Each disturbance was repeated three times with a period of 5min for
stabilization after each disturbance. 75min after camera startup, the heating lamp was started
and after another 5min, the fans was turned on and off at an interval of 5min. The heating
lamp was turned off again 5min after the last fan iteration.

On the TIR images, a polygon was defined, covering just the PVC sheet. From within
this polygon, the mean temperatures and standard deviation of pixel-wise temperatures were
extracted with a Python 3.8 script.
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Figure S2.4: Setup of fan experiment. The drone was pointing at a PVC sheet. From an oblique
frontal angle, the fan was blowing in the direction of the sensor. From the side, a lamp was heating

the sensor without directly pointing into the FOV of the camera.
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S2.18 Environmental conditions and timing of measurements
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(a) Weather overview of growing seasons 2021
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(b) Weather overview of growing seasons 2022

Figure S2.5: (a) and (b) show the general weather conditions during the growing seasons of 2021 and
2022 from January until after harvest. Red shows the mean air temperature, and the shades indicate
daily temperature minima and maxima. The orange lines and green dashed lines represent the flight
dates of SwiVar and EuVar, respectively. Cumulative precipitation is shown as a rising blue line, and
the vertical blue line indicates an irrigation intervention for SwiVar22 (30mm of water). During the
period shaded in red, heading was observed in the field. Cyan and purple lines indicate flag leaf rolling
ratings in 2022. Harvest dates are marked by black lines (the dashed black line in 2022 is the harvest

date of EuVar22 which was harvested before SwiVar22).
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
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S2.19 Weather data
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Figure S2.6: (a - c) show the detailed weather conditions on measurement days in 2021. Solid lines
show means, shades are means ± SD and dashed lines show the maxima for 10min intervals. The

vertical lines indicate the different flights of EuVar (green) and SwiVar (yellow).
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S2.19. Weather data
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Figure S2.7: (a - f) show the detailed weather conditions on days of measurements in 2022.
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Figure S2.7: (a - f) show the detailed weather conditions on days of measurements in 2022. (cont.)

216



S2.20. Multi-view percentile selection

S2.20 Multi-view percentile selection
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Figure S2.8: (a - d) show the heritability of the multi-view method for each pixel value percentile for
each flight conducted on EuVar and SwiVar
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.21 Correction steps EuVar

S2.21.0.1 No correction applied - plot-wise means
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Figure S2.9: Unadjusted plot-wise means of EuVar. Flights are horizontally grouped by dates and
flight times. Each row corresponds to a campaign. Columns indicate the flight order within campaigns.
“Column in field” and “Row in field” indicate the spatial position of the plot in in the field where column
increases along the tractor track direction. To allow for a meaningful representation of contrasting

temperature ranges, flight-wise temperature deviations from flight-wise mean values are shown.
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S2.21.0.2 Temporal trend estimation

Figure S2.10: Estimated thermal drift of TIR measurements throughout the duration of fights for
all flights of EuVar. Flights are horizontally grouped by dates and flight times. Each row corresponds
to a campaign. Columns indicate the flight order within campaigns. The colors indicate the motion in
direction of the main fight path. Purple indicates fights in one direction and yellow in the opposite
direction of the flight path grid. For gray points, temporal drift was modeled but there was no

corresponding measurement of motion along the main fight path.
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.21.0.3 Temporal correction applied
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Figure S2.11: Adjusted plot-wise means of EuVar after a temporal correction. Flights are horizontally
grouped by dates and flight times. Each row corresponds to a campaign. Columns indicate the flight
order within campaigns. “Column in field” and “Row in field” indicate the spatial position of the plot
in in the field where column increases along the tractor track direction. To allow for a meaningful
representation of contrasting temperature ranges, flight-wise temperature deviations from flight-wise

mean values are shown.
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S2.21. Correction steps EuVar

S2.21.0.4 Temporal and spatial correction applied
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Figure S2.12: Adjusted plot-wise means of EuVar after a temporal and spatial correction. Flights
are horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns
indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial
position of the plot in in the field where column increases along the tractor track direction. To allow
for a meaningful representation of contrasting temperature ranges, flight-wise temperature deviations

from flight-wise mean values are shown.
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.21.0.5 Genotypic effect (correction applied for effects of trigger timing, field
heterogeneity, plots and treatment regimens)
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Figure S2.13: Estimated effect for the single genotypes and genotype-treatment interactions for all
flights flown on EuVar. Temporal correction, spatial correction and treatment deflation were applied.
Flights are horizontally grouped by dates and flight times. Each row corresponds to a campaign.
Columns indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the
spatial position of the plot in in the field where column increases along the tractor track direction.
To allow for a meaningful representation of contrasting temperature ranges, flight-wise temperature

deviations from flight-wise mean values are shown.
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S2.21. Correction steps EuVar

S2.21.0.6 Treatment effect (correction applied for effects of trigger timing, field
heterogeneity, plots and genotypes)
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Figure S2.14: Estimated effect for the treatment regimens for all flights flown on EuVar. Flights
are horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns
indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial
position of the plot in in the field where column increases along the tractor track direction. To allow
for a meaningful representation of contrasting temperature ranges, flight-wise temperature deviations

from flight-wise mean values are shown.
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.22 Correction steps SwiVar

S2.22.0.1 No correction applied - plot-wise means
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Figure S2.15: Unadjusted plot-wise means of SwiVar. Flights are horizontally grouped by dates and
flight times. Each row corresponds to a campaign. Columns indicate the flight order within campaigns.
“Column in field” and “Row in field” indicate the spatial position of the plot in in the field where column
increases along the tractor track direction. To allow for a meaningful representation of contrasting

temperature ranges, flight-wise temperature deviations from flight-wise mean values are shown.
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S2.22. Correction steps SwiVar

S2.22.0.2 Temporal trend estimation

Figure S2.16: Estimated thermal drift of TIR measurements throughout the duration of fights for
all flights of SwiVar. Flights are horizontally grouped by dates and flight times. Each row corresponds
to a campaign. Columns indicate the flight order within campaigns. The colors indicate the motion in
direction of the main fight path. Purple indicates fights in one direction and yellow in the opposite
direction of the flight path grid. For gray points, temporal drift was modeled but there was no

corresponding measurement of motion along the main fight path.
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Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.22.0.3 Temporal correction applied
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Figure S2.17: Adjusted plot-wise means of SwiVar after a temporal correction. Flights are horizontally
grouped by dates and flight times. Each row corresponds to a campaign. Columns indicate the flight
order within campaigns. “Column in field” and “Row in field” indicate the spatial position of the plot
in in the field where column increases along the tractor track direction. To allow for a meaningful
representation of contrasting temperature ranges, flight-wise temperature deviations from flight-wise

mean values are shown.
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S2.22.0.4 Temporal and spatial correction applied
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Figure S2.18: Adjusted plot-wise means of SwiVar after a temporal and spatial correction. Flights
are horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns
indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial
position of the plot in in the field where column increases along the tractor track direction. To allow
for a meaningful representation of contrasting temperature ranges, flight-wise temperature deviations

from flight-wise mean values are shown.
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S2.22.0.5 Genotypic effect (correction applied for effects of trigger timing, field
heterogeneity, plots and treatment regimens)
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Figure S2.19: Estimated effect for the single genotypes and genotype-treatment interactions for all
flights flown on SwiVar. Temporal correction, spatial correction and treatment deflation were applied.
Flights are horizontally grouped by dates and flight times. Each row corresponds to a campaign.
Columns indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the
spatial position of the plot in in the field where column increases along the tractor track direction.
To allow for a meaningful representation of contrasting temperature ranges, flight-wise temperature

deviations from flight-wise mean values are shown.
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S2.22. Correction steps SwiVar

S2.22.0.6 Treatment effect (correction applied for effects of trigger timing, field
heterogeneity, plots and genotypes)
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Figure S2.20: Estimated effect for the treatment regimens for all flights flown on SwiVar. Flights
are horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns
indicate the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial
position of the plot in in the field where column increases along the tractor track direction. To allow
for a meaningful representation of contrasting temperature ranges, flight-wise temperature deviations

from flight-wise mean values are shown.
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S2.23 Uncorrected phenotypic traits
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Figure S2.21: (a - f) show the uncorrected phenotypic traits of EuVar21. (a): Yield at 15% water
content, (b): Plant height based on five measurements per plot, (c): NDVI multispectral index, (d):

SAVI multispectral index, (e): DVI multispectral index, (f): EVI multispectral index.
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Figure S2.22: (a - g) show the uncorrected phenotypic traits of EuVar22. (a): Yield at 15% water
content, (b): Planth height based on five measurements per plot, (c): NDVI multispectral index, (d):

SAVI multispectral index, (e): DVI multispectral index, (f): EVI multispectral index, (g): FCC.
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Figure S2.23: (a - f) show the uncorrected phenotypic traits of SwiVar21. (a): Yield at 15% water
content, (b): Planth height based on five measurements per plot, (c): NDVI multispectral index, (d):

SAVI multispectral index, (e): DVI multispectral index, (f): EVI multispectral index.
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Figure S2.24: (a - g) show the uncorrected phenotypic traits of SwiVar22. (a): Yield at 15% water
content, (b): Planth height based on five measurements per plot, (c): NDVI multispectral index, (d):
SAVI multispectral index, (e): DVI multispectral index, (f): EVI multispectral index, (g): FCC. On

the plot in grey, a sowing error occurred and the plot was excluded from analysis.
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S2.24 Correlation with yield based on campaign-wise CT esti-
mates
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Figure S2.25: The CT estimates based on all flights within campaigns without and with vignetting
correction were correlated to yield. Just correlations significant at p  0.01 are shown. The number
above the boxplots indicates the number of campaigns with significant correlations included in the

respective box plots.
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S2.25 Spatial trend estimates

S2.25.1 Spatial trend estimation EuVar - individual flights
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Figure S2.26: Spatial trend estimates for single flights based on Eq. 3.10 for EuVar. Flights are
horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns indicate
the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial position
of the plot in in the field where column increases along the tractor track direction. To allow for a
meaningful representation of contrasting temperature ranges, flight-wise temperature deviations from

flight-wise mean values are shown.
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S2.25.2 Spatial trend estimation SwiVar - individual flights
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Figure S2.27: Spatial trend estimates for single flights based on Eq. 3.10 for SwiVar. Flights are
horizontally grouped by dates and flight times. Each row corresponds to a campaign. Columns indicate
the flight order within campaigns. “Column in field” and “Row in field” indicate the spatial position
of the plot in in the field where column increases along the tractor track direction. To allow for a
meaningful representation of contrasting temperature ranges, flight-wise temperature deviations from

flight-wise mean values are shown.
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S2.26. Correlation of plot-wise estimates of spatial field trends for individual flights - EuVar
2021

S2.26 Correlation of plot-wise estimates of spatial field trends
for individual flights - EuVar 2021
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Figure S2.28: Pearson correlation of plot-wise estimates of spatial trends for EuVar21 which are
shown in Fig. S2.26. Just correlations significant at p  0.001 are shown.
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Figure S2.29: Pearson correlation of plot-wise estimates of spatial trends for EuVar22 which are
shown in Fig. S2.26. Just correlations significant at p  0.001 are shown.
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Figure S2.30: Pearson correlation of plot-wise estimates of spatial trends for SwiVar21 which are
shown in Fig. S2.27. Just correlations significant at p  0.001 are shown.
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Figure S2.31: Pearson correlation of plot-wise estimates of spatial trends for SwiVar22 which are
shown in Fig. S2.27. Just correlations significant at p  0.001 are shown.
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S2.30. CT differences from mean, arranged by flag leaf rolling ratings - EuVar22

S2.30 CT differences from mean, arranged by flag leaf rolling
ratings - EuVar22
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Figure S2.32: Corrected CT estimates of were grouped according to their flag leaf rolling score for
EuVar22 before (✓̂ts�c

p ) and after (✓̂t�defl
p ) applying a treatment deflation on CT estimates. Significance

levels: ns: p > 0.05; *: p  0.05; **: p  0.01; ***: p  0.001.
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S2.31 CT differences from mean, arranged by flag leaf rolling
ratings - SwiVar22 Part I
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Figure S2.33: Corrected CT estimates were grouped according to their flag leaf rolling score for
SwiVar22 (2022-06-04 & 2022-06-10) before (✓̂ts�c

p ) and after (✓̂t�defl
p ) applying a treatment deflation

on CT estimates. Significance levels: ns: p > 0.05; *: p  0.05; **: p  0.01; ***: p  0.001.
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S2.32. CT differences from mean, arranged by flag leaf rolling ratings - SwiVar22 Part II

S2.32 CT differences from mean, arranged by flag leaf rolling
ratings - SwiVar22 Part II
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Figure S2.34: Corrected CT estimates were grouped according to their flag leaf rolling score for
SwiVar22 (2022-06-16 & 2022-06-17) before (✓̂ts�c

p ) and after (✓̂t�defl
p ) applying a treatment deflation

on CT estimates. Significance levels: ns: p > 0.05; *: p  0.05; **: p  0.01; ***: p  0.001.
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S2.33 Flag leaf rolling ratings of SwiVar22 on 2022-06-10
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Figure S2.35: Flag leaf rating density distribution for SwiVar on 2022-06-10 for the two treatments
“Fertilized” and “Not fertilized”.
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S2.34. Campaign-wise spatial trends EuVar21 & EuVar22

S2.34 Campaign-wise spatial trends EuVar21 & EuVar22
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Figure S2.36: Spatial trend estimates for campaigns, based on Eq. 3.10 for EuVar21 (a) and EuVar22
(b) when processing multiple flights of a campaign with the same mixed model. Flights are horizontally
grouped by dates and flight times. “Column in field” and “Row in field” indicate the spatial position
of the plot in in the field where column increases along the tractor track direction. To allow for a
meaningful representation of contrasting temperature ranges, flight-wise temperature deviations from

flight-wise mean values are shown.
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S2.35 Campaign-wise spatial trends SwiVar21 & SwiVar22
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Figure S2.37: Spatial trend estimates for campaigns, based on Eq. 3.10 for SwiVar21 (a) and
SwiVar22 (b) when processing multiple flights of a campaign with the same mixed model. Flights
are horizontally grouped by dates and flight times. “Column in field” and “Row in field” indicate the
spatial position of the plot in in the field where column increases along the tractor track direction.
To allow for a meaningful representation of contrasting temperature ranges, flight-wise temperature

deviations from flight-wise mean values are shown.
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S2.36. Detailed correlation charts of campaign-wise spatial trends - EuVar21

S2.36 Detailed correlation charts of campaign-wise spatial trends
- EuVar21
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Figure S2.38: Pearson correlation of estimates of spatial trends according to Eq. 3.10 between
campaigns of EuVar21 (data of Fig. S2.36a).
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S2.37 Detailed correlation charts of campaign-wise spatial trends
- EuVar22
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Figure S2.39: Pearson correlation of estimates of spatial trends according to Eq. 3.10 between
campaigns of EuVar22 (data of Fig. S2.36b).
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S2.38. Detailed correlation charts of campaign-wise spatial trends - SwiVar21

S2.38 Detailed correlation charts of campaign-wise spatial trends
- SwiVar21
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Figure S2.40: Pearson correlation of estimates of spatial trends according to Eq. 3.10 between
campaigns of SwiVar21 (data of Fig. S2.37a).
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S2.39 Detailed correlation charts of campaign-wise spatial trends
- SwiVar22
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Figure S2.41: Pearson correlation of estimates of spatial trends according to Eq. 3.10 between
campaigns of SwiVar22 (data of Fig. S2.37b).
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S2.40. Flight-wise variance reduction by mixed models and PLSR - EuVar without vignetting
correction

S2.40 Flight-wise variance reduction by mixed models and
PLSR - EuVar without vignetting correction
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Figure S2.42: CT estimate variance reduction by mixed model and PLSR for EuVar without
vignetting correction applied. Variance is shown for initial estimates (multiple per plot), after mixed
models and after PLSR. Variance after mixed models and PLSR are also indicated as % of initial
variance. Individual campaigns are arranged in columns, the rows represent the flights within the

campaigns.
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S2.41 Flight-wise variance reduction by mixed models and
PLSR - EuVar with vignetting correction
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Figure S2.43: CT estimate variance reduction by mixed model and PLSR for EuVar with vignetting
correction applied. Variance is shown for initial estimates (multiple per plot), after mixed models
and after PLSR. Variance after mixed models and PLSR are also indicated as % of initial variance.
Individual campaigns are arranged in columns, the rows represent the flights within the campaigns.
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S2.42. Flight-wise variance reduction by mixed models and PLSR - SwiVar without
vignetting correction

S2.42 Flight-wise variance reduction by mixed models and
PLSR - SwiVar without vignetting correction
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Figure S2.44: CT estimate variance reduction by mixed model and PLSR for SwiVar without
vignetting correction applied. Variance is shown for initial estimates (multiple per plot), after mixed
models and after PLSR. Variance after mixed models and PLSR are also indicated as % of initial
variance. Individual campaigns are arranged in columns, the rows represent the flights within the

campaigns.

253



Chapter S2. Supplementary Materials - Analysis of variance and its sources in UAV-based
multi-view thermal imaging of wheat plots

S2.43 Flight-wise variance reduction by mixed models and
PLSR - SwiVar with vignetting correction
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Figure S2.45: CT estimate variance reduction by mixed model and PLSR for SwiVar with vignetting
correction applied. Variance is shown for initial estimates (multiple per plot), after mixed models
and after PLSR. Variance after mixed models and PLSR are also indicated as % of initial variance.
Individual campaigns are arranged in columns, the rows represent the flights within the campaigns.
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S3 Supplementary Materials -
Comparison of PhenoCams and drones
for lean phenotyping of phenology and
senescence of wheat genotypes in
variety testing
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S3.1 Experimental design

Column No.
21 3 27 13 17 16 3 23 11 30 26 27 13 26 18 2 8 29 13 6 10 14 23 30 17 13 25 10
9 4 13 10 14 2 27 17 22 24 2 10 2 16 29 21 30 13 30 23 7 25 21 12 26 16 18 9
22 8 1 6 7 1 28 13 6 21 17 12 15 6 11 15 5 10 1 15 18 17 10 19 5 30 15 8
10 12 7 23 15 19 12 14 9 9 1 6 8 21 4 23 19 27 12 25 17 4 11 15 2 4 29 7
29 30 26 12 3 26 10 4 7 29 14 4 3 27 23 16 9 25 5 29 19 7 1 18 22 6 9 6
23 25 28 5 30 20 19 26 15 23 28 19 19 22 28 20 11 6 22 2 14 29 27 5 21 1 20 5
11 17 20 8 25 22 20 2 16 18 13 15 12 30 14 1 3 26 21 20 28 2 24 8 11 28 14 4
24 2 14 28 27 21 1 29 18 11 22 7 20 9 5 7 22 18 3 9 4 16 26 9 10 12 23 3
19 6 15 18 11 9 30 25 5 3 16 20 24 10 17 4 14 17 24 27 8 3 22 6 19 8 27 2
16 18 5 29 4 24 21 8 24 8 25 5 25 7 1 28 24 12 11 16 26 28 13 20 3 24 7 1

Direction of sowing

19 29 28 6 9 30 26 7 29 13 12 22 4 15 24 29 4 7 20 25 22 27 7 25 1 14 15 10
10 24 6 8 23 29 10 14 20 5 6 10 14 13 23 14 3 10 12 27 14 21 9 17 5 12 11 9
7 12 3 20 15 22 16 8 2 24 9 26 8 25 27 8 23 17 17 6 29 10 5 18 2 9 18 8
22 18 9 4 13 16 27 6 22 8 11 27 18 21 5 5 19 30 15 28 13 28 30 3 24 30 28 7
11 30 5 28 21 1 28 24 19 4 2 15 28 26 9 11 24 22 1 30 7 8 11 16 19 26 3 6
16 2 4 18 12 25 12 30 11 28 7 20 29 20 11 13 15 21 24 23 16 29 20 15 10 4 27 5
14 13 26 11 27 5 18 5 25 21 19 29 19 12 22 25 1 20 4 21 2 12 26 13 25 22 29 4
8 20 15 3 14 26 1 17 23 3 18 25 7 16 3 6 12 2 11 3 26 6 2 4 8 13 6 3
23 27 25 19 7 2 4 15 13 17 30 16 6 1 17 16 27 26 18 5 9 19 24 22 20 21 17 2
1 17 21 24 17 10 21 3 9 23 14 1 30 2 10 18 9 28 8 10 19 1 14 23 23 16 7 1

p

Direction of sowing

4 10 3 9 13 27 4 30 20 3 23 27 5 9 17 30 25 14 16 11 29 15 9 6 19 20 5 10
8 22 26 11 30 1 6 24 2 29 24 26 23 28 1 12 3 22 14 18 2 26 10 24 7 6 16 9
11 25 13 10 7 2 25 26 15 4 17 6 27 26 15 27 23 19 30 25 9 18 28 4 4 9 21 8
6 7 24 12 26 21 17 22 3 12 13 11 3 13 16 7 2 5 22 7 15 27 16 3 26 29 15 7
28 12 16 3 8 17 8 14 23 21 16 2 11 10 4 16 6 15 19 12 1 13 2 1 12 13 18 6
27 15 2 19 4 15 27 16 28 14 5 8 12 18 20 8 20 26 6 27 21 19 5 11 10 2 3 5
20 19 29 16 5 28 21 5 12 22 9 30 8 25 22 13 4 18 28 23 17 25 14 22 1 28 11 4
9 18 14 23 25 24 11 1 13 10 28 15 14 21 7 24 9 17 4 20 3 20 12 29 14 8 22 3
1 17 5 18 6 20 10 29 9 18 7 20 24 29 2 11 21 10 26 8 10 30 17 7 27 23 17 2
21 30 23 29 14 22 7 18 19 19 1 25 6 19 30 1 28 29 5 24 13 8 21 23 24 30 25 1

Row No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Row in field: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Treatments: maximal medium minimal

EuVar21

Rep 1 Rep 2 Rep 3

Rep 3Rep 2Rep 1

EuVar23

EuVar22

Rep 1 Rep 2 Rep 3

Figure S3.1: The experimental design of EuVar for the three seasons. The numbers inside the blocks
indicate the genotypes.

256



S3.2. Details on Field treatments

S3.2 Details on Field treatments

Table S3.1: Overview of trial treatments and most important field interventions for all trials. "too
wet" indicates that treatments were intended but could no be applied as conditions were too wet and

heavy machinery could not enter the field.

Herbicides Fertilization (kg/ha)

Experiment Treatment Sowing
date

Harvest
date

Monocot.
1st

Monocot.
2nd

Dicot. Growth
regulator Fungicide N CaO MgO SO3

EuVar21

Minimal

2020-10-22 2021-07-20 Archipel® too wet too wet

- -

140 15 32 30Medium Moddus® -

Maximal Moddus® Amistar®

EuVar22

Minimal

2021-10-15 2022-06-30 Archipel®
Othello
Star®

Cleave®/
Express Max®

- -

140 23 37 30Medium Moddus® -

Maximal Moddus® Amistar®

EuVar23

Minimal

2022-10-19 2023-07-13 Herold®
Othello
Star® Herold®

- -

132 22 12 -Medium Ethephon® Amistar

Maximal Ethephon® Proline®

Table S3.2: Chemical compositions of field treatments and quantities applied.

Procuct Active ingredients Application rate (g/ha) Producer

Archipel®
Iodosulfuron-methyl-sodium 9

SyngentaMesosulfuron-methyl 9
Mefenpyr-diethyl 27

Moddus® Trinexapac-ethyl 125 Syngenta

Amistar®
Azoxystrobin 200

SyngentaCyproconazole 80

Othello Star®

Iodosulfuron-methyl-sodium 9

Bayer
Mesosulfuron-methyl 9
Mefenpyr-diethyl 27
Thiencarbazone-methyl 7.5

Cleave®

Fluroxypyr 90
SyngentaFluroxypyr-meptyl 130

Florasulam 23

Express Max®
Metsulfuron-methyl 5

SyngentaTribenuron-methyl 5

Herold®
Flufenacet 120

BayerDiflufenican 120

Ethephon® Ethephon 480 Leu & Gygax

Proline® Prothioconazol 200 Bayer
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S3.3 Spectral properties of the Micasense RedEdge-MX Dual
Camera System

Table S3.3: Specification of the ten bands of the Micasense RedEdge-MX Dual Camera System

Micasense band-
name

Band variable Center wave-
length (nm)

Band width
(nm)

Micasence
Band Suffix

Coastal Blue Blue444 444 28 6
Blue Blue475 475 32 1
Green Green531 531 14 7
Green Green560 560 27 2
Red Red650 650 16 8
Red Red668 668 14 3
Red Edge Red_Edge705 705 10 9
Red Edge Red_Edge717 717 12 5
Red Edge Red_Edge740 740 18 10
Near IR NIR842 842 57 4

S3.4 Hardware issues

Figure S3.2: A ground screw was used to reinforce anchor pins. The pins are prone to loosening
with the mast continuously shaking slightly in the wind.

Figure S3.3: A fox laying on a calibration panel during a flight with the multispectral sensor. Foxes
also left foodprints on the calibration panels, impacting their reflectance.
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S3.5 Example VI data based on PhenoCam DNG raw format
images
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(a) VARI VI values derived from PhenoCam based DNG raw format images
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(b) ExGR Zhang VI values derived from PhenoCam based DNG raw format images

Figure S3.4: Example of VI data derived from PhenoCams images in DNG raw format for the two
VIs VARI (a) ExGR Zhang (b) and four plots during the seasons 2022. The temporal axis is in days
after sowing (DAS). Greenish points are initial VI values and lines represent smoothed data of different
smoothing methods (dark blue: rolling mean; bright blue: loess smoothing; yellow: Savitzky–Golay;
dark yellow: spline). In plots where multiple lines of the same color are present, multiple cameras
observed the same plot. Data is shown for unprocessed data (“DN”) and for calculated reflectance
values. The solid blue vertical line indicates the heading date (BBCH 59) as observed on the respective
plots, the dashed light blue line indicates plant senescence levels of 10% and 90% respectively. The
yellow vertical lines correspond to flag leaf senescence at 10% and 90%. The black line toward the end

mark the harvest date. The first vertical black line shows the date of PhenoCam maintenance.
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S3.6 Example IKAW VI
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(a) IKAW VI values derived from PhenoCam based JPEG format images

PhenoCam
DNG raw

Plot_15 Plot_102 Plot_140 Plot_182

D
N

G
 ra

w
 D

N
D

N
G

 ra
w

 R
ef

le
ct

an
ce

18
0

20
0

22
0

24
0

26
0

18
0

20
0

22
0

24
0

26
0

18
0

20
0

22
0

24
0

26
0

18
0

20
0

22
0

24
0

26
0

−0.2

0.0

0.2

−0.2

0.0

0.2

DAS

IK
AW

(b) IKAW VI values derived from PhenoCam based DNG raw format images
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(c) IKAW VI values derived from drone based TIFF raw format images

Figure S3.5: Example of VI data derived from PhenoCam images in JPEG format (a) and in DNG
raw format (b) and from a drone-based camera (c) for IKAW VI and four plots during the seasons
2022. The temporal axis is in days after sowing (DAS). For the PhenoCam data, greenish points in
the PhenoCam image are initial VI values and lines represent smoothed data of different smoothing
methods (dark blue: rolling mean; bright blue: loess smoothing; yellow: Savitzky–Golay; dark yellow:
spline). In plots where multiple lines of the same color are present, multiple cameras observed the
same plot. Data is shown for unprocessed data (“DN”) and for calculated reflectance values. For the
drone data, the initial VI values are blue dots. Greenish lines represent a smoothed spline interpolated
for a daily temporal resolution. The solid blue vertical line indicates the heading date (BBCH 59) as
observed on the respective plots, the dashed light blue line indicates plant senescence levels of 10%
and 90% respectively. The yellow vertical lines correspond to flag leaf senescence at 10% and 90%.
The black line toward the end mark the harvest date. The first vertical black line for the PhenoCam

data shows the date of PhenoCam maintenance.
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S3.7 Patterns of drone based VIs after rain events in a dry
period
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(b) ExGR Zhang
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(c) NDVI

Figure S3.6: Example of of multispectral VI patterns after significant rainfalls in an otherwise dry
summer of 2022. VIs were derived from TIFF raw format for the two VIs VARI (a), ExGR Zhang (b)
and NDVI (c). Some index values are the same as in (Figs. 4.5c & 4.5d) but presented with blue
vertical lines, indicating significant rainfalls (> 5mmd

�1). After rain events, descending trends of VIs
often weakened or were even reversed.
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S3.8 RMSE of PLSR-predictions
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Figure S3.7: RMSE of PLSR-based predictions and field reference ratings. Data of the different
sensors and processing methods is arranged in columns, the rows represent the three types of field
reference measurements. Colors represent the different years. The shaded areas indicated mean ±

standard deviation across 100 repetitions of cross validation while the lines are the means.
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S3.9 Index and feature type importance - Drone RGB
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Figure S3.8: Importance of VIs and temporal feature types in PLSR models based on drone derived
RGB TIFF raw images. Data is arranged by reference types (Phenology: BBCH; Flag leaf senescence:
SenLeaf; Plant senescence: SenPlant), and reference classes (Early, Intermediate, Late). (a) Importance
of the different indices as relative PLSR coefficients sum �rel,sum over the 100 repetitions of cross
validation. (b) Importance of the different feature types as norm.�rel,sum over the 100 repetitions of
cross validation. D1 - D4 indicate the first four derivatives of the Gompertz function. LocMax and
LocMin refer to local maxima and minima and the number after LocMax and LocMin the order along
increasing DAS, when there were multiple local maxima/minima of the same type. The remaining
features correspond to non-parametric temporal features of the smoothing types loess, rolling mean,

Savitzky-Golay and spline.

263



Chapter S3. Supplementary Materials - Comparison of PhenoCams and drones for lean
phenotyping of phenology and senescence

S3.10 Index and feature type importance - Drone Multispectral
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Figure S3.9: Importance of VIs and temporal feature types in PLSR models based on drone derived
mutlispectral TIFF raw images. Data is arranged by reference types (Phenology: BBCH; Flag leaf
senescence: SenLeaf; Plant senescence: SenPlant), and reference classes (Early, Intermediate, Late). (a)
Importance of the different indices as relative PLSR coefficients sum �rel,sum over the 100 repetitions of
cross validation. (b) Importance of the different feature types as norm.�rel,sum over the 100 repetitions
of cross validation. D1 - D4 indicate the first four derivatives of the Gompertz function. LocMax and
LocMin refer to local maxima and minima and the number after LocMax and LocMin the order along
increasing DAS, when there were multiple local maxima/minima of the same type. The remaining
features correspond to non-parametric temporal features of the smoothing types loess, rolling mean,

Savitzky-Golay and spline.
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S3.11 Importance of mean and multiple percentiles as data
aggregation methods
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Figure S3.10: Index values were derived from image data aggregated per plot with multiple percentiles
and the mean across all pixel values within a plot. Data is arranged by reference types (Phenology:
BBCH; Flag leaf senescence: SenLeaf; Plant senescence: SenPlant), and reference classes (Early,
Intermediate, Late). The importance of the different percentiles and the mean is presented as
norm.�rel,sum over the 100 repetitions of cross validation for (a) PhenoCam data in JPEG format,
(b) PhenoCam data in DNG raw format, (c) TIFF format drone data in RGB color space and (d) in

multispectral color space.
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S3.12 Impact of number of temporal features on performance
in PLSR predictions
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Figure S3.11: Pearson’s correlation between PLSR predictions and visual field reference ratings in
dependence of number of temporal features included in PLSR modeling. (a) PhenoCam data in JPEG
format. (b) PhenoCam data in DNG raw format. (c) Drone data in DNG in RGB color space. (d)
Drone data in multispectral color space. The vertical red line indicates 200 features and the horizontal
red line a correlation coefficient of 0.9. Data is arranged in columns by reference types (Phenology:

BBCH; Flag leaf senescence: SenLeaf; Plant senescence: SenPlant).
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Chapter S4. Supplementary Materials - Evaluating the potential of chlorophyll fluorescence
to detect and rate Fusarium head blight

S4.1 Experimental design Changins and Cadenazzo 2021
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Figure S4.1: The arrangement of the 16 genotypes (a) in four replications for the two treatments (b)
in the field for the 2021 season. The design was identical for Changins and Cadenazzo.
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S4.2 Experimental design Changins 2022
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Figure S4.2: The arrangement of the 16 genotypes (a) in four replications for the two treatments (b)
in the field for the 2022 season at Changins.
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S4.3 Wheat varieties

Table S4.1: Wheat varieties used in the experiment. 13 winter wheat varieties and 3 spring wheat
varieties were used. The table lists the Fusraium tolerance and wheat types. Tolerance encoding: “–”:
weak; “-”: weak to fair; “Ø”: fair; “+”: fair to good; “+”: good (Agroscope, 2004; Agroscope, 2017;
Agroscope, 2020a; Agroscope, 2020b; Strebel, Levy Häner, Mattin, et al., 2022; FiBL, 2022; Strebel,

Levy Häner, Watroba, et al., 2024).

Variety Tolerance Wheat type
ARINA ++

Winter

AXEN -
BARETTA Ø
BODELI Ø
CADLIMO +
CH-NARA –
DIAVEL Ø
MONTALBANO ++
PIZNAIR -
POSMEDA -
ROSATCH +
SCHILTHORN Ø
VARAPPE -

ARPILLE Ø
SummerFIORINA Ø

QUARNA ++
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S4.4 Details on Field treatments

Table S4.2: Overview of trial treatments and most important field interventions for all trials. "too
wet" indicates that treatments were intended but could not be applied as conditions were too wet and

heavy machinery could not enter the field.

Herbicides Fertilization [kg/ha]

Experiment Treatment Sowing
date

Harvest
date

Monocot.
1st

Monocot.
2nd

Dicot. N P2O5 K2O CaO MgO SO3

CHA21 Minimal 2020-11-07 2021-07-20 Archipel® too wet too wet 140 - - 15 9 -
CHA22 Minimal 2021-10-15 2022-07-08 Archipel® Othello Star® Cleave®/Express Max® 140 - - 23 36 30
CAD21 Minimal 2020-10-29 2021-07-12 - - - 136 46 74 ⇠ 15⇤ ⇠ 9⇤ -

⇤exact amount unknown

Table S4.3: Chemical compositions of field treatments and quantities applied.

Procuct Active ingredient(s) Application rate [g/ha] Producer

Archipel®
Iodosulfuron-methyl-sodium 9

SyngentaMesosulfuron-methyl 9
Mefenpyr-diethyl 27

Othello Star®

Iodosulfuron-methyl-sodium 9

Bayer
Mesosulfuron-methyl 9
Mefenpyr-diethyl 27
Thiencarbazone-methyl 7.5

Cleave®

Fluroxypyr 90
SyngentaFluroxypyr-meptyl 130

Florasulam 23

Express Max®
Metsulfuron-methyl 5

SyngentaTribenuron-methyl 5
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S4.5 Greenhouse trial

S4.5.1 Correlation between visual ratings and Fv/Fm
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Greenhouse experiment:
Correlation between OJIP based
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Figure S4.3: Correlation between visual ratings and Fv/Fm values for the greenhouse experiment.
Values were grouped by variety, treatment and measurement event and group-wise means were correlated
with each other. Values with a visual rating of either 0% or 100% were excluded from the data to
avoid clustered data around the extremes do be the main drive of the strong correlation. DAI: Days

after inoculation.
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S4.6 Field trials

S4.6.1 Visual ratings: Changins 2021
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Figure S4.4: Visual ratings of Fusarium infestation, Changins 2021. Rating was according to Moll
et al. (2000). 0%: no visible symptoms; 100% whole spike was infested. 15 spikes were rated per plot,
resulting in 60 spikes per variety and treatment (1’920 spikes in total for each date of measurement).
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S4.6.2 Visual ratings: Changins 2022
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Figure S4.5: Visual ratings of Fusarium infestation, Changins 2022. Rating was according to Moll
et al. (2000). 0%: no visible symptoms; 100% whole spike was infested. 15 spikes were rated per plot,
resulting in 60 spikes per variety and treatment (1’920 spikes in total for each date of measurement).
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S4.6.3 Visual ratings: Cadenazzo 2021
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Figure S4.6: Visual ratings of Fusarium infestation, Cadenazzo 2021. Rating was according to Moll
et al. (2000). 0%: no visible symptoms; 100% whole spike was infested. 15 spikes were rated per plot,
resulting in 60 spikes per variety and treatment (1’920 spikes in total for each date of measurement).
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S4.6.4 p-values of ANOVA on OJIP parameters
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Figure S4.7: p-values of ANOVA on OJIP parameters of dark adapted measurements on field samples
at Cadenazzo in 2021 for the factors “Treatm.”, “Variety” and their interaction. Significance levels: NS:

p > 0.05; *: p < 0.05; **: p < 0.01; ***: p <, and colors indicate significance at p < 0.01.
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Figure S4.8: p-values of ANOVA on OJIP parameters of dark adapted measurements on field samples
at Changins in 2022 for the factors “Treatm.”, “Variety” and their interaction. Significance levels: NS:

p > 0.05; *: p < 0.05; **: p < 0.01; ***: p <, and colors indicate significance at p < 0.01.
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S4.6.5 Fv/Fm parameter of OJIP protocol, Changins 2022
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Figure S4.9: Fv/Fm parameter of OJIP data, Changins 2023. The 16 tiles represent the 16 wheat
varieties tested over time. Dates are the individual measurement events. Inoculation treatments are
indicated by color. 10 spikes were measured on spikelets on a central spikelet for each plot, resulting
in n = 40 measurements per variety and inoculation treatment for each date of measurements (1’280

measurements for each date in total).
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S4.6.6 p-values of ANOVA on rapid Fv’/Fm parameter, Changins 2021
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Figure S4.10: p-values of ANOVA on rapid Fv’/Fm’ parameter without dark adaption at Changins
2021 for the factors “Treatm.”, “Variety” and their interaction. Significance levels: NS: p > 0.05; *: p

< 0.05; **: p < 0.01; ***: p <, and colors indicate significance at p < 0.01.
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S4.6.7 Rapid Fv’/Fm’ parameter without dark adaption, Changins 2021
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Figure S4.11: Rapid Fv’/Fm’ parameter without dark adaption, Changins 2022. The 16 tiles represent
the 16 wheat varieties tested over time. Dates are the individual measurement events. Inoculation
treatments are indicated by color. 10 spikes were measured on a spikelet from the central spike for each
plot, resulting in n = 40 measurements from four replication per variety and inoculation treatment for

each date of measurements (1’280 measurements for each date in total).
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S4.6.8 Infestation example

Figure S4.12: Example of the severity of Fusarium infestation for the variety MONTALBANO, taken
on 2021-06-25. Spikes toward to opper part of the canopy are completely infested with the fungus.
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AIC Akaike Information Criterion
ANOVA Analysis of Variance
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BIC Baysian Information Criterion
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FOV Field Of View
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GPS Global Positioning System
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