SCHWERPUNKT .

ERFASSUNG DER SCHWARZ-
HOLZKRANKHEIT MIT DROHNEN -
EINE ECHTE ALTERNATIVE?

Im Kontext des Klimawandels bilden Krankheiten wie Bois noir (Schwarzholzkrankheit, SHK) oder

Flavescence dorée (Goldgelbe Vergilbung, GGV) neue Herausforderungen.
Die Uberwachung dieser Krankheiten ist komplex und kostenintensiv, deshalb braucht es effiziente
Alternativen. Vielversprechend ist der Drohneneinsatz zur Detektion der SHK.

Derzeit erfolgt das Monitoring von SHK und
GGV durch eine visuelle Kontrolle Rebe fir
Rebe, ein zeitaufwendiges Verfahren. Dabei
besteht die Herausforderung, dass sich die
beiden Krankheiten visuell nicht unterschei-
den lassen und dafiir molekularbiologische
Methoden erforderlich sind. In Regionen, in
denen die GGV bereits vorkommt (Tessin und
in einigen Westschweizer Kantonen), ist der
Uberwachungsbedarf besonders hoch. Re-
ben, die von GGV befallen sind, miissen un-
bedingt gerodet werden. Fur Winzer und
Winzerinnen sowie kantonale Behdrden ist
eine zuverlassige und kosteneffiziente Ein-
schatzung der Krankheitsverbreitung ent-
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scheidend, da diese beide Krankheiten erheb-
liche Schiden verursachen.

Bildgebende Methoden wie Multispektral-
Sensoren sind raumlich hochauflésend und
erlauben die Unterscheidung kleinster Farb-
nuancen. Daneben ermdglichen Drohnen eine
schnelle Erfassung von Krankheitssymptomen
auf grossen Flachen und sind daher eine viel-
versprechende Alternative zu Rebbegehungen.
Wir prasentieren hier erste Ergebnisse des
Drohneneinsatzes zur Detektion von SHK auf
einer Versuchsparzelle im Kanton Zirich -
durchgefithrt mit einer handelsiiblichen Drohne,
ausgestattet mit einer Multispektralkamera.

DROHNENEINSATZ IM REBBERG

Die eingesetzte Kamera kann gleichzeitig
mehrere Spektralbander erfassen, darunter
Griin, Rot, Red Edge und Nahinfrarot. Diese
Bander wurden vom Hersteller gezielt aus-
gewahlt, da sie generell fur das Vegetations-
monitoring eingesetzt werden kénnen. Eine
frihere Studie belegt ihre Wirksamkeit bei
der Erkennung von SHK-Symptomen (Hug-
gel, 2024), zeigt aber auch auf, dass diese
Kanile Limitierungen aufweisen.

Die Versuchsparzelle umfasste rund 720 Zwei-
gelt-Reben (ca. 1450 m*) mit deutlichen Sym-
ptomen und einer Infektionsrate von Uber
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Abb. 1: Nahaufnahme der Reben, welche den
Trainings fiir das «<Machine Learning» dient.
(© Jeremiah Huggel)

55%. Die Drohnenfliige fanden in der zweiten
Septemberwoche 2024 statt, ein Zeitpunkt,
an dem die Symptome gut sichtbar sind, das
Laub jedoch noch grésstenteils grin ist. Die
Fluge wurden entlang der Rebenreihen mit
vorprogrammierter Flugbahn durchgefiihrt.
Die Kamerawar in einem 45°-Winkel geneigt,
um die Lauboberfliche seitlich optimal zu
erfassen. Die Bilder wurden in einer Héhe
von 20 Metern alle drei Meter aufgenommen,
ein idealer Kompromiss zwischen Bildauf-
16sung und Fluggeschwindigkeit.

Foto aufgenommen mit der Drohne. (® Jeremiah Huggel)

Abbildung 4: Studienparzelle mit Reihen von iiber 50 Metern Ldange und etwa 60 Reben pro
Reihe. In Blau die symptomatischen Fldchen, in Gelb die nicht symptomatischen Flachen. Wie
beschrieben, wurde nur die Blattoberflache beriicksichtigt. (© Jeremiah Huggel)

ENTWICKLUNG DES
KLASSIFIKATIONS-ALGORITHMUS
Um die Klassifizierung von symptomatischen
und asymptomatischen Pflanzen durchzu-
fithren, musste ein Erkennungsalgorithmus
trainiert werden. Dafiir wurden am Tag des
Drohnenflugs zehn symptomatische und
asymptomatische Reben am Boden fotogra-
fiert (Abb. 1). Sowohl Blitter mit erkennbaren
Symptomen (rote Blitter) als auch die gesun-
den, grinen Blitter wurden manuell, pixel-
genau markiert, etwa neun Millionen Pixel

wurden so gesammelt. Diese Daten bilden die
Grundlage fur ein auf «Machine Learning»
gestlitztes System, das lernt, jeden Pixel auto-
matisch zu klassifizieren. 60 % der Daten dien-
ten dem Training, 40% der Validierung des
Algorithmus.

OPTIMIERUNG DES

ALGORITHMUS

Um die Erkennung robuster zu machen, wur-
den zusatzliche Vegetationsindizes aus den

Abb. 2

2000 2500

- 10

Abb. 2: Klassifizierung mit berechneten Vegeta-
tionsindizes.
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Abb. 3: Klassifizierung nach Filterung und Glat-
tung der Daten.
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Abbildung 5a: Magnesiummangel-
Symptome bei roten Sorten mit
normaler Holzverholzung.

(© Agroscope)

Spektraldaten berechnet. Diese halfen, sym-
ptomatische von gesunden Bereichen besser
zuunterscheiden (siehe Abb. 2). Eine Schwell-
wertanalyse diente der Klassifikation: Uber-
schreitet ein Pixel diesen Wert, gilt er als
symptomatisch.

Allerdings entstehen bei dieser Methode oft
fehlerhafte Einzelpixel, die keine realen Sym-
ptome reprisentieren und haufig im Hinter-
grund im trockenen Gras sind. Um dies zu
korrigieren, wurde ein Bildverarbeitungsver-
fahren getestet (siehe Abb. 3). Dieses glittet
das Bild, entfernt isolierte Pixel und verstarkt
zusammenhingende, krankheitstypische
Muster. Die Genauigkeit erreichte tiber 80 %,
bedarf aber menschlicher Hilfe, um die Grup-
penvon symptomatischen Pixeln vom Hinter-
grund zu unterscheiden.

EINBEZUG DER
HOHENINFORMATION

Bis zu diesem Punkt lagen nur 2D-Bilder mit
(x,y)-Koordinaten vor. Zur Unterscheidung
von Rebe, Boden oder Gras wurde ein 3D-
Modell anhand von einem «Structure from
Motion Ansatz» erstellt. Dieser erlaubt es, den
Boden anhand von einem digitalen Ober-
flichenmodell zu subtrahieren und nur die
8D-Pixel zwischen 0.7 und 2.0 Metern — also
in der Laubzone der Reben — zu berticksich-
tigten (siehe Abb. 4). Dadurch fallen die Pro-
bleme der Falschklassifikation im Hinter-
grund (Boden) weg. Es werden jedoch immer
noch einzelne Pixel falsch klassifiziert, wel-
che danach ahnlich wie bei den 2D-Bildern
mit einem Glattungsalgorithmus reduziert
werden. Dadurch sieht man nur noch gros-
sere Ansammlungen von symptomatisch-
klassifizierten Pixeln, welche ganze Reben
reprasentieren.
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Abbildung 5b: Symptome des
Blattrollvirus bei roten Sorten mit
normaler Holzverholzung.

(© siehe Link unten)

(© Agroscope)

VIELVERSPRECHENDE ERGEBNISSE
Abbildung 4 zeigt symptomatische Bereiche,
eine exakte Zihlung befallener Rebstocke
bleibtjedoch schwierig. Im Allgemeinen wur-
den stark befallene Reben durch den Algo-
rithmus gut erkannt. In visuellen Tests wur-
den 80 % bis 90 % der Pixel korrekt klassifiziert.
Der Anteil symptomatischer Pixellagbei 30 %,
die Infektionsrate der Reben bei ca. 55%. Das
ist immer noch eine gute Klassifikation: Die
Unterschiede ergeben sich daraus, dass die
Symptome sehr unterschiedlich ausgepragt
sind, da nicht jeder Trieb einer infizierten
Rebe sichtbare Symptome aufweist und auch
ein einzelner Trieb nicht vollstindig sympto-
matisch sein muss.

ZUSATZLICHE
HERAUSFORDERUNGEN

Obwohl die ersten Ergebnisse vielverspre-
chend sind, erschweren weitere Faktoren den
Prozess. Tatsichlich gibt es andere Krankheiten
oder Mangelerscheinungen, die ahnliche Sym-
ptome wie SHK zeigen (Abb. 5 a bis d) und von
unserem Algorithmus falsch erkannt werden
koénnten. In diesem Zusammenhang erscheint
die fehlende Verholzung der Triebe (griine
Triebe im Spatsommer) ein vielversprechen-
der zusatzlicher Indikator zu sein.

Im Jahr 2025 wurden daher drei weitere Par-
zellen mit Blauburgunder mit deutlich milde-
ren Symptomen sowie drei Chardonnay-Par-
zellen zur Analyse beprobt, um damit die
Erkennung auch auf weisse Sorten auszuweiten.

Daeine sichere Unterscheidung von SHK und
GGV bislang nur im Labor mittels molekula-
rer Analysen moglich ist, arbeitet das Projekt
SmartGrape auch mit weiteren alternativen
Methoden, darunter die Analyse der Duft-

Abbildung 5c: Symptom der Biiffel-
zikade mit dem typischen schwar-
zen Kreis an der Einstichstelle.

Abbildung 5d: Symptom von
SHK und fehlende Verholzung
des Holzes. (© Agroscope)

stoffe, welche von infizierten Reben freige-
setzt werden. Die Kombination aus Duftmo-
lekiilen und multispektraler Bildgebung kann
in Zukunft ein leistungsstarkes Werkzeug fur
die Fritherkennung und Unterscheidung von
Vergilbungskrankheiten sein. Ein separater

Artikel zu diesen Entwicklungen folgt in den

. o
nichsten Monaten. “w
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