
S C HW E R P U N K T

E R F A S S U N G  D E R  S C H W A R Z -
H O L Z K R A N K H E I T  M I T  D R O H N E N   – 

E I N E  E C H T E  A L T E R N A T I V E ?
Im Kontext des Klimawandels bilden Krankheiten wie Bois noir (Schwarzholzkrankheit, SHK) oder  

Flavescence dorée (Goldgelbe Vergilbung, GGV) neue Herausforderungen.  

Die Überwachung dieser Krankheiten ist komplex und kostenintensiv, deshalb braucht es effiziente 

Alternativen. Vielversprechend ist der Drohneneinsatz zur Detektion der SHK.
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Derzeit erfolgt das Monitoring von SHK und 

GGV durch eine visuelle Kontrolle Rebe für 

Rebe, ein zeitaufwendiges Verfahren. Dabei 

besteht die Herausforderung, dass sich die 

beiden Krankheiten visuell nicht unterschei-

den lassen und dafür molekularbiologische 

Methoden erforderlich sind. In Regionen, in 

denen die GGV bereits vorkommt (Tessin und 

in einigen Westschweizer Kantonen), ist der 

Überwachungsbedarf besonders hoch. Re-

ben, die von GGV befallen sind, müssen un-

bedingt gerodet werden. Für Winzer und 

Winzerinnen sowie kantonale Behörden ist 

eine zuverlässige und kosteneffiziente Ein-

schätzung der Krankheitsverbreitung ent-

scheidend, da diese beide Krankheiten erheb-

liche Schäden verursachen.

Bildgebende Methoden wie Multispektral- 

Sensoren sind räumlich hochauflösend und 

erlauben die Unterscheidung kleinster Farb-

nuancen. Daneben ermöglichen Drohnen eine 

schnelle Erfassung von Krankheitssymptomen 

auf grossen Flächen und sind daher eine viel-

versprechende Alternative zu Rebbegehungen. 

Wir präsentieren hier erste Ergebnisse des 

Drohneneinsatzes zur Detektion von SHK auf 

einer Versuchsparzelle im Kanton Zürich  – 

durchgeführt mit einer handelsüblichen Drohne, 

ausgestattet mit einer Multispektralkamera.

D R O H N E N E I N S A T Z  I M  R E B B E R G
Die eingesetzte Kamera kann gleichzeitig 

mehrere Spektralbänder erfassen, darunter 

Grün, Rot, Red Edge und Nahinfrarot. Diese 

Bänder wurden vom Hersteller gezielt aus-

gewählt, da sie generell für das Vegetations-

monitoring eingesetzt werden können. Eine 

frühere Studie belegt ihre Wirksamkeit bei 

der Erkennung von SHK-Symptomen (Hug-

gel, 2024), zeigt aber auch auf, dass diese 

Kanäle Limitierungen aufweisen.

Die Versuchsparzelle umfasste rund 720 Zwei-

gelt-Reben (ca. 1450 m²) mit deutlichen Sym-

ptomen und einer Infektionsrate von über 
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55 %. Die Drohnenflüge fanden in der zweiten 

Septemberwoche 2024 statt, ein Zeitpunkt, 

an dem die Symptome gut sichtbar sind, das 

Laub jedoch noch grösstenteils grün ist. Die 

Flüge wurden entlang der Rebenreihen mit 

vorprogrammierter Flugbahn durchgeführt. 

Die Kamera war in einem 45°-Winkel geneigt, 

um die Lauboberfläche seitlich optimal zu 

erfassen. Die Bilder wurden in einer Höhe 

von 20 Metern alle drei  Meter aufgenommen, 

ein idealer Kompromiss zwischen Bildauf-

lösung und Fluggeschwindigkeit.

E N T W I C K L U N G  D E S 
K L A S S I F I K A T I O N S - A L G O R I T H M U S
Um die Klassifizierung von symptomatischen 

und asymptomatischen Pflanzen durchzu-

führen, musste ein Erkennungsalgorithmus 

trainiert werden. Dafür wurden am Tag des 

Drohnenflugs zehn symptomatische und 

asymptomatische Reben am Boden fotogra-

fiert (Abb. 1). Sowohl Blätter mit erkennbaren 

Symptomen (rote Blätter) als auch die gesun-

den, grünen Blätter wurden manuell, pixel-

genau markiert, etwa neun Millionen Pixel 

wurden so gesammelt. Diese Daten bilden die 

Grundlage für ein auf «Machine Learning» 

gestütztes System, das lernt, jeden Pixel auto-

matisch zu klassifizieren. 60 % der Daten dien-

ten dem Training, 40 % der Validierung des 

Algorithmus.

O P T I M I E R U N G  D E S  
A L G O R I T H M U S
Um die Erkennung robuster zu machen, wur-

den zusätzliche Vegetationsindizes aus den 

Abb. 1: Nahaufnahme der Reben, welche den 
Trainings für das «Machine Learning» dient. 
(© Jeremiah Huggel)

Abbildung 4: Studienparzelle mit Reihen von über 50 Metern Länge und etwa 60 Reben pro 
Reihe. In Blau die symptomatischen Flächen, in Gelb die nicht symptomatischen Flächen. Wie 
beschrieben, wurde nur die Blattoberfläche berücksichtigt. (© Jeremiah Huggel)

Foto aufgenommen mit der Drohne. (© Jeremiah Huggel)
Abb. 3: Klassifizierung nach Filterung und Glät-
tung der Daten. 

Abb. 2: Klassifizierung mit berechneten Vegeta-
tionsindizes.

Abb. 2

Abb. 3
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Spektraldaten berechnet. Diese halfen, sym-

ptomatische von gesunden Bereichen besser 

zu unterscheiden (siehe Abb. 2). Eine Schwell-

wertanalyse diente der Klassifikation: Über-

schreitet ein Pixel diesen Wert, gilt er als 

symptomatisch.

Allerdings entstehen bei dieser Methode oft 

fehlerhafte Einzelpixel, die keine realen Sym-

ptome repräsentieren und häufig im Hinter-

grund im trockenen Gras sind. Um dies zu 

korrigieren, wurde ein Bildverarbeitungsver-

fahren getestet (siehe Abb. 3). Dieses glättet 

das Bild, entfernt isolierte Pixel und ver stärkt 

zusammenhängende, krankheitstypische 

Muster. Die Genauigkeit erreichte über 80 %, 

bedarf aber menschlicher Hilfe, um die Grup-

pen von symptomatischen Pixeln vom Hinter-

grund zu unterscheiden.

E I N B E Z U G  D E R 
H Ö H E N I N F O R M A T I O N
Bis zu diesem Punkt lagen nur 2D-Bilder mit 

(x,y)-Koordinaten vor. Zur Unterscheidung 

von Rebe, Boden oder Gras wurde ein 3D-

Modell anhand von einem «Structure from 

Motion Ansatz» erstellt. Dieser erlaubt es, den 

Boden anhand von einem digitalen Ober-

flächenmodell zu subtrahieren und nur die 

3D-Pixel zwischen 0.7 und 2.0 Metern – also 

in der Laubzone der Reben – zu berücksich-

tigten (siehe Abb. 4). Dadurch fallen die Pro-

bleme der Falschklassifikation im Hinter-

grund (Boden) weg. Es werden jedoch immer 

noch einzelne Pixel falsch klassifiziert, wel-

che danach ähnlich wie bei den 2D-Bildern 

mit einem Glättungsalgorithmus reduziert 

werden. Dadurch sieht man nur noch grös-

sere Ansammlungen von symptomatisch-

klassifizierten Pixeln, welche ganze Reben 

repräsentieren. 

V I E L V E R S P R E C H E N D E  E R G E B N I S S E
Abbildung 4 zeigt symptomatische Bereiche, 

eine exakte Zählung befallener Rebstöcke 

bleibt jedoch schwierig. Im Allgemeinen wur-

den stark befallene Reben durch den Algo-

rithmus gut erkannt. In visuellen Tests wur-

den 80 % bis 90 % der Pixel korrekt klassifiziert. 

Der Anteil symptomatischer Pixel lag bei 30 %, 

die Infektionsrate der Reben bei ca. 55 %. Das 

ist immer noch eine gute Klassifikation: Die 

Unterschiede ergeben sich daraus, dass die 

Symptome sehr unterschiedlich ausgeprägt 

sind, da nicht jeder Trieb einer infizierten 

Rebe sichtbare Symptome aufweist und auch 

ein einzelner Trieb nicht vollständig sympto-

matisch sein muss. 

Z U S Ä T Z L I C H E 
H E R A U S F O R D E R U N G E N
Obwohl die ersten Ergebnisse vielverspre-

chend sind, erschweren weitere Faktoren den 

Prozess. Tatsächlich gibt es andere Krankheiten 

oder Mangelerscheinungen, die ähnliche Sym-

ptome wie SHK zeigen (Abb. 5 a bis d) und von 

unserem Algorithmus falsch erkannt werden 

könnten. In diesem Zusammenhang erscheint 

die fehlende Verholzung der Triebe (grüne 

Triebe im Spätsommer) ein vielversprechen-

der zusätzlicher Indikator zu sein.

Im Jahr 2025 wurden daher drei weitere Par-

zellen mit Blauburgunder mit deutlich milde-

ren Symptomen sowie drei Chardonnay-Par-

zellen zur Analyse beprobt, um damit die 

Erkennung auch auf weisse Sorten auszuweiten.

Da eine sichere Unterscheidung von SHK und 

GGV bislang nur im Labor mittels molekula-

rer Analysen möglich ist, arbeitet das Projekt 

SmartGrape auch mit weiteren alternativen 

Methoden, darunter die Analyse der Duft-

stoffe, welche von infizierten Reben freige-

setzt werden. Die Kombination aus Duftmo-

lekülen und multispektraler Bildgebung kann 

in Zukunft ein leistungsstarkes Werkzeug für 

die Früherkennung und Unterscheidung von 

Vergilbungskrankheiten sein. Ein separater 

Artikel zu diesen Entwicklungen folgt in den 

nächsten Monaten.
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Abbildung 5a: Magnesiummangel-
Symptome bei roten Sorten mit 
normaler Holzverholzung.  
(© Agroscope)

Abbildung 5b: Symptome des 
Blattrollvirus bei roten Sorten mit 
normaler Holzverholzung.  
(© siehe Link unten)

Abbildung 5c: Symptom der Büffel-
zikade mit dem typischen schwar-
zen Kreis an der Einstichstelle. 
(© Agroscope)

Abbildung 5d: Symptom von  
SHK und fehlende Verholzung  
des Holzes. (© Agroscope)
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