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ABSTRACT
Bees that nest in the soil in self-excavated burrows comprise the majority of wild bee species and provide important pollination 
and soil functions, yet many species are threatened. Conservation efforts for ground-nesting bees are often hindered by limited 
knowledge of their nesting habitat requirements, in part because nests are difficult to locate and efficient methods for monitoring 
nesting sites are lacking. Automated detection and monitoring of soil mounds (tumuli) produced by ground-nesting bees, indi-
cating nest presence, could provide new insights into bee nesting biology and population dynamics while also providing crucial 
data to support conservation and management. Image-based methods, such as the automated acquisition of high-resolution 
aerial imagery using drones combined with modern computer vision techniques, offer a promising path toward scalable systems 
for detecting and monitoring bee nest tumuli across large areas. Here, we evaluate the feasibility of integrating drone-based 
image acquisition with deep learning to detect tumuli representing bee nests and to distinguish them from other soil surface 
deposits, such as earthworm casts. We demonstrate this approach on a 120 m2 area of a densely populated nesting aggregation 
of Lasioglossum malachurum on bare soil containing numerous earthworm casts. Our model reliably detected bee nest tumuli, 
achieving an F1 score of 0.90 (precision: 0.89, recall: 0.91). Misclassifications mainly arose from atypically shaped tumuli (e.g., 
new and incomplete or damaged), and from cases where tumuli overlapped, but no earthworm casts were confused for bee nest 
tumuli. This pilot study represents a step toward more efficient monitoring of ground-nesting bees and demonstrates the poten-
tial of this approach under specific conditions. Future work could evaluate its applicability across additional habitats and species 
and explore alternative methods, such as image segmentation, which may be better suited for cases with less distinct tumuli or 
extensive overlap among soil mounds.

1   |   Introduction

Ground-nesting bees, that is, bees that nest in the soil in 
self-excavated burrows, constitute the majority of wild bee 
species (Cane and Neff  2011; Danforth et al.  2019; Harmon-
Threatt 2020). They play key roles as pollinators of wild plants 
(Garibaldi et al. 2013; Michener 2007) and crops (Cane 1997; 

Kleijn et  al.  2015), and also influence various soil functions 
(Christmann  2022; Tschanz, Albrecht, and Keller  2025). 
However, many ground-nesting bees are currently threatened 
or endangered (Müller and Praz  2024; Nieto et  al.  2014), in 
part due to a lack of suitable nesting resources, disturbances of 
nesting sites, and accumulation of harmful substances in soils 
(Harmon-Threatt 2020; Roulston and Goodell 2011). Despite 
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the importance of nesting habitats for the viability of wild 
bee populations, our understanding of the nesting habitat re-
quirements of most ground-nesting bees remains limited due 
to the difficulty of locating nests and the scarcity of effective 
methods to identify and monitor nesting sites, which ham-
pers conservation efforts (Antoine and Forrest 2021; Hellerich 
et al. 2025).

Standardized and efficient detection of ground-nesting 
bee nests would simplify the monitoring and collection of 
conservation-relevant data of this important group of pol-
linators. It could also provide new insights into the nesting 
behavior and dynamics of ground-nesting bees. Automated 
image-based methods for detecting and monitoring the char-
acteristic soil mounds (tumuli) excavated by bees that indicate 
the presence of a nest, such as the automated acquisition of 
high-resolution aerial imagery using drones combined with 
advanced computer vision approaches, provide a promising 
framework that can be applied over large areas. However, to 
our knowledge, the potential of this approach has not yet been 
assessed.

Aerial imagery from drones and satellites has been successfully 
utilized to manually detect large soil mounds (0.5 to > 10 m in 
diameter) made by insects (reviewed in Rhodes et al. 2022), such 
as ants (e.g., Vogt 2004) and termites (e.g., Mujinya et al. 2014), 
and efforts are being made to automate nest detection using 
image segmentation and machine learning approaches (Rhodes 
et  al.  2022). Detecting bee nest tumuli is challenging because 
these soil mounds are small and less conspicuous compared to 
those of the ant and termite species studied, typically measuring 
only a few centimeters in diameter and height (info fauna 2025; 
Westrich 2018). Moreover, bee nest tumuli often co-occur with 
earthworm surface casts, which are similar in size (Edwards and 
Arancon 2022), presenting additional challenges for reliable and 
automated detection using traditional image analysis methods. 
However, bee tumuli are created through soil excavation and, in 
most species, consist of loose accumulations of relatively fine-
grained soil material (Danforth et al. 2019), whereas earthworm 
casts are produced through egestion, resulting in more cohesive, 
pellet-like mounds (Edwards and Arancon  2022). Therefore, 
recent advances in computer vision techniques should enable 
accurate detection of bee nest tumuli and differentiation from 
other surface deposits such as earthworm casts. Deep learning 
models based on convolutional neural networks (CNNs) have 
revolutionized object detection and continue to improve with 
more sophisticated architectures. Faster R-CNN, a two-stage 
detector widely recognized for its effectiveness in detecting 
objects from images, first generates candidate regions using a 
region proposal network (RPN) and then refines and classifies 
them (Ren et  al.  2016). Detection performance can be further 
enhanced by using a powerful backbone such as ResNet-50 for 
feature extraction (He et al. 2016). Integration of a feature pyr-
amid network (FPN; Lin et al. 2017) additionally improves de-
tection of small or variably sized objects by combining features 
across multiple scales.

In this pilot study, we evaluated the feasibility of combining 
drone-based image acquisition with deep learning-based ob-
ject detection, using an enhanced Faster R-CNN with an FPN 

and ResNet-50 backbone, to automatically identify individual 
ground-nesting bee tumuli. We also highlight how such an au-
tomated detection and monitoring system allows to gain new 
insights into the behavior and ecology of ground-nesting bees, 
and how it can provide valuable information for conservation 
management of this important group of pollinators.

2   |   Materials and Methods

2.1   |   Description of the Study Site 
and Drone-Based Image Acquisition

To evaluate the applicability of drone-based image acquisition 
and deep learning-based nest detection, we used a nest aggrega-
tion of the ground-nesting sweat bee Lasioglossum malachurum 
(Apoidea: Halictidae) located on the premises of the Swiss 
Federal Research Institute Agroscope in Zurich, Switzerland 
(47°25′48″ N/08°31′11″ E) as a model species. The nest aggrega-
tion was situated within a 10.5 × 51 m bare soil plot that forms 
part of a long-term field experiment on soil recovery following 
compaction under different soil management regimes, includ-
ing a bare soil treatment where vegetation is suppressed through 
herbicide application (see Keller et al. 2017 for details). The soil 
at the nesting site was classified as silt loam (USDA system; Soil 
Survey Staff  2022), consisting of 7% sand, 69% silt, 24% clay, 
and 1.4% soil organic carbon (see site C in Tschanz, Koestel, 
et al. 2023). Visual observations confirmed that the visible soil 
mounds were created by bees, and several females leaving nests 
were captured and identified as L. malachurum by a bee taxono-
mist (see site C in Tschanz, Koestel, et al. 2023).

The workflow is summarized in Figure 1. Drone images were 
obtained on April 23, 2020 using an E90 RGB camera (20 
megapixel 1″ CMOS sensor) attached to a Yuneec H520 drone 
(Advanced Technology Labs AG). The flight path was defined 
in DataPilotPlanner version 1.5.0.1 (Advanced Technology 
Labs AG) with an image overlap of 85% (both sides) and a flight 
height of 6.8 m, corresponding to a ground sampling distance 
of approximately 2 mm per pixel. Before the drone flight, four 
ground-control points (GCPs) were installed at the corners of the 
survey area for geographical alignment. Relative positions and 
orientation of the collected aerial images were reconstructed 
and merged into a large orthomosaic using Agisoft Metashape 
version 1.5.2 (Agisoft, L. L. C  2019). The orthomosaic was 
cropped to a 10 × 12 m region of interest (ROI) containing a high 
density of bee nest tumuli.

2.2   |   Model Training

To prepare the dataset for training the tumuli detection model, 
the orthomosaic (cropped to the ROI) was split into nonover-
lapping tiles of 300 × 300 pixels for annotation. All clearly dis-
tinguishable bee nest tumuli within these tiles were manually 
annotated with bounding boxes using the open-source Computer 
Vision Annotation Tool (CVAT; Sekachev et al. 2020), and the 
annotated dataset was exported in COCO (Common Objects in 
Context; Lin et al. 2014) format. We used COCO format as it is 
a widely used JSON-based format that defines how annotations 
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and metadata are stored and is natively supported by the deep 
learning framework used in this study. The annotated dataset 
comprised 271 tiles containing 2111 annotated bee nest tumuli 
in total.

Model training was conducted using GinJinn2 (Ott and 
Lautenschlager  2022), a deep learning toolkit based on 
the Detectron2 framework (Wu et  al.  2019). ChatGPT-4o 
(OpenAI  2025) was used as an assistant for coding. 
Commands were run in Google Colab (Bisong 2019) to lever-
age GPU resources. The annotated dataset was divided into 
training (70%), validation (15%), and test (15%) sets. A Faster 
R-CNN model with a ResNet-50 backbone and FPN from 
the Detectron2 model zoo (faster_rcnn_R_50_FPN_1x; Wu 
et  al.  2019) was fine-tuned for nest tumuli detection. The 
Faster R-CNN architecture (Ren et  al.  2016) outputs the co-
ordinates of the bounding boxes of recognized objects in an 
input image. FPN improves the performance of the Faster R-
CNN network in detecting objects across scales and enhances 
the detection accuracy of small objects (Lin et al. 2017), such 
as nest tumuli. To enhance the variability of the training set, 
standard data augmentation techniques (i.e., horizontal/ver-
tical flipping, rotation, and changes in image contrast, satu-
ration, and brightness) were applied to each training image, 
with each technique having a 25% probability of being applied.

During training, model performance was evaluated on the vali-
dation set every 200 iterations, using AP50 (see below for defini-
tion) as the primary metric guiding learning-rate adjustments 
and early stopping. When AP50 did not improve for five con-
secutive evaluations (i.e., 1000 iterations), training was paused 
and resumed from the best checkpoint with the learning rate 
reduced by a factor of 10. The initial learning rate was 0.005, 
which corresponds to the default learning rate scaled to our 
per-GPU batch size of four. After no further improvements in 
AP50 were observed across five consecutive evaluations at the 
reduced learning rate (0.0005), training was terminated and the 
best-performing checkpoint at iteration 4600 was selected as the 
final model.

2.3   |   Model Evaluation

Performance of the final nest tumuli detection model was as-
sessed by comparing the predicted bounding boxes with the 
annotated bounding boxes on the test set using a combination 
of standard evaluation metrics, that is, F1 score, precision, re-
call, and average precision (AP) from the PASCAL Visual Object 
Classes Challenge (Everingham et  al.  2010). The Intersection 
over Union (IoU) metric was used to determine whether a pre-
dicted bounding box matched a ground truth annotated bound-
ing box. A prediction was considered correct (i.e., a true positive) 
if the IoU of the predicted bounding box with a ground truth 
bounding box exceeded a threshold of 0.5. The IoU (Jaccard 
Index J) between two bounding boxes, A and B, was calculated 
by dividing the intersection area by the union area:

A confusion matrix (predicted vs. true values) was constructed 
to obtain the number of true positives (TP), false positives (FP), 
and false negatives (FN), which were used to calculate the pre-
cision, recall, and F1 score (the harmonic mean of precision and 
recall) using the following formulae:

AP was computed at an IoU threshold of 0.5 (AP50), as defined 
in the PASCAL Visual Object Classes Challenge (Everingham 
et al. 2010).

To determine the optimal prediction confidence score thresh-
old, the F1 score was computed across a range of thresholds 

J(A, B) =
∣ A ∩ B ∣

∣ A ∪ B ∣

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall

FIGURE 1    |    Overview of the workflow used in this study.
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using the validation set. The threshold that maximized the 
F1 score (0.45) was selected, as it provided the best balance 
between precision and recall. Predictions with confidence 
scores below this threshold were discarded in model evalua-
tion and visualization. Metric computation and visualization 
were conducted in Python version 3.11.13 (Python Software 
Foundation 2025).

2.4   |   Nest Density Map

To generate a nest density map of the aggregation within the 
ROI, the tumuli prediction model was applied to detect bee 
nest tumuli across the area. Centroids of predicted bounding 
boxes were used as point locations for kernel density estimation 
(KDE), producing a continuous map of nest density (nests per 
m2). The KDE bandwidth was chosen by visually inspecting 
density maps generated across a range of candidate bandwidths 
(Silverman 2018). A bandwidth of 0.20 m was selected, as it ad-
equately represented the spatial distribution of nests while pre-
serving local density patterns.

3   |   Results

The trained deep learning model reliably predicted the locations 
of ground-nesting bee tumuli (Figure 2). On the test set compris-
ing previously unseen image tiles, the model achieved an AP50 of 
0.93. With an F1 score of 0.90, a precision of 0.89, and a recall of 
0.91, the model effectively located most existing bee nest tumuli 
while maintaining a low false positive rate (i.e., few misidentifi-
cations of earthworm casts or other soil surface deposits as bee 
nest tumuli).

Visual inspection of all misclassifications in the test set (33 false 
positives and 27 false negatives) revealed several likely sources of 
error. Examples of mispredictions are shown in Figure 3. Most 
false positives (81%) were potential nest tumuli that were not an-
notated due to their atypical or inconspicuous appearance (e.g., 
incomplete and thus very small, irregularly shaped, or disturbed). 
While we were not sufficiently confident to annotate these struc-
tures as nest tumuli, some of these detections may indeed repre-
sent true nest tumuli. Higher-resolution imagery may reduce this 
error source, although some cases are likely difficult to identify 
reliably even in the field. Additional false positives resulted from 
ambiguous soil artifacts (10%), imprecise bounding boxes (6%), 
and mistaking a stone for a nest tumulus (3%). No earthworm 
casts were falsely detected as nest tumuli. False negatives arose 
from several causes. Overlapping tumuli detected as a single tu-
mulus accounted for 30% of missed detections, and partial visi-
bility (e.g., image-edge cropping, shading, or obstruction by soil 
features) for 22%. Imprecise bounding boxes contributed to 7% of 
false negatives. The remaining cases (41%) were likely associated 
with atypical tumulus morphology or inconspicuous appearance 
(e.g., small size or low contrast with the background).

Nest density, estimated using KDE with a bandwidth of 0.20 m, 
varied across the area, with most nests concentrated in the lower 
(southern) third and a clear avoidance of vegetated patches 
(Figure 4). The highest nest density was approximately 52 nests 
per m2.

4   |   Discussion

This pilot study demonstrates the potential of an automated 
pipeline that integrates drone-based image acquisition with 

FIGURE 2    |    Orthomosaic showing the locations of predicted bee nests with tumuli (mounds of excavated soil material by ground-nesting bees) 
delineated by blue bounding boxes at different zoom levels. Red arrows point to examples of earthworm casts that resemble bee nest tumuli in shape 
and size but correctly distinguished from bee nest tumuli by the trained model.
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deep learning for detecting soil mounds (tumuli) created by 
ground-nesting bees (Figure  2), enabling effective monitoring 
of bee nests across space and time. The model achieved high 
performance in both precision and recall, indicating that it was 
effective at identifying bee nest tumuli while maintaining a low 
false-positive rate. Some detection errors did occur, including 
missed detections, false positives, or where multiple fused tu-
muli were misclassified as a single tumulus (Figure 3). However, 
many of these cases were also difficult to reliably identify as a 
bee nest tumulus through visual inspection in the field, particu-
larly when the tumulus was damaged and had lost its character-
istic conical shape, or when the nest excavation had just started 
and the tumulus was still very small. Despite these challenges, 
the combined use of drone imagery and deep learning yielded 
a reliable and objective approach for locating and quantifying 
ground-nesting bee nests.

The applicability of our automated approach to nest detection 
is likely limited to sparsely vegetated areas where bee nest tu-
muli remain largely unobstructed in aerial imagery. Detecting 
nest tumuli in densely vegetated landscapes, where vegetation 
partially or fully obscures the view, may be more challenging or 

infeasible, but some vegetation may be beneficial for detection 
because it improves the contrast between tumuli and the veg-
etated background. Further, the performance and reliability of 
the approach under other soil and environmental conditions, and 
potentially altered contrast between bee nest tumuli and the soil 
surface, or in areas where other soil-dwelling species produce 
soil mounds that more closely resemble bee nests than earth-
worm casts, such as soil mounds produced by ants, beetles, or 
wasps (Hellerich et al. 2025), remain to be tested. Nevertheless, 
since many ground-nesting bee species prefer to nest in sparsely 
vegetated or bare areas (Antoine and Forrest  2021; Harmon-
Threatt 2020; Westrich 2018), our approach may be applicable 
across a range of habitats.

An automated pipeline for drone-based image acquisition and 
nest detection offers several opportunities to support the con-
servation and management of ground-nesting bee populations. 
It enables noninvasive surveys of large areas to identify nesting 
sites of conservation concern, estimate population densities of 
nesting aggregations (Figure  4), and monitor population dy-
namics over time. Such data are crucial for early detection of 
population declines, evaluation of habitat improvement efforts, 

FIGURE 3    |    Selection of tiles illustrating the model's performance on the test set without misclassifications (A–C) and typical misclassifications 
(D–F). Green bounding boxes denote true positives, yellow boxes denote false positives, and red boxes denote false negatives. Typical misclassifica-
tions include: partly fused nest tumuli being detected as a single nest tumulus (D); missed detection of annotated nest tumuli due to atypical size and/
or shape (e.g., smaller than usual, irregular shape, or fusion of adjacent nest tumuli) (D–F); detection of nest tumuli where no ground truth annota-
tion exists (D, E); inaccurate bounding box size (E); and vegetation partially obstructing nest tumuli (F). False positive predictions also demonstrate 
the difficulty and subjectivity of classifying a mound as a bee nest tumulus, particularly when the mound is partially destroyed or under construction 
and thus very small.
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and identification of low-density nesting areas (Figure  4) to 
guide targeted habitat improvement measures. This information 
can also support the management of ground-nesting bees for 
crop pollination. For example, the gregarious alkali bee (Nomia 
melanderi) is managed in nesting beds for pollinating cultivated 
alfalfa (Medicago sativa) (Cane 2024). In these densely populated 
nesting sites, diseases and parasitoids can spread rapidly among 
crowded nests (Cane 2024). Early identification of areas with de-
clining populations facilitates investigation of local causes of bee 
mortality and timely implementation of mitigation measures. 
Compared with traditional methods, such as visual searches or 
emergence traps (Hellerich et al. 2025; Klaus et al. 2024), which 
disturb nesting sites, can be subject to observer bias and may 
be too labor-intensive for large-scale or fine-grained monitoring, 
the drone-based nest detection pipeline offers a more scalable, 
noninvasive, and objective alternative. Because drone-based 
nest detection can survey entire nesting aggregations and does 
not rely on extrapolation from limited transects or subsam-
ples, this approach may be particularly advantageous for large 
ground-nesting bee aggregations, which can exceed 100,000 in-
dividual nests (Danforth et al. 2019).

From a more fundamental perspective, an automated nest tu-
muli detection pipeline could provide valuable insights into the 
nesting behavior and ecology of ground-nesting bees. Regular 
monitoring (e.g., daily drone flights) during the nesting period, 
coupled with continuous measurements of environmental factors 
(e.g., air temperature, wind speed, precipitation) and soil condi-
tions (e.g., moisture, temperature, hardness), could deepen our 
understanding of the nesting biology of ground-nesting bees. 
For example, the relationship between bee burrowing and soil 
mounding activity could be investigated to identify soil hydrome-
chanical constraints on bee burrowing, as has been established 
for other invertebrates (Ruiz et al. 2023). The temporal dynamics 
of nesting aggregations could also be monitored across years and 
related to environmental factors and soil conditions to identify 

the underlying drivers of population dynamics. Moreover, new 
insights into the nesting preferences of ground-nesting bee spe-
cies could be gained by identifying areas of varying nest densities 
(e.g., using KDE as shown in Figure 4) and linking these to factors 
influencing nest site selection, such as soil surface features (e.g., 
vegetation, landmarks, rocks) and soil properties (e.g., texture, 
density) and conditions (e.g., moisture, temperature) (Antoine 
and Forrest 2021; Harmon-Threatt 2020). A major advantage of 
the approach presented here is that it enables the acquisition of 
precise, georeferenced nest locations at daily or even subdaily 
temporal resolution, which would be infeasible using manual 
methods. However, because bee tumuli can be eroded by wind, 
rain, or other physical disturbances, detection accuracy likely de-
clines as tumuli degrade over time. Consequently, the timing of 
drone imagery is critical to ensure that bee tumuli remain suffi-
ciently intact for reliable detection.

Although our model was trained on tumuli produced by a sin-
gle ground-nesting bee species, many other ground-nesting bee 
species create morphologically similar tumuli (Tschanz, Vogel, 
et al. 2023; Westrich 2018) and may also be detected by our model. 
Nevertheless, expanding the training set to include a broader 
range of species-specific tumuli would enhance the general appli-
cability of our approach. For dense nesting aggregations with sub-
stantial overlap between bee tumuli (e.g., see figures in Cane 2003; 
Watanabe 1998), estimating the area covered by bee tumuli using 
a segmentation approach may be more feasible than detection 
of single bee tumuli. However, when nest entrances remain 
clearly visible despite overlapping mounds (e.g., see figure  1 in 
Watanabe 1998), object detection methods may still perform well.

In conclusion, this study demonstrates the great potential of an 
automated pipeline that integrates drone-based image acqui-
sition with deep learning to reliably detect and monitor nests 
of tumuli-building ground-nesting bees in sparsely vegetated 
areas. It also underscores the potential of such an approach to 
gain new insights into the biology of ground-nesting bees and 
to support the conservation and management of this important 
group of pollinators. Future research may evaluate the applica-
bility of our approach in more vegetated habitats and for differ-
ent species of tumuli-building ground-nesting bees.
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