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Abstract

Cyst nematodes are persistent soilborne pests that severely impact crop productivity
worldwide. Their protective cysts enable long-term survival and host diverse fungal
communities that remain largely unexplored as potential sources of biological control
agents. In this study, we isolated culturable fungi from cysts of Globodera, Heterodera, and
Punctodera, as well as from soils collected across Swiss potato fields between 2018 and
2024. Sequencing identified 78 fungal operational taxonomic units (OTUs), predominantly
belonging to Ascomycota (73%), mainly Sordariomycetes (59%) and Eurotiomycetes (8%),
with additional representatives from Mortierellomycota and Basidiomycota. Fusarium was
the most abundant genus, followed by Clonostachys, Chaetomium, and Pochonia, while 28% of
isolates remained unclassified, indicating potentially novel taxa. Selected fungi, including
Orbilia brochopaga CH-02, Clonostachys rosea CH-04 and CH-15, and Pochonia chlamydosporia
CH-51, significantly reduced motility, infection and root galling of Meloidogyne incognita
in vitro and in planta. Notably, CH-02 reduced root galling by 63%, highlighting its strong
mechanical and antagonistic activity. These results demonstrate that cyst nematodes
harbor a rich and functionally diverse fungal community with substantial biocontrol
potential, providing a foundation for developing sustainable and environmentally friendly
alternatives to chemical nematicides in crop protection.

Keywords: biological control; cyst nematodes; fungal antagonists; sustainable nematode
management; agroecological strategies

1. Introduction

Cyst nematodes (Globodera, Heterodera and Punctodera) rank among the most special-
ized and destructive plant-parasitic nematodes, occurring in temperate [1], tropical and
subtropical regions [2]. They cause substantial yield losses in crops of major economic
importance, ranging from 10% to as high as 80%, affecting potatoes [3], soybeans [4,5], and
other crops such as carrots, beets, brassicas, and cereals [6,7]. The long-term persistence in
soil is largely attributed to the protective cyst and from robust dormancy systems, includ-
ing genetically programmed diapause and environmentally induced quiescence, which
together prevent hatching until appropriate seasonal and host-derived cues are present,
thereby allowing eggs to survive for many years in the absence of a host and making
population eradication extremely challenging, once populations are established [6-12].
This persistence highlights the need for sustainable, long-term management strategies.
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Current control strategies combine crop rotation, resistant cultivars, chemical nemati-
cides, and biological control agents. However, each of these approaches faces increasing
limitations. Stricter pesticide regulations, climate change-driven shifts in nematode dynam-
ics, and the emergence of resistance-breaking pathotypes, nematode populations capable
of overcoming plant resistance genes that are normally effective against standard pop-
ulations, further reduce the reliability of existing tools. While rising soil temperatures
may accelerate development in some nematode species, several cyst nematodes, including
Globodera rostochiensis and Globodera pallida, exhibit defined optimal temperature ranges
beyond which reproduction declines. In addition, Globodera species require a winter chilling
period to break egg dormancy. Therefore, milder winters may delay or partially prevent
hatching, potentially altering early-season host—parasite interactions and population dy-
namics [13,14]. Limited crop rotation options and low genetic diversity in resistant cultivars
further exacerbate the problem, while the development of new resistant cultivars remains
slow and costly [15]. Collectively, these factors emphasize the urgent need for ecologically
grounded strategies within integrated pest management.

Cysts provide a unique ecological niche for fungi, as their long-term persistence allows
the accumulation of diverse microbial associates, some of which may have evolved antago-
nistic traits by exploiting nematode eggs as a resource [16]. While several cyst-associated
fungi exhibit nematophagous or antagonistic activity, many isolates are primarily sapro-
phytes or opportunistic colonizers rather than obligate parasites. Their presence on cysts
may reflect ecological opportunism, exploiting available organic resources, rather than a
strict parasitic lifestyle. Nonetheless, repeated recovery of certain taxa suggests potential
functional relevance for nematode suppression under specific environmental conditions.
Previous studies have shown that cyst-associated fungi are taxonomically diverse, including
genera such as Clonostachys, Cylindrocarpon, Diheterospora, Exophiala, Fusarium, Ilyonectria,
Mortierella, Nematophthora, Neocosmospora, Neonectria, Phoma, Pochonia, Pyrenochaeta, Pur-
pureocillium, Sarocladium, Setophoma, Sporothrix, and Stagnospora, among others [17-28].
These fungi act through a wide range of mechanisms, including nematode-trapping struc-
tures [29], endoparasitism [30], egg or female parasitism [31-33], and the production of
nematicidal metabolites [34,35], often targeting multiple nematode life stages [36].

Despite this diversity, relatively few fungal isolates have progressed into commercial
biocontrol products due to limited host specificity [37,38], variable field efficacy [38,39],
poor soil establishment [40,41], incompatibility with agricultural inputs [42,43], and chal-
lenges in production, formulation and shelf life [44-46]. Regulatory requirements and the
need for performance consistency further slow adoption [47,48].

At Agroscope, the Nematology group processes 3500 to 4000 soil samples per year,
primarily from seed and staple potato fields. These samples originate from all major seed
potato-growing regions of Switzerland, encompassing distinct climatic zones (cool-humid
alpine foothills, temperate midlands, and warmer lowland areas), a broad range of soil
types (including sandy, loamy, and clay-rich agricultural soils), and multiple years of
sampling (2018-2024). This geographic, pedological, and temporal breadth supports the
generalizability of the observed fungal diversity patterns while still allowing the detection
of site-specific associations when present.

In recent years, we focused efforts on cysts showing visible fungal colonization and
expanded our analysis beyond Globodera to include Heterodera and Punctodera and their
associated soils. By combining isolation and diversity profiling with functional testing, this
study aimed to identify fungal isolates with potential biocontrol activity and to evaluate
their antagonistic effects against Meloidogyne incognita. Although the fungal isolates were
obtained from cyst nematodes (Globodera, Heterodera, and Punctodera), testing against M.
incognita provides a model to assess cross-species activity, i.e., the ability of these fungi
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to suppress nematodes beyond their original hosts. This approach links mechanistic
evaluation with broader agroecosystem relevance and provides insights into the potential
applicability of cyst-associated fungi across multiple nematode pests. This approach
allows evaluation of both mechanical and biochemical modes of antagonism in a well-
characterized nematode system, linking mechanistic insights to broader agroecosystem
relevance and potential application across multiple cropping systems.

This work provides a systematic bioprospective analysis of cyst-associated fungi,
characterizing their taxonomic diversity and functional potential, and testing selected
isolates for nematode suppression. The study offers insights into the ecological roles of
these fungi in temperate agroecosystems and identifies promising candidates for integration
into sustainable nematode management strategies.

2. Results
2.1. Fungal Diversity Associated with Cyst Nematodes and Soil Samples

A total of 78 fungal operational taxonomic units (OTUs) were isolated and sequenced
from potato field soils and cyst nematodes collected between 2018 and 2024. Of these,
50 originated from soil samples, 21 from Globodera cysts, 4 from Heterodera cysts, and 3 from
Punctodera cysts (Supplementary Table S1). The morphological diversity of isolates is shown
in Figure 1.

Figure 1. Morphological diversity of fungal isolates obtained from cyst nematodes and soil samples
collected in potato-producing regions of Switzerland. Representative morphotypes are shown; for
isolate details see Supplementary Table S1.

Most isolates (73%) belonged to phylum Ascomycota, followed by the phylum
Mortierellomycota (4%) and Basidiomycota (3%) (Figure 2A). The remaining 21% could not
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be confidently classified due to low sequence identity (<97%) or ambiguous genus-level
resolution. Within the phylum Ascomycota, the class Sordariomycetes dominated (59%),
with additional representatives of the classes Eurotiomycetes (8%), Dothideomycetes (5%),
and Orbiliomycetes (1%). Agaricomycetes represented the phylum Basidiomycota, while
Mortierellomycetes represented the phylum Mortierellomycota (Figure 2B).

A. Phyla

0 20 40 60 80 100
Relative Abundance (%)
BN Ascomycota B Basidiomycota B Mortierellomycota Unknown

0 20 0 60 80 100

Relative Abundance (%)
mmm Orbiliomycetes mmm Dothideomycetes B Mortierellomycetes
B Agaricomycetes I Eurotiomycetes Sordariomycetes
C. Genera
0 20 40 60 80 100
Relative Abundance (%)
mm Chaetomium BN Exophiala B Fusidium Microdochium Il Penicillium
B Clonostachys B Fusarium Humicola B Mortierella Pochonia

Figure 2. Taxonomic composition of fungal operational taxonomic units (OTUs) isolated from cyst
nematodes and associated soils. Distribution is shown at the level of (A) phylum, (B) class, and
(C) most frequent genera. The category “Unknown” includes OTUs with <97% Web BLAST identity
or unresolved genus-level assignment (see Supplementary Table S1).

The most frequently recovered genus in Sordariomycetes was Fusarium (15%), followed
by Humicola, Chaetomium, Clonostachys, Fusidium, and Pochonia (Figure 2C). The class
Eurotiomycetes included Exophiala, Penicillium, and Marquandomyces; Dothideomycetes
included Pleospora, Setophoma, and Phaeospheria. Arthrobotrys was the only Orbiliomycetes
recovered. The class Agaricomycetes included Bjerkandera and Trametes, while the class
Mortierellomycetes were solely represented by Mortierella. Overall, 28% of isolates remained
unclassified (Supplementary Table S1). It should be noted that the genera listed here
represent only a small fraction of the overall diversity within their respective classes
and phyla.

Fusarium culmorum and Trametes versicolor were recovered from Punctodera cysts, Ex-
ophiala equina from Heterodera, and a diverse set of fungi, including Clonostachys rosea, Dacty-
lonectria sp., and various Fusarium spp., from Globodera cysts (Supplementary Table S1).

2.2. Functional Insights and Biocontrol Potential

Functional annotation revealed that most taxa belonged to plant-pathogenic species,
such as Fusarium (F. culmorum, F. oxysporum, F. poae, F. solani), Setophoma terrestris, Mi-
crodochium, and Thelonectria (Figure 3; Supplementary Table S1). Several isolates belonged
to genera containing saprotrophic groups, including Mortierella, Humicola, Lasiosphaeria,
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Podospora, Trametes, and Penicillium. A subset of isolates corresponded to fungal groups
with reported antagonistic or nematophagous traits, including Clonostachys rosea, Marquan-
domyces marquandii, Orbilia brochopaga, and Pochonia chlamydosporia.

Pathogen/Saprotroph ¢
Nematode-trapping [
Opportunistic/Saprotroph |
Saprotroph/White-rot |
Biocontrol (Egg Parasite) |

Biocontrol (Nematophagous) |

Functional Category

Saprotroph/Antagonist |

Saprotroph

Plant Pathogen

0.0 25 5.0 75 10.0 125 15.0 175 200
Number of Isolates
Figure 3. Functional distribution of fungal isolates associated with cyst nematodes in Switzerland.
Bar plot showing the number of fungal isolates assigned to each functional category, based on
literature-derived ecological trait mapping. Functional groups include Nematophagous fungi, Plant
Pathogens, Saprotrophs/Decomposers, Endophytes, and Unknown/Unassigned taxa. Functional
roles were inferred using genus- and species-level ecological information from peer-reviewed studies
and curated fungal trait databases. The figure summarizes the dominant ecological guilds represented
in the isolate collection and highlights taxa with potential relevance for nematode biocontrol.

Based on this functional annotation, three isolates representing distinct ecological
categories, Clonostachys rosea, Orbilia brochopaga, and Pochonia chlamydosporia, were selected
for in vitro and in planta experimental evaluation.

2.3. In Vitro Evaluation of Fungal Isolates Against Meloidogyne incognita

The motility of M. incognita ]2 was assessed at 1, 3, and 6 days post-incubation with
selected fungal isolates (Figure 4A—C; Supplementary Table 52). On day 1, minimal effects
were observed, with more than 88% of ]2 remaining active across treatments (Figure 4A).

By day 3, moderate reductions in J2 motility were observed for some isolates (CH-06,
CH-15, CH-66, and CH-35), while the positive control PHP1701 and isolate CH-35 caused
significant reductions relative to the untreated control (Figure 4B). Visible infection was
observed for CH-06 (Figure 5A).

By day 6, strong suppression of ]2 motility was observed for PHP1701 and isolates
CH-04 and CH-02 (Figure 4C). Visible infection or physical entrapment was confirmed
for PHP1701 (Figure 5B), CH-06, CH-02, and CH-35. Notably, CH-02 (Orbilia brochopaga)
formed mechanical trapping structures (Figure 5C).

C. rosea isolates showed variable effects, the positive control PHP1701 induced strong
early suppression, whereas CH-04 and CH-06 showed more moderate effects. Among P.
chlamydosporia isolates, CH-51 caused the most significant reduction in J2 motility, while
CH-35 and CH-67 had limited effects.
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Figure 4. In vitro nematicidal activity of selected fungal isolates against Meloidogyne incognita juveniles
after 1 (A), 3 (B), and 6 (C) days of exposure. The negative control lacked fungal treatment, while
PHP1701 (Clonostachys rosea) served as the positive control. Error bars represent standard deviations
(n = 6). Asterisks indicate statistically significant differences relative to the control (one-way ANOVA,
Tukey’s HSD, p < 0.05).

Figure 5. Functional interactions of fungal isolates with Meloidogyne incognita second-stage juveniles
(J2). (A) Clonostachys rosea CH-06 showing hyphal attachment to the J2 cuticle, indicating early stages
of parasitism. (B) C. rosea PHP1701 (positive control) demonstrating infection structures penetrating
J2, consistent with its known parasitic activity. (C) Orbilia brochopaga CH-02 forming characteristic
constricting rings around ]2, providing direct evidence of mechanical trapping. Observations were
made under an inverted light microscope (Zeiss, 10x magnification).

Following the 6-day incubation, ]2 from each treatment were transferred onto pre-
germinated cucumber seedlings, and root galling was evaluated 21 days later (Figure 6A;
Supplementary Table S3). The untreated control reached a high gall index (GI = 5.5 £ 0.5).
Several fungal treatments reduced gall formation (Figure 6A; Supplementary Table S3).
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Figure 6. Gall index (GI) of cucumber seedlings 21 days after inoculation with M. incognita. Treatments
included (A) in vitro pre-exposure of ]2, (B) in planta inoculation with eggs (n = 5), and (C) in planta
inoculation with J2 (n = 5). The negative control lacked fungal treatment; PHP1701 (C. rosea) served
as the positive control. Error bars represent standard deviations. Different letters denote statistically
significant differences among treatments (one-way ANOVA, Tukey’s HSD, p < 0.05).

2.4. In Planta Assessment of the Biocontrol Potential of Fungal Isolates Against
Meloidogyne incognita

CH-02 showed the strongest effect, reducing the GI to 2.0 & 0.6, followed by PHP1701,
CH-15 and CH-66 (Supplementary Figure S1). P. chlamydosporia CH-51 reduced galling to
GI = 3.8 = 0.5, whereas CH-35 and CH-67 had negligible effects.

Following the in vitro screening, the selected isolates were tested in planta against
M. incognita eggs and ]2 on cucumber. Nematode infectivity varied significantly among
treatments and was influenced by both the fungal isolate and the nematode life stage
(Figure 6B,C; Supplementary Figures S2 and S3; Supplementary Table S3). Untreated
controls reached high GI (6.5 = 0.5), while the positive control PHP1701 reduced root galling
moderately (GI 5.4 £ 0.5). CH-02 was particularly effective against J2 (GI = 4.3 £ 0.5; egg
inoculation GI = 5.3 & 0.5). C. rosea isolates CH-04 and CH-15 reduced galling moderately
(GI: 5.6 + 0.7 and 5.8 + 1.1), whereas CH-06 and CH-66 were ineffective (GI > 6.6). P.
chlamydosporia isolates reduced galling to some extent (GI range: 5.3-6.1), with stronger
effects in egg-inoculated treatments.

Shoot and root fresh weights (0.89 to 1.09 g) did not differ significantly from those of
the untreated controls (Figure 7; Supplementary Table S4).
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Figure 7. Shoot (A,C) and root (B,D) fresh weight of cucumber plants from in planta assays inoculated
with M. incognita eggs (A,B) or ]2 (C,D) (n = 5). The negative control lacked fungal treatment;
PHP1701 (C. rosea) served as the positive control. Error bars represent standard deviations. Different
letters denote statistically significant differences among treatments (one-way ANOVA, Tukey’s HSD,
p <0.05).

3. Discussion
3.1. Fungal Diversity Associated with Cyst Nematodes and Soil Samples

The fungal communities associated with cyst nematodes and potato field soils in this
study were dominated by Ascomycota, particularly Sordariomycetes with additional contri-
butions from Mortierellomycota and Basidiomycota. This composition aligns with previous
surveys of nematode-associated fungi in agricultural soils, which consistently report As-
comycota dominance and frequent occurrence of genera such as Fusarium, Clonostachys,
and Chaetomium [28,49]. The recovery of plant-pathogenic taxa, including Fusarium spp.
and Setophoma terrestris, is consistent with prior findings in potato agroecosystems, while
the presence of saprotrophic fungi, such as Mortierella and Trametes, reflects opportunistic
colonization of cysts reported in earlier studies [50,51].

A substantial fraction of isolates remained unclassified, highlighting the largely un-
explored diversity of fungi specifically associated with cyst nematodes in Swiss potato
fields. Many sequences correspond to generic uncultured fungi, reflecting limited ITS
representation in public databases and the possibility of previously undescribed taxa. This
observation aligns with metagenomic studies reporting largely unexplored fungal diversity
in nematode-associated microhabitats [52] and underscores the potential to discover novel
taxa with antagonistic traits that could contribute to sustainable nematode management.
Integration of high-throughput sequencing with functional assays could further uncover
novel antagonists suitable for biocontrol applications.

Functional annotation identified taxa with known nematophagous or antagonistic
potential, including Clonostachys rosea, Pochonia chlamydosporia, and Orbilia brochopaga,
consistent with prior reports of these genera as biological control agents against plant-
parasitic nematodes [53-58]. Although research on fungi associated with Punctodera cysts
remains limited, likely due to its narrow host range, restricted geographic distribution,
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and comparatively low pathogenicity relative to Heterodera and Globodera. Consequently,
most previous studies have focused on Heterodera and Globodera mycobiomes. While
many isolates in this study are known as cosmopolitan saprophytes with widespread
distribution [59-61], their repeated recovery suggests ecologically relevant associations
rather than incidental colonization, potentially reflecting evolutionary selection for traits
that favor antagonism toward cyst nematodes [44,62]. Several isolated fungi are already
recognized as established biocontrol agents or producers of nematicidal metabolites.

Among the isolates, Clonostachys rosea is well-known for its broad antagonistic poten-
tial, combining direct parasitism with the production of nematicidal metabolites. Studies
using in vitro assays, greenhouse experiments, and soil or root systems have documented
antagonistic effects against several plant-parasitic nematode genera, including Meloidogyne,
Heterodera and Pratylenchus, although the targeted nematode species, experimental condi-
tions, and measured endpoints differ among these studies [53,54,63-68], and the breadth of
host range inferred here reflects the combined evidence across these different experimental
approaches rather than a single comparative trial. Efficacy was often strain-dependent,
highlighting the importance of intra-species variation in infection dynamics and metabolite
profiles. P. chlamydosporia, a specialized egg parasite, was highly effective against eggs
of Globodera [68], Heterodera [19,69-74], and Meloidogyne [75-77], and its activity may also
involve rhizosphere colonization and indirect plant-mediated defense mechanisms. O.
brochopaga, a nematode-trapping fungus, employs constricting-ring traps to immobilize
motile juveniles, particularly Meloidogyne and Heterodera ]2, illustrating the effectiveness
of mechanical predation as a biocontrol strategy [78,79]. Other isolated fungi, including
Fusarium, Exophiala, Mortierella, Penicillium, and Trametes species, displayed potential an-
tagonistic activity through mechanisms such as egg parasitism [27,31,80,81] metabolite
production [82-85], or indirect plant-beneficial effects [81,86,87] but their functional roles
are less well characterized.

Overall, these findings demonstrate that potato field soils and cyst nematodes harbor
arich and high potential functionally diverse fungal community. The recovery of both well-
established biocontrol fungi and lesser-known taxa underscores the ecological consistency
of these associations across nematode hosts and regions. The coexistence of pathogenic,
mutualistic, and nematophagous fungi highlights their multifunctional roles in shaping
soil and plant health and emphasizes the promise of these communities as reservoirs of
novel agents for sustainable nematode management.

3.2. In Vitro Evaluation of Fungal Isolates Against Meloidogyne incognita

In vitro assays revealed a temporal pattern of nematode suppression, with minimal ef-
fects at day 1, moderate reductions by day 3, and strong suppression by day 6. This mirrors
observations in other nematophagous fungi, which require time for conidial germination,
hyphal development, and host engagement [37,88]. The mechanical trapping behavior of
O. brochopaga (CH-02), including constriction and immobilization of ]2, is consistent with
classical predatory mechanisms reported for Orbiliomycetes [88]. The superior reduction
in ]2 motility by CH-02 highlights its potential as a physical biocontrol agent.

C. rosea strains displayed marked intraspecific variability, consistent with previous
reports that strain-specific differences in metabolite production and rhizosphere compe-
tence strongly influence nematode antagonism [53,54]. Early infection by CH-06 may
reflect enhanced hyphal penetration or secretion of extracellular hydrolases and secondary
metabolites [89], although these mechanisms were not directly quantified here. P. chlamy-
dosporia CH-51 reduced ]2 motility, suggesting broader antagonistic effects beyond its
specialized egg parasitism, potentially through direct parasitism or indirect plant-mediated
defense responses [56,90].
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The discrepancy between in vitro inhibition and in planta protection observed for
some C. rosea isolates underscores the complexity of biological control efficacy, which
depends not only on virulence but also on rhizosphere competence, persistence, and plant-
microbe-nematode interactions [53,54,67]. Overall, the integration of in vitro and in planta
assays provided complementary insights into fungal biocontrol potential, emphasizing
the importance of mechanistic understanding and ecological compatibility when selecting
strains for nematode management.

The reduction in nematode motility, infection, and root galling observed for several
fungal isolates suggests antagonistic activity against Meloidogyne incognita. While the
precise mechanisms remain to be fully elucidated, potential factors may include production
of lytic enzymes, secondary metabolites, or direct parasitism of nematode juveniles. Future
studies integrating enzyme assays, metabolite profiling, and microscopy will be necessary
to confirm the specific modes of action underlying these biocontrol effects.

3.3. In Planta Assessment of the Biocontrol Potential of Fungal Isolates Against
Meloidogyne incognita

Collectively, our results expand the understanding of cyst nematode-associated fungal
diversity in Swiss potato fields and highlight the potential of O. brochopaga as a promis-
ing biocontrol agent, complementing well-established antagonists such as C. rosea and
P. chlamydosporia.

In planta evaluations confirmed that CH-02 significantly reduced root galling, out-
performing some C. rosea and P. chlamydosporia isolates, while shoot and root biomass
remained unaffected. These findings are consistent with prior studies reporting moderate
gall suppression by nematophagous fungi and highlight the importance of isolate-specific
variability in efficacy [53,54,66,67].

Variation in gall suppression among fungal isolates highlights the influence of fungal
species, strain, and nematode developmental stage on biocontrol efficacy. CH-02 was partic-
ularly effective against ]2, consistent with its mechanical predation strategy, while C. rosea
isolates showed strain-specific variability in gall suppression, consistent with differences in
rhizosphere competence, endophytic colonization, and expression of hydrolytic enzymes
or polyketide-derived metabolites [52,90-92]. P. chlamydosporia isolates were more effective
against egg inoculations, aligning with their known specialization as egg parasites [56,93],
and their potential to contribute to long-term reduction in egg banks across cropping
cycles [94], highlighting their value in integrated nematode management strategies.

Stage-specific responses indicate that motile juveniles are generally more suscep-
tible to physical trapping, enzymatic degradation, or interference with chemotactic
signaling [95,96]. None of the fungal treatments negatively affected plant biomass, con-
firming the absence of phytotoxic effects. Although the fungal isolates in this study were
obtained from cyst nematodes. Their antagonistic activity was evaluated against M. incog-
nita, due to its global relevance, and well-characterized infection dynamics. These assays
provide important insights into cross-species activity, but direct efficacy against the original
cyst nematode hosts remains to be determined. Future studies will extend in vitro and in
planta testing to these cyst nematodes to confirm host-specific biocontrol potential and to
explore the ecological breadth of these fungal isolates.

Overall, CH-02 emerged as a particularly promising candidate against J2, while P.
chlamydosporia isolates appear better suited for egg-stage suppression. C. rosea CH-04, with
broad but moderate activity across both stages, represents a robust candidate for integra-
tion into sustainable nematode management programs. Combining fungal isolates with
complementary mechanisms may enhance nematode suppression, mitigate resistance risks,
and provide durable, environmentally sound alternatives to chemical nematicides [38,41].
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4. Materials and Methods
4.1. Sample Processing

Air-dried soil samples (200 mL) obtained from nematode diagnostic samples from
Swiss farms were processed with a MEKU automated soil sample extractor (modi-
fied Seinhorst-can, MEKU Erich Pollachne GmbH, Wennigsen am Deister, Germany;
www.meku-pollaehne.de), following the European and Mediterranean Plant Protection
Organization (EPPO) Bulletin PM 7/119 protocol [97]. Between 2018 and 2024, cyst nema-
todes, including Globodera rostochiensis, Globodera pallida, Heterodera spp. and Punctodera
spp. were manually collected and subsequently used for fungal isolation. Additionally, soil
cores were collected from five locations in accordance with EPPO protocol PM9/26 (1) [98],
with regulatory approval, from fields intended for seed potato production under regulation
due to the detection of PCN.

Cysts were barcoded (where DNA yield allowed) to confirm host taxa (G. rostochiensis,
G. pallida, Heterodera spp., Punctodera spp.), linking fungal isolates to their nematode origin.
This approach allowed us to characterize cyst-associated fungi across different nematode
hosts and soil types, providing a comprehensive view of their ecological distribution.

4.2. Fungal Isolation and Culture Preparation

Fungal isolates were obtained either directly from cyst nematodes or from soil using
standard culture-dependent approaches. Surface sterilization of cysts was performed in
0.5% NaOClI for 5 min, rinsed five times in sterile distilled water, and transferred to Difco™
potato dextrose agar (PDA; Becton, Dickinson and Company, Le Pont de Claix, France);
100 x 15 mm plates). PDA was supplemented with antibiotics to suppress bacterial growth:
ampicillin (100 pg mL~1) and erythromycin (50 ug mL~1). Antibiotics were filter-sterilized
and added to cooled (~50 °C) autoclaved PDA prior to plate pouring. Plates were incubated
at 24 °C in the dark and monitored every other day; emerging colonies were subcultured to
obtain axenic isolates and maintained on PDA at 24 °C.

For soil samples, serial dilution plating [99] was used to isolate culturable fungi. Each
isolate was assigned a unique culture collection code. This systematic approach enabled the
recovery of both dominant and rare fungal taxa from soils and cysts, highlighting fungal
diversity in nematode-affected agroecosystems.

4.3. Nematode Meloidogyne incognita and Molecular Confirmation

A Meloidogyne incognita (Mi-virulent) culture was maintained on three-week-old
tomato plants (Solanum lycopersicum cv. Oskar) in the greenhouse under 25 °C/19 °C
(day/night), 60% relative humidity, and a 15/9 h light/dark cycle [100]. Eggs were ex-
tracted using 1% NaOCl [63] and second-stage-juveniles (J2) collected using a mist chamber.
Nematode densities were determined using a counting chamber.

Periodic DNA barcoding confirmed the identity of M. incognita cultures [101], ensuring
that bioassays tested the correct nematode species. Using a globally relevant root-knot
nematode provided a practical model to assess cross-species fungal antagonism, linking
lab-based findings to agricultural relevance.

4.4. In Vitro Evaluation of the Biological Control Potential of Selected Fungal Isolates Against
Meloidogyne incognita

The biological control of selected fungal isolates was evaluated in vitro against M.
incognita ]2. Well-characterized nematophagous fungi, including Clonostachys rosea (CH-04,
CH-06, CH-15, CH-66), Orbilia brochopaga (CH-02), and Pochonia chlamydosporia (CH-35,
CH-51, CH-67) were tested. C. rosea strain PHP1701 (Andermatt Biocontrol Suisse, Grossdi-
etwil, Switzerland [67]), was included as a positive control.
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Fungi were cultured on PDA, spores/conidia harvested, suspended in Milli-Q water,
and quantified (Neubauer chamber) at 1 x 107 conidia mL~!. Six-well plates containing 1%
water agar were inoculated with each isolate; negative controls contained no fungus. After
6 days at 24 °C, surface-sterilized ]2 (150 per well) were added. Viability was monitored at
1,3, and 6 days, and ]2 categorized as: active, trapped/infected, inhibited non-infected, or
inhibited fungus-infected.

On day 6, pre-germinated cucumber seedlings (Cucumis sativus cv. Landgurken) were
introduced, lightly covered with sterile soil, and incubated for 21 days. Gall index (GI)
was scored on a 0-10 scale [102]. Each treatment included at least two independent plates
with three wells each (n = 6) to ensure replication. This assay design allowed mecha-
nistic evaluation of fungal suppression on nematode motility and infectivity, simulating
rhizosphere interactions.

4.5. In Planta Bioassay Evaluation of the Biological Control Potential

To further evaluate the isolates, in planta bioassays were conducted. Small pots
(30 cm3) were filled with a thin soil layer, followed by the addition of either 250 ]2 or
300 eggs of M. incognita in 100 uL suspension together with a 1 cm? plug of fungal mycelium
(grown on PDA) placed on the soil surface, and covered with ~15 cm? soil (n = 5). After a
7-day pre-inoculation period at 22 °C, 60% relative humidity in darkness to allow fungal-
nematode interactions, a pre-germinated cucumber seedling was planted in each pot.
Plants were maintained under a 16/8 h light/dark cycle at 22 °C, 60% relative humidity for
28 days.

At harvest, roots were washed, GI scored [102], and shoot/root biomass measured to
assess phytotoxicity.

4.6. Molecular Identification of Fungal Isolates

Fungal genomic DNA was extracted from mycelia using 50 uL. Kawasaki buffer [103].
The internal transcribed spacer (ITS) region of tDNA was amplified using primers
ITS1f [104] and ITS4 [105]. PCR conditions were as follows: initial denaturation at 95 °C
for 15 min; 28 cycles of 94 °C for 1 min, 60 °C for 1 min, 72 °C for 1 min; final exten-
sion at 72 °C for 10 min. PCR products were purified and sequenced (Microsynth AG,
Balgach, Switzerland).

Sequences were queried against NCBI GenBank database for taxonomic identification.
Morphogroups with <97% sequence identity were annotated as “unknown” but assigned
to the best matching genus-level taxon, while sequences > 97% identity were assigned to
the corresponding genus. This ensured confident taxonomic assignment, critical for linking
fungal traits to nematode suppression potential.

Fungal community structure and classification were determined manually based on
the recovered sequences, their GenBank matches, and information from the published liter-
ature. Relative abundance of each fungal genus or phylum was calculated as the proportion
of isolates obtained from cysts or soil relative to the total number of isolates. Functional
guild assignments (e.g., nematophagous, saprotrophic, pathogenic) were inferred from
literature reports of the respective taxa.

No specialized bioinformatics software was used, as all analyses were based on
cultured isolates and manually curated taxonomic information.

4.7. Statistical Analysis

Experiments were analyzed using univariate one-way analysis of variance (ANOVA).
No data transformations were applied, as the raw data met the assumptions of ANOVA
(normality and homogeneity of variances). Post hoc comparisons were performed using
Tukey’s honestly significant difference (HSD) test at a 5% significance level (x = 0.05) and
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95% confidence interval. Data are presented as mean =+ standard deviation (SD), and
statistically significant differences relative to the control are indicated in figures and tables.
R and RStudio softwares were used.

5. Conclusions

This study provides the first systematic analysis of fungi associated with cyst nema-
todes and potato soils in Switzerland, revealing cysts as a rich ecological niche harboring
functionally diverse fungal communities. We identified both well-established biocontrol
taxa (Clonostachys rosea, Pochonia chlamydosporia, Orbilia brochopaga) and previously unclas-
sified fungi, highlighting the largely unexplored diversity of cyst-associated fungi. Fu-
ture functional screening of these uncharacterized isolates could reveal novel antagonists.
Selected isolates demonstrated cross-species antagonism against Meloidogyne incognita,
confirming the functional relevance of cyst-associated fungi for nematode suppression.
Strain-specific variability emphasizes the importance of careful isolate selection for effective
biocontrol. Overall, these findings provide new ecological insights and practical knowledge
that can guide the development of sustainable, biologically based nematode management
strategies in agroecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants14243775/s1. Figure S1: Root gall formation and plant
development of Cucumis sativus inoculated with Meloidogyne incognita second-stage juveniles (J2) pre-
treated in vitro with selected fungal isolates. Yellow arrows indicate root-knot galls. Scale bar = 1 cm.
Figure S2: Root gall formation and plant development of Cucumis sativus in an in planta assay
following inoculation with Meloidogyne incognita eggs and selected fungal isolates. Yellow arrows
indicate root-knot galls. Scale bar = 1 cm. Figure S3: Root gall formation and plant development
of Cucumis sativus following inoculation with Meloidogyne incognita second-stage juveniles (J2) and
selected fungal isolates. Yellow arrows indicate root-knot galls. Scale bar = 1 cm. Table S1: Culturable
fungal isolates recovered from cyst nematodes and associated soil samples collected from Swiss potato
farms. Table S2: Percentage of Meloidogyne incognita second-stage juveniles (J2) assigned to different
motility and interaction categories after in vitro exposure to selected fungal isolates. Table S3: Root
gall index (GI) on Cucumis sativus, assessed using Zeck’s [102] scale, following inoculation with
Meloidogyne incognita second stage juveniles (J2) or eggs treated with selected fungal isolates either
in vitro or in planta. Table S4: Shoot and root fresh weights of Cucumis sativus following inoculation
with Meloidogyne incognita second-stage juveniles (J2) or eggs treated with selected fungal isolates
in vitro or in planta. References [106-122] have been cited in the supplementary section.
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