Effects of increasing phosphorus and calcium on growth performance and mineral status in weaned piglets

P. Schlegel

Agroscope, 1725 Posieux, Switzerland

Introduction

Phosphorus (P) and calcium (Ca) are essential minerals for adequate bone development in pigs.

The aims were 1) to evaluate diets with increasing digestible P (dP) levels and a fix Ca to dP ratio on growth performance and mineral status in weaned piglets; 2) to compare the responses of physical measurement techniques representative for bone mineralization.

Material and methods

- Animals: 56 Swiss Large White piglets (26±1 d, 7.6±1.2 kg BW); 14 blocks according to litter, gender and BW.
- Grouped housing with automatic individual feed intake recording. Duration: 41 days.
- Diets: Ad libitum fed pelleted (<70°C) barley based diet. Including 500 FTU/kg phytase (equiv. 0.16 g dP/100 FTU). Ca to dP ratio set at 2.8:1.
- Treatments: 2.5, 3.5, 4.5 and 5.5 g dP/kg diet using monocalcium phosphate. Dietary Ca levels corrected using calcium carbonate.
- Bone measurements: Mineral contents in metacarpus III and IV; breacking strenght, gravimetric density, and dualenergy X-ray absorptiometry (GE, i-DXA) bone mineral content and density on tibia.

Results

0

- Growth : Comparable (P>0.10) final BW (22.0, 0.84 kg; *least square mean, SEM*), BWG (345, 18.4 g/d) and FI (561, 26 g/d). Improved (P<0.01) FCR in 2.5 and 3.5 vs. 4.5 and 5.5 g/kg dP (1.58 vs. 1.72).
- Blood serum: Comparable (P>0.10) Ca, P contents and alcaline phosphatase activity.
- Bone mineralisation:

	digestible P [g/kg diet]				SEM	P-value
	2.5	3.5	4.5	5.5	OLIN	1)
Metacarpus III and IV						
Ash [g/kg DM]	426 ^c	447 ^b	461 ^{ab}	471 ^a	5.3	***
Zn [mg/kg DM]	139	136	134	129	3.8	n.s.
Tibia ²⁾						
Breacking strenght [N]	1178 ^b	1507 ^a	1619 ^a	1689 ^a	61.1	***
Gravimetric density [g/cm3]	1.28 ^c	1.31 ^b	1.33 ^{ab}	1.34 ^a	0.004	***
DXA Bone mineral content [g]	7.3 ^c	9.5 ^b	10.2 ^{ab}	10.9 ^a	0.39	***
DXA Bone mineral density [g/cm ²]	0.33 ^c	0.40 ^b	0.44 ^{ab}	0.46 ^a	0.009	***
¹⁾ *** P < 0.001; ** P < 0.01; n.s. (non signi						

 27 Tibia weight and volume were comparable (P>0.10) between treatments: 51.4 g, SEM = 1.8 g; 39.1 cm³, SEM = 0.6 cm³

Correlations between tibia physical measurement techniques

Bone mineralisation relative to daily P-intake:

Conclusions

- The deteriorated FCR from 4.5 g dP/kg onwards may be due to the excessive dietary Ca.
- 3.5 g dP/kg were optimal as FCR was not deteriorated and bone ash and physical properties were close to maximas
- Metacarpal Zn status was not antagonized by increasing dietary Ca and P.
- The DXA technique was successful to reflect values from more labor intensive measurements, such as bone breaking strength and gravimetric bone density in tibia from piglets.

