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Abstract
Ecotones	between	distinct	ecosystems	have	been	the	focus	of	many	studies	as	they	
offer	valuable	insights	into	key	drivers	of	community	structure	and	ecological	pro-
cesses	that	underpin	function.	While	previous	studies	have	examined	a	wide	range	of	
above-	ground	parameters	in	ecotones,	soil	microbial	communities	have	received	lit-
tle	attention.	Here	we	investigated	spatial	patterns,	composition,	and	co-	occurrences	
of	archaea,	bacteria,	and	fungi,	and	their	relationships	with	soil	ecological	processes	
across	 a	woodland-	grassland	 ecotone.	Geostatistical	 kriging	 and	 network	 analysis	
revealed	that	the	community	structure	and	spatial	patterns	of	soil	microbiota	varied	
considerably	 between	 three	 habitat	 components	 across	 the	 ecotone.	 Woodland	
samples	had	significantly	higher	diversity	of	archaea	while	the	grassland	samples	had	
significantly	higher	diversity	of	bacteria.	Microbial	co-	occurrences	reflected	differ-
ences	 in	 soil	 properties	 and	 ecological	 processes.	While	microbial	 networks	were	
dominated	by	bacterial	nodes,	different	ecological	processes	were	linked	to	specific	
microbial	guilds.	For	example,	soil	phosphorus	and	phosphatase	activity	formed	the	
largest	 clusters	 in	 their	 respective	 networks,	 and	 two	 lignolytic	 enzymes	 formed	
joined	clusters.	Bacterial	ammonia	oxidizers	were	dominant	over	archaeal	oxidizers	
and	 showed	 a	 significant	 association	 (p	<	0.001)	with	 potential	 nitrification	 (PNR),	
with	the	PNR	subnetwork	being	dominated	by	Betaproteobacteria.	The	top	ten	key-
stone	 taxa	 comprised	 six	 bacterial	 and	 four	 fungal	 OTUs,	 with	 Random	 Forest	
Analysis	revealing	soil	carbon	and	nitrogen	as	the	determinants	of	the	abundance	of	
keystone	taxa.	Our	results	highlight	the	importance	of	assessing	interkingdom	asso-
ciations	in	soil	microbial	networks.	Overall,	this	study	shows	how	ecotones	can	be	
used	as	a	model	to	delineate	microbial	structural	patterns	and	ecological	processes	
across	adjoining	land-	uses	within	a	landscape.
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1  | INTRODUC TION

Ecotones	 between	 adjacent	 ecosystems	 or	 biomes	 that	 harbor	
contrasting	plant	communities	represent	useful	areas	for	investiga-
tion,	as	 they	support	unique	ecological	dynamics	 (Anadón,	Sala,	&	
Maestre,	 2014;	 Archer	&	 Predick,	 2014).	However,	 recent	 studies	
show	that	ecotones	are	highly	responsive	to	environmental	change	
and	this	is	especially	true	for	ecotones	in	the	arid	and	semi-	arid	re-
gions	such	as	the	ones	in	Australia	(Delgado-	Baquerizo	et	al.,	2014).	
Grassland-	woodland	ecotones	around	the	world	are	subject	to	dy-
namic	 shifts	 toward	 an	 unstable	 state,	 and	 this	 has	 received	 con-
siderable	 research	 attention	 in	 recent	 years	 (Bradford,	 Schlaepfer,	
Lauenroth,	&	Burke,	2014;	Sala	&	Maestre,	2014).	Ecotones	encom-
pass	interactions	occurring	between	adjoining	systems	and	are	use-
ful	because	the	local	effects	of	shifts	in	vegetation	can	be	explicitly	
assessed	 independently	 of	 the	 environmental	 variability	 that	may	
occur	over	broader	spatial	scales	(Gosz,	1993).	In	addition,	such	areas	
can	reveal	the	edge	effect	between	two	adjacent	habitats	(Lacasella,	
Gratton,	&	De	Felici,	2015;	Malmivaara-	Lämsä	et	al.,	2008;	Murcia,	
1995).	Edge	effect	is	the	result	of	the	abiotic	and	biotic	interactions	
between	adjoining	habitats	when	the	habitats	are	separated	by	an	
abrupt	transition	(sensu	Murcia,	1995).

Previous	studies	have	focused	on	ecotones	to	examine	impacts	
on	 community	 structure	 (e.g.,	 species	 diversity	 and	 distribution	
patterns)	as	well	as	a	range	of	ecological	processes	such	as	above-	
ground	biotic	interactions,	hydrology,	fire	dynamics,	and	responses	
to	 climate	 change	 (Archer	 &	 Predick,	 2014;	 Eldridge	 et	al.,	 2011;	
Ratajczak,	Nippert,	Briggs,	&	Blair,	2014).	In	contrast,	understanding	
of	belowground	communities	and	interactions	within	the	soil	micro-
biota	 has	 received	 less	 attention	 (Malmivaara-	Lämsä	 et	al.,	 2008).	
Soil	 microbiota	 provide	 a	 range	 of	 important	 ecosystem	 services	
including	 soil	 aggregation,	 organic	matter	 decomposition,	 nutrient	
cycling,	 and	 mutualistic	 and	 pathogenic	 interactions	 with	 plants	
(Bardgett	&	van	der	Putten,	2014;	Killham,	1990;	Richardson,	Barea,	
McNeill,	&	Prigent-	Combaret,	2009;	Schimel	&	Schaeffer,	2012;	van	
der	Heijden,	Bardgett,	&	Van	Straalen,	2008).	While	patterns	across	
ecotones	have	been	observed	for	some	soil	parameters	(e.g.,	mois-
ture,	temperature,	carbon	storage,	etc.)	and	macrobiota	in	previous	
studies	 (Lacasella	 et	al.,	 2015;	 Magura,	 2017;	 Schmidt,	 Jochheim,	
Kersebaum,	&	Lischeid,	2017),	 little	 information	is	available	on	soil	
microbiome	(Malmivaara-	Lämsä	et	al.,	2008).

The	soil	microbiome	comprises	a	vast	diversity	and	abundance	
of	 different	 microbial	 groups	 and	 complex	 trophic	 interactions	
(Bardgett	&	van	der	Putten,	2014;	van	der	Heijden	et	al.,	 2008).	
Microbial	co-	occurrence	networks	can	reveal	associations	among	
network	members	 and	yield	 insight	 into	microbiome	 functioning	
(Bissett,	 Brown,	 Siciliano,	 &	 Thrall,	 2013;	 Cardona,	Weisenhorn,	
Henry,	&	Gilbert,	2016;	Faust	&	Raes	2012;	Fuhrman,	2009;).	For	
example,	patterns	of	microbial	co-	occurrence	have	been	demon-
strated	 for	 a	 diverse	 range	 of	 aquatic	 and	 terrestrial	 environ-
ments	(Banerjee,	Baah-	Acheamfour	et	al.,	2016;	Barberán,	Bates,	
Casamayor,	&	Fierer,	2012;	De	Menezes	et	al.,	2015;	Graham	et	al.,	
2017;	 Shi	 et	al.,	 2016).	 Previous	 studies	 using	 network	 analysis	

have	often	only	assessed	bacterial	communities	and	not	fungal	or	
archaeal	 communities	 (Banerjee,	 Baah-	Acheamfour	 et	al.,	 2016;	
Barberán	 et	al.,	 2012;	 Shi	 et	al.,	 2016;	 Vick-	Majors,	 Priscu,	 &	
Amaral-	Zettler,	2014).	Thus,	the	roles	of	these	latter	groups	have	
been	underrepresented	in	microbial	network	analyses	and	only	a	
few	studies	have	investigated	associations	all	three	kingdoms	(Ma	
et	al.,	2016;	Steele	et	al.,	2011).	Moreover,	network	analysis	pro-
vides	 a	 statistical	 tool	 to	 identify	 keystone	 taxa	 that	 play	 a	 key	
role	in	microbiome	structure	and	functioning	(Banerjee,	Schlaeppi,	
&	van	der	Heijden,	2018;	Power	et	al.,	1996).	A	number	of	stud-
ies	have	used	network-	based	scores	to	identify	putative	keystone	
taxa	 in	 different	 environments	 (Hartman	 et	al.,	 2018;	 Lupatini	
et	al.,	 2014;	 Shi	 et	al.,	 2016;	Vick-	Majors	 et	al.,	 2014)	 and	 linked	
their	 abundance	 to	 soil	 nutrient	 cycling	 processes	 (Banerjee,	
Kirkby	et	al.,	2016;	Li,	Chen,	Zhang,	Yin,	&	Huang,	2017).

A	major	challenge	in	ecology	is	to	link	microbial	co-	occurrences	
to	processes	that	contribute	to	soil	function.	For	example,	extra-
cellular	enzymes	are	ubiquitous	in	soil	environments	and	play	criti-
cal	roles	in	ecosystem	functioning	through	mediation	of	carbon	(C),	
nitrogen	 (N),	and	phosphorus	 (P)	mineralization,	 thus,	 facilitating	
soil	organic	matter	decomposition	(Burns,	1982).	Soil	enzyme	ac-
tivities	have	often	been	used	as	indicators	of	soil	health	and	micro-
bial	function	(Allison	&	Vitousek,	2005;	Saiya-	Cork,	Sinsabaugh,	&	
Zak,	2002;	Sistla	&	Schimel,	2013).	Likewise,	ammonia	oxidation	
is	 important	for	soil	nutrient	availability	as	it	 is	a	key	step	for	ni-
trification	 in	which	ammonia	 is	converted	to	hydroxyl	amine	and	
subsequently	to	nitrite	and	nitrate	(Kowalchuk	&	Stephen,	2001).	
The	functional	gene,	amoA,	is	present	in	both	bacteria	and	archaea	
and	has	been	used	in	many	studies	to	quantify	the	abundance	of	
ammonia	oxidizers	 in	different	environments	 (Di	et	al.,	2009;	 Jia	
&	 Conrad,	 2009;	 Leininger	 et	al.,	 2006).	 Spatial	 patterns	 of	 am-
monia	oxidizers	across	ecotones	can	unravel	niche	differentiation	
and	 partitioning	 among	 bacteria	 and	 archaea	 based	 on	 nutrient	
availability	(Prosser	&	Nicol,	2012).	However,	few	studies	have	as-
sessed	microbial	co-	occurrences	in	relation	to	soil	nitrification	and	
enzyme	activities.

In	a	previous	study,	we	found	similar	spatial	patterns	for	a	wide	
range	of	 soil	 properties	 and	extracellular	 enzyme	activities	 across	
two	native	woodland-	grassland	ecotones	(Banerjee,	Bora,	Thrall,	&	
Richardson,	2016).	In	this	study,	we	further	investigated	patterns	of	
abundance,	diversity,	and	co-	occurrence	for	archaeal,	bacterial,	and	
fungal	communities	in	one	of	these	ecotones.	Our	overall	hypothe-
sis	was	that	soil	microbial	properties	are	different	 in	the	transition	
zone	than	either	of	 the	adjacent	woodland	or	grassland	communi-
ties.	A	multifarious	approach	was	used	to	address	the	following	spe-
cific	questions:	 (a)	How	do	 the	 spatial	 structure,	 composition,	 and	
co-	occurrences	of	 soil	 archaeal,	 bacterial,	 and	 fungal	 communities	
change	across	a	woodland-	grassland	ecotone?;	(b)	How	are	ammonia	
oxidizing	bacteria	and	archaea	linked	to	potential	nitrification	across	
such	ecotones?;	(c)	Is	the	composition	of	microbial	networks	related	
to	soil	properties	and	ecological	processes?;	and	(d)	Which	soil	prop-
erties	 drive	 the	 abundance	 of	microbial	 keystone	 taxa	 across	 the	
woodland-	grassland	ecotone?
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2  | MATERIAL S AND METHODS

2.1 | Study site and soil sampling

The	 study	was	 conducted	 at	 a	 native	woodland	 adjacent	 to	 native	
grassland	 within	 Namadgi	 National	 Park	 (35.6667°	 S,	 148.950°	 E)	
in	the	Australian	Capital	Territory.	The	woodland	was	dominated	by	
Eucalyptus	spp.	with	scattered	Acacia dealbata	and	Acacia implexa	 in	
the	understorey	(Banerjee,	Bora	et	al.,	2016).	The	grassland	consisted	
of	a	mix	of	native	grasses	including	Austrodanthonia	sp.	and	Themeda 
sp.	The	mean	annual	 rainfall	at	Namadgi	National	Park	 is	777.3	mm	
with	 4.4°C	 and	 17.3°C	 minimum	 and	 maximum	mean	 annual	 daily	
temperature	 (www.weatherzone.com.au).	 The	 site	 was	 dominated	
by	Brown	Sodosols;	these	are	typically	composed	of	fine	sandy	clay	
loams	with	10%–20%	clay	content	(Isbell,	2002).	A	50	m	length	×	20	m	
width	sampling	plot	was	established	across	the	woodland	and	grass-
land	 (i.e.,	 extending	 25	m	 into	 both	 the	 woodland	 and	 grassland;	
Supporting	Information	Figure	S1).	A	rectangular	grid	design	consist-
ing	of	55	nodes	was	employed,	with	adjacent	nodes	separated	by	a	
linear	or	perpendicular	distance	of	5	m.	Soil	samples	were	collected	
in	September	2013	by	sampling	at	each	node.	Each	sample	consisted	
of	a	composite	of	10	 individual	 soil	 cores	 (4	cm	diameter)	 collected	
at	0–10-	cm	depth	within	a	10-	cm	radius	of	each	sampling	node.	The	
corer	was	cleaned	between	nodes	and	soil	samples	were	placed	on	ice	
in	a	cooler	box	for	transfer	to	the	laboratory.	Samples	were	processed	
and	subsampled	on	the	same	day	as	collection	by	removing	plant	ma-
terials,	homogenizing,	and	passing	through	a	2-	mm	sieve.

For	 vegetation	 type	 comparisons,	 the	 experimental	 grid	was	 di-
vided	into	three	components:	woodland,	transition,	and	grassland	(20,	
10,	and	20	m,	respectively;	Supporting	Information	Figure	S1).	This	as-
signment	was	based	on	field	observations	that	the	first	20	m	(from	the	
plot	perimeters)	was	consistently	woodland	and	visually	homogeneous.	
Similarly,	the	last	20	m	(toward	the	end	of	the	sampling	plot)	was	con-
sistently	grassland	and	visually	homogeneous.	The	visual	assignment	
of	these	components	was	substantiated	with	data	from	soil	analyses	
and	extracellular	enzyme	activities	(Banerjee,	Bora	et	al.,	2016).

2.2 | Soil analyses and quantitative PCR

Detailed	analyses	of	soil	properties	and	extracellular	enzyme	activi-
ties	of	all	sample	points	across	the	ecotone	were	described	previously	
by	Banerjee,	Bora	et	al.	(2016).	Briefly,	gravimetric	soil	moisture	con-
tent,	pH,	dissolved	organic	carbon	(DOC),	dissolved	organic	nitrogen	
(DON),	ammonium	(NH4),	nitrate	(NO3),	percentage	of	total	carbon	
(%C),	and	nitrogen	(%N),	total,	inorganic,	and	organic	phosphorus	(P)	
were	measured	 for	each	soil	 sample.	Activities	of	extracellular	en-
zymes	such	as	cellulolytic	(β-1,4-	glucosidase	and	cellobiohydrolase),	
lignolytic	(peroxidase	and	phenol	oxidase),	and	complex	N	or	P	depo-
lymerizing	(acid	phosphatase	and	chitinase)	were	determined	and	ex-
pressed	in	units	of	nmol	hr−1 g−1.	Potential	nitrification	activity	(PNR)	
was	 measured	 according	 to	 Hart,	 Stark,	 Davidson,	 and	 Firestone	
(1994).	Briefly,	10	g	of	sieved,	field-	moist	soil	was	mixed	with	100	ml	
of	solution	containing	0.2	M	monopotassium	dihydrogen	phosphate,	

0.2	M	dipotassium	hydrogen	phosphate,	and	50	mM	ammonium	sul-
fate.	The	mixture	was	shaken	at	100	rpm	at	 room	temperature	 for	
24	hr.	An	aliquot	of	10	ml	was	collected	and	nitrite	(NO2),	and	NO3 
were	measured	by	 colorimetric	 assay	 and	 spectrophotometer.	 The	
24-	hr	time	point	was	selected	based	on	a	time	course	assay,	and	final	
values	were	calculated	by	comparing	with	time	zero	samples.

For	all	55	soil	samples,	DNA	was	extracted	from	0.25	g	soil	using	
the	 PowerSoil	 DNA	 isolation	 kit	 (MoBio,	 Carlsbad,	 CA)	 following	
manufacturer’s	instructions.	DNA	concentrations	were	determined	
by	 NanoDrop	 spectrophotometry	 (NanoDrop,	 Wilminghton,	 DE).	
The	abundances	of	bacterial,	archaeal,	and	fungal	genes	were	deter-
mined	by	quantitative	real-	time	PCR	using	the	Qiagen	QuantiTect™ 
SYBR®	 Green	 PCR	Master	Mix	 (Qiagen	 Inc.,	 Victoria,	 Australia),	 a	
Cavro®	 Omni	 Robot	 (Tecan	 Group	 Ltd.,	 Seestrasse,	 Switzerland),	
and	an	ABI	7900	real-	time	PCR	machine	(Applied	Biosystems,	Foster	
City,	CA).	Bacterial	16S	rRNA	and	amoA	genes	were	quantified	using	
338F	and	518R	(Lane	et	al.,	1985;	Muyzer,	de	Wall,	&	Uitterlinden,	
1993)	 and	 amoA	1F	 and	 amoA	2R	 (Rotthauwe,	Witzel,	 &	 Liesack,	
1997)	 primers,	 respectively.	 Archaeal	 16S	 rRNA	 and	 amoA	 genes	
were	quantified	using	771F	and	957R	(Ochsenreiter,	Selezi,	Quaiser,	
Bonch-	Osmolovskaya,	&	Schleper,	2003)	and	Arch-	amoA	104F	and	
Arch-	amoA	 616R	 (Alves	 et	al.,	 2013)	 primers,	 respectively.	 Fungal	
ITS	was	quantified	using	the	primer	set	ITS1F	and	ITS4	as	reported	
by	 White,	 Bruns,	 Lee,	 and	 Taylor	 (1990)	 and	 Gardes	 and	 Bruns	
(1993).	Details	of	thermal	cycling	conditions	and	quality	assessment	
are	provided	in	Supporting Information.

2.3 | Amplicon sequencing

Sequencing	was	carried	out	using	an	Illumina MiSeq	following	a	previ-
ously	published	protocol	(Bissett	et	al.,	2016).	For	sequencing,	samples	
were	randomly	selected	equally	from	three	zones	with	six	samples	in	
each	habitat	component	 (Supporting	Information	Figure	S1).	Of	the	
11	rows	in	the	sampling	grid,	nine	rows	(three	for	each	of	woodland,	
transition,	and	grassland)	were	selected	for	selection	of	samples,	and	
two	 rows	 (one	 between	 two	 adjacent	 components)	 were	 selected	
as	 a	 buffer.	 Amplicons	 targeting	 the	 bacterial	 16S	 rRNA	 gene,	 ar-
chaeal	16S	rRNA	gene,	and	fungal	ITS	genes	were	prepared	using	the	
27F–519R	(Lane	et	al.,	1985;	Muyzer	et	al.,	1993),	A2F–519R	(DeLong,	
1992)	 and	 ITS1F–ITS4	 (Gardes	 &	 Bruns,	 1993;	White	 et	al.,	 1990)	
primer	sets,	 respectively.	For	all	amplicons,	 Illumina	300	bp	paired-	
end	sequencing	was	performed	at	the	Australian	Genome	Research	
Facility	 (Melbourne,	Australia).	For	bacterial	and	archaeal16S	 rRNA	
genes,	the	quality	of	R1	and	R2	reads	was	determined	using	FastQC	
(Andrews,	2010).	For	fungal	ITS,	only	R1	sequences	were	used	that	
assessed	the	ITS1	region	(Bissett	et	al.,	2016).	Reads	were	trimmed	to	
remove	base	pairs	from	the	end	of	reads	after	read	quality	per	sam-
ple	declined	(10	and	50	bp	for	read1	and	read2,	respectively).	Reads	
were	trimmed	by	as	many	base	pairs	as	possible	while	still	leaving	an	
overlap	for	reliable	merge	of	R1	and	R2	reads	and	then	merged	using	
FLASH	(Magoč	&	Salzberg,	2011).	FASTA	format	sequences	were	ex-
tracted	from	FASTQ	files,	and	sequences	<400	bp,	with	homopoly-
mer	>8	bp	or	containing	ambiguous	bases	were	 removed	using	 the	

http://www.weatherzone.com.au


8220  |     BANERJEE Et Al.

Mothur	 (V1.38.0)	 (Schloss	 et	al.,	 2009).	 Singletons	 were	 removed,	
and	OTUs	were	defined	by	clustering	at	97%	similarity	with	the	“clus-
ter_otus”	 function	 in	UPARSE	 (Edgar,	 2013).	 Sequences	were	 then	
mapped	to	these	OTUs	to	produce	a	OTU	abundance	table	using	the	
“usearch_global”	 function	 in	USEARCH	 (Edgar,	2010)	and	classified	
according	 to	SILVA	v102	using	 the	Naïve	Bayesian	classifier	 as	 im-
plemented	in	Mothur	(Wang,	Garrity,	Tiedje,	&	Cole,	2007).	For	fun-
gal	ITS1	region	sequences,	FASTA	files	were	extracted	from	FASTQ	
files,	and	complete	ITS1	regions	were	extracted	from	R1	reads	using	
ITSx	(Bengtsson-	Palme	et	al.,	2013).	Partial	ITS1	sequences	and	those	
not	containing	ITS1	were	discarded.	Remaining	ITS1	sequences	were	
used	 for	 OTU	 picking	 and	 OTU	 table	 production	 using	 the	 same	
methods	described	above	for	16S	rRNA	genes.	OTUs	were	classified	
as	above	against	 the	 ITS	 fungal	database	UNITE	 (V6)	 (Kõljalg	et	al.,	
2005).	 The	 total	 number	of	OTUs	 in	 each	 sample	 varied	 from	825	
to	 1,832	 for	 bacteria,	 15–214	 for	 archaea,	 and	 222–538	 for	 fungi	
(Supporting	Information	Figure	S2).

2.4 | Statistical analyses

Alpha	diversity	indices	such	as	species	richness,	Pielou’s	evenness,	and	
Shannon-	Weaver	diversity	were	calculated	from	bacterial,	archaeal,	
and	fungal	OTU	tables	using	the	vegan	package	(Oksanen	et	al.,	2017)	
in	R	v3.4	(R	Development	Core	Team,	2016).	Microbial	beta	diversity	
patterns	were	assessed	on	square-	root	transformed	data	with	princi-
pal	coordinate	analysis	(PCoA)	using	Bray–Curtis	dissimilarity	matrix	
in	PRIMER-	E	(PRIMER-	E,	Plymouth,	UK).	The	effect	of	habitat	edge	
on	microbial	communities	was	assessed	by	performing	PERMANOVA	
with	 999	 permutations.	 Spatial	 variability	 was	 determined	 using	
geostatistical	analyses	 in	GS+	version	10	(Gamma	Design	Software,	
Plainwell,	MI,	USA).	Spatial	dissimilarity	was	computed	by	calculating	
the	 isotopic	 semivariance	 (Goovaerts,	 1998).	 Semivariograms	 were	
calculated	with	a	minimum	of	30	sample	pairs	per	lag	class	(Journel	
&	 Huijbregts,	 1978).	 Spatial	 dependency	 (SPD)	 was	 calculated	 as	
SPD	=	C/(C	+	C0),	where	C	is	the	structural	variance,	C0	is	the	nugget,	
and	C	+	C0	is	the	sill.	Values	of	SPD	vary	from	0	(no	spatial	depend-
ence)	to	1	(high	spatial	dependence).	Cross-	validation	was	performed	
on	 semivariograms	 to	 insure	 their	 suitability	 for	 kriging.	Regression	
coefficients,	 standard	errors,	and	 r2	 values	of	cross-	validation	plots	
were	checked	before	kriging.	Ordinary	kriging	was	used	to	interpolate	
values	between	sampling	points	(i.e.,	unmeasured	locations).	Ordinary	
kriging	is	a	spatial	interpolation	technique	that	employs	the	local	mean	
in	the	estimation	and	computes	values	by	selecting	weights	to	mini-
mize	estimation	variance	 (Isaaks	&	Srivastava,	1989).	Finally,	 spatial	
contour	maps	were	generated	using	GS+	version	10.

2.5 | Network analysis

Co-	occurrences	 between	 bacterial,	 archaeal,	 and	 fungal	 communi-
ties	were	assessed	by	performing	network	analysis	using	the	maximal	
information	coefficient	 (MIC)	scores	 in	 the	MINE	statistics	 (Reshef	
et	al.,	 2011).	 MIC	 score	 reveals	 positive,	 negative,	 and	 nonlinear	
associations	 among	 OTUs.	 To	 minimize	 pairwise	 comparisons	 and	

manage	the	false	discovery	rate	(FDR;	Benjamini	&	Hochberg,	1995),	
network	analysis	was	performed	only	on	OTUs	that	were	present	in	
at	least	two	samples.	This	resulted	in	1,006	bacterial,	105	archaeal,	
and	697	fungal	OTUs.	Relationships	between	microbial	OTUs,	vege-
tation	types,	and	soil	ecological	processes	that	were	significant	at	an	
FDR	of	5%	were	then	visualized	in	Cytoscape	version	3.4.0	(Shannon	
et	al.,	2003).	To	indicate	the	most	important	interactions,	only	strong	
positive	 (r	>	0.8),	 strong	 negative	 (r	<	−0.8),	 and	 strong	 nonlinear	
(MIC	–	ρ2	>	0.8)	relationships	were	shown	in	the	networks.	We	com-
pared	our	network	against	its	randomized	version	using	the	Barbasi–
Albert	 model	 available	 in	 Randomnetworks	 plugin	 in	 Cytoscape	
v2.6.1.	Structural	attributes	of	the	overall	network	such	as	clustering	
coefficient,	 average	 degree,	 degree	 distribution,	 and	 mean	 short-
est	 path	were	 significantly	 different	 from	 a	 random	 network	with	
equal	 number	 of	 nodes	 and	 edges.	 The	NetworkAnalyzer	 tool	 was	
then	used	to	calculate	network	topology	parameters.	Relationships	
between	 microbial	 co-	occurrences	 and	 ecological	 processes	 were	
visualized	 in	 Cytoscape.	 The	OTUs	with	 high	mean	 degree	 (≥199),	
high	 closeness	 centrality	 (>0.475),	 and	 low	betweenness	 centrality	
(<0.025)	scores	were	considered	as	keystone	taxa	(Berry	&	Widder,	
2014).	Random	Forest	Analysis	(Breiman,	2001)	was	used	to	explore	
the	 edaphic	 drivers	 of	 keystone	 taxa.	 The	 analysis	was	 conducted	
using	 the	 rfPermute	package	version	2.1.5	 in	R	 (Archer,	2016).	The	
best	predictor	was	 identified	based	on	 statistical	 significance	with	
999	permutations.

3  | RESULTS

3.1 | Spatial patterns of microbial abundance and 
potential nitrification

Ordinary	kriging	plots	 revealed	 that	 the	overall	 abundance	of	bac-
terial	 16S	 rRNA,	 archaeal	 16S	 rRNA,	 and	 fungal	 ITS	 genes	 were	
significantly	(p	<	0.05)	higher	in	the	woodland	samples	than	in	adja-
cent	grassland	samples	with	a	distinction	across	the	transition	zone	
(Figure	1	upper	panel;	Table	1).	In	general,	bacterial	abundance	was	
consistently	high	along	the	grid	with	the	number	of	gene	copies	vary-
ing	between	107	and	108	per	gram	of	dry	soil.	Conversely,	archaeal	
(105–107)	and	fungal	(104–107)	abundance	showed	much	larger	vari-
ation	in	copy	numbers.	A	number	of	small	areas	were	found	near	the	
transition	 where	 the	 abundances	 of	 all	 three	 microbial	 kingdoms	
were	high.	Soil	PNR	closely	 resembled	 the	spatial	patterns	of	bac-
terial	 ammonia	 oxidizers	 (Figure	1	 lower	 panel).	 Similar	 to	 overall	
microbial	abundance,	the	abundance	of	ammonia	oxidizers	was	sig-
nificantly	(p	<	0.05)	higher	in	the	woodland	than	the	grassland,	and	
a	 visually	 distinct	 transition	 zone	 was	 also	 noted.	 Bacterial	 amoA 
displayed	a	significantly	(R2	=	0.317;	p	<	0.001)	positive	association	
with	 PNR	 across	 the	 ecotone	 (Supporting	 Information	 Figure	S3).	
All	 five	 gene	 abundances	 and	 PNR	 displayed	 high	 spatial	 depend-
ency	 (SPD	=	0.631–0.999)	 and	 operated	 between	 14	m	 and	 36	m	
(Supporting	 Information	 Table	S2).	 Spherical	 and	 Gaussian	 models	
showed	significant	(R2	=	0.285–0.900;	p	<	0.01)	spatial	structure	for	
all	properties	tested.	Bacterial	amoA	and	PNR	structured	at	a	smaller	
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spatial	range	(14.7–23.7	m)	than	archaeal	amoA,	which	had	a	spatial	
range	>50	m.

3.2 | Microbial community structure, taxonomic 
composition, and diversity

Archaeal,	bacterial,	and	fungal	communities	displayed	a	significant	
habitat	 effect	 with	 the	 woodland	 and	 grassland	 samples	 forming	
distinct	clusters	and	those	from	the	transition	zone	samples	show-
ing	 a	 gradient	 (Figure	2	 upper	 panel).	 PERMANOVA	 confirmed	

such	 habitat	 effects	 for	 bacterial	 (Pseudo-	F	=	4.79;	 p	<	0.001),	 ar-
chaeal	 (Pseudo-	F	=	4.42;	 p	<	0.001),	 and	 fungal	 (Pseudo-	F	=	3.43;	
p	<	0.001)	communities.	Principal	coordinates	explained	52%,	81%,	
and	 30%	 variation	 in	 bacterial,	 archaeal,	 and	 fungal	 communities,	
respectively.	 Similar	 to	 community	 structure,	 taxonomic	 composi-
tion	was	also	influenced	by	the	habitat	edge	(Figure	2	lower	panel).	
For	bacteria,	Acidobacteria,	Actinobacteria,	 and	Alphaproteobacteria 
were	 the	 dominant	 members,	 representing	 more	 than	 80%	 of	
total	 bacterial	 abundance	 across	 the	 ecotone.	 Acidobacteria	 and	
Alphaproteobacteria	were	more	abundant	 in	the	woodland	samples	

F IGURE  1 Geostatistical	kriging	plots	showing	the	spatial	patterns	of	microbial	abundance	and	potential	nitrification	across	the	
woodland-	grassland	ecotone.	A	50	m	×	20	m	grid	was	established	across	woodland	and	grassland	in	Namadgi	National	Park,	Australia.	
Ordinary	kriging	was	performed	after	semivariance	analysis	and	cross-	validation.	The	dotted	lines	on	kriging	maps	indicate	the	boundary	
between	woodland	in	the	upper	half	of	the	map	and	grassland	in	the	lower	half
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while Betaproteobacteria	 and	 Chloroflexi	 were	 the	 most	 common	
within	 the	 transition	 zone	 (p < 0.05). Nitrososphaerales	 was	 the	
predominant	 archaeal	 group,	 especially,	 in	 the	grassland	and	 tran-
sition	 zone	 samples	 where	 it	 represented	 up	 to	 99%	 of	 the	 total	
archaea.	 On	 the	 other	 hand,	 a	 number	 of	 fungal	 groups	 showed	
significant	 (p	<	0.01)	 differences	 across	 the	 ecotone.	 For	 example,	
Agaricomycetes	 and	 Leotiomycetes	 were	 2–3	 times	more	 abundant	
in	woodland	 samples	 than	 either	 the	 transition	 zone	 or	 grassland	
samples.	 Similarly,	 Saccharomycetes	 and	 Dothideomycetes were 
significantly	 more	 abundant	 (p	<	0.05)	 in	 the	 transition	 zone	 and	
Agaricostilbomycetes	 (p	<	0.001)	 in	 the	 grassland.	 Microbial	 alpha	
diversity	 indices	 showed	 contrasting	 patterns	 across	 the	 ecotone	
(Table	1).	For	example,	richness,	evenness,	and	diversity	of	bacteria	
were	significantly	(p	<	0.05)	lower	in	the	woodland	samples	than	the	
transition	zone	and	grassland.	Conversely,	archaeal	richness,	even-
ness,	and	diversity	were	significantly	(p	<	0.05)	higher	in	the	wood-
land	than	either	the	transition	zone	or	the	grassland	samples.	This	
indicates	 that	 the	woodland	 samples	 harbored	 a	 less	 diverse	 bac-
terial	community	and	a	highly	diverse	archaeal	community.	On	the	
other	hand,	the	relatively	N-		and	P-	rich	grassland	samples	supported	

a	 diverse	 bacterial	 community	 (Supporting	 Information	 Table	S1).	
Fungi	also	had	a	significantly	higher	richness	in	woodland	samples.

3.3 | Microbial co- occurrences

Network	analysis	showed	distinct	co-	occurrences	of	archaeal,	bac-
terial,	and	fungal	members	across	the	woodland,	grassland,	and	tran-
sition	zone	(Figure	3).	The	microbial	network	including	the	top	1000	
MIC	scores	comprised	324	nodes	(260	bacterial,	four	archaeal,	and	
60	fungal	OTUs;	Figure	4).	Among	the	top	10	keystone	taxa,	six	were	
bacteria	and	four	were	fungi	(Table	2;	Figure	3a).	Half	of	the	bacte-
rial	keystone	taxa	belonged	to	the	class	Alphaproteobacteria	whereas	
most	fungal	keystone	taxa	were	members	of	the	Ascomycetes. Two 
bacterial	OTUs	belonged	to	Rhizobiales	and	Burkholderiales.	Random	
Forest	Analysis	showed	that	ammonium,	total	carbon,	and	C:N	ratio	
were	 the	major	 determinants	 of	 the	 abundance	 of	microbial	 key-
stone	taxa	(Figure	3b).	The	network	across	the	ecotone	consisted	of	
193	nodes	of	which	woodland	and	grassland	were	associated	with	
116	and	74	nodes,	and	the	transition	zone	connected	to	two	nodes	
(Figure	3c).	The	overall	network	comprised	1767	nodes	and	had	a	

Soil microbiota and activities

Ecotone components

Woodland Transition Grassland

Abundance	(Log	copies	g−1	dry	soil)

Bacterial	16S	rRNA 8.40	(0.05)a 8.29	(0.08)a 7.84	(0.12)b

Archaeal	16S	rRNA 6.91	(0.11)a 6.96	(0.21)a 6.10	(0.16)b

Fungal	ITS 7.69	(0.09)a 7.06	(0.16)a 5.39	(0.66)b

Bacterial	amoA 4.55	(0.25)a 4.82	(0.20)a 3.54	(0.34)b

Archaeal	amoA 5.86	(0.28)a 5.12	(0.20)a 5.51	(0.19)a

Richness

Archaea 42.2	(7.71)a 21.5	(1.91)b 22.1	(1.30)b

Bacteria 1169	(43.10)b 1147	(96.03)b 1395	(21.87)a

Fungi 374	(14.10)a 308	(27.03)b 337	(12.22)ab

Pielou’s	evenness

Archaea 0.40	(0.04)a 0.09	(0.02)c 0.21	(0.03)b

Bacteria 0.77	(0.01)a 0.80	(0.01)b 0.82	(0.01)b

Fungi 0.61	(0.04)a 0.68	(0.04)a 0.72	(0.03)a

Diversity	(Shannon-	Weaver)

Archaea 1.45	(0.15)a 0.27	(0.07)c 0.66	(0.11)b

Bacteria 5.48	(0.08)b 5.67	(0.15)b 6.00	(0.03)a

Fungi 3.57	(0.23)a 3.86	(0.19)a 4.22	(0.21)a

Activity

Nitrification	potential	(PNR)	
(μg NO3-	NO2 g−1	dry	soil	
hr−1)

0.13	(0.04)a 0.36	(0.078)b 0.08	(0.01)a

Notes.	Along	the	grid	length	(50	m),	the	first	20	m	was	woodland,	10	m	was	transition,	and	the	last	
20	m	was	grassland,	resulting	(n)	in	20,	15,	and	20	samples,	respectively.	For	microbial	diversity	indi-
ces,	n	=	6.
Soil	microbial	properties	were	compared	between	woodland,	transition,	and	grassland	by	perform-
ing	one-	way	ANOVA	with	Duncan	post	hoc	test.
Different	letters	indicate	statistical	significance	at	p < 0.05.

TABLE  1 Soil	microbial	indices	and	
potential	nitrification	rate	across	the	
woodland-	grassland	ecotone	at	the	
Namadgi	National	Park,	Australia
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diameter	of	6	and	a	radius	of	4	(Supporting	Information	Figure	S3).	
Woodland	 and	 grassland	 formed	 clusters	 away	 from	 the	 transi-
tion	 zone.	While	 the	 network	was	 dominated	 by	 bacteria,	 fungal	
and	archaeal	nodes	were	also	abundant	 in	the	woodland.	Overall,	
microbial	and	co-	occurrences	were	considerably	different	in	three	
habitat	components	across	the	ecotone.

3.4 | Relationships among microbial co- occurrences, 
soil properties, and ecological processes

Microbial	 co-	abundances	were	 linked	 to	 soil	 properties	 and	 eco-
logical	 processes,	 with	 the	 subnetworks	 comprising	 mainly	 bac-
terial	OTUs	 (Figure	4;	 Supporting	 Information	Figure	S4).	 For	 soil	
properties,	total	soil	P	formed	the	cluster	with	maximum	nodes	fol-
lowed	by	C:N	ratio	and	pH	(Figure	4a).	Mineral	N,	DON,	C:N,	and	P	
clusters	shared	several	nodes	and	were	predominantly	connected	
through	 positive	 and	 linear	 edges.	 In	 general,	 the	 subnetworks	
were	dominated	by	Alphaproteobacteria	and	Actinobacteria	OTUs	in	

bacteria.	For	soil	ecological	processes,	PNR	formed	a	large	and	dis-
tinct	cluster	away	from	soil	enzymes	and	predominantly	consisted	
of	 bacterial	 nodes	 but	 no	 archaeal	 nodes,	whereas	 soil	 enzymes	
formed	individual	clusters	but	were	interconnected	through	shared	
nodes	(Figure	4b).	This	is	especially	true	for	cellobiohydrolase	and	
phosphatase	activities	that	had	a	large	shared	guild.	β-	glucosidase	
had	 the	 smallest	 cluster	 but	 was	 connected	 with	 both	 cellobio-
hydrolase	 and	 phosphatase	 through	 a	 fungal	 node	 belonging	 to	
Dothideomycetes.	Similar	to	soil	P	content,	phosphatase	formed	the	
largest	 clusters.	 These	 clusters	 of	 soil	 enzymes	 were	 also	 domi-
nated	 by	 bacterial	 OTUs.	 Potential	 nitrification	 showed	 consist-
ently	 significant	 (p	<	0.01)	 correlations	 with	 soil	 properties	 and	
extracellular	enzymes	(Supporting	Information	Table	S3).	Bacterial	
amoA	gene	copy	number	had	a	strong	association	with	PNR	activity	
in	these	relatively	N-	rich	soils,	and	this	was	also	supported	by	the	
fact	that	bacterial	amoA	was	strongly	(p	<	0.01)	correlated	with	soil	
N	content.	Taken	together,	microbial	co-	occurrences	reflected	the	
differences	in	soil	properties	and	ecological	processes.

F IGURE  2 Principal	coordinate	analysis	revealing	community	structure	of	bacteria,	archaea,	and	fungi	in	woodland,	grassland,	and	
transition	zone	(upper	panel).	Stacked	bar	chart	(bottom	panel)	showing	relative	abundance	of	various	phyla	and	classes	of	bacteria,	archaea,	
and	fungi	in	woodland,	grassland,	and	transition	zone
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4  | DISCUSSION

4.1 | Microbial communities across the ecotone

In	 this	 study,	 we	 explored	 the	 abundance,	 structure,	 and	 co-	
occurrences	 of	 soil	 archaea,	 bacteria,	 and	 fungi,	 and	 their	

relationships	 with	 relevant	 soil	 ecological	 processes	 along	 a	
woodland-	grassland	ecotone.	Firstly,	using	spatial	interpolation,	we	
showed	how	the	overall	abundance	of	archaea,	bacteria,	and	fungi	
changed	between	woodland	and	grassland	soil	samples.	The	wood-
land	samples	had	significantly	higher	microbial	abundance	than	was	

F IGURE  3  (a)	Microbial	network	showing	co-	occurrences	of	bacterial,	archaeal,	and	fungal	OTUs.	This	network	of	top	1,000	interactions	
consisted	of	324	nodes.	Enlarged	nodes	represent	the	top	ten	microbial	keystone	taxa	of	which	six	were	bacterial	and	four	fungal.	(b)	
Results	of	Random	Forest	Analysis	showing	the	edaphic	drivers	of	microbial	keystone	taxa.	The	MSE	indicates	vector	of	mean	square	errors.	
(c)	Microbial	co-	occurrences	in	the	woodland,	grassland,	and	transition	zone.	This	network	comprised	193	nodes.	To	indicate	the	most	
important	interactions,	only	strong	positive	(r	>	0.8),	strong	negative	(r	<	−0.8),	and	strong	nonlinear	(MIC	–	ρ2	>	0.8)	relationships	were	
shown	in	the	networks.	Oval	nodes	represent	bacterial	OTUs,	rectangular	nodes	represent	fungal	OTUs,	and	triangular	nodes	represent	
archaeal	OTUs.	Color	of	the	nodes	represents	different	taxonomic	groups	while	green,	red,	and	wavy	lines	represent	positive,	negative,	and	
nonlinear	relationships,	respectively.	Only	statistically	significant	(p	<	0.05)	relationships	are	shown
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observed	 for	 the	 grassland	 samples	with	 a	 visually	 distinct	 transi-
tion	zone.	This	higher	abundance	was	observed	generally	for	overall	
archaea,	 bacteria,	 and	 fungi,	 and	 specifically	 for	 ammonia	 oxidiz-
ing	archaea	and	bacteria.	The	overall	gene	copy	numbers	of	 these	
microbial	groups	we	found	in	our	woodland	and	grassland	soils	are	
comparable	to	previous	studies	 (Banerjee,	Baah-	Acheamfour	et	al.,	
2016;	Gleeson	et	al.,	2010;	Kemnitz,	Kolb,	&	Conrad,	2007;	Lauber,	
Strickland,	Bradford,	&	Fierer,	2008).	Secondly,	our	analyses	of	α-		di-
versity	indices	showed	that	the	woodland	samples	had	significantly	
higher	diversity	of	archaea	while	the	grassland	samples	had	signifi-
cantly	higher	diversity	of	bacteria.	It	should	be	noted	that	the	grass-
land	soils	at	our	site	had	significantly	higher	N	and	P	levels	than	the	

woodland	soils.	Typically,	bacteria	are	more	responsive	to	nutrient-	
rich	conditions	than	archaea	(Carey,	Dove,	Beman,	Hart,	&	Aronson,	
2016),	which	indicates	their	copiotrophic	nature	(Fierer,	Bradford,	&	
Jackson,	2007).

Our	 results	 show	 that	 the	 habitat	 edge	 between	 woodland	
grassland	 significantly	 influenced	 microbial	 β-	diversity.	 Microbial	
communities	 formed	 distinct	 clusters	 in	 woodland	 and	 grassland	
samples	with	the	transition	zone	forming	a	gradient	between	those	
two	adjoining	systems.	Moreover,	OTUs	belonging	to	Acidobacteria 
in	bacteria	and	Agaricomycetes	 and	Leotiomycetes	 in	 fungi	was	 sig-
nificantly	higher	 in	the	woodland	samples	than	elsewhere.	Several	
members	 of	 these	 oligotrophic	 microbial	 groups	 are	 involved	 in	

F IGURE  4 Relationship	among	microbial	co-	occurrence,	soil	properties,	and	ecological	processes.	(a)	Archaeal,	bacterial,	and	fungal	
OTUs	formed	distinct	clusters	with	soil	chemical	properties.	Large	clusters	such	as	P	consisted	of	164	nodes,	C:N	comprised	76	nodes,	and	
pH	consisted	of	42	nodes.	(b)	Clusters	of	microbial	OTUs	linked	to	potential	nitrification	and	extracellular	enzyme	activities.	The	cluster	of	
PNR	comprised	49	nodes.	To	indicate	the	most	important	interactions,	only	strong	positive	(r	>	0.8),	strong	negative	(r	<	−0.8),	and	strong	
nonlinear	(MIC	–	ρ2	>	0.8)	relationships	were	shown	in	the	networks.	Oval	nodes	represent	bacterial	OTUs,	rectangular	nodes	represent	
fungal	OTUs,	and	triangular	nodes	represent	archaeal	OTUs.	Color	of	the	nodes	represents	different	taxonomic	groups	while	green,	red,	and	
wavy	lines	represent	positive,	negative,	and	nonlinear	relationships,	respectively.	Only	statistically	significant	(p	<	0.05)	relationships	are	
shown
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wood	 decomposition,	 and	 our	 results	 are	 consistent	 with	 previ-
ous	studies	 reporting	greater	abundance	of	 these	groups	 in	 forest	
soils	(Edwards	&	Zak,	2011;	Jones	et	al.,	2009).	Several	members	of	
the	 Agaricomycetes	 are	 ectomycorrhizal	 (van	 der	 Heijden,	 Martin,	
Selosse,	&	Sanders,	2015),	which	may	also	explain	their	higher	abun-
dance	in	the	woodland	soils.	Similarly,	we	found	that	the	number	of	
OTUs	belonging	 to	Agaricostilbomycetes	was	significantly	higher	 in	
the	grassland	samples	 than	 the	woodland	samples.	 Interestingly,	a	
previous	 study	 showed	 a	 positive	 relationship	 between	 the	 abun-
dance	of	OTUs	of	this	group	and	plant	community	richness	in	grass-
land	 (LeBlanc,	 Kinkel,	 &	Kistler,	 2014).	Overall,	microbial	 diversity	
and	composition	were	significantly	influenced	by	the	habitat	edge	as	
revealed	across	this	ecotone.

4.2 | Potential nitrification driven by bacterial 
ammonia oxidizers

Bacterial	 rather	 than	archaeal	ammonia	oxidizers	drove	potential	
nitrification	in	the	N-	rich	soils	at	this	site,	and	this	pattern	was	con-
sistently	shown	by	multiple	analytical	approaches	employed	in	this	
study.	For	example,	ordinary	kriging	 revealed	 that	both	bacterial	
amoA	and	PNR	had	visually	similar	spatial	patterns	and	operated	at	
similar	spatial	ranges.	Consequently,	these	groups	were	also	posi-
tively	 correlated	 (p	<	0.001)	 across	 the	 ecotone.	Network	 analy-
sis	further	indicated	that	the	PNR	subnetwork	was	dominated	by	
unclassified	 members	 of	 Betaproteobacteria	 and	 not	 archaea.	 It	
should	 be	 noted	 that	 soils	 across	 this	 ecotone	were	 relatively	N	
rich	with	average	%N,	NH4-	N	and	DON	of	0.287%	(w/w),	12.1	μg 
and	 78.8	μg	 per	 gram	 of	 soil,	 respectively	 (Banerjee,	 Bora	 et	al.,	
2016).	While	archaeal	 ammonia	oxidizers	are	 important	 for	nitri-
fication	and	dominant	in	many	ecosystems	(Leininger	et	al.,	2006),	
they	are	well-	acknowledged	for	their	oligotrophic	nature	(Erguder,	
Boon,	Wittebolle,	Marzorati,	 &	 Verstraete,	 2009;	 Hatzenpichler,	
2012).	On	 the	 other	 hand,	 bacterial	 ammonia	 oxidizers	 are	 typi-
cally	copiotrophic	which	makes	them	particularly	suited	for	more	
nutrient	rich	soils.	Interestingly,	archaeal	amoA	was	more	abundant	

than	bacterial	amoA	 in	both	woodland	and	grassland	 soils	 in	our	
study,	 but	 despite	 this,	 bacterial	 ammonia	 oxidizers	 displayed	 a	
stronger	 correlation	with	 potential	 nitrification.	 Previous	 studies	
have	similarly	 found	that	archaeal	ammonia	oxidizers	are	 less	 re-
sponsive	 to	 nitrification	 in	N-	rich	 soils	 even	when	 they	 are	 rela-
tively	more	 abundant	 than	 their	 bacterial	 counterparts	 (Di	 et	al.,	
2009).	The	higher	responsiveness	of	ammonia	oxidizing	bacteria	in	
N-	rich	soils	was	also	noted	in	a	recent	global	meta-	analysis	(Carey	
et	al.,	2016).	The	different	spatial	ranges	of	bacterial	and	archaeal	
ammonia	 oxidizers	 in	 our	 study	 indicate	 a	 possible	 niche	 differ-
entiation	 of	 these	 communities	 as	 previously	 suggested	 (Prosser	
&	Nicol,	2012).	While	the	majority	of	Betaproteobacteria	nodes	in	
the	PNR	subnetwork	were	unclassified	members,	 the	association	
between	 the	 PNR	 subnetwork	 and	 Betaproteobacteria	 members	
reinforces	 the	 importance	of	 this	bacterial	group	 for	nitrification	
in	N-	rich	soils.

4.3 | Microbial co- occurrences across ecotone

We	 found	 a	 similarity	 between	 microbial	 co-	occurrence	 and	 spa-
tial	patterns.	For	example,	microbial	nodes	in	the	woodland,	grass-
land,	 and	 transition	 zone	 were	 structured	 into	 separate	 clusters	
with	the	woodland	habitat	having	a	significantly	higher	number	of	
nodes.	 Similarly,	 kriging	 showed	 a	 significantly	 higher	 abundance	
of	 all	microbial	 groups	 in	 the	woodland	 samples.	 Importantly,	 our	
results	 illustrate	 how	 network	 complexity,	 indicated	 by	 the	 num-
ber	of	nodes	and	edges,	changes	between	two	adjoining	ecological	
systems	within	one	landscape	and	how	archaeal,	fungal,	and	bacte-
rial	patterns	of	co-	occurrence	are	influenced	in	the	transition	zone.	
Previous	 studies	 using	 network	 analysis	 have	 often	 only	 assessed	
bacterial	 communities	 and	 not	 fungal	 or	 archaeal	 communities	
(Banerjee,	Baah-	Acheamfour	et	al.,	2016;	Barberán	et	al.,	2012;	Shi	
et	al.,	 2016;	Vick-	Majors	 et	al.,	 2014).	 Thus,	 the	 roles	of	 these	 lat-
ter	groups	have	been	underrepresented	in	microbial	network	analy-
ses	 (Ma	et	al.,	2016;	Steele	et	al.,	2011).	While	 the	networks	were	
dominated	by	bacterial	nodes,	fungal	and	archaeal	nodes	were	also	

TABLE  2 Network	features	and	taxonomy	of	top	ten	keystone	taxa.	OTUs	with	highest	degree,	highest	closeness	centrality,	and	lowest	
betweenness	centrality	were	selected	as	the	keystone	taxa

OTUid

Network features Taxonomy

Betweenness centrality Closeness centrality Degree Kingdom Phylum or class Order

Botu781 0.024 0.502 265 Bacteria Acidobacteria Acidobacteriales

Fotu671 0.021 0.510 254 Fungi Eurotiomycetes Chaetothyriales

Fotu695 0.026 0.508 250 Fungi Dothideomycetes Capnodiales

Botu706 0.015 0.499 246 Bacteria Alphaproteobacteria Rhodospirillales

Fotu626 0.013 0.502 241 Fungi Zygomycota Mortierellales

Botu914 0.012 0.501 238 Bacteria Verrucomicrobia Pedosphaerales

Botu257 0.008 0.484 227 Bacteria Alphaproteobacteria Caulobacterales

Botu890 0.015 0.494 220 Bacteria Alphaproteobacteria Rhizobiales

Fotu569 0.011 0.486 210 Fungi Eurotiomycetes Chaetothyriales

Botu81 0.005 0.476 199 Bacteria Betaproteobacteria Burkholderiales
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abundant.	Our	results	highlight	the	importance	of	assessing	interk-
ingdom	associations	in	soil	microbial	networks.

4.4 | Relationships between microbial co- 
occurrences and ecological processes

Linking	 microbial	 community	 composition	 to	 function	 is	 a	 central	
goal	 in	 ecology	 (Graham	 et	al.,	 2016;	 Prosser	 et	al.,	 2007).	 In	 this	
study,	soil	P	and	C:N	formed	large	clusters	dominated	by	bacterial	
nodes	and	these	clusters	were	also	connected	with	other	C	and	N	
properties.	Similarly,	the	processes	of	C,	N,	and	P	cycling	were	also	
correlated	 with	 microbial	 co-	occurrence.	 Interestingly,	 soil	 P	 and	
phosphatase	activity	formed	the	largest	clusters	in	their	respective	
networks	whereas	two	lignolytic	enzymes	(phenol	oxidase	and	per-
oxidase)	formed	joined	clusters.	Extracellular	enzymes	are	involved	
in	 the	 decomposition	 and	 mineralization	 of	 soil	 organic	 matter,	
which	is	a	“broad”	process	that	involves	many	steps	and	operated	by	
functionally	 and	 taxonomically	diverse	generalist	microbial	 groups	
(Fierer	et	al.,	2007;	Schimel	&	Schaeffer,	2012).	On	the	other	hand,	
ammonia	 oxidation	 is	 a	 “narrow”	 process	 facilitated	 by	 specialist	
groups	of	bacteria	and	archaea	(Kowalchuk	&	Stephen,	2001).	The	
distinct	cluster	of	PNR	was	mainly	dominated	by	Betaproteobacteria,	
reinforcing	the	observation	that	nitrification	at	this	site	was	driven	
by	ammonia	oxidizing	bacteria.

4.5 | Keystone taxa and determinants

A	useful	feature	of	network	analysis	is	that	it	can	identify	“hubs”	or	
keystone	taxa	that	have	significant	influence	on	the	structure	and	
functioning	of	microbiomes	(Newman,	2003).	Identifying	keystone	
taxa	and	the	factors	that	drive	their	abundance	and	spatiotemporal	
distribution	 is	 of	 particular	 importance	 in	microbial	 ecology.	 The	
concept	 of	 keystone	 taxa	was	 originally	 proposed	 some	 decades	
ago	 by	 ecologist	 Paine	 (1966).	 Keystone	 taxa	 have	 been	 identi-
fied	 in	microbial	 communities	 both	 statistically	 (Banerjee,	 Kirkby	
et	al.,	 2016;	Hartman	 et	al.,	 2018;	 Lupatini	 et	al.,	 2014;	 Shi	 et	al.,	
2016)	 and	 empirically	 (Curtis	 et	al.,	 2014;	 Fisher	&	Mehta,	 2014;	
Hajishengallis,	Darveau,	&	Curtis,	2012).	Berry	and	Widder	(2014)	
used	network-	based	scores	such	as	high	mean	degree,	high	close-
ness	 centrality,	 and	 low	 betweenness	 centrality	 to	 identify	 key-
stone	 taxa	 with	 85%	 accuracy.	 Using	 the	 method	 proposed	 by	
Berry	and	Widder	(2014),	we	identified	six	bacterial	and	four	fungal	
OTUs	in	this	study	as	representing	the	top	ten	keystone	taxa.	In	a	
recent	study,	we	also	reported	that	bacterial	and	fungal	keystones	
were	 significantly	 correlated	 to	 organic	matter	 decomposition	 in	
an	agricultural	soil	 (Banerjee,	Kirkby	et	al.,	2016).	Soil	carbon	and	
nitrogen	contents	likewise	emerged	as	the	drivers	of	keystone	taxa	
that	 we	 identified	 here	 across	 the	 woodland-	grassland	 ecotone.	
One	limitation	of	this	study	is	that	high-	throughput	sequencing	of	
microbial	 communities	was	performed	on	18	 soil	 samples.	 These	
samples	 were	 randomly	 selected	 equally	 from	 the	 three	 zones	
with	 six	 samples	 at	 each	 habitat	 component.	 Thus,	 careful	 con-
sideration	was	made	to	obtain	representative	samples	across	this	

woodland-	grassland	 ecotone.	Moreover,	 the	 selection	 of	 a	 single	
ecotone	site	in	this	study	was	based	our	previous	observation	that	
spatial	patterns	of	a	range	of	soil	properties	and	extracellular	en-
zyme	activities	were	similar	across	two	native	woodland-	grassland	
ecotones	(including	this	one)	 located	approximately	150	km	apart	
(Banerjee,	Bora	et	al.,	2016).

5  | CONCLUSION

Using	geostatistics,	quantitative	PCR,	high-	throughput	 sequencing	
and	 network	 analysis,	 we	 demonstrated	 spatial	 patterns	 and	 co-	
occurrences	of	archaeal,	bacterial,	and	fungal	communities	across	a	
woodland-	grassland	ecotone.	The	abundance,	structure,	and	taxo-
nomic	composition	of	soil	microbial	communities	were	significantly	
different	 in	 the	 transition	 zone	 than	 the	woodland	 and	 grassland.	
Microbial	networks	predominantly	comprised	positive	 interactions	
that	reflected	the	high	C,	N,	and	P	levels	at	this	site.	Microbial	co-	
occurrences	 showed	 clusters	 based	 on	 habitats,	 soil	 properties,	
and	ecological	processes.	Although	microbial	networks	were	domi-
nated	 by	 bacterial	OTUs,	 fungal	 and	 archaeal	members	were	 also	
abundant,	highlighting	the	importance	of	interkingdom	associations	
in	 soil	 microbial	 networks.	 Nitrification	 was	 driven	 by	 ammonia-	
oxidizing	 bacteria,	 and	 this	 was	 supported	 by	 the	 dominance	 of	
Betaproteobacteria	 OTUs	 in	 the	 PNR	 subnetwork.	 A	 coherence	 of	
spatial	patterns	and	co-	occurrences	of	microbial	 communities	was	
thus	demonstrated	across	the	ecotone.
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