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A B S T R A C T

In this work, the effects of maturation time and simulated gastrointestinal digestion on the molecular and
peptide profiles of “Bresaola Valtellina” were assessed through the foodomics approach, in this case food pro-
teomics and peptidomics combined to other analytical and biological assays, aiming at depicting a holistic food
quality. Human digestion of this Italian cured meat product was simulated using an in vitro static protocol and
the degree of proteolysis and the in vitro bioactivity of the soluble free compounds in the digestates were
evaluated by biochemical assays, e.g. SDS-PAGE, size exclusion HPLC, HPLC/MS, 1H NMR, enzymatic and an-
tioxidant activities. The obtained results demonstrated that in vitro gastrointestinal digestion contributed to a
considerable release of myofibrillar proteins by the muscle tissue. Data from SDS-PAGE, peptidomic and size
exclusion HPLC assays showed that the in vitro digestion largely degraded proteins of muscle tissue to peptides
smaller than 250 Da. The released peptides were likely responsible for the inhibitory activity on amylolytic
enzymes and for the antioxidant properties elicited by the gastric digestates of Bresaola. Overall, the results
demonstrated the negligible role of ripening in making meat proteins more bioaccessible, whereas they con-
firmed the highly in vitro digestibility of meat proteins from Bresaola. This study represents a new approach
merging proteomics and foodomics to evaluate the effect of ripening and in vitro digestion on the bioactivity and
bioaccessibility of proteins and peptides of meat products.
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1. Introduction

The “Bresaola Valtellina” (Bresaola) is a Protected Geographical
Indication (PGI) food produced using raw beef meat in the Italian alpine
area called Valtellina. The production process uses different muscular
masses, especially haunc's tio (punta d'anca), which represents the loin
without its adducting muscle. The processing steps of Bresaola follow
severe rules, which guarantee the authenticity of the product and the
respect for the traditional processing. According to these rules, the
single piece of meat is initially dry salted. In the same time, wine,
spices, sugar, nitrites and nitrates, and ascorbic acid can be added to.
Salting lasts about 10 days and it is followed by drying (7 days), which
allows a rapid dehydration of the product to about 60% (w/w)
moisture. Then, the salted and dried Bresaola undergoes maturation at
12–18 °C for 4–8weeks, after which it can be sold as a whole, in pieces
or sliced, vacuum packaged or under modified atmosphere. Cured meat
products are generally employed as a valuable protein source, due to
the good percentage of bioavailable peptides and amino acids (Deniz,
Mora, Aristoy, Candoğan, & Toldrá, 2016; Mora, Escudero, & Toldrá,
2016). Meat proteins are exposed to the action of a variegate portfolio
of proteases and peptidases. As a matter of fact, proteolysis starts at
post-mortem in muscle from beef and it involves the initial degradation
of different proteins including both structural (e.g. actin, myosin heavy
chain, and troponin T) and metabolic proteins (e.g. glycogen phos-
phorylase, creatine kinase, phosphopyruvate hydratase, myokinase,
pyruvate kinase) (Lana & Zolla, 2016). Nonetheless, most of the pro-
teolysis occurs upon the activities of the gastrointestinal enzymes
during meat digestion. As a result, diverse low molecular weight (LMW)
nitrogen compounds are potentially released from precursor proteins
and made free to diffuse to the absorption sites at the gastrointestinal
tract (Parada & Aguilera, 2007; Pineda-Vadillo et al., 2016). However,
the digestion process is also modulated by the supra-molecular orga-
nization of meat product, a characteristic that, for instance makes raw
or cooked meat actually different (Dauphas et al., 2005). Meat pro-
cessing can deeply change the matrix organization and, therefore, the
complex network of molecular interactions and the compartmentali-
zation of nutrients. In this way, nutrient bioavailability and the final
nutritional value of the meat product can be greatly modified. For these
reasons, it is necessary to assess the actual changes in a meat product
under processing procedures (for example thermal treatment, drying,
ripening) on the final properties of food, including digestibility, anti-
oxidant capacity and digestive enzyme inhibition. One of the ther-
apeutic approaches to retard glucose absorption is the inhibition of
carbohydrate digestive enzymes (Chiou, Lai, Liao, Sung, & Lin, 2018).
For this reason, the search for food with inhibiting activity on amylo-
lytic enzymes is increasing. In the last years, the research focused on the

inhibiting activity elicited by some food-derived peptides (Gallego
et al., 2018, b; Gallego, Mora, Hayes, Reig, & Toldrá, 2017; Gallego,
Mora, & Toldrá, 2018; Mora, Bolumar, Heres, & Toldrá, 2017). Al-
though many plant food-derived peptides have shown anti-diabetic
activities, studies on the potential bioactivity of peptides from animal
foods are very limited. Recently, many peptides have been reported to
inhibit carbohydrate digestive enzymes such as α-amylase (EC 3.2.1.1)
and α-glucosidase (EC 3.2.1.20) (Li-Chan, 2015; Marcone, Belton, &
Fitzgerald, 2017). It is thus necessary, for the assessment of the quality
of cured meat products, to study the real bioaccessibility and bioa-
vailability of these molecules and their interaction with the food matrix,
and the effect of meat curing on the digestion enzymes (Capozzi &
Trimigno, 2015).

The aim of this work was to investigate these phenomena in
Bresaola as a model of cured and salted raw meat. To this aim, samples
of Bresaola were firstly in vitro digested and then investigated through
various techniques including in vitro biological and chemical assays,
proteomic and NMR spectroscopy approaches (Capozzi & Bordoni,
2013). SDS-PAGE and NMR spectroscopy are complementary techni-
ques, since the disappearance of protein fragments from the SDS gel,
due to their LMW (REF) (Weber & Osborn, 1969), prevent them to be
stained and detected, while NMR is able to detect and quantify what-
ever soluble molecule (Laghi, Picone, & Capozzi, 2014). The final goal
was to gain a holistic view on the effect of the maturation time and
digestion process of Bresaola on the molecular profile, the bioaccessi-
bility of nutrients, and some potential biological activities of the di-
gestates.

2. Materials and methods

2.1. Bresaola samples

Bresaola samples were provided by one of the major producer lo-
cated in Valtellina and consisted of two different pieces (named A and
B, 800 g each) collected after they have been salted and dried (Time 0,
T0). Samples of Bresaola belonging to the same batch were also col-
lected after 2 weeks (Time 2, T2) and 4weeks (Time 4, T4) of ripening,
as depicted in Fig. 1. The gross composition (g/100 g) of the samples
was: moisture 58.55 ± 0.38, protein (Nx6.25) 32.2 ± 1.6, fat
3.37 ± 28, ash 5.44 ± 0.13, NaCl 4.06 ± 0.14, carbohydrates< 0.1.
No significant differences in gross composition were found among the
diverse pieces collected at three sampling times. Bresaola samples were
also assessed for texture and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) profiles.

Fig. 1. Overview of the experimental design. At the end of sampling, a total of fourteen digestions have been performed on Bresaola samples (A-B x 3-time points x 2
replicates) and controls (meat without enzyme, A-B).
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2.2. Texture profile analysis (TPA)

From each sample, slices 1.5 cm-thick were obtained by using an
electric slicer. From the central part of each slice, two cylindrical cores
were removed with a hand-coring device (diameter 2.2 cm). TPA was
performed on the cylindrical cores at room temperature, using a 3365
Instron Universal Testing Machine (Instron Division of ITW Test and
Measurement Italia S.r.l., Trezzano sul Naviglio, Italy) equipped with a
100 N load cell. Samples were compressed twice, to 50% of their ori-
ginal height, with a cross head speed of 200mm/min (Van Schalkwyk,
McMillin, Booyse, Witthuhn, & Hoffman, 2011) using a circular plate of
8 cm diameter. Hardness (N), chewiness (mJ), cohesion energy (ratio)
and springiness (mm) were calculated according to Bourne (1978).

2.3. In vitro static gastrointestinal digestion

In this study, the standardized static in vitro digestion method,
which has been proposed by the COST FA1005 Action INFOGEST was
used (Minekus et al., 2014). The applied digestion protocol is illustrated
in Fig. 2.

In total, fourteen digestions were carried out, both with and without
Bresaola as a control. Enzyme activities were determined using the
enzyme assays recommended in (Minekus et al., 2014). The chemical
composition of the digestive fluid, pH and residence periods were ad-
justed to mimic the physiological conditions. Samples were collected at
the end of the gastric phase and at the end of the duodenal phase. After
the gastric step, the pH was increased to 7.00 with 35% NaOH to pre-
vent possible modifications induced by acidic conditions. At the end of
intestinal phase, the digestates were acidified to pH 2.00 with 37% HCl

to stop pancreatic hydrolysis and to avoid bias caused by different pH
values. Samples were immediately snap-frozen in liquid nitrogen and
later stored as at−80 °C before any further analysis. Moreover, samples
were collected on separate digestion, each stopping at either gastric or
intestinal phase. Samples were not taken from the same digestion ex-
periement, as sampling would had changed the composition of the re-
maining heterogeneous mixture. Analyses of Bresaola digestates were
also run on their< 10-kDa fraction obtained by ultrafiltration of the
whole digestate through Microcon-10 kDa Centrifugal Filter Unit with
Ultracel-10 membrane (Merck Millipore, Darmstadt, Germany). In de-
tail this fraction was studied for antioxidant capacity, α-aminogluco-
sidase and α-glucosidase inhibitory activity, SDS-PAGE and size ex-
clusion HPLC patterns, and protein, peptide and metabolite profiles.

2.4. α-Amylase and α-glucosidase inhibitory activity assays

The α-amylase inhibitory assay was performed according to the
method described by Koh, Wong, Loo, Kasapis, and Huang (2009) and
Yang et al. (2012) with slight modifications. The pancreatic α-amylase
(Megazyme® E-AMGDF), potato starch (Sigma-Aldrich 18,727) solu-
tions were used as active enzyme and substrate, respectively. The ab-
sorbance at 620 nm was measured by microplate reader (Thermo Sci-
entific Varioskan Flash, Finland). The α-glucosidase inhibitory assay
was performed according to a previously described method by Koh
et al. (2009). Reaction substrate 4-nitrophenyl α-D-galactopyranoside
(PNPG, Sigma-Aldrich N0877) (30mM) was used. Acarbose was used as
positive control and percentage of inhibitory activities of samples were
calculated by using the Eq. (1). A curve of percentage inhibition against
sample concentration was plotted with means. The concentration of the
sample required to produce a 50% inhibition of the initial rate of re-
action (IC50) was determined by GraphPad Prism 6.0.

= ×
⌊ − − − ⌋

−
Inhibition

A A A A
A A

(%) 100
( ) ( )

( )
control control blank sample sample blank

control control blank

(1)

where: Acontrol, Acontrolblank, Asample, Asampleblank refer to absorbance
reading of reaction mixture containing active enzyme and buffer, in-
active enzyme and buffer, active enzyme and sample (inhibitor) and
inactive enzyme and sample (inhibitor), respectively. The substrate was
present in all mixtures.

2.5. 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis 3-
ethylbenzothiazoline-6-sulfonate (ABTS) radical-scavenging activities

The antioxidant activity (AA) of each sample was assessed by DPPH
and ABTS free radicals scavenging activities according to Brand-
Williams, Cuvelier, and Berset (1995) and Re et al. (1999), respectively.
The AA was calculated against a control and compared to a Trolox
standard curve and the result was recorded as antioxidant standard
Trolox (6-hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid
equivalents, mmol TEAC/g).

2.6. Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-
PAGE)

The undigested Bresaola samples and their digestates after gastric
and intestinal steps were submitted to SDS-PAGE in order to determine
the approximate MW of proteins and peptides. Amersham ECL™ precast
gels (12%, GE Healthcare Bio-Sciences Corp, Piscataway, USA) were
used on an Amersham ECL™ box according to the manufacturer's in-
structions. Injected samples were normalized to a total protein con-
centration of 1 g/L (2 μL per sample) for all gels, according to the
manufacturer's instructions, to achieve best visibility and separation of
the proteins. Samples were prepared under reducing (with β-mercap-
toethanol) conditions. Proteins were visualized by Coomassie blue

Fig. 2. Flow diagram of the INFOGEST in vitro digestion method. SSF, SGF and
SIF are acronyms for Simulated Salivary Fluid, Simulated Gastric Fluid and
Simulated Intestinal Fluid, respectively. Enzyme activities are in units per mL of
final digestion mixture at each corresponding digestion phase (Minekus et al.,
2014).
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staining (Bio-Safe Coomassie Stain G-250, Bio-Rad). An Amersham Low
MW Calibration Kit (14.4 to 97 kgmol−1, GE Healthcare UK Limited,
UK) was used as the MW standard.

2.7. Size-exclusion high-performance liquid chromatography (HPLC)

At the end of each digestive phase, the< 10 kDa fraction from the
whole digestates was studied by size exclusion HPLC. The MW dis-
tribution profiles of samples were estimated using a series connection
column with TSK G 2000 SW (7.5mm, 60 cm, 10m, 131 Japan) fitted
to a TSK guard column (7.5 mm, 7.5 cm). Twenty μL of samples were
injected at the concentration of 2.5 g/L. A solution of 30% acetonitrile
in 0.1% Trifluoroacetic acid (TFA) Milli-Q water was used as the eluent
at a flow rate of 0.5 mLmin−1. Absorbances were monitored at 214 nm.
Seven standards were used bovine Blue Dextran (2000 kDa), Carbonic
anhydrase (29 kDa), β-lactoglobulin (18.276 kDa), Bacitracin
(1.423 kDa), Leu-Try-Met-Arg (604.77 Da), Asp-Glu (262.22 Da), L-
Leucine (131.22 Da), as MW calibration standards (log
MW=−0.1508×+8.61, with retention time, expressed in minutes,
R2=0.9697). All samples were filtered through a low protein-binding
Acrodisk® syringe filter (Pall Corporation, Port Washington, NY, USA)
prior to injection onto the column.

2.8. Peptide analysis

Mass Spectrometry (MS) analysis was performed as previously de-
scribed by Kopf-Bolanz et al. (2012) and Egger et al. (2017). The pep-
tides present in the<10 kDa fraction of the whole digestates were
separated on a Rheos 2200 HPLC (Flux Instruments, Switzerland)
equipped with a XTerra MS C18 column (3.5 μm, 1.0 mm×150mm,
Waters). The HPLC was directly coupled to a linear ion trap mass
spectrometer (LTQ, Thermo Scientific, Switzerland) using an ESI in-
terface.

The mass spectrometer used is not a high resolution instrument,
required to accurately quantify individual peptides, but it is ideally
suited to get a general overview over the peptide patterns. Indeed, as
peptides follow very well-known and specific fragmentation rules, high
resolution instrument are not necessary for such identifications, and the
amino acid counting method is fully based on identifications of peptides
followed by amino acids counting in the identified peptide. The applied
“amino acid counting” method was developed for covering the tests for
reproducibility and physiology of the harmonized INFOGEST in vitro
digestion method (Bohn et al., 2017; Egger et al., 2016; Egger, Schlegel,
et al., 2017).

The samples were measured in multiple overlapping narrow mass
windows spanning a m z−1 between 100 and 1300, and all raw files
were merged for an identification search with Mascot (Matrix Science),
using a database containing the major beef meat proteins. The database
is homemade and it is maintained manually. It contains 69 milk pro-
teins from different origin. The search engine parameters were set as
follows: instrument configuration ESI-trap, consideration of average
masses, peptide charge 1+, 2+, 3+, enzyme: none, variable peptide
modifications were pyro-glutamic acid formation at N-terminal
Glutamine (Gln), phosphorylation of serine and treonine, and possible
methionine oxidation. MS/MS tolerance was set at 0.8 Da. To visualize
the peptide abundance, individual amino acids within the identified
peptides from the above mentioned meat proteins were summed up and
a color code was applied (Egger, Schlegel, et al., 2017). The amino acid
counting was performed with a home built Perl script extending Mascot
(Matrix Science, London, UK) search engine, the color codes were ad-
justed using Microsoft Excel. The colors range from green to red, in-
dicating low and high recurrence of specific amino acids, respectively.
Unidentified protein sequences are shown as white stretches. The colors
were normalized to the maximal number of identifications within the
corresponding protein and digestion phase (Egger et al., 2017).

2.9. Proteomic analysis

Two-dimensional electrophoresis and spot excision and processing
for proteomic analysis were carried out as previously reported (Ferranti
et al., 2014). Protein spots hydrolyzed with trypsin were analyzed by
MALDI TOF MS using a Voyager DE-Pro spectrometer (PerSeptive
BioSystems, Framingham, MA) equipped with an N2 laser
(λ=337 nm), using α-cyano-4-hydroxy-cinnamic acid as matrix
(10mg/mL in 50% acetonitrile, v/v, containing 0.1% TFA). Mass
spectra were acquired in the reflector positive ion mode using the Delay
Extraction (DE) technology. The accelerating voltage was 20 kV. Ex-
ternal mass calibration was performed with a commercial mixture of
standard peptides (PerSeptive Biosystems, Framingham, MA). A re-
solution of≥8.000 was calculated in the working mass range. Raw data
were analyzed using the Data Explorer 4.0 software furnished with the
spectrometer. Post-source decay (PSD) MS analysis was carried out after
isolation of the precursor ions using a timed ion selector set at an ion
gate width of 1 Da. The PSD mass spectra were divided into seven
segments; the laser power and the guide wire voltage were varied for
each segment to optimize fragmentation and data collection. Approxi-
mately 200 laser shots were acquired for each segment. Fragmented
ions were refocused onto the final detector by stepping down the vol-
tage applied to the reflector. Finally, the individual segments were
stitched together using the software purchased with the instrument.
Peptide mass fingerprinting (PMF)-based identifications were carried
out interrogating the National Center for Biotechnology Information
(nrNCBI) and Swiss-Prot/TrEMBL databases (downloaded on November
2017) with Mascot (Matrix Science, London, UK) and Protein Pro-
spector MS-FIT (http://prospector.ucsf.edu/) search engines. Mass tol-
erance of 0.3 Da, fixed carbamidomethylation of cysteines, variable
pyro-glutamic acid formation at N-terminal Gln and possible methio-
nine oxidation were set as search parameters. Up to one missed tryptic
cleavage was accepted. Searches were taxonomically restricted to Bos
taurus, whose genome has been completely sequenced. Probability
MOWSE scores were automatically calculated by the search engines;
only protein candidates with a score higher than the random match
region (p < .05%) were considered. A protein was considered con-
fidently identified based on at least four sequenced peptides. The
identification of top scores of protein candidates was validated by
manual peptide mass mapping.

2.10. 1H nuclear magnetic resonance (1H NMR) spectroscopy

Nuclear Magnetic Resonance has been employed in order to have a
wide view of the molecular profile of samples during each digestion
step. Samples were prepared for 1H NMR according to Bordoni et al.
(2014) by adding to 1mL of each sample 160 μL of 100mM phosphate
buffer in deuterium oxide (D2O), containing 10mM 3-trimethylsilyl-
propanoic-2,2,3,3-d4 acid sodium salt (TMSP, Cambridge Isotope La-
boratories) as an internal standard. After adjusting the pH to 7.00, the
samples were centrifuged at 18,630g for 5min in order to further re-
move impurities. All 1H NMR spectra were recorded at 300 K on a
Bruker US+ Avance III spectrometer operating at 600MHz, equipped
with a BBI-z probe and a B-ACS 60 sampler for automation (Bruker
BioSpin, Karlsruhe, Germany). The spectra were collected with a 90°
pulse of 14 μs with 10W of power, a relaxation delay of 5 s and an
acquisition time of 2.28 s. The spectra were registered by means of the
first increment of a nuclear overhauser effect spectroscopy pulse se-
quence (NOESY), designed to suppress the residual signal of the solvent,
while giving, for each proton, peaks proportional to the concentration
of the substance they belong (Savorani et al., 2010).

Spectra were referenced to the TMSP signal at 0.00 ppm, solvent
signal and noise were removed from the spectrum and the matrix was
aligned with reference to the signal of lactate, also employed as a signal
for normalization. The spectra of the blanks, i.e. the digestive enzymes,
were also acquired and subtracted from the spectra of the digested
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samples, in order to remove signals belonging just to the digestive
components added according to the INFOGEST protocol. For not-di-
gested samples, the changes occurring in the concentration of soluble,
bioaccessible protein-derived fragments, during the ripening time, was
calculated integrating the area of selected regions of the spectra, ap-
propriately chosen for their informative power (Eq. (2)): total spectrum,
aromatic region (6.00–7.85 ppm), alpha region (3.60–5.00 ppm),
amides region (7.90–9.00 ppm), gamma-1 region (0.72–1.10 ppm), and
gamma-2 region (0.56–0.72 ppm). The differences due to ripening, re-
corded between T0 and T2 (R2) and between T0 and T4 (R4), as the
average and standard deviation among three replicates, are then used as
proxies of the ripening effect on the bioaccessibility of protein-derived
molecules as it is before digestion.

= − ∗ = − ∗R2 (A A )/(A ) 100 or R4 (A A )/(A ) 100T2 T0 T2 T4 T0 T4 (2)

where R2 is the differences recorded between T0 and T2, and R4 is the
differences recorded between T0 and T4; AT0 is the area of the selected
spectral region for not-digested sample at T0, AT2 is the area for not-
digested sample at T2 and AT4 is the area for not-digested sample at T4.

For the digested samples, instead, the combined effects of ripening
and digestion on the bioaccessibility of protein-derived fragments, was
calculated by subtracting the area of an undigested sample (e.g., AT0) to
that of the corresponding digested one (A'T0), for each time-point (Eq.
3), thus considering the spectra of not-digested Bresaola as the baseline:

= ′ − ∗ = ′ − ∗

= ′ − ∗

D0 (A A )/(A ) 100 or D2 (A A )/(A ) 100 or D4

(A A )/(A ) 100
T0 T0 T0 T2 T2 T2

T4 T4 T4 (3)

where D0 is the digestion outcome recorded at T0, D2 is the one re-
corded at T2 and D4 is the one recorded at T4; A'T0 is the area of di-
gested sample at T0, A'T2 is the area of digested sample at T2 and A'T4 is
the area of digested sample at T4.

This calculation was applied to each spectral region listed above.

2.11. Statistical analysis

Results obtained from the different samples were compared by one-
way analysis of variance (ANOVA), followed by the Least Significant
Difference (LSD) test in order to evaluate significant differences among
the averages (Statgraphics Plus 5.1, Statistical Graphics Corp., Herndon,
VA, USA).

3. Results and discussion

3.1. Texture profile analysis (TPA)

The samples were firstly assessed for uniformity in macroscopic
structural properties by TPA. At T0, the studied rheological parameters
were not totally homogeneous among different Bresaola samples.
Nonetheless, upon ripening, the same rheological properties tended to
be more uniform among samples and no significant differences were
observed among A and B batches after 4-week (T4) maturation
(Table 1). Sometimes also replicates within the same batch showed
relatively high standard errors. This finding is quite common for me-
chanical parameters of meat product, due to the complex structure of
the matrix and to the different location of samples in the muscular mass
(Barbut, 2014). Overall, with the exception of springiness, all the other
evaluated parameters tended to decrease with ripening.

3.2. In vitro inhibiting activity on amylolytic enzymes and antioxidant
activity

In the present study, the inhibitory activities of Bresaola samples on
these two enzymes were determined using the< 10-kDa fraction of the
in vitro gastric digestates. Irrespective of the Bresaola maturation time,
all the gastric digestates displayed significant (p < .05) inhibition of α-

amylase in a concentration-dependent manner (Table 2). Meanwhile,
IC50 of the standard compound acarbose at the same concentration
used in the test was 1.26 (μgmL−1). The peptidic fraction with
MW<10-kDa likely accounted for the revealed inhibitory activity
(Mine, Li-Chan, & Jiang, 2011). This fraction is potentially less sus-
ceptible to further digestion by intestinal proteases and might had ex-
erted an inhibitory effect on this carbohydrate digestive enzyme. In the
α-glucosidase inhibition assay, the gastric digestates of samples at dif-
ferent maturation times displayed 50% inhibition activity at the given
concentrations compared with acarbose (Table 2). Inhibition of α-
amylase increased significantly with the time of sample maturation, but
this was not observed for α-glucosidase inhibition (Table 2). The DPPH
scavenging activity of gastric digestates of samples at T2 and T4 were
significantly (p < .05) higher than that of the T0 sample digestate
(Table 2). Similar results were also obtained for ABTS scavenging ac-
tivities. As found for enzyme inhibition, the peptidic fraction generated
during gastric digestion of Bresaola likely accounted for the revealed
antioxidant activity. Indeed, diverse peptides derived from meat pro-
teins have been reported to elicit this kind of activity (Lafarga & Hayes,
2014). These peptides can be generated during meat processing and
aging, and also during gastrointestinal digestion in human. Bauchart
et al. (2006) found more bioactive peptides in 14 days aged meat
compared to the fresh counterpart. These bioactive peptides present
short sequences (2–20 amino acids) and low MW. Some peptides with
specific sequences and MW<3–10 kDa were reported in cured meat as
DPPH and Ferric Reducing Antioxidant Power (FRAP) radical sca-
vengers (Gallego et al., 2017; Mora, Escudero, Fraser, Aristoy, & Toldrá,
2014; Mora, Gallego, Reig, & Toldrá, 2017). Besides peptides, some
bioactive compounds present in the meat such as lipoic acid, coenzyme
Q-10, L-carnitine and glutathione could exert antioxidant activity
against radicals (Gokhisar & El, 2015). The undigested Bresaola samples
and their digestates at different in vitro digestion steps were submitted
to SDS-PAGE in order to determine the approximate molecular weight
(MW) of proteins and/or peptides. The obtained SDS-PAGE profiles of
samples are reported in Fig. 3. According to the INFOGEST in vitro
protocol (Minekus et al., 2014), sampled proteins and peptides were
those released in the aqueous/saline simulated intestinal fluid, as pro-
tein digestion progressed. Briefly (Fig. 3), the first gel represents the
initial Bresaola samples, the second and third gels represent the di-
gestates at gastric and intestinal phases, respectively. The main differ-
ence that characterized the first gel depended on the inter-variance of
Bresaola samples. For example, the band between 55 e 43 kDa is present
in cured samples but not at time 0 (T0); the same holds also for other
two bands between 43 and 34 kDa, i.e. troponin and fructose bipho-
sphate aldolase (the different intensity of the three samples depends on
a different destaining degree). Following the in vitro gastric digestion,
the bands from 72 to 43 kDa showed the substantial degradation of
some sarcoplasmic proteins. Simultaneously, polypeptides covering the
95–55 kDa range appeared, due to the partial breakdown of myosin
heavy chain (MHC). Furthermore, the band at 43 kDa (that could be

Table 1
Rheological parameters of Bresaola samples at the three-time points as assessed
by TPA (values are mean of triplicates ± SE).

Maturing
time (T),
sample

Hardness (N) Chewiness (mJ) Cohesiveness (−) Springiness
(mm)

T0, A 24.9 ± 4.2a 86.5 ± 12.8a 0.46 ± 0.04b 7.1 ± 0.2b

T0, B 42.4 ± 4.6b 86.4 ± 13.8a 0.31 ± 0.04a 6.2 ± 0.2a

T2, A 20.5 ± 1.2a 48.2 ± 3.4b 0.31 ± 0.02b 6.2 ± 0.1b

T2, B 19.6 ± 1.1a 42.5 ± 3.0b 0.29 ± 0.02b 6.0 ± 0.1ab

T4, A 22.0 ± 1.9a 45.5 ± 4.5a 0.28 ± 0.02a 6.6 ± 0.2a

T4, B 25.7 ± 1.7a 51.9 ± 4.0a 0.27 ± 0.02a 6.3 ± 0.1a

a,b for the same variable, different superscript capital letters mean significant
differences among different batches of each sample (p < .05).
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enolase) was more marked at T2 and T4 than at T0. As expected, all the
bands present in the gel of substrates digestion with enzymes belonged
to the digestion and solubilization of high MW (HMW) proteins and not
to the enzymes (as the control with gastric enzymes and without sub-
strates indicated, not shown). Indeed, in the other half of the gel the
substrate's digestion without enzymes is shown. A T0 the band between
43 e 34 kDa and those between 26 e 10 kDa were absent at T2 and T4.
The quantity of HMW proteins is lower in the matured products (i.e.,
samples at T2 and T4) than at T0, because of typical autolysis me-
chanism that has an effect on the soluble proteins. Conversely, other
bands that are present at all sampling times belong to autolysis resistant
proteins, e.g. myoglobin. After the simulated intestinal digestion, the
protein bands only belonged to digestion enzymes (as the control with
intestinal enzymes and without substrates indicated, not shown). As
expected, after 2 h of intestinal digestion all the HMW proteins were
hydrolyzed. Overall, the simulated gastric phase of in vitro digestion
contributed to a massive release of myofibrillar proteins from the
muscle tissue, making them predominate the protein fraction at the
final stage of simulated digestion. The comparison between the in-
testinal and gastric phases of the Bresaola digestion without enzyme
figured out few differences in the observed bands as well as in their
intensity. This could be due to the different proteins isoelectric point.
To sum up, the SDS-PAGE allowed to identify both the difference due to
the three matrices and due to the presence or not of enzymes, pointing
out that ripening contributed to larger release of proteins upon diges-
tion, than that occurring with only salted meat.

3.3. Size-exclusion HPLC

At the end of each digestive phase, the< 10 kDa fraction from the
whole digestates was studied by size exclusion HPLC. Using this tech-
nique, it was possible to both quantify the percentage of soluble low
MW (LMW) peptides (< 1500 Da) and to link the proteolytic digestion

kinetics with the different Bresaola samples. As shown in Fig. 4, the
three digested Bresaola samples exhibited very similar peptide patterns
and no differences were detected between samples at T0, T2 and T4. It
is interesting to note that the gastric digestion (GD) produces on
average 22.5 ± 1.5% and 29.7 ± 0.8% of peptides smaller than
250 Da or in the size interval of 250 to 600 Da, respectively. Practically
no (< 1%) peptides larger than 1500 Da were detected. Sample that
underwent gastric followed by intestinal digestion (ID) showed a shift
towards smaller peptides with 52.10 ± 1.43% of the soluble peptides
being smaller than 250 Da. This MW corresponds to free amino acids, di
and tri-peptides, all of which are bioaccessible and deemed absorbable
in small intestine.

Table 2
Inhibitory activities against α-glucosidase and α-amylase, and antioxidant capacities of Bresaola gastric in vitro digestates.

Samples IC50 values to α- glucosidase inhibition (μgmL−1) IC50 values to α- amylase inhibition (μgmL−1) DPPH activity (mmol TE g−1) ABTS activity (mmol TE g−1)

Time 0 107.65 ± 12.64a 6.20 ± 0.63a 11.6 ± 1.6a 79 ± 0.7a

Time 2 95.65 ± 2.73a 4.31 ± 0.62b 22.7.0 ± 0.6b 151 ± 2.0b

Time 4 97.34 ± 4.73a 3.04 ± 1.20c 31.90 ± 2.4c 244 ± 3.1c

Acarbose* 120.90 ± 0.90b 1.26 ± 0.30d – –

Fig. 3. SDS-PAGE of Bresaola samples at the three time-points, before and after digestive phases.

Fig. 4. Molecular weight distribution (in %) of digested Bresaola samples
(< 10 kDa fraction of digestate), matured at T0, T2 and T4, after the gastric
(GD) and intestinal (ID) digestion, as determined by size exclusion HPLC.
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3.4. Peptide analysis

Peptides released from actin (ACTS), myosin-1 (MYH1), glycer-
aldehyde-3-phosphate dehydrogenase (G3P), myosin light chain
(MYL1), myosin regulatory light chain (MLRS), beta-enolase (ENOB),
creatine kinase M-type (KCRM), L-lactate dehydrogenase A chain
(LDHA) were identified in Bresaola digestates. The abundance of each
amino acid was measured and plots of the amino acid count in each
digestive step, with or without the enzymes, were generated to in-
vestigate possible differences. Generally, more peptides are liberated in
the gastric phase in the earliest time-points of ripening, whilst the op-
posite occurs in the intestinal phase, though within a lower extent, since
most of the protein digestion was performed in the stomach.

A plot with the average of all the gastric results versus the average of
all intestinal results was made to show how the different proteins are
digested during the gastric and the intestinal phase. Some regions ap-
pear to be liberated only after intestinal digestion, whilst other regions
appear more stable. For example, for MYL1 (Fig. 5A), it is clear how the
gastric phase carries out most of the digestion, especially for bigger
peptides, and releases more amino acids, whilst some smaller peptide
regions released during the intestinal phase. Effect of different ripening
times of Bresaola was tested on the example of ACTS (Fig. 5B). It was
clearly shown that the ripening time has not a significant influence on
the peptide pattern, although some differences in the relative abun-
dance are appreciable. Indeed, the peptides corresponding to 50–65 in
the ACTS sequence are more abundant at T2, whereas the peptides
corresponding to 270–285 are more abundant at T4. The peptide re-
lease pattern was also studied on gastric samples without the enzyme
action, to see if there was some release due to pH and the different time-

points in ripening. An example is shown in Fig. 6. It can be seen that
only very low amount of peptides are present, when comparing to
Fig. 5, showing the effect of digestion. Ripening itself has only marginal
effect on initial occurrence of peptides.

3.5. Proteomic analysis

The effect of in vitro digestion was also evaluated by proteomic
analysis carried out by combining 2D PAGE and MALDI-TOF MS. In
Fig. 7 the analysis of Bresaola at T4 after in vitro digestion (Fig. 7A) is
shown in comparison with a control consisting of the same sample in-
cubated in the absence of enzymes (Fig. 7B). It can be seen that the
main protein components of Bresaola that survived proteolysis, possibly
because of their intrinsic structural stability were ACTS, tropomyosins,
MHC fragments and myosin light chains. Furthermore, although more
slowly than sarcoplasmic proteins, the myofibrillar ones were actually
degraded by gastrointestinal proteases, as demonstrated by the occur-
rence of their fragments in the low MW peptide fraction (see Fig. 7A).
Thus, simulated in vitro gastrointestinal digestion contributed to a
massive release of myofibrillar proteins by the muscle tissue, making
them predominate the protein fraction at the final stage of digestion
(Sayd et al., 2018). These data are in agreement with previous studies

Fig. 5. A) The average peptide acid release of the MYL1 (myosin light) chain in
the two digestive phases: gastric in blue and intestinal in orange. B) Comparison
of different ripening times on peptide release on the example of ACTS. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 6. Peptide release at the gastric phase for the two Bresaola samples (A and
B) at T0, T2 and T4.

Fig. 7. 2DE-MS proteomic analysis of the simulated digest from the (A) digested
Bresaola sample and (B) Bresaola control without enzymes. Identification of
spots: 1: myosin heavy chain 1 (fragment); 2: Desmin; 3: serum albumin (the-
oretical MW/pI 66.4 / 5.84)+HSP 70; 4: actin (MW/pI 42.1 / 5.23); 5; 4:
tropomyosin β-chain (MW/pI 33.3 / 4.62); 6: tropomyosin α-chain (MW/pI
33.3 / 4.62); 7: myosin light chain 1 (MLC1) (MW/pI 20.5 / 5.0); 8: myosin
light chain 3, skeletal muscle isoform (MLC3F) (MW / pI 16.7 / 4.62); 9:
myoglobin; 10: hemoglobin α-chain + hemoglobin β-chain; 11: phospho-
fructokinase + enolase; 12: fructose biphosphate aldolase.
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(Ferranti et al., 2014) showing that meat proteins are in general highly
digestible in vitro.

3.6. 1H NMR spectroscopy

The acquired NMR spectra were investigated in order to assess the
effect of maturation and digestion on release of soluble, bioaccessible
protein-derived fragments in Bresaola samples.

The results are shown in Tables 3 and 4, reporting the changes in
bioaccessibility consequent to ripening alone and ripening plus diges-
tion, respectively. By looking at the ripening effects, the changes in
bioaccessibility (Table 3) are much smaller than those observed for the
digested samples (Table 4). The ripening alone is responsible for a slight
increase of bioaccessibility (about 15%), more at gastric rather than at
intestinal pH. The effect of pH on the matrix-solute interaction has been
already demonstrated for the carnosine dipeptide (Marcolini et al.,
2015). A special attention has to be paid to the decrement of the amide
areas upon ripening which is explained by the increased solvent ac-
cessibility. Amide protons, when exchangeable with the solvent pro-
tons, are not detected in the normal NMR spectral region
(7.90–9.00 ppm) but included in the water signal. Thus, for ripened
samples, more hydrated proteins are expected and the signals of the
corresponding water-accessible amide protons are lost, especially at
lower pH. A large effect on the release of protein-derived fragments is
obviously observed during digestion, more in the intestinal phase than
in the gastric one. While excluding, for the above mentioned reason, the
amide region, a large 10 fold increase is observed for the aromatic,
alpha and aliphatic protons in the intestinal phase. Thus, mainly during
the duodenal phase, molecules are liberated from the matrix by enzyme
action and can, therefore, be available for further hydrolysis and ab-
sorption. In the intestinal phase, samples at the different ripening stages
showed areas not significantly different from T0.

4. Conclusions

In conclusion, the results obtained by the proteomic study demon-
strated that in vitro gastrointestinal digestion contributed to a con-
siderable release of myofibrillar proteins by the muscle tissue, making
them the predominant protein fraction at the end of digestion of
Bresaola samples. Data from peptidomic and size exclusion HPLC assays
demonstrated that the in vitro digestion degraded proteins of muscle
tissue to medium-small peptides. In general, peptides were liberated

with higher relative abundance in the gastric phase, during the diges-
tion of samples at the earliest time-points of maturation. The proteolytic
phenomena proceeded during the intestinal phase at the end of which
peptides smaller than 250 Da represented half of the soluble peptides
being present in the digestates. The released peptides were likely re-
sponsible for the inhibitory activity on amylolytic enzymes and for the
antioxidant properties elicited by the gastric digestates of Bresaola. To
have an absolute quantification of protein-derived molecules, NMR
spectroscopy and SDS-PAGE analysis were carried out. NMR was able to
follow the protein hydrolysis also in the late phases of digestion and
appreciate the tenfold release of bioaccessible protein-derived mole-
cules during the intestinal phase of the in vitro digestion, conversely not
quantified by proteomic and peptidomic assay. Overall, the results
demonstrated the negligible role of ripening in making the amount of
meat proteins bioaccessible, whereas they confirmed the highly in vitro
digestibility of meat proteins from Bresaola. However, the inhibition of
α-amylase and the DPPH scavenging activity increased significantly
with the time of sample maturation, thus demonstrating the sequence-
specific nature of the released peptides depending on ripening.

This study represents a new approach merging proteomics and NMR
spectroscopy to evaluate the effect of ripening and in vitro digestion on
the bioaccessibility of proteins and peptides of meat products, and
correlate the digestion process to the extent of their bioactivity.

Acknowledgements

The authors participate in the COST action FA1005 INFOGEST
(http://www.cost-INFOGEST.eu/).

Conflicts of interest

The authors declare no conflict of interest.

References

Barbut, S. (2014). Texture. In F. Toldrá, Y. H. Hui, I. Astiasarán, J. G. Sebranek, & R.
Talon (Eds.). Handbook of Fermented Meat and Poultry (pp. 207–2015). John Wiley &
Sons, Ltd.

Bauchart, C., Rémond, D., Chambon, C., Patureau Mirand, P., Savary-Auzeloux, I.,
Reynès, C., & Morzel, M. (2006). Small peptides (< 5kDa) found in ready-to-eat beef
meat. 74, 658–666.

Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., Golding, M., Le
Feunteun, S., Macierzanka, A., & Menard, O. (2017). Correlation between in vitro and
in vivo data on food digestion. What can we predict with static in vitro digestion

Table 3
Changes in bioaccessibility consequent to ripening time for not-digested samples (C2 is the differences recorded on T0 and T2 and C4 is the differences recorded on
T0 and T4).

Gastric C2 Gastric C4 Intestinal C2 Intestinal C4

Total area 11.84 ± 0.14 10.99 ± 0.63 8.44 ± 2.14 7.97 ± 0.42
Aromatic region 9.43 ± 6.67 3.23 ± 3.01 3.21 ± 1.97 −5.98 ± −4.18
Alpha region 15.45 ± 2.81 14.40 ± 1.31 11.32 ± 1.73 8.71 ± 1.80
Amides region −9.48 ± −4.79 −11.76 ± −5.52 7.80 ± 6.27 −9.57 ± −8.19
Gamma 1 region 30.86 ± 6.45 37.71 ± 16.48 8.27 ± 7.61 −13.47 ± −10.54
Gamma 2 region 11.67 ± 12.14 12.21 ± 5.49 12.80 ± 12.01 10.51 ± 6.38

Table 4
Changes in bioaccessibility consequent to ripening time plus digestion for digested samples (D0 is the differences recorded on T0, D2 is the differences recorded on T2
and D4 is the differences recorded on T4).

Gastric D0 Gastric D2 Gastric D4 Intestinal D0 Intestinal D2 Intestinal D4

Total area 29.43 ± 9.83 26.06 ± 2.56 −20.89 ± −13.44 778.25 ± 121.26 845.08 ± 46.86 701.46 ± 230.57
Aromatic region −36.13 ± −4.08 −30.80 ± −5.05 −30.61 ± −3.01 346.46 ± 51.70 346.23 ± 18.16 330.88 ± 97.75
Alpha region −12.91 ± −8.10 −12.00 ± −3.23 −11.41 ± −0.90 178.1 ± 30.26 145.10 ± 5.76 135.07 ± 80.55
Amides region −47.32 ± −8.85 −31.95 ± −4.85 3–5.04 ± −3.45 138.66 ± 40.54 197.81 ± 31.65 213.78 ± 71.58
Gamma 1 region NI NI NI 919.21 ± 509.28 629.83 ± 80.39 1740.52 ± 567.22
Gamma 2 region −14.64 ± −8.51 −11.87 ± −7.79 −22.55 ± −3.12 500.26 ± 178.25 532.83 ± 85.45 483.17 ± 201.85

G. Picone et al. Food Research International 115 (2019) 360–368

367

http://www.cost-INFOGEST.eu/
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0005
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0005
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0005
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0010
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0010
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0010


models?, 1–23.
Bordoni, A., Laghi, L., Babini, E., Di Nunzio, M., Picone, G., Ciampa, A., ... Capozzi, F.

(2014). The foodomics approach for the evaluation of protein bioaccessibility in processed
meat upon in vitro digestion. 35, 1607–1614.

Bourne, M. C. (1978). Texture profile analysis. 32, 62–66.
Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to

evaluate antioxidant activity. 28, 25–30.
Capozzi, F., & Bordoni, A. (2013). Foodomics: a new comprehensive approach to food and

nutrition. 8, 1.
Capozzi, F., & Trimigno, A. (2015). 11 - using metabolomics to describe food in detail. In

L. Brennan, & J. L. Sebedio (Eds.). Metabolomics as a Tool in Nutrition Research (pp.
203–229). Woodhead Publishing.

Chiou, S. Y., Lai, J. Y., Liao, J. A., Sung, J. M., & Lin, S. D. (2018). In vitro inhibition of
lipase, α-amylase, α-glucosidase, and angiotensin-converting enzyme by defatted rice bran
extracts of red-pericarp rice mutant. 95, 167–176.

Dauphas, S., Mouhous-Riou, N., Metro, B., Mackie, A. R., Wilde, P. J., Anton, M., &
Riaublanc, A. (2005). The supramolecular organisation of β-casein: Effect on inter-
facial properties. 19, 387-393.

Deniz, E., Mora, L., Aristoy, M.-C., Candoğan, K., & Toldrá, F. (2016). Free amino acids and
bioactive peptides profile of Pastırma during its processing. 89, 194–201.

Egger, L., Ménard, O., Baumann, C., Duerr, D., Schlegel, P., Stoll, P., ... Portmann, R.
(2017). Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems
with in vivo data. https://doi.org/10.1016/j.foodres.2017.12.049.

Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., Barberá,
R., Brodkorb, A., Cattenoz, T., & Clemente, A. (2016). The harmonized INFOGEST in
vitro digestion method: From knowledge to action. 88, 217-225.

Egger, L., Schlegel, P., Baumann, C., Stoffers, H., Guggisberg, D., Brügger, C., ...
Portmann, R. (2017). Physiological comparability of the harmonized INFOGEST in vitro
digestion method to in vivo pig digestion. https://doi.org/10.1016/j.foodres.2017.09.
047.

Ferranti, P., Nitride, C., Nicolai, M. A., Mamone, G., Picariello, G., Bordoni, A., ... Capozzi,
F. (2014). In vitro digestion of Bresaola proteins and release of potential bioactive peptides.
63, 157–169.

Gallego, M., Mora, L., Escudero, E., & Toldrá, F. (2018). Bioactive peptides and free amino
acids profiles in different types of European dry-fermented sausages. 276, 71–78.

Gallego, M., Mora, L., Hayes, M., Reig, M., & Toldrá, F. (2017). Effect of cooking and in
vitro digestion on the antioxidant activity of dry-cured ham by-products. 97, 296–306.

Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide
AEEEYPDL and its quantification in Spanish dry-cured ham. 258, 8–15.

Gokhisar, O. K., & El, S. N. (2015). Impacts of different cooking and storage methods on the
retention and in vitro bioaccessibility of l-carnitine in veal muscle (M. longissimus dorsi).
240, 311–318.

Koh, L. W., Wong, L. L., Loo, Y. Y., Kasapis, S., & Huang, D. (2009). Evaluation of different
teas against starch digestibility by mammalian glycosidases. 58, 148–154.

Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergères, G., Portmann, R., & Egger, L.
(2012). Validation of an in vitro digestive system for studying macronutrient de-
composition in humans. 142, 245–250.

Lafarga, T., & Hayes, M. (2014). Bioactive peptides from meat muscle and by-products:
Generation, functionality and application as functional ingredients. 98, 227–239.

Laghi, L., Picone, G., & Capozzi, F. (2014). Nuclear magnetic resonance for foodomics

beyond food analysis. 59, 93–102.
Lana, A., & Zolla, L. (2016). Proteolysis in meat tenderization from the point of view of each

single protein: A proteomic perspective. 147, 85–97.
Li-Chan, E. C. (2015). Bioactive peptides and protein hydrolysates: Research trends and

challenges for application as nutraceuticals and functional food ingredients. 1, 28–37.
Marcolini, E., Babini, E., Bordoni, A., Di Nunzio, M., Laghi, L., Maczo, A., ... Capozzi, F.

(2015). Bioaccessibility of the bioactive peptide carnosine during in vitro digestion of cured
beef meat. 63, 4973–4978.

Marcone, S., Belton, O., & Fitzgerald, D. J. (2017). Milk-derived bioactive peptides and
their health promoting effects: A potential role in atherosclerosis. 83, 152–162.

Mine, Y., Li-Chan, E., & Jiang, B. (2011). Bioactive proteins and peptides as functional foods
and nutraceuticals. Vol. 29. John Wiley & Sons.

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., ... Dupont, D.
(2014). A standardised static in vitro digestion method suitable for food–an international
consensus. 5, 1113–1124.

Mora, L., Bolumar, T., Heres, A., & Toldrá, F. (2017). Effect of cooking and simulated
gastrointestinal digestion on the activity of generated bioactive peptides in aged beef meat.
8, 4347–4355.

Mora, L., Escudero, E., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Proteomic iden-
tification of antioxidant peptides from 400 to 2500 Da generated in Spanish dry-cured ham
contained in a size-exclusion chromatography fraction. 56, 68–76.

Mora, L., Escudero, E., & Toldrá, F. (2016). Characterization of the peptide profile in Spanish
Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. 89,
638–646.

Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of
naturally generated bioactive peptides in processed meats.

Parada, J., & Aguilera, J. M. (2007). Food microstructure affects the bioavailability of
several nutrients. 72, R21-R32.

Pineda-Vadillo, C., Nau, F., Dubiard, C. G., Cheynier, V., Meudec, E., Sanz-Buenhombre,
M., Guadarrama, A., Tóth, T., Csavajda, É., Hingyi, H., Karakaya, S., Sibakov, J.,
Capozzi, F., Bordoni, A., & Dupont, D. (2016). In vitro digestion of dairy and egg
products enriched with grape extracts: Effect of the food matrix on polyphenol
bioaccessibility and antioxidant activity. 88, 284-292.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999).
Antioxidant activity applying an improved ABTS radical cation decolorization assay. 26
(1231-l).

Savorani, F., Picone, G., Badiani, A., Fagioli, P., Capozzi, F., & Engelsen, S. B. (2010).
Metabolic profiling and aquaculture differentiation of gilthead sea bream by 1H NMR
metabonomics. 120, 907–914.

Sayd, T., Dufour, C., Chambon, C., Buffière, C., Remond, D., & Santé-Lhoutellier, V.
(2018). Combined in vivo and in silico approaches for predicting the release of bioactive
peptides from meat digestion. 249, 111–118.

Van Schalkwyk, D., McMillin, K., Booyse, M., Witthuhn, R., & Hoffman, L. (2011).
Physico-chemical, microbiological, textural and sensory attributes of matured game salami
produced from springbok (Antidorcas marsupialis), gemsbok (Oryx gazella), kudu
(Tragelaphus strepsiceros) and zebra (Equus burchelli) harvested in Namibia. 88, 36–44.

Weber, K., & Osborn, M. (1969). The reliability of molecular weight determinations by dodecyl
sulfate-polyacrylamide gel electrophoresis. 244, 4406–4412.

Yang, X.-W., Huang, M.-Z., Jin, Y.-S., Sun, L.-N., Song, Y., & Chen, H.-S. (2012). Phenolics
from Bidens bipinnata and their amylase inhibitory properties. 83, 1169–1175.

G. Picone et al. Food Research International 115 (2019) 360–368

368

http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0015
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0015
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0015
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0020
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0025
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0025
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0030
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0030
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0035
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0035
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0035
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0040
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0040
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0040
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0045
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0045
https://doi.org/10.1016/j.foodres.2017.12.049
https://doi.org/10.1016/j.foodres.2017.09.047
https://doi.org/10.1016/j.foodres.2017.09.047
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0060
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0060
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0060
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0065
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0065
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0070
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0070
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0075
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0075
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0080
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0080
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0080
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0085
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0085
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0090
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0090
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0090
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0095
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0095
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0100
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0100
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0105
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0105
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0110
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0110
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0115
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0115
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0115
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0120
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0120
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0125
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0125
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0130
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0130
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0130
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0135
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0135
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0135
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0140
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0140
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0140
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0145
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0145
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0145
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0150
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0150
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0155
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0155
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0155
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0160
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0160
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0160
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0165
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0165
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0165
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0170
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0170
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0170
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0170
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0175
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0175
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0180
http://refhub.elsevier.com/S0963-9969(18)30906-2/rf0180

	Monitoring molecular composition and digestibility of ripened bresaola through a combined foodomics approach
	Introduction
	Materials and methods
	Bresaola samples
	Texture profile analysis (TPA)
	In vitro static gastrointestinal digestion
	α-Amylase and α-glucosidase inhibitory activity assays
	1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis 3-ethylbenzothiazoline-6-sulfonate (ABTS) radical-scavenging activities
	Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE)
	Size-exclusion high-performance liquid chromatography (HPLC)
	Peptide analysis
	Proteomic analysis
	1H nuclear magnetic resonance (1H NMR) spectroscopy
	Statistical analysis

	Results and discussion
	Texture profile analysis (TPA)
	In vitro inhibiting activity on amylolytic enzymes and antioxidant activity
	Size-exclusion HPLC
	Peptide analysis
	Proteomic analysis
	1H NMR spectroscopy

	Conclusions
	Acknowledgements
	Conflicts of interest
	References




