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Fungal-bacterial diversity and microbiome
complexity predict ecosystem functioning
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Marcel G.A. van der Heijden 1,6*

The soil microbiome is highly diverse and comprises up to one quarter of Earth’s diversity.

Yet, how such a diverse and functionally complex microbiome influences ecosystem func-

tioning remains unclear. Here we manipulated the soil microbiome in experimental grassland

ecosystems and observed that microbiome diversity and microbial network complexity

positively influenced multiple ecosystem functions related to nutrient cycling (e.g. multi-

functionality). Grassland microcosms with poorly developed microbial networks and reduced

microbial richness had the lowest multifunctionality due to fewer taxa present that support

the same function (redundancy) and lower diversity of taxa that support different functions

(reduced functional uniqueness). Moreover, different microbial taxa explained different

ecosystem functions pointing to the significance of functional diversity in microbial com-

munities. These findings indicate the importance of microbial interactions within and among

fungal and bacterial communities for enhancing ecosystem performance and demonstrate

that the extinction of complex ecological associations belowground can impair ecosystem

functioning.
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M icrobes are the unseen majority on Earth and comprise
a large portion of life’s genetic diversity1–3. A multitude
of microorganisms associate with humans, animals,

insects, plants, and soils around the globe4–8. In each of these
biomes, microbes usually form highly diverse and complex
communities that collectively function as a microbiome. Earlier
studies focused on the description of these microbial commu-
nities, but currently there is much interest to link microbiome
composition and diversity to function1,9,10. This is not surprising
because it is well known that microbes impact all living organisms
and play a central role in many biogeochemical cycles on earth,
driving global carbon and nutrient cycling with direct feedback
effects on ecosystem functioning and productivity1–3.

Experiments carried out in microcosms11–17 and at global
observational scales18,19 revealed that microbial diversity is
linked to ecosystem functioning, implying that communities with
higher microbial richness perform better. The extremely high
microbial diversity on small spatial scales has led to hypotheses
that these highly diverse microbiomes are functionally redun-
dant20. Yet, functional redundancy is an important feature of
biodiversity as greater diversity provides a greater likelihood that
some species are present that can perform a function under
temporally and spatially varying conditions and buffers func-
tioning against the loss taxa so that ecosystem functioning is
maintained21–23. Furthermore, although such a vast soil micro-
bial diversity may appear to be functionally redundant, microbes
are involved in multiple functions simultaneously and thus
functional redundancy is likely to fade as more functions
are considered, as has been shown for plant richness–
multifunctionaliy relationships24,25. To understand how changes
in soil biodiversity affect ecosystem functioning it is therefore
important to consider not only whether the total number of taxa
present relates to a function, but how the reduction in the
number of species that support a single function relates to the
loss of multiple functions simultaneously.

Importantly the influence of an individual species on an eco-
system function is not independent of other species present and is
a result of a myriad of positive and negative, direct and indirect
associations among the different species that as a whole drive
ecosystem functioning. For instance, microbial communities are
not only characterized by the number and composition of taxa,
but also by the ecological associations among microbiome
members. In recent years, microbial co-occurrence analyses have
shed light on microbiome complexity and the interrelationships
among community members26. Emerging studies have revealed
that microbiomes are structured, and form complex inter-
connected microbial networks26–31, where microbes associate
with each other directly or indirectly through processes, such as
competition, facilitation, and inhibition. The complexity of these
microbial networks and its relation to function is not necessarily
determined by the number of taxa in the community, but rather
by the number of associations that those taxa share amongst
them31. A next frontier is now to empirically test whether
changes in microbiome complexity, as indicated by both the
diversity and interconnectivity among co-occurring microbes, is
important for the way microbial communities affect ecosystem
functioning.

By fractionating soil organisms according to size, using filters
of decreasing mesh size we have previously shown that the loss of
soil biodiversity resulted in reduced plant diversity, productivity,
nutrient retention, and belowground carbon allocation using self-
contained grassland microcosms that restrict external con-
tamination15. However, the role of microbiome diversity, func-
tional redundancy, and network complexity within and among
bacterial and fungal communities in regulating ecosystem per-
formance has not been assessed along such a soil biodiversity

gradient. Thus, we capitalize on this model system with a strong
gradient in soil biodiversity here to further assess these different
features of soil microbial diversity and their relationship with
10 soil functions that are known to be mediated by soil
microbes1–3, and that reflect nutrient cycling efficiency, here
termed soil multifunctionality25,32. We used soil collected from
these microcosms and used next generation sequencing to char-
acterize the fungal and bacterial soil microbiome (see the
“Methods” section).

Although next generation sequencing tools have allowed us to
capture a vast diversity of soil microbes, many of the taxa
detected may not play a significant role in the ecosystem func-
tions of interest, thus resulting in ‘noise’ that may obscure the
realized diversity–function relationship. This is in contrast to
classic plant diversity–productivity relationship where each plant
present inherently contributes biomass to the net ecosystem
productivity. Thus, we used feature selection, a statistical tool, to
identify taxa that contribute to predicting the performance of
each ecosystem function considered (see the “Methods” sec-
tion33). This provided us with the identities of fungal and bac-
terial taxa that support a function (directly or indirectly), thereby
removing such ‘noise’ in assessing diversity–function relation-
ships. The association of microbial taxa to functions then allowed
us to further assess the effects of greater microbiome diversity on
increasing the redundancy of taxa that support a common
function, where greater redundancy means that there are a greater
number of taxa that support the same function. We also quan-
tified the functional diversity within the microbial communities
using the functional uniqueness index, which is the product of
Raos quadradic entropy and the inverse Simpsons index and
summarizes the diversity in the relative abundance among
microbes that support different functions34.

Here we hypothesize (1) that microbiome richness and
microbial network complexity promotes ecosystem multi-
functionality, (2) that if a given ecosystem function is not the
result of the presence of a single taxon, then having more taxa
present that positively contribute, directly or indirectly, to the
underlying processes that drive a response in a function should
lead to a positive redundancy–function relationship. At the same
time, if greater microbial richness enhances ecosystem multi-
functionality then it would be hypothesized that this is because
(3) greater richness provides a greater diversity of taxa that
support multiple different functions resulting in a positive func-
tional uniqueness–ecosystem multifunctionality relationship. We
assessed microbiome complexity by first generating a meta-
association matrix including all fungal and bacterial taxa from all
microcosms. We used a cross-validation and a graphical model
inference framework to define the most parsimonious links
among the taxa35 (see the “Methods” section). From this, sub-
networks based on taxa present in specific microcosms were used
to generate indices of soil microbiome complexity (linkage den-
sity) among fungal and bacterial taxa.

This work demonstrates that more complex microbial net-
works contribute more to improved ecosystem function multi-
functionality than simpler or low-diversity networks. Moreover,
different microbes support different functions pointing to the
significance of functional diversity within microbial communities.

Results
Microbial network complexity and ecosystem functioning. The
filtering of soil organisms along the diversity gradient had a
strong effect on reducing microbiome richness and the associa-
tion network complexity (linkage density among those taxa)
(Fig. 1a, b, Supplementary Fig. 1 and Supplementary Tables 1 and
2). Soil microbial network complexity declined strongly along the

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12798-y

2 NATURE COMMUNICATIONS |         (2019) 10:4841 | https://doi.org/10.1038/s41467-019-12798-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


gradient with the highest richness and microbial network con-
nectivity in microcosms receiving inoculum passing the 5 mm
filter and lowest richness and connectivity in the sterile control
treatment (Fig. 1a, b, and Supplementary Tables 1 and 2). The
decomposition of plant litter and nutrient (N and P) uptake by
forbs and legumes declined over our soil diversity gradient, while
the emission of the greenhouse gas N2O and P leaching (two soil
functions which lead to nutrient losses and thus impair ecosystem
functioning) decreased at higher levels of microbiome richness
and complexity along the diversity gradient. Nutrient uptake by
grasses increased with a reduction of microbiome richness and
complexity along the soil diversity gradient (Fig. 1c). All eco-
system functions were significantly related to both bacterial and
fungal richness along the soil diversity gradient (Supplementary
Fig. 2) and thus, fungal and bacterial richness was also positively
related to ecosystem multifunctionality (Fig. 2a). By fitting the
diversity gradient treatment levels after first explaining the rela-
tionships with microbiome richness relationships, we found that
there was significant variation among the treatments for the
majority of ecosystem functions (Supplementary Table 3), sug-
gesting that these ecosystem functions are regulated by additional

changes in the soil biome among treatments not captured by the
changes in microbial richness alone (see below).

Functional diversity in microbial communities. By identifying
suites of taxa that together support functions, we found that
27.1% of bacterial taxa and 44.9% of the fungal taxa were asso-
ciated with supporting at least one ecosystem function (i.e. have
coefficients related to increasing plant nutrient uptake and litter
decomposition or reducing nutrient losses). Much fewer taxa
were found to inhibit functions and of the bacterial and fungal
taxa, 14.4% and 19.2% were negatively associated with a function
(Supplementary Fig. 3 and see Supplementary Table 4 for taxo-
nomic details). Here we focus on the taxa that support a given
function but results for those that contribute negatively to func-
tioning are presented in the Supplementary Materials (Supple-
mentary Tables 1, 2, and 4). The number of microbial taxa that
supported ecosystem functioning (i.e. have coefficients related to
greater plant nutrient uptake and litter decomposition or lower
N2O emissions and nutrient leaching) declined along our soil
diversity gradient (Supplementary Tables 1 and 2). Many of the
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Fig. 1 Soil microbial community composition and ecosystem functioning with progressive simplification of the soil biome. The soil diversity gradient was
established by filtering inoculum through different meshes: ≤5; ≤0.25; ≤0.05, ≤0.025, ≤0.001 mm, or adding sterilized soil inoculum. Shown are (a) the
mean richness of bacterial and fungal OTUs and (b) the microbial association networks where blue circles indicate individual bacterial operational
taxonomic units (OTUs), red square nodes indicate individual fungal OTUs and lines indicate interlinkage between OTUs. For visual clarity, only OTUs that
were detected to be present in 75% of all replicates within each treatment level are illustrated. Networks are based on subsets of a meta-network matrix
where subset matrices were generated using only OTUs present within a treatment. Connectedness within the meta-network was 2.2% (70,830 links out
of 3,290,596 possible links). Larger nodes indicate the OTU was relatively more abundant within that particular treatment. c The mean of ecosystem
functions related to nutrient cycling for each of the soil community treatments. Error bars in a and c are standard errors and different letters indicate
significant differences (Tukey HSD) between treatments (n= 8 for each treatment level with n= 10 for the sterile treatment, except for plant nutrients
where n= 8)
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taxa that were related to functions were only associated with one
or a few functions (Supplementary Fig. 3) and functions were
rarely supported by a similar composition of taxa, with the
exception of N and P uptake by legumes (51% overlap) and by
grasses (55% overlap) (Supplementary Table 5). Greater richness
of fungal and bacterial taxa also resulted in a greater number of
taxa that support a function (Fig. 2b). Moreover, greater richness
of bacterial and fungal taxa was also associated to greater func-
tional uniqueness within the microbial community indicating a
greater diversity in the relative abundance of microbes that sup-
port different functions (Fig. 2c).

As would be expected, all individual functions were better
predicted by the presence of several taxa that supported the same
function (greater redundancy), with the exception of N leaching,
where the abundance of a single fungal taxa best predicted
reduced N leaching (see Supplementary Fig. 4, Table S5). This
suggests N leaching was loosely associated with changes in
microbial composition in our system since previously we noted

that N leaching was related to the performance of grasses and
their ability to capture nitrate in this system15. Nonetheless, by
considering more ecosystem functions, more fungal and
bacterial taxa were required to support multiple functions
simultaneously (Fig. 2d) as has been previously demonstrated in
diverse plant communities where more plant species are
required to support more functions25. Moreover, by increasing
fungal and bacterial richness greater multifunctionality was
supported because of an increase in the number of taxa that
support a function (Fig. 2e), as well as an increase in the
functional uniqueness within the fungal and bacterial commu-
nities (Fig. 2f). Taken altogether these results demonstrate the
critical importance of soil microbiome diversity as it shows that
a more rich and diverse microbiome provides a greater
likelihood that (1) there will be more taxa present that are
needed to support any given function, which is in support of the
diversity–redundancy hypotheses21–23 and (2) greater richness
provides a greater number of taxa that support different
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functions in support of the diversity–multifunctionality hypoth-
esis previously observed along plant diversity gradients24,25.

Functional complexity in microbial communities. By combing
results that identify combinations of taxa that support each
function with the results from the association network among all
taxa we were able to define a ‘functional complexity’ index, which
is the linkage density among taxa that also contributed to pre-
dicting greater ecosystem function. As with all other indices of
microbial diversity, functional complexity also decreased along

the soil diversity gradient (Fig. 3a, Supplementary Tables 1 and 2)
and the overall microbial complexity in the microbial association
network was strongly positively related with multifunctionality
(Fig. 3b). This is because greater network complexity is often
dependent upon the number of nodes (taxa) within the network,
however, a greater network complexity alone did not always
provide a better explanation of multifunctionality than the overall
microbial richness detected (see Fig. 2a for comparison). By
combining information on the identity of the taxa that support
each function with that of the association network we found that
greater complexity among fungal and bacterial communities that
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support a common function increased plant nutrient uptake and
litter decomposition, as well as reduced nutrient losses from N2O
emissions, but showed weak to no relationships with nutrient
leaching (Supplementary Figs. 5 and 6). Nonetheless by con-
sidering the network complexity among taxa that support all
functions provided we obtained the strongest relationships with
multifunctionality (Fig. 3c). Since network complexity can be
dependent upon richness, we also assessed whether overall
microbial richness could explain the strong relationship between
functional network complexity and soil multifunctionality. We
found that by first detrending for richness, we could explain a
highly significant proportion of the relationship but that the
residual effect of functional complexity on multifunctionality also
remained highly significant even after accounting for microbial
richness effects (Table 1 and Supplementary Table 2).

Intriguingly our results show that although soil multifunction-
ality was strongly related to all soil microbiome diversity
characteristics in all cases, indices that considered both fungal
and bacterial communities together were generally more
predictive of soil multifunctionality than those considering only
one of the two (see Figs. 2, 3 and Table 1). This points to the
importance of the diversity in both the fungal and bacterial
communities for supporting multiple ecosystem functions.
Furthermore, we fit each community characteristic in order by
which they were derived (total richness, number of taxa that
support a function, functional uniqueness, and the network
complexity among taxa that support a function) to see how each
additional characteristic contributed to explaining ecosystem
multifunctionality. For the most part each community character-
istic was able to capture an additional significant proportion of
variation in multifunctionality, with the exception of functional
uniqueness when both fungal and bacterial communities were
considered (Table 2). Although here we focus on the soil
microbiome our filtering treatment gradient also likely affected a
number of other soil fauna including nematodes and protozoa
that are not assessed here. To capture this unknown effect of
filtering our organisms based on size we also fit the treatment
gradient (factor) to see how much residual variation among

treatments remains after first explaining away all other microbial
community characteristics. In all cases we found that there was a
significant amount of variation among treatments remaining even
after accounting for the multiple microbial community char-
acteristics quantified here (Table 2). This indicates that although
microbial richness, functional redundancy, diversity, and com-
plexity are all strongly related to maintaining multiple ecosystem
functions that comprise nutrient cycling, there is still a significant
amount that remains unexplained that is likely to changes in
other soil fauna not quantified in our study.

Discussion
Soils harbor a vast diversity of microbes1–3 and recent studies
have identified the drivers of microbiome composition, network
association patterns, and complexity in a wide range of
ecosystems1,6–8,26,27. However, there is a pressing need for
moving beyond mere descriptions of microbial community
composition and delving into the functional implication of
compositional patterns and changes in microbial network struc-
ture as was highlighted recently1,10,11. In particular, while a large
number of studies employing microbial network analysis have
enriched our understanding of microbial co-occurrence patterns
in various soil ecosystems26–31, very little is known of whether
differences in the structure of microbial networks have con-
sequences for microbiome functioning. Although earlier social
network studies have linked network structure to functional
complexity36,37, the task of relating microbial community struc-
ture to function is a non-trivial one largely due to the contentious
nature of structure–function relationship that has perplexed
microbial ecologists for the last two decades38–41. To our
knowledge, this is one of the first studies to link microbial net-
work complexity to ecosystem multifunctionality. Our results
reveal that while taxonomic richness is an important feature that
drives multifunctionality it does so because richness supports
greater microbiome complexity and interkingdom associations
(here by considering fungi and bacteria simultaneously). Thus,
combining these microbiome characteristics can enhance
our assessment of the attributes of soil microbiome diversity
that explain an aggregate of process functions, i.e., soil

Table 1 Effects of soil microbial network characteristics on
ecosystem multifunctionality

SES SE P R2

Complexity
Bact–Bact 0.716 0.110 <0.001 0.479
Fungi–Fungi 0.696 0.111 <0.001 0.460
Bact–Fungi 0.592 0.123 <0.001 0.336
Among all 0.723 0.109 <0.001 0.490
Funct. comp.
Bact–Bact 0.911 0.068 <0.001 0.795
Fungi–Fungi 0.805 0.086 <0.001 0.655
Bact–Fungi 0.777 0.093 <0.001 0.604
Among all 0.969 0.046 <0.001 0.906
Complexity after detrending for microbial richnessa

Bact–Bact −0.308 0.148 0.044 0.086
Fungi–Fungi 0.343 0.137 0.016 0.120
Bact–Fungi 0.113 0.144 0.438 0.013
Among all −0.238 0.151 0.122 0.051
Funct. complexity after detrending for microbial richness.a

Bact–Bact 0.507 0.125 <0.001 0.263
Fungi–Fungi 0.395 0.105 <0.001 0.234
Bact–Fungi 0.513 0.124 <0.001 0.271
Among all 0.543 0.121 <0.001 0.306

Note: Standardized effect (SES) associated standard error (SE) and R2 are provided for each
network characteristic (regression)
aResults are for effects of soil microbial community characteristics on ecosystem
multifunctionality after de-trending for richness

Table 2 The percent of variation (%SS) in multifunctionality
that is explained by each community characteristic

%SS P

Bacteria
Richness 54.72 <0.001
Ave. # supporting taxa 32.69 <0.001
Uniqueness 1.15 0.003
Functional complexity 2.40 <0.001
Treatment gradient 3.53 <0.001
Fungi
Richness 33.30 <0.001
Ave. # supporting taxa 28.71 <0.001
Uniqueness 2.10 0.001
Functional complexity 3.03 <0.001
Treatment gradient 26.04 <0.001
Both
Richness 60.79 <0.001
Ave. # supporting taxa 31.28 <0.001
Uniqueness 0.03 0.499
Functional complexity 0.89 0.003
Treatment gradient 2.42 <0.001

Note: Results show the bacteria only, fungi only, and both combined. The %SS is the sequential
sum of squares (type I, ANOVA) expressed as a percentage of the total and P indicates the
significance. The %SS for block and residuals are not shown and are represented by the %SS
needed to achieve 100%
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multifunctionality. This adds a new dimension to earlier obser-
vations that soil biodiversity and microbial richness act as a driver
of soil multifunctionality18,19.

This study also shows that the impact of microbial commu-
nities and their taxonomic richness on ecosystem functioning
may be better understood by considering various microbiome
characteristics that may include: a) functional redundancy—here
the increasing number of taxa that support a common function,
b) the diversity of taxa that support different functions and c) the
complexity of associations among taxa that support functioning.
This is because here we show that greater microbiome richness is
needed to support (1) greater functional redundancy to secure
individual functions and (2) greater functional diversity to sup-
port multiple functions simultaneously.

There are a number of experimental studies which manipulated
the diversity of plant24,25,42–44 and microbial communities11–16

that have demonstrated the importance of biodiversity for eco-
system functioning, and for maintaining multiple ecosystem
functions. Experiments in plant communities have provided
empirical evidence for the widely regarded insurance and
redundancy hypotheses of biodiversity for sustaining ecosystem
functioning, where greater richness can provide a greater guar-
antee of the maintenance in functioning under various
spatial–temporal environmental conditions22–25. For soil micro-
bial communities confronted with a potentially large functional
redundancy20, here we similarly show that greater soil micro-
biome diversity can also ensure the greater performance in
multiple ecosystem functions. This was largely due to the effects
of greater microbiome richness increasing (1) the redundancy
effect of having more taxa present that support the same function
and (2) an increase in the presence of microbes that were for the
most part associated with different ecosystem functions. These
results show the importance of maintaining a greater taxonomic
richness because it supports greater functional redundancy and
diversity that parallels observations in aboveground plant com-
munities21–25,42–44. Importantly, functional redundancy and
diversity are both key features of biodiversity that provide support
for the ‘insurance’21,22 and ‘rivit-redundancy’21,45 hypotheses and
the ‘portfolio’ effect46 as to why greater biodiversity is needed to
maintain greater functioning. Our findings further extend these
concepts to show that greater microbial richness also provides
greater association complexity within microbial communities and
resultantly a greater association among taxa that support the
multiple functions of interest. Further we found that by com-
bining results from both fungal and bacterial communities on
their functional associations, along with results from network
analyses, we could achieve some of the strongest relationship with
multifunctionality. This supports our hypothesis (3) that a more
taxonomically rich soil microbiome can underpin soil multi-
functionality because it also ensures greater association com-
plexity among microbes that together are required to support
multiple ecosystem functions simultaneously.

Perhaps what is most intriguing about our findings is that often
the consideration of both fungi and bacteria together improved
our ability to predict soil multifunctionality. Until now, most
microbiome studies have focused on particular groups (e.g. bac-
teria or fungi), while still relatively few assessed other key groups
of soil organisms, such as protists, Archaea, and nematodes29,47,48

in order to obtain a more complete picture of the soil biome. Here
we found that considering both fungal and bacterial community
characteristics simultaneously was often a better predictor of
multifunctionality in nutrient cycling compared to considering
these two microbial kingdoms separately. This is in line with
earlier observations revealing that there is division of metabolic
labor among microbes leading to complementarity among those
with unique physiological properties, such as between fungi and

bacteria49,50. For instance, litter decomposition may be per-
formed by distinct groups of soil microbes that inhabit different
parts of the soil horizon51. Moreover, it has been shown that
different plant symbionts (arbuscular mycorrhizal fungi and
nitrogen-fixing bacteria) can complement each other by provid-
ing different limiting nutrients to plants resulting in higher plant
productivity52. This points to the importance of microbial
interkingdom associations as a driver of ecosystem functioning
and parallels recent observations that associations among guilds
of microbes promote plant health in the model plant Arabidopsis
thaliana53. Such unseen synergisms might be much more wide-
spread and ecologically important for the soil microbiome func-
tioning than previously thought.

Although here our focus was solely on the soil microbiome
encompassing soil fungi and bacteria, our results also allude that
including information from other organismal groups beyond
fungi and bacteria may further improve our ability to predict soil
multifunctionality. Therefore, a next challenge is to link the
composition of the soil biome, including multitrophic levels, to
ecosystem functioning. It has been hypothesized that vertical
diversity (among guilds of organisms) may be just as important, if
not more, than the horizontal diversity within a single guild of
organisms54. Considering this, it is important to note that the
filtering approach that we used to manipulate microbial com-
munities also altered the composition of other key groups of soil
biota not assessed in our study. These unassessed groups, such as
microbial and fungal feeders, may also have contributed to the
observed effects directly or indirectly and this deserves further
attention in future work (see Table 2). Although here we focus on
the soil microbiome, there remains numerous facilitative, antag-
onistic, and multi-trophic interactions among the many indivi-
dual members of the soil biome that are still poorly understood as
to how such vertical diversity affects soil multifunctionality that
needs further exploration.

In nature, soil ecosystems are highly heterogeneous since soil
microbial biodiversity hot spots can form spatial and temporally
within soil aggregates55–57 and microbial abundance and diversity
declining with greater soil depth58,59. This spatial heterogeneity
likely plays an important role for the interactions among
microbes and the mechanisms by which more complex and
diverse communities drive various nutrient cycling processes on
small spatial scales. For instance, fungal hyphal networks can
span air pores within the soil facilitating the movement of bac-
terial communities to new resource patches49. Furthermore,
diverse microbial interactions within soil aggregates are likely not
only microbial diversity hot spots but are likely also hot spots for
key soil processes57. Considering these additional spatial com-
plexities of the soil ecosystem in natural environments together
with our results could indicate the further importance of various
indices of microbial diversity and functional complexity across
spatial and temporal scales as has been shown for aboveground
plant communities24. Moreover, perturbations to the soil eco-
system through compaction and tilling that physically damage
larger soil organisms60 and restrict movement among soil pore
space49,61, will likely not only result in the loss of soil microbial
diversity and the structural spatial complexities in natural soil
environments, but also its ability to function and cycle nutrients
between above and belowground compartments effectively.
Considering this, our approach of using a model system with a
relatively homogenous soil environment may have underestimate
the importance of the complexity of soil microbial diversity and
its role in supporting ecosystem function that requires further
investigation in situ.

Recent studies have shown that microbial network complexity
varies between different ecosystem types. For instance, network
complexity was much higher in late successional fields compared
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to early successional fields29. Moreover, organically managed
agricultural fields harbored much more complex fungal networks
with many more keystone taxa, compared to conventional
managed fields31. Extrapolation of the findings in this study, to
these systems, implies that the microbial contribution to ecosys-
tem functioning is higher in systems with higher association
complexity, such as in late successional fields and the organically
managed fields29–31. Our study emphasizes that both horizontal
functional diversity (i.e. diversity within a guild of organisms such
as fungi) and vertical or interkingdom functional diversity (e.g.
diversity among functional guilds, such as among fungi and
bacteria) are both important for maintaining ecosystem func-
tioning. Our work further demonstrates that the extinction of
complex ecological interactions belowground impairs important
ecosystem services that soils provide us.

Methods
Microcosms. The plant community and soil communities were established within
self-contained microcosms with air and water entering the microcosm through
purifying filters (0.2 µm in pore size) to prevent microbial contamination from the
outside and maintain a broad gradient of soil community complexities. A detailed
description of the microcosms and the experimental set-up is provided in earlier
work15,62. Briefly, each microcosm was filled with 5 kg of a standardized 1:1 sand:
field soil mix, which was previously sterilized. Soil communities were created using
250 g of soil collected from a long-term grassland and then sieved through a series
of decreasing mesh size: 5, 0.25, 0.05, 0.025, 0.01 mm or sterile. Soil material not
passing through the sieve was sterilized by autoclaving and was added to the
microcosm substrate along with the living fraction passing through the sieves. The
total amount of inoculum (250 g soil) added to each microcosm represented <5% of
the total soil volume and it had negligible effects on a number of soil characteristics
(see ref. 15 for further details). Microcosms were planted with two grass species, two
legumes species and five forb species representing Swiss grassland communities.
Seeds were surface sterilized with 2.5% hyposodium chlorate and germinated on
1% water-agar. The six soil community treatments were replicated eight times, with
the exception of the sterile community, which was replicated 10 times for a total of
50 microcosms. Microcosms received a simulated rainfall through purifying filters,
which dripped evenly distributed within the microcosm to maintain soil moisture
content in the rage of 10–25% (w/w). Microcosms received natural light that was
subsidized by 400-W high-pressure sodium lamps to maintain light levels above
300W/m2 for 16 h days at an average of 25 °C and 8 h nights on average of 16 °C.

Ecosystem functions. We quantified 10 functions known to be linked to the
functioning of the soil microbiome that reflect ecosystem nutrient cycling: litter
decomposition, soil denitrification through N2O emissions, N leaching, P leaching,
as well as the N and P uptake by grasses, forbs and legumes. The standing biomass
of each plant species was collected after 12 and 24 weeks and pooled by the plant
functional group, and the N and P uptake of each of the three plant functional
groups (grasses, forbs, and legumes) was assessed. Plant material was ground, and
the N content was determined using a CHNSO analyzer (Euro EA, HEKAtech
GmbH, Wegberg, Germany). For plant P determination ground biomass was ashed
at 600 °C and digested using 6M HCl. Digests were diluted and P was quantified
colorimetrically according to the molybdenum blue method63.

Decomposition was quantified using litterbags that were 5 × 5 cm and made of
plastic mesh (20 µm mesh). Bags were filled with 1 g of Lolium multiflorum shoots
that had been sterilized previously. Two litterbags were inserted into each
microcosms just below the soil surface. Litter decomposition was measured as the
percentage of litter mass that was not recovered from the bags after 24 weeks. Prior
to the destructive harvest at 24 weeks, microcosms were watered to 10% above
saturation and 50 mL of the leachate was collected and the concentration of P
(organic and inorganic P) and N (sum of NH4 and NO3) within the leachate was
determined. N2O production was measured at the end of the experiment after
fertilizer addition and soil saturation with water. N2O fluxes were measured using a
TEI 46c automated N2O analyzer (Thermo Fisher Scientific, Waltham, USA) for a
period of 10 min, three times per day over 3 days starting immediately after the
simulated rain prior to harvest at 24 weeks. The N2O fluxes were integrated over
this period by linear interpolation between single measurements and the total N2O
emitted was used as an ecosystem function, since N2O represents nutrient loss as
well as an important greenhouse gas.

Microbiome profiling. We used next generation sequencing to characterize the soil
microbiome. This contrasted to our earlier study15, where we used a molecular-
profiling method (RISA) that did not allow us to characterize the identity of the
microbes. Soil DNA was extracted from 500 mg mixed soil subsamples using the
FastDNA® SPIN Kit for Soil (MP Biomedicals, Switzerland) following the manu-
facturer’s instructions. PCR: PCR reactions were conducted with 10 ng of extracted
soil DNA as template per 25 µl PCR reaction and the PCR products were run on an

electrophoresis gel along with a negative PCR control to verify that the PCR
products were not contaminated. Bacterial communities were profiled based on the
16S rRNA gene primers 515F (5′-454ADAPTER-BARCODES[Database S1]-LIN-
KER[GT]-PRIMERSEQ.-3′64 and 806R (5′-454ADAPTER-PRIMERSEQ.-3′65 with
10x PCR-buffer and MilliQ-purified H2O, 5 µm dNTP’s, 1 unit of fast start Exp-
Polymerase (Roche), and 5 µm of each forward and reverse primers. PCR cycling
conditions were set for 95 °C for 5 min, followed by 25 cycles of denaturation at
95 °C for 30 s, annealing at 53 °C for 1 min, extension at 72 °C for 1 min, with a
final extension of 72 °C for 10 min. Fungi communities were quantified with the
internal transcribed spacer (ITS) primers fITS9 (5′-454ADAPTER-BARCODES
[Database S1]-LINKER[AA]-PRIMERSEQ.-3′66) and ITS4 (5′-454ADAPTER-
LINKER[CT]-PRIMERSEQ.-3′67) with 10x PCR-buffer and MilliQ purified H2O,
5 µm dNTP’s, 1 unit of fast start Exp-Polymerase (Roche), and 5 µm of each
forward and reverse primers. PCR cycling conditions were set for 95 °C for 5 min,
followed by 25 cycles of denaturation at 95 °C for 30 s, annealing at 53 °C for 1 min,
extension at 72 °C for 1 min, with a final extension of 72 °C for 10 min. PCR
products (pooling five reactions per sample) were purified using QIAquick PCR
Purification Kit (Qiagen, Hilden, Germany) following the manufacturers instruc-
tions. Purified PCR products were pooled to libraries (1x 16S library, 2x ITS
libraries) of equal PCR product amounts and sequenced using 454 sequencing at
Microsynth (Balgach, Switzerland).

Sequence data processing. We employed the QIIME environment (v.1.8.0)68 for
sequence processing and started the analysis from the raw SFF files (deposited at
the European Nucleotide Archive database, accession no. PRJEB22310). The sffinfo
tool from 454 was used to extract the sequence, quality, and flow files. The script
split_libraries.py was employed to assign the reads based on their barcodes to their
corresponding samples and the reads were filtered for high-quality sequences
(minimum length, 200 bp; min. average qual. score, 25; qual_score_window, 50 bp,
discarding sequences below the threshold; no ambiguous base calls; no errors in the
barcode). The quality sequences were subsequently denoised using the scripts
denoise_wrapper.py and inflate_denoiser_output.py. For delineation of operational
taxonomic units (OTUs) we used the UPARSE series of scripts (v8.0.1632_i86li-
nux32)69: the denoised quality sequences were trimmed to a common length (16S:
250 bp, ITS: 330 bp), de-replicated, sorted by abundance, singletons excluded, and
finally clustered to OTUs of ≥97% sequence similarity. Although the cluster_otu
function performs a first chimera detection70, we additionally screened the OTU
representative sequences for chimeric sequences against reference databases (16S70,
ITS71) employing the UCHIME72 algorithm. We finally mapped the denoised
quality sequences to the chimera-free OTU representative sequences utilizing the
usearch_global script and default settings. 16S and ITS OTU representative
sequences were taxonomically assigned employing the RDP classifier71 against the
SILVA (release 119, 97% OTUs)72 and the UNITE (v7, 01.08.2015, dynamic
OTUs)73 databases, respectively. We removed OTUs that were not classified as
bacteria or fungi or unclassified at domain/kingdom level from the OTU tables. For
all following calculations, the OTUs tables were converted to proportions of total
reads per sample and the OTUs that comprised <1% of the total number of reads
on average were disregarded. Of these, OTUs that were not present within at five or
fewer experimental replicates were also omitted from the data set. The OTU
matrices were then standardized (each OTU has an overall mean of 0 and unit
variance).

Microbial networks. Microbial association networks for each microcosm were
created by first creating a network meta-matrix using both the standardized fungal
and bacterial OTU tables (resulting in an 18142 OTUs sparse matrix). The meta-
matrix was generated using the R package “SpiecEasi”, which uses LASSO reg-
ularization and cross-validation to detect the most parsimonious network structure
in high dimensional microbial data35. The lambda ratio was 0.01 and the network
was assessed over 50 values of lambda for each 100 cross-validation permutations
to detect the least variable network links by StARS selection criterion73. The net-
works were estimated at each permutation by the Meinshausen and Bühlmann
graph estimation method74. The network meta-matrix was then used to sub-set
networks matrices for each microcosm by selecting out OTUs that were detected to
be present within the microcosm. From these sub-networks, the number of links
was counted, and complexity was calculated as linkage density (links per OTU)75

among bacteria, fungi, fungi-bacterial only, or all fungal and bacteria OTUs. We
also calculated the network functional complexity (same as before but using only
taxa that are not only associated with one another, but that also have positive, or
negative, coefficients for predicting the same function to define an index of positive
network functional complexity.

Taxonomic compositions that predict functions. We used randomization tests to
assess whether microbial taxa can predict particular ecosystem functions based on
effect sizes and the standard 95% confidence range following previous studies76,77.
However, this method considers taxa independently of one another. Therefore, we
also used elastic net regularization, which allowed us to consider all taxa simulta-
neously as predictors within a large sparse dataset, where the number of predictors
is much greater than the number of observations33. Instead of assigning significance
values to each taxa separately using randomization tests, this ‘feature selection’
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method selects taxa (predictors) that achieve the best prediction of an ecosystem
function by penalizing the coefficient of each taxa by mixing λ1 (LASSO regression)
and λ2 (ridge regression) type penalties along a gradient of α (where α= 0 uses
solely a type λ1 penalty and α= 1 uses solely a type λ2 penalty)33. Therefore, the
method selects out fungal and bacterial OTU combinations that together best
predict the response in ecosystem functioning. This was done using the R package
‘glmnet’33. We assessed models across a gradient of α ranging from 0 to 1 in
steps of 0.01 using the function ‘cv.glmnet’ with leave-one-out cross validation
(k-folds= n). The α and corresponding λ values that resulted in the minimumMSE
were used in the final model to obtain coefficients for each OTU. The non-zero
coefficients were then used to infer a positive or negative contribution of an OTU
to improving ecosystem functioning in the desired direction. Both randomization
tests and elastic net methods produced similar results (see Table 1, Supplementary
Fig. 1 and Supplementary Table 6), and here we focus on the results using elastic
net regularization where all taxa were considered simultaneously.

Analyses. All community characteristics and all ecosystem functions were assessed
for variation among treatments by ANOVA. We further tried to discount for the
effect of the most extreme ‘Sterile’ soil treatment by including it as a contrast
(sterile vs. other treatments) term within the AMOVA model. However, dis-
counting for the ‘Sterile’ soil treatment first generally had little effect on our results
(see Supplementary Tables 1 and 2). Each function was regressed on each of the
microbiome community characteristics independently. To summarize the changes
in the overall functioning of soils in relation to soil community characteristics, we
calculated a multifunctionality index by averaging the normalized (zero mean and
unit variance) ecosystem function measures (forb N and P uptake, legume N and P
uptake, grass N and P uptake, decompositions, N and P leaching and N2O emis-
sions). However, since many functions are correlated, we also calculated the
multidimensional multifunctionality index recently described to avoid potential co-
linearity issues78. Although there are many methods by which to assess multi-
functionality and its relation to biodiversity, these methods conveniently provide a
single index that reflects the general functioning of the ecosystem on average78,79.
Here both the averaging and multidimensional indices of multifunctionality were
highly correlated (Pearson’s rho= 0.882, P < 0.001). Thus, we only present results
using the multidimensional calculation of multifunctionality. Prior to calculating
multifunctionality, values for nutrient leaching and N2O emissions were inverted as
higher values of these functions are undesired ecosystem functions (i.e. low values
for nutrient leaching indicate the retention of nutrients and proper ecosystem
functioning, while high values indicate dysfunction and nutrient losses).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are publicly available at https://doi.org/10.6084/m9.figshare.9767423.v1. The data
used for this study are available in ‘figshare’ with the identifier https://doi.org/10.6084/
m9.figshare.9767423.v1.

Code availability
R code is available upon request.
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