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Abstract Process‐based models are useful for assessing the impact of changing management practices
and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands.
They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate
simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of
soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated
outputs. To improve model performance, thorough evaluations against in situ measurements are needed.
Experimental data of N2O emissions under twomanagement practices (control with typical fertilization versus
increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel
evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in
two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes
on annual timescales, while APSIMwasmost accurate for daily N2O fluxes. Themultimodel ensemble average
reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental
Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss),
but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble
overestimated the N2Omitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%)
but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel
ensembles are valuable for estimating the impact of climate and management on N2O emissions.

Plain Language Summary We tested the performance of three dynamic simulation models
against measured nitrous oxide (N2O) fluxes and its driver variables for a Swiss grassland. We showed
that DayCent performed best in the prediction of annual N2O emissions but was outperformed by APSIM for
daily N2O emissions. We identified particular strengths and weaknesses of each model. Further, we
compared the individual models against the N2O flux estimate made with the Intergovernmental Panel on
Climate Change (IPCC)‐derived method for the Swiss agricultural greenhouse gas inventory (IPCC‐Swiss).
Most individual models were worse than IPCC‐Swiss but the mean of all model predictions was much
better than IPCC‐Swiss. All methods overestimated the N2O mitigation effect of a clover‐based N2O
mitigation. IPCC‐Swiss was worst and the model ensemble was best at estimating the effects of the
mitigation. The findings highlight that using multiple models in an ensemble is beneficial for assessing
management and climate impacts on N2O emissions.

1. Introduction

Nitrous oxide (N2O) concentrations in the atmosphere impacts the Earth's system in two ways: first by
its global warming effect as the third most important greenhouse gas (Intergovernmental Panel on
Climate Change, 2013) and second as the most important substance contributing to stratospheric
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ozone depletion during the 21st century (Ravishankara et al., 2009; United Nations Environment
Programme (UNEP), 2013). Consequently, N2O emissions and other greenhouse gases (GHGs) need to
be reduced in order to reach the climate goal of limiting global temperature rise during this century
to below 2 °C compared to preindustrial levels (The Paris Agreement; United Nations Framework
Convention on Climate Change, 2015) and to avoid undermining the achievements of the Montreal pro-
tocol (United Nations Environment Programme, 1987), which was successfully implemented to avoid
ozone‐depleting substances.

Agriculture is the dominant source of global anthropogenic N2O emissions, contributing approximately 66%
(3.8–6.8 Tg N2O‐N year−1, UNEP, 2013). Agricultural N2O emissions mainly originate from nitrogen (N) in
mineral and organic fertilizers, and crop residues and through enhanced organic matter mineralization fol-
lowing soil cultivation (tillage) (Davidson, 2009; Mosier et al., 1998; UNEP, 2013). Grasslands cover more
than one quarter of the terrestrial surface and comprise about 70% of agricultural lands (Food and
Agriculture Organization, 2013; White et al., 2000). Agroecosystems can act as a potent GHG sink via carbon
(C) sequestration, reflected in large C stocks accumulated in grasslands soils (Conant et al., 2005, 2017).
However, the C and N fluxes largely depend on grassland management (Soussana et al., 2010), for example,
the application of mineral fertilizers and manures to grassland and grassland tillage. As a response to agri-
cultural practices, European grasslands currently are not a significant sink in terms of total GHGs (−14 ± 18
g C m−2 year−1; Schulze et al., 2009), as CO2 losses via respiration and N2O losses from the soil offset photo-
synthetic CO2 uptake. Intensively managed mown grasslands have been shown to act as a net source of
GHGs to the atmosphere when accounting for on‐ and off‐site emissions (Soussana et al., 2010). However,
for assessing GHG mitigation options a thorough understanding of management effects on GHG emissions
is necessary.

Emissions of N2O from agricultural soils occur due to microbial processes, most importantly during
nitrification and denitrification, particularly the latter. Nitrification is the oxidation of ammonium
(NH4

+) to nitrate (NO3
−) via several intermediates under aerobic conditions, with N2O as a by‐product.

Denitrification is the reduction of NO3
− to dinitrogen (N2) under anaerobic conditions, with N2O as an

intermediate substance, which only under complete anoxic conditions is reduced further to N2 (Baggs,
2008; Butterbach‐Bahl et al., 2013; van Groenigen et al., 2015). Known drivers of these processes are
available NH4

+ and NO3
−, labile organic C as substrate for heterotrophic microorganisms, soil tempera-

ture, soil water content, and soil oxygen concentration, and soil pH (Ball, 2013; Blagodatsky & Smith,
2012; Butterbach‐Bahl et al., 2013; Hörtnagl et al., 2018). Up to date we lack the ability to explain
the variation in observed N2O emissions with known environmental drivers, reflecting our yet limited
ability to comprehensively measure and understand N cycling processes and their interactions
(Butterbach‐Bahl et al., 2013; Kuypers et al., 2018). High variability of N2O fluxes in time and space
(Cowan et al., 2015; Groffman et al., 2009) makes the bottom‐up estimation of national emissions pro-
blematic, resulting in large uncertainties (Reay et al., 2012). Due to the lack of easily accessible and reli-
able alternatives, national N2O emission inventories are mostly based on simple emission factors (EFs)
as used in the Intergovernmental Panel on Climate Change (IPCC) Tier 1 approach (Intergovernmental
Panel on Climate Change, 2008). This approach takes into account N inputs from fertilizers, crop resi-
dues, mineralization, atmospheric deposition, and urine and dung deposited by grazing animals but
neglects any site‐specific effects, for example, climatic conditions and/or soil properties. It may be sui-
table for estimating total national emissions, integrating fluxes over a large area and over a long time
period. However, this approach is not intended for use at specific sites and can lead to large deviations
from the measured N2O fluxes. As a more sophisticated method, models can be used to simulate influ-
encing factors that are then used to determine N2O emissions (Tier 2) or to directly simulate N2O emis-
sions on a regional scale and with high temporal resolution (Tier 3). Still, the use of models for
emissions inventories remain scarce (Environmental Protection Agency, 2019) and the added value com-
pared with IPCC Tier 1 approaches needs to be shown.

Process‐based biogeochemical models provide an opportunity to scale up N2O flux estimates based on pro-
cess equations reflecting a simplified synthesis of the currently available process knowledge in C and N
cycling and their drivers. However, it remains a challenge for state‐of‐the‐art process‐based biogeochemical
models to accurately represent interannual and intraannual patterns in N2O emissions with sufficient
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accuracy and certainty (Ehrhardt et al., 2018; Zimmermann et al., 2018) for implementation in policy.
Studies validating simulated N2O emissions were commonly based on static chamber measurements, typi-
cally restricted to a few events during the growing season on a plot scale, and concurrent meteorological con-
ditions (Zimmermann et al., 2018). In order to go beyond current assessments and obtain a comprehensive
and robust assessment of model performance, new validation exercises need to cover longer time spans
entailing a wide variability in meteorological conditions and management activities (such as fertilization,
harvest, grazing, and resowing), a much higher temporal resolution compared to typical manual chamber
measurements, and be at the ecosystem scale (>1 ha) rather than the plot scale (less than a few
square meters).

Dynamics in N2O emissions, particularly the sporadic nature of peak emissions, require high‐resolution
flux data in order to capture emission peaks (“hot moments”), induced by management and environ-
mental conditions (Barton et al., 2015; Fuchs et al., 2018; Groffman et al., 2009; Hörtnagl et al.,
2018). Eddy covariance (EC) measurements are continuous in time, measure a spatial average at the
ecosystem scale, and allow for high confidence that the measurements represent the field‐scale fluxes
at the soil‐atmosphere interface (Finkelstein & Sims, 2001; Rannik et al., 2016). N2O flux measurements
covering four years were acquired with the EC technique at an intensively managed Swiss grassland site
(Fuchs et al., 2018) providing a unique opportunity to validate process‐based models on daily, weekly,
monthly, and annual time scales. Here we applied three process‐based models with some variants,
resulting in five sets of outputs in total and compared the model outputs against in situ observations.
The model selection includes DayCent, which has already been applied for national N2O reporting
(Environmental Protection Agency, 2019); APSIM, which is widely applied for different ecosystems;
and PaSim, which has been developed particularly for grasslands.

Combining diverse models, which have different strengths and weaknesses, in a multimodel ensemble pro-
mises to increase the accuracy and reliability of the results. Models represent ecosystem fluxes as a set of
equations and thereby inevitably introduce inaccuracies that propagate and upscale to inaccuracies in model
outputs. The idea of the multimodel ensemble concept is to account for this inherent model uncertainty by
applying several skillful and independent models to better cover the whole space of possible outputs. The
resulting multimodel ensemble average is subsequently improved because of error cancelation, which
results in increased consistency and reliability (Hagedorn et al., 2005). Since a few recent studies of biogeo-
chemical models have shown the ensemble estimates to be more accurate than individual model results
(Asseng et al., 2013; Ehrhardt et al., 2018; Wallach et al., 2018), the use of ensemble averages is a promising
option for Tier 3 estimates.

Our specific objectives were as follows:

1. To test the performance of the multimodel ensemble to simulate N2O emissions;
2. To quantify differences between modelled and measured N2O emissions with respect to cumulative

daily/weekly/monthly/annual fluxes and identify periods (i.e., management events, meteorological
conditions) of coherences and periods of discrepancies between modelled and measured N2O emis-
sions; and

3. To assess the performance of each model in representing key variables driving N2O emissions (i.e., soil
temperature, soil water content, NH4

+, and NO3
− concentrations) and to reveal the dependence of per-

formance in N2O emissions on the drivers' performances.

We hypothesized models as follows:

1. To perform better than the IPCC‐Swiss estimate since models include additional information (i.e., varia-
bility in soil meteorology and management);

2. To perform best following recent fertilizer application events, because then emissions are largely driven
by external N inputs; and

3. To simulate N2O emissions most accurately during periods when driver variables such as soil tempera-
ture, soil water content, ammonium, and nitrate concentrations were modelled accurately, because those
control N2O emissions

Our findings will thus assist in diagnosing potential causes of discrepancies and to specify conditions for
which improvements in the models and/or data collection are needed.
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2. Materials and Methods
2.1. Site conditions and Management

The Chamau field site (Swiss FluxNet site code: CH‐CHA) is a temperate grassland located on the Swiss
Plateau 30 km southwest of Zurich (47°12′36.8″N, 8°24′37.6″E, 393 m above sea level), characterized by
average annual temperature of 9.8 °C and 1,179 mm precipitation (Gilgen & Buchmann, 2009; based on data
from the MeteoSwiss station Cham). The soil is a Cambisol/Gleysol with a bulk density in 0–0.2 m depth
between 0.9 and 1.3 g cm−3 (Roth, 2006), and pH of 6.5 (in 2014; Labor Ins AG, Kerzers, Switzerland).
The site has been a permanent grassland since at least 2002, with the latest restoration in 2012 (Merbold
et al., 2014), when it was resown with perennial ryegrass (Lolium perenne), commonmeadow grass (Poa pra-
tensis), red fescue (Festuca rubra), timothy (Phleum pratense), white clover (Trifolium repens), and red clover
(Trifolium pratense). Besides these sown species, dandelion (Taraxacum officinale), and roughmeadow grass
(Poa trivialis) occur.

In 2015, the site was divided into two adjacent grassland parcels (Fuchs et al., 2018; Parcel A of 2.2 ha and
Parcel B of 2.7 ha). The conventional management (Control treatment: Ctr; Parcel A) consisted of four to
six harvests (mown, used as silage or hay) and a subsequent application of fertilizer in form of liquid slurry
three to seven days after mowing. Typical annual slurry applications at the site were 266 ± 75 kg N ha−1 year
−1 (average ± SD over the 11 years 2003–2014). In the years 2015 and 2016, we tested an N2O mitigation
option (Parcel B; Clover treatment: Clo), that is, oversowing with clover in order to increase biologically
fixed N (BFN) whilst omitting fertilization (Fuchs et al., 2018). Oversowing with Trifolium pratense L. and
two varieties of Trifolium repens L. was carried out in spring each year to increase the proportion of clover.
The land owner carried out the oversowing by harrowing to 0.01 m depth and sowing on top of the existing
vegetation with the purpose of depressing herbs and shifting species composition to a grass‐clover mixture
with a higher proportion of clover than on the control. Furthermore, the parcels were occasionally grazed,
mostly during winter. Detailed management information and soil characteristics are given in Table S1 in
the supporting information and in Fuchs et al. (2018).

2.2. Eddy Covariance Flux, Meteorological, and Soil Measurements

We continuously measured greenhouse gas exchange (CO2, N2O, CH4, and H2O) at a tower located at the
boundary between the two parcels using the EC technique (Aubinet et al., 2012; Eugster & Merbold,
2014) during the four years presented in this study (2013–2016). In the EC technique the gas flux is calcu-
lated from the covariance of the vertical wind velocity with the respective gas concentration. Due to the
tower location at the parcel boundary, the two prevailing wind directions cause the fetch of the ECmeasure-
ments being most of the time either in one or the other parcel. Details of the eddy covariance measurements
and flux postprocessing and the attribution of the flux to the two parcels are described in Fuchs et al. (2018).

Observations of air temperature and relative humidity (2 m height; Hydroclip S3 sensor, Rotronic AG,
Switzerland), components of the radiation balance (2 m height; CNR1, Kipp & Zonen B.V., Delft, The
Netherlands), and precipitation (1 m height; tipping bucket rain gauge model 10116, Toss GmbH,
Potsdam, Germany) were acquired from the tower located between both parcels. Soil microclimatic variables
were continuously measured next to the tower, including volumetric soil water content (at 0.04 and 0.15 m
depth; ML2x sensors, Delta‐T Devices Ltd., Cambridge, UK) and soil temperature (at 0.05, 0.10, and 0.15 m
depth; TL107 sensors, Markasub AG, Olten, Switzerland). Soil temperature and soil water content from the
measurements near the tower were used for both parcels. While soil temperature at 0.1 m depth was avail-
able for the study period, soil water content in 0.1 m depth was not continuously available due to sensor fail-
ure, and therefore the average from sensors in 0.04 and 0.15 m depth was used for this analysis.

2.3. Models and Model Variants

We used three process‐based models: APSIM (Holzworth et al., 2014, in two variations), DayCent (Parton
et al., 1998; Del Grosso et al., 2001, in two variations) and PaSim (Riedo et al., 2000). We calibrated models
previous to this study (corresponding to stage 5 in Ehrhardt et al., 2018) using site data from 2010–2012. For
model descriptions, see Ehrhardt et al. (2018) and Fitton et al. (2019). In addition, we applied the DayCent
and APSIM models to a nearby site to validate their estimation of grassland yield and N fixation (Fitton
et al., 2019).
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DayCent is based on the Century model (Parton et al., 1998) but uses a daily time step (Del Grosso et al.,
2001). We applied the two variants DayCent v4.5 2010 (here DC1) and DayCent v4.5 2013 (here DC2).
These variants differ in their calculations of solar radiation and in their calculations of maintenance and
growth respiration. The later version also includes the simulation of freeze‐thaw events. DayCent includes
four main submodels, which are (1) the plant growth submodel for calculating biomass production and allo-
cating net primary production to the plant pools, (2) the soil organic matter submodel for simulating decom-
position of dead plant material (litter) and soil organic matter and allocating soil carbon to three soil organic
carbon pools and the litter pool, (3) the soil water submodel for the water flow between different layers, and
(4) the trace gas flux submodel for gaseous emissions.

PaSim (Calanca et al., 2007) is a pasture model simulating water, C and N cycling in grassland at a subdaily
time step, here aggregated to daily outputs. Different modules are responsible for microclimate, soil, vegeta-
tion, herbivores, and management. C from photosynthesis and N from soil and fixation are allocated dyna-
mically to one root and three shoot compartments.

APSIM (v7.10 r4162), the Agricultural Production Systems sIMulator (Holzworth et al., 2014), was used in
two variants (AP1 and AP2), which differ in their soil water modules. The SWIM water module uses the
Richards equation (here AP1; Huth et al., 2012), while the Soil Water (SoilWat) module is capacitance based
(here AP2; Probert et al., 1998). N2O emissions are known to be very sensitive to soil water content so the
variation in soil water model, while keeping other aspects constant, was deliberately introduced to under-
stand if one water model was better than the other. The AgPasture module (Li et al., 2011) was used for pas-
ture growth, with allocations of N reserves according to Vogeler and Cichota (2016) and the Penman‐
Monteith equation designed for intermingled canopies (Snow &Huth, 2004). The SoilN module was applied
for soil organic matter and nitrogen transformations (Probert et al., 1998).

2.4. Model Input Data and Model Setup

Modeling groups received detailed or specific management data (amount of N, type of management; see
Table S1) for the 4‐year observation period (2013 to 2016) as well as the site history (since 2002), including
the information on the tillage and sowing operations for the regrassing in 2012. Climate data from the field
site were used as model input for 2010–2016, while historical data before 2010 were used from AgMERRA
(Ruane et al., 2015) in case of spin‐up of models. Input data in daily time steps were mean, minimum,
and maximum air temperature, total precipitation, average wind speed, average global radiation, average
relative humidity, and average dewpoint temperature. These variables were mainly directly measured at
the station (74–95% of the days, depending on the variable, see Table S2 for details). Data from the proximate
meteorological station Cham were acquired from the Swiss meteorological service MeteoSwiss (https://gate.
meteoswiss.ch/idaweb) and used for gap filling if available. For the rare cases when neither the original
value from the Chamau nor a value from Cham were available, the mean value over all seven years
(2010–2016) at the day of the year (DOY) was used, which was only the case on 12 days for shortwave radia-
tion and on 36 days for relative humidity (Table S2). We used the simplest form of a multimodel ensemble
and merged the individual model outputs each day with equal weights.

2.5. Statistical Analysis

We used the term “background fluxes” for N2O fluxes beneath the threshold of 1.2 mg N2O‐N m−2 day−1.
This threshold corresponded to the mean of N2O fluxes during the months October and March at
Chamau, reflecting N2O fluxes at the start and end of the growing season (Fuchs et al., 2018) when no man-
agement event took place. The threshold corresponded well with the background fluxes reported for another
Swiss grassland site (Neftel et al., 2007).

We defined an N2O emission “peak” as N2O emissions exceeding background emissions. We distinguished
“peaks after management”, which were defined as peaks finishing ≤14 days after a management event (e.g.,
fertilizer application, harvest, and grazing) and all other peaks as “peaks not directly linked
to management”.

As a measure of the error in estimated values, the root‐mean‐square error was used (Bennett et al., 2013).
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RMSE ¼ 1
n
∑n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si−Oið Þ2

q
(1)

Si denotes the simulated value and Oi the observed value at index i, and n is the number of observed values
(Bennett et al., 2013). With the same notation, the bias is defined as

Bias ¼ 1
n
∑n

i¼1 Si−Oið Þ (2)

A positive bias indicates an overestimation; a negative bias indicates an underestimation by the model simu-
lations. Relative RMSE and relative bias were calculated by further dividing by the mean of all observations

O. When analyzing daily values, the analysis reflects only the days of directly comparable observed and simu-
lated fluxes, while few days were omitted when no measurements were available.

RMSE95 and Bias95 indicate the 95% confidence intervals for RMSE and Bias. RMSEs larger than the
RMSE95 and Biases outside the Bias95 confidence interval indicate significant differences between simu-
lated and observed values (Smith & Smith, 2007).

RMSE95 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i¼1 SEi×tmð Þ2
r

(3)

The RMSE95 uses the standard error of the ith measurements (SEi) and the value of the t statistics for
m replicates.

In order to assess potential time offsets, that is, a delayed response to observed peak N2O emissions by mod-
els, we tested if the RMSEwas lower for laggedmodel outputs compared to the outputs at lag 0. The RMSE at
lag l is calculated as the RMSE of observations with a delayed time series by lag l:

RMSEl ¼ 1
n
∑n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siþl−Oið Þ2

q
(4)

If the modeled variable lags behind the observed variable, the RMSE will be lower at a lag >0 (lag 0 corre-
sponds to the unshifted time series). Negative lags were unimportant here because no model showed too
early model responses in N2O emissions. Time lags were investigated by shifting the time series 1–10 days.

We used the Nash‐Sutcliffe model efficiency NSE (Nash & Sutcliffe, 1970) to assess model performance in
comparison with the measured site mean (McCuen et al., 2006; Nash & Sutcliffe, 1970):

NSE ¼ 1−
∑n

i¼1 Si−Oið Þ2
∑n

i¼1 Oi−O
� �2 (5)

A NSE of 1 would result for identical simulated and observed values; a positive NSE implies that the simu-
lated values are better estimates than the mean of all observations across the simulation period.

We investigated all fertilization events during the 4‐year observation period comparing the development of
cumulative N2O fluxes of observations and simulations for 14 days after a fertilizer amendment. The 2‐week
period has previously been identified as a general time span within which N2O emissions return to preferti-
lization values (e.g., Bowatte et al., 2018). At the Chamau site N2O fluxes typically decayed within less than a
week (Fuchs et al., 2018; Hörtnagl et al., 2018); thus, the chosen time interval was a conservative choice to
include potentially lagged simulated N2O emission peaks.

To analyze potential effects of model performance in simulating driver variables on the performance of
simulated N2O fluxes, the average deviations of the simulations from the observed values (bias in soil water
content (ΔSWC) and soil temperature (ΔTS)) were calculated per model for each 14‐day postfertilization per-
iod. Similarly, the deviation of observed and simulated cumulative N2O emissions (ΔN2O) for 14 days after
fertilizer application was calculated per model and event. The deviations in the different driver variables are
potentially affecting deviations in cumulative N2O emissions. Thus, in order to assess the relationship
between deviations in driver variables and deviations in N2O emissions, we performed a multiple linear
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regression analysis to detect the effect of overestimated SWC or TS (and their interaction) in a
systematic way.

For giving reference to the actual soil climatic conditions, the driver variables soil temperature and soil water
contents were classified according to the following scheme: For soil temperatures, average values <10 °C
were classified as cold, 10–15 °C as fresh, 15–20 °C mild, and > 20 °C as warm. For soil water contents, con-
ditions <40% SWC were classified as dry, 40–45% as moderately moist, 45–50% as moist, and >50% as extre-
mely moist. We used daily values for our analysis even though a 2–3 days moving average might be
conceptually more appropriate, since a moving average resulted in little changes in the validation result.

2.6. Estimates Using the IPCC‐Swiss Method

N2O emissions were calculated according to the current IPCC Guidelines for National Greenhouse Gas
Inventories (Intergovernmental Panel on Climate Change, 2008) adapted to the specific case of
Switzerland as described in FOEN (2018):

FN2O−Direct ¼ FSN þ FON þ FCR þ FSOMð Þ*EF1 þ FPRP;CPP*EF3PRP;CPP þ FPRP;SO*EF3PRP;SO (6)

FN2O−Indirect ¼ FAD*EF4 (7)

where FSN and FON are the amendments of total synthetic and organic N to the soil, FCR the N from crop
residues, FSOM the N from mineralization, and FAD atmospheric deposition. FPRP,SO and FPRP,CPP are the
amounts of N deposited during grazing by sheep and cattle, respectively. EF1 and EF3PRP,CPP correspond
to the Tier 1 IPCC emission factors for direct soil emissions and urine and dung deposited by grazing sheep
and cattle, respectively, that is, 0.01 and 0.02. FAD reflects atmospheric N deposition. The parameters
FSN and FON were the applied fertilizer amounts. FCR, FSOM,FAD, FPRP,SO, and FPRP,CPP were calculated
per parcel and year using the calculation schemes of the Swiss GHG inventory for intensive meadows
(FOEN, 2018). FCR was the standard inventory yield of intensive meadows multiplied by 2.4% N content
and the fraction of residuals left on the field, assumed as 15% of the yields (FOEN, 2018). FSOM was calcu-
lated as the inventories C mineralization rate, divided by the C/N ratio of 9.8 (Leifeld et al., 2007). For atmo-
spheric deposition (FAD) a value of 33.8 kg N ha−1 year−1 was used from modelled estimates of local
deposition (Rihm & Achermann, 2016). FPRP,SO and FPRP,CPP were calculated from livestock numbers, the
duration of grazing, and the livestock specific nitrogen excretion rates (Nex), which were adopted from the
Swiss GHG inventory, that is, 111 kg N head−1 year−1 for mature dairy cattle and 8.4 kg N head−1 year−1

for sheep (FOEN, 2018). Total N2O emissions were calculated by adding direct and indirect emission esti-
mates at the site.

2.7. Uncertainties in N2O Flux Observations

The source of uncertainties was minimized by using a dataset of high temporal resolution. Nevertheless, EC
measurements are subject to uncertainties, for example, due to the random sampling error, footprint varia-
bility, instrument noise, or lateral fluxes. Despite uncertainties in measured annual N2O fluxes of ±0.043 to
±0.200 g N2O‐Nm−2 year−1, most simulated annual N2O fluxes showed significant biases, that is, biases lar-
ger than the measurement uncertainties (Table 1).

3. Results
3.1. Simulated and Observed N2O Fluxes
3.1.1. Interannual Variability and Model Performance
Measured annual N2O emissions for the fertilized treatment (Ctr) were significantly higher (0.511 g N2O‐N
m−2 year−1) compared to the unfertilized treatment (Clo) across all years (0.301 g N2O‐N m−2 year−1; p <
0.05) (Table 1). The same pattern was depicted well in all models. However, annual N2O emissions were
underestimated (ensemble mean; E‐Mean), particularly during the year with cattle summer grazing (2014
in Ctr) and during the moist year 2016 in both parcels.

Annual simulations of N2O emissions of the model ensemble outperformed the IPCC‐Swiss estimate, shown
by a lower RMSE compared to the RMSEIPCC (Figure 1 and Table S3). While some models (PaSim and DC2)
overestimated N2O emissions at annual timescales, others (AP1, AP2, and DC1) underestimated annual N2O
emissions. DayCent (both versions) performed particularly well in simulating annual N2O emissions,
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Figure 1. Annual values of observed (horizontal axes) versus simulated N2O emissions (vertical axes) for models DC1,
DC2, PaSim, AP1, AP2, the ensemble mean (E‐Mean), the ensemble median (E‐Median), and for the IPCC‐Swiss
estimate in Parcel A (circles) and Parcel B (triangles), with the horizontal whiskers representing the measurement
uncertainties (±1 SE). The dashed lines indicate the 1:1 lines, and the solid lines display the linear regression line between
observed and simulated N2O fluxes and the grey shading depicts the regressions' 95% confidence interval. Bias and RMSE
are given in g N m−2 year−1.

Table 1
Annual Aggregates of Measured and Simulated N2O Fluxes From DayCent Variants DC1, DC2, PaSim, APSIM variants AP1, AP2, and the IPCC Tier 1 Estimate, the
Ensemble Median (E‐median), and the Ensemble Mean (E‐Mean; Both in g N2O‐N m−2 year−1)

Parcel Year Treatment Measured (±SE) DC1 DC2 PaSim AP1 AP2 IPCC E‐Mean E‐Median

A 2013 Ctr 0.535 (±0.097) 0.287 0.610 0.743 0.292 0.365 0.276 0.455 0.362
Aa 2014 Ctr 0.559 (±0.121) 0.389 0.634 0.431 0.183 0.149 0.377 0.374 0.274
A 2015 Ctr 0.393 (±0.089) 0.354 0.425 0.972 0.418 0.429 0.361 0.485 0.406
A 2016 Ctr 0.594 (±0.200) 0.262 0.528 0.658 0.238 0.283 0.253 0.402 0.319

B 2013 Ctr 0.492 (±0.104) 0.349 0.601 0.982 0.352 0.421 0.303 0.516 0.402
B 2014 Ctr 0.493 (±0.119) 0.391 0.596 0.715 0.188 0.178 0.353 0.412 0.321
Bb 2015 Clo 0.217 (±0.043) 0.157 0.319 0.311 0.153 0.148 0.070 0.210 0.171
B 2016 Clo 0.385 (±0.095) 0.087 0.402 0.261 0.066 0.069 0.072 0.192 0.131

Note. Parcel A was fertilized in all years 2013–16, while Parcel B was fertilized only in 2013–2014 (referred to as fertilized control treatment‐years Ctr) and was
subject to the unfertilized clover treatment (Clo) during 2015–2016. SE = standard error.
aParcel A was grazed with cattle for 36 days during the season, replacing two cuts. bParcel B was grazed with sheep for eleven days during the growing season,
replacing one cut. Other than that, only winter grazing took place.
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indicated by a low RMSE (for DC1 0.20 and for DC2 0.08 g N2O‐N m−2 year−1). The DayCent variant DC1
underestimated N2O emissions by 38%, while DC2 slightly overestimated annual N2O emissions (+12%).
DayCent showed a regression slope of observed versus simulated values close to 1 (slopeDC1 = 0.9;
slopeDC2 = 0.7), representing the interannual variability in N2O emissions (Figure 1). Interannual variability
of N2O emissions was simulated comparably well by PaSim (slopePaSim = 1.1). However, PaSim overesti-
mated annual N2O emissions by 38% with highest RMSE (RMSEPaSim = 0.33 g N2O‐N m−2 year−1;
Figure 1). In contrast, APSIM showed a regression slope <1 and generally underestimated annual N2O
emissions (biasAP1 = −48% and biasAP2 = −44%), which represents a higher bias than for the IPCC‐Swiss
estimate of 44% (Figure 1 and Table S3). In summary, the multimodel ensemble average (E‐mean) largely
improved the accuracy compared to the IPCC‐Swiss estimate. The error of the ensemble mean was 41%
lower than the error in the IPCC‐Swiss estimate (RMSEE‐Mean = 0.13 versus RMSEIPCC = 0.22 g N2O‐
N m−2 year−1). Only one model (DC2) was more accurate than the ensemble mean.
3.1.2. Model Performance (Intraannual Variability: Seasonal, Monthly, Weekly, and Daily
N2O Fluxes)

Fluxes were characterized by low winter (December–February, DJF) N2O emissions (0.6 mg N2O‐N
m−2 day−1) and significantly higher N2O emissions during the growing season (March–May, MAM: 1.2;
June–August, JJA: 2.6; September–November, SON: 1.2; all in mg N2O‐N m−2 day−1 in Ctr; Table S4).
This pattern coincided not only with higher temperatures during these months but also with N inputs via
fertilization, which were linked to the respective season (Figure 2). In the nonfertilized Clo treatment
N2O emissions were generally lower during all seasons (DJF: 0.4; MAM: 0.4; SON: 0.7; all in mg N2O‐N
m−2 day−1; Table S4), reaching up to 1.6 mg N2O‐N m−2 day−1 on average during summer months (JJA).

Winter N2O fluxes (DJF) were consistently underestimated by all models (Figure 3 and Table 2), with most
models having a stronger bias in DJF compared to all other seasons (Table 2), while RMSEwas low in winter
compared to other seasons due to less variability in N2O emissions. Still, early 2013 and winter 2013/2014
N2O emission peaks occurred, but no model represented these observed peaks, which appeared without pre-
vious management activities. Springtime (MAM) N2O fluxes were underestimated by APSIM and DayCent
but overestimated by PaSim (Figure 3). The response of N2O fluxes to fertilizer events in springtime was
often not simulated well. For instance, only one model (AP2) simulated the peak after the first fertilizer
amendment in 2013 (Figure 3). Summer (JJA) N2O fluxes showed the lowest absolute bias, indicating that
their overall magnitude was well represented (Table 2; except PaSim). However, summer N2O estimates
showed the highest RMSE compared to other seasons (Table 2; except PaSim), reflecting the challenge of
simulating the dynamics of daily N2O fluxes. During autumn (SON), PaSim and DC2 overestimated N2O
emissions, while all other models underestimated them (Figure 3), similarly to springtime N2O simulations.
The deviations in both directions compensated each other, resulting in an improved ensemble mean com-
pared to individual model estimates in summer and autumn (Table 2).

Relative bias and relative RMSE were higher in the Clo treatment compared to the Ctr, reflecting that per
unit of seasonal N2O emission, the N2O fluxes in the Clo treatment (low N input, biologically fixed N) were
more difficult to predict. The absolute RMSE was lower for all models in the Clo treatment compared to the
Ctr, reflecting that the Ctr typically showed larger variability in N2O fluxes and therefore was more challen-
ging for the models (Table 2).

A good performance in annual cumulative N2O emissions in several models (DC1 and DC2) did not always
coincide with a good representation on the weekly and daily timescale (Figures 2 and 3). Even if the annual
N2O emissions were well represented, the lack of coincidence in time led to higher errors (RMSE and
RRMSE) at shorter time scales, for example, daily, weekly, and monthly estimates compared to annual esti-
mates (Table S3). For instance, DayCent performed well for annual cumulative N2O fluxes but did not pick
up the measured peak N2O emissions in their magnitude at the time of occurrence (Figure 2) and instead
estimated rather steady N2O emissions.

PaSim produced a large RMSE across timescales, largely caused by the strong positive bias, while the slope of
observed versus simulated values was close to 1 across time scales (Table S3). The two APSIM variants per-
formed best across models for simulating the variability in weekly and daily N2O fluxes (minimum RMSE,
Table S3) and comparably to DayCent for monthly aggregates.
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To investigate the potential effect of delayed peak N2O emissions on the model validation, we investigated
lagged RMSEs. However, we found no systematic time offsets for shifted model response by 1–10 days.
The APSIM variants were, in most cases, estimating the peaks at the correct time (i.e., showing the lowest
RMSE for the unshifted time series), while the other models showed minimum RMSEs at randomly varying
lags across events.

Figure 2. Cumulative daily time series of simulated (black) and observed (grey) N2O fluxes for Parcel A (left) and Parcel B (right). Dashed lines indicate fertilization
events; usually in form of liquid slurry, except for Parcel A in 2014 after both grazing events when mineral fertilizer in form of calcium‐ammonium‐nitrate was
applied (see also Table S1 for detailed management information). Upward arrows indicate the moment of harvest and downward arrows indicate oversowing.
Grazing periods are depicted by the green solid background bars. Note that panels differ in their y scale, but the observed (grey) measured fluxes are displayed in all
panels as the reference.
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No individual model estimated more accurate daily values than the average of all observations and achieved
a positive NSE on the daily basis. In contrast, the ensemble average achieved an NSE of 0.42, showing that
using the ensemble mean largely improved the performance on the daily timescale.
3.1.3. Model Performance in Estimating N2O Emissions Following Management Events
Our goal was to reveal the strength of each model in estimating N2O emissions by highlighting the condi-
tions under which they simulated most accurately. Second, we point out the weaknesses distinguishing
two types of discrepancies; we call the first one “blind spots” and refer to periods of underestimation,

Figure 3. Weekly averages of simulated (black) and observed (grey) N2O fluxes for Parcel A (left) and Parcel B (right) by models used in this study and the multi-
model ensemble (top to bottom). Upward arrows indicate harvest and downward arrows indicate oversowing. Grazing periods are shown as black bars. The weekly
bias in N2O fluxes (ΔN2O) is displayed as a colored bar at the bottom of each figure, with red indicating an overestimation, blue an underestimation by the
respective model, and yellow a bias close to zero (see legend). A grey colored bar indicates periods of missing data.
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when N2O emission occur in observations but are absent in model simulations. The other type of error,
“phantoms,” are periods of overestimations when observed N2O emissions remain at background levels.

Observed daily N2O fluxes were characterized by a background N2O flux (<1.2 mg N2O‐N m−2 day−1; see
section 2 for the definition) during 64% of the measurement days in the Ctr and 82% of the days in the
Clo parcel. DayCent represented most of these background flux days and simulated “phantom” peaks on
18–27% of background days (Table 3). PaSim simulated two thirds of the observed background N2O flux days
adequately, corresponding to phantom peaks on 34% of background days. APSIM showed phantom peaks on
10% of the observed background N2O flux days. Peak days were represented best by DC2 and PaSim, both
correctly predicting almost 60% of the peak days, while APSIM and DC1 represented only one third of the
peak days in the control treatment.

The Clo treatment showed fewer peak days (18%) compared to the Ctr (36%), due to the higher management
intensity in Ctr. The peak days in Clo in PaSim and DC2 were similarly well represented as in the Ctr, but
DC1 and both APSIM variants represented less peak days in Clo (Table 3).

Fertilizer application increased the percentage of correctly simulated peak days (Table 3). However, for har-
vest or grazing no such pattern occurred. Thus, the peaks associated with fertilizer applications were easier
to predict than peaks following grazing or harvest events.

Fertilizer application was mostly followed by high N2O fluxes in our observations, indicated by an increase
in the median N2O flux across all fertilizer applications (Figure 4), whereas the response of the models to
fertilization differed widely, shown by the large differences between the 5% and 95% N2O flux percentiles
(Figure 4). DayCent in particular did not simulate distinct peaks following fertilizer application. PaSim
depicted well the onset of the emission peak and simulated peak N2O fluxes directly after fertilizer applica-
tion in the correct order of magnitude but with a slightly lower median value than the observations (2.77 mg
N2O‐N m−2 day−1). However, peaks in PaSim were usually prolonged for several weeks instead of decaying
after a few days as in the measurements (Figure 4). This effect led to a large overestimation of annual N2O
fluxes (Figure 1 and Table S3). APSIM represented peak N2O emissions in many cases at the correct date and
with the right decay pattern but underestimated them, indicated by the APSIM median remaining slightly
lower that the observed median (Figure 4). Still, due to the overall underestimation of peak N2O emissions,
the cumulative fluxes after events were generally underestimated (Figure S1). N2O emission pulses that were

Table 2
MeanWeekly Bias and MeanWeekly RMSE Per Model Family Derived From Analyses of Variances (Four‐Way Analysis of Variance Per Column) Including the Main
Effects of Treatment, Year, Season, and Model Variant

Category Level

DayCent APSIM PaSim E‐Mean DayCent APSIM PaSim E‐Mean

Bias (mgm−2

day−1)
Bias (mg m
−2 day−1)

Bias (mg m
−2 day−1)

Bias (mg m
−2 day−1)

RMSE (mg m
−2 day−1)

RMSE (mg m
−2 day−1)

RMSE (mg m
−2 day−1)

RMSE (mg m
−2 day−1)

Treatment Grand mean −0.15 −0.55 0.53 −0.19 1.28 1.31 1.93 0.99
Clo −0.06a −0.43a 0.00a −0.19a 0.77a 0.85a 0.91a 0.61a

Ctr −0.18a −0.59a 0.71b −0.18a 1.45b 1.47b 2.28b 1.11b

Year 2013 −0.15a −0.41b 0.78ab −0.10ab 1.47b 1.44b 2.55b 1.19a

2014 −0.18a −1.02a −0.10a −0.46a 1.49b 1.45b 1.20a 0.98a

2015 0.06a 0.03c 1.24b 0.20b 0.97a 1.10a 2.33ab 0.87a

2016 −0.32a −0.80ab 0.20ab −0.39a 1.18ab 1.26ab 1.66ab 0.91a

Season DJF −0.31a −0.64a −0.61a −0.43a 0.59a 0.81a 0.79a 0.61a

MAM −0.26a −0.67a 0.42ab −0.28ab 0.99ab 0.97ab 1.80ab 0.74a

JJA 0.13a −0.34a 1.07b 0.05b 2.29c 2.26c 2.60b 1.59b

SON −0.15a −0.56a 1.24b −0.08ab 1.23b 1.20b 2.50b 1.00a

Model DC1 −0.48a — — — 1.22a — — —

DC2 0.19b — — — 1.33a — — —

AP1 — −0.58a — — — 1.31a — —

AP2 — −0.53a — — 1.32a — —

PaSim — — 0.53 — — — 1.93 —

E‐Mean — — — −0.19 — — — 0.99

Note. The superscript letters indicate significant differences among levels (TukeyHSD) per factor.
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observed later, that is, after fertilizer application (e.g., day 10 and day 19), were associated with rewetting of
the soil. AP1 represented these rewetting events best (e.g., event of 19 July 2013, Figure S1).

3.2. Model Performance of Driver Variables

Soil temperatures were simulated with high accuracy but were slightly underestimated by all models, ranging
from a bias of −1.6 °C (in AP1) to −3.2 ° C (in PaSim; Table 4 and Figure S2). Periods of underestimated soil
temperatures (0.1 m depth) were particularly prevalent in winter for DC2 and PaSim, where models predicted
frozen soils at 0.1 m depth, while observed soil temperatures were consistently above 0. Soil water content was
underestimated by both DayCent variants and less so by PaSim (Table 4 and Figure S3). In contrast, both
APSIM variants simulated soil water content well, with only a slight positive bias (Table 4 and Figure S3).

Soil NH4
+ concentrations were clearly overestimated in DayCent, unbiased in PaSim, and underestimated in

APSIM (Table 4 and Figure S4). Accuracies in soil NH4
+ concentration were lowest in DC2 and PaSim and

highest in DC1 and both APSIM variants. Soil NO3
− concentrations showed larger RMSE compared to NH4

+

concentrations (Table 4 and Figure S5). While DC1 underestimated NO3
− concentrations, DC2 overesti-

mated these. All other models showed no bias in NO3
− concentrations (Table 4). From visual inspection,

PaSim and APSIM followed the observed patterns in mineral N best (Figure S5). The amount of N exported
via biomass harvest is a major component of the soil N balance and a negative correlation with N2O emis-
sions could be expected. N exported via harvest was unbiased by DC2, but overestimated by all other models
(Table 4 and Figure S6).

Table 3
Number of Correctly Simulated Background Days (“Correct Background”) (Threshold <1.2 mg N2O‐N m−2 day−1, See Section 2.6) Relative to the Observed Total
Number of Background Days; Relative Number of Phantoms, Which Are Peak Days Simulated on Observed Background Days; Number of Undetected Blind Spots,
Which Are Not Correctly Detected Peak Days Relative to the Total Observed Peak Days, and Number of Correctly Simulated Peak Days (“Correct Peak”) Relative to
the Total Number of Observed Peak Days (A) for the Whole Observation Period and for Specific Events Such as (B) Fertilization, (C) Harvest, and (D) Grazing for
the Ctr (Left) and the Clo Treatments (Right)

(A) Complete observation period Control treatment Ctr Clover treatment Clo

DC1 DC2 PaSim AP1 AP2 DC1 DC2 PaSim AP1 AP2

Correct background (%) 85 73 66 90 89 99 76 78 93 92
Phantoms (%) 15 27 34 10 11 1 24 22 7 8
Blind spots (%) 65 42 42 70 65 98 38 49 89 89
Correct peak (%) 35 58 58 30 35 2 62 51 11 11

(B) Week after fertilization Control treatment Ctr Clover treatment Clo

DC1 DC2 PaSim AP1 AP2 DC1 DC2 PaSim AP1 AP2

Correct background (%) 76 47 27 67 41 — — — — —

Phantoms (%) 24 53 73 33 59 — — — — —

Blind spots (%) 54 29 20 37 26 — — — — —

Correct peak (%) 46 71 80 63 74 — — — — —

(C) Three days after harvest Control treatment Ctr Clover treatment Clo

DC1 DC2 PaSim AP1 AP2 DC1 DC2 PaSim AP1 AP2

Correct background (%) 82 64 27 82 82 94 65 47 82 82
Phantoms (%) 18 36 73 18 18 6 35 53 18 18
Blind spots (%) 68 24 41 81 84 100 0 73 93 93
Correct peak (%) 32 76 59 19 16 0 100 27 7 7

(D) Grazing period up to 2 weeks after grazing Control treatment Ctr Clover treatment Clo

DC1 DC2 PaSim AP1 AP2 DC1 DC2 PaSim AP1 AP2

Correct background (%) 92 92 91 100 100 88 92 84 91 90
Phantoms (%) 8 8 9 0 0 12 8 16 9 10
Blind spots (%) 67 69 83 100 97 70 80 54 70 65
Correct peak (%) 33 31 17 0 3 30 20 46 30 35

Note. During the whole observation period we observed 130 peak days and 601 background days in Clo, and 518 peak days and 943 background days in the Ctr.
Bold numbers indicate those cases best coinciding with our observations.
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3.3. Synthesis: Effect ofModel Performance in Simulating Driver Variables on the Performance of
Simulating N2O Fluxes

Knowing whether timespans of high accuracy in N2O flux estimates coincided with timespans of high accu-
racy in simulated driver variables of N2O fluxes reveals if inaccurate N2O flux estimates might be attributed
to weak performance in (at least one of) the previously identified driver variables. We first focused on time-
spans that are well known for potential high emissions, and thus related the bias in cumulative N2O fluxes
(ΔN2O) over the 14 days postfertilization period to the bias in soil temperatures (ΔTS) and soil water con-
tents (ΔSWC) (Figure 5).

When analyzed across models, significant increases in ΔN2O at 14 days after fertilization were found
associated with increased ΔTS (p < 0.001), larger ΔSWC (p < 0.05), and higher biases in NO3

− concentra-
tions (ΔNO3

−) (p < 0.001). In contrast, no significant relationship between bias in NH4
+ concentrations

(ΔNH4
+) and ΔN2O was found.

However, these findings did not hold when the analysis was performed separately for each model. For
instance, a more accurate representation of the NO3

− concentrations at one fertilizer application compared

to another event did not significantly improve N2O estimates. Still, models with accurate soil NO3
−

Figure 4. N2O fluxes after fertilizer applications at day 0. The black line depicts the median across all fertilizer events, the
lightest grey shadow depicts the range, the medium grey shadow includes 90% of the observations (5th to 95th percentile),
and the dark grey shadow includes 50% (25th to 75th percentile).

Table 4
Model Performance of Simulated Drivers of N2O Emissions (Soil Temperature TS, soil Water Content SWC, Ammonium NH4

+, and Nitrate Concentrations NO3
−)

Based on Daily Values During the Full Observation Period

Model

TS (°C) SWC (%) NH4
+ (kg N ha−1) NO3

− (kg N ha−1) Harvest N (kg N ha−1)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

95% CI ±0.8 0.8 ±2.5 2.4 ±3.5 4.6 ±5.7 8.6 ±8.1 8.0
DC1 −1.7 2.5 −9.0 13.1 1.3 7.6 −7.7 18.2 45.7 52.3
DC2 −1.8 3.9 −12.3 15.9 10.8 17.5 9.6 23.2 −4.8 26.3
PaSim −3.2 4.8 −4.3 6.3 2.9 12.1 3.2 17.2 12.6 22.7
AP1 −1.6 2.0 3.5 6.0 −3.6 8.5 −2.0 20.9 21.7 39.3
AP2 −1.5 2.0 2.4 6.5 −4.8 8.3 −0.1 21.1 23.3 36.8

Note. The 95% confidence intervals (95% CI) of bias and RMSE indicate the thresholds beyond which the model's bias or RMSE, respectively, is significant.
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concentrations achieved lower ΔN2O compared to models with less accurate soil NO3
− concentrations.

Similar to the analysis across models, for each model a bias in NH4
+ concentration did not explain a bias

in N2O fluxes for any of the models (not shown), or in other words, a more accurate simulation of NH4
+ con-

centrations did not increase the accuracy in N2O estimates.

In contrast, the performance in simulating soil climatic conditions was related to the performance of ΔN2O
for some of the models. Biases in soil temperature significantly increased ΔN2O for PaSim (Figure 5) with an
overestimation of 0.0108 g N2O‐Nm−2 per 1 °C in soil temperature (referring to the 14 day cumulative flux).
Accordingly, the general overestimation in N2O flux was reduced per degrees celsius of temperature under-
estimation during the 2 weeks after fertilization (p < 0.05). Underestimated soil temperatures were asso-
ciated with underestimated N2O fluxes (0.0047 g N2O‐N m−2; p < 0.05) in DC2, but ΔTS did not affect
ΔN2O in DC1. Similarly, in both APSIM variants the bias in cumulative N2O fluxes 14 days after fertilization
was unaffected by ΔTS.

Underestimations of SWC during moist conditions were associated with underestimations in N2O in DC1
(Figure 5), which was not the case for similar SWC underestimations in DC2. Overestimated N2O fluxes
by PaSim under dry conditions coincided with overestimated SWC. During several extremely moist events,
PaSim underestimated SWC and overestimated N2O emissions (Figure 5).

A general, positive bias in PaSimN2O emissions of 0.058 N2O‐N gm−2 (sum of 14 days) was not explained by
biases in microclimate nor systematically related to particular microclimatic conditions. Still, the higher
ΔSWC, the more the N2O flux was overestimated (0.0042 g N2O‐N m−2, p < 0.05). In other words, the
N2O flux in PaSim was generally overestimated independent of the driver variables, but this was reduced
for events coinciding with an underestimation of SWC, as the SWC effect might compensate and reduce
the overestimate in N2O flux (Figure 5). In summary, multiple regression showed that biased N2O estimates
coincided with biased temperature and or soil water content in several cases (e.g., PaSim). However, in
others (e.g., APSIM), they were unaffected by the biases in soil water content and soil temperature.

A temporally explicit analysis showed that a bias in N biomass harvested did not significantly affect the sub-
sequent three weeks' cumulative N2O fluxes. When analyzing the effects of exported biomass N on mineral
N pools, AP1 was the only model, which showed a significant negative effect on NO3

− concentrations (p <
0.05), that is, APSIMs underpredicted N2O emissions coincided with overestimated exported biomass N.

The dynamics of model performances showed the coincidence or absence of coincidence of N2O emission
and its drivers (soil temperature, soil water content, NO3

–, and NH4
+) in relation to the time of the year.

This indicated that accurately modeled N2O emissions did often not necessarily imply accurate

Figure 5. Biases in simulated N2O fluxes (ΔN2O) accumulated for 14 days after fertilizer applications per model and event
in relation to (a) biases in simulated soil temperatures (ΔTsoil) and (b) biases in simulated soil water content (ΔSWC). For
soil temperatures, averages of observations <10 °C were classified as cold, 10–15 °C as fresh, 15–20 °C mild, and >20 °C as
warm. For soil water content, averages of observations <40% SWCwere classified as dry, 40–45% as moderately moist, 45–
50% as moist, and >50% as extremely moist.

10.1029/2019JG005261Journal of Geophysical Research: Biogeosciences

FUCHS ET AL. 15 of 21



simulations of drivers (Figure 6). For instance, in DayCent underestimations of soil water content and
overestimations of soil NH4

+ coincided with accurate N2O emissions (e.g., DC2 and DC1 in 2015).

4. Discussion

In line with our hypotheses we found that (1) the model ensemble performed better than the IPCC‐Swiss
estimate, but only DayCent clearly outperformed the IPCC as an individual model on the annual time scale,
(2) models followed emission peaks better after recent fertilizer application events compared to peaks in the
whole observation period; (3) model's performances in N2O emissions could partly be related to their perfor-
mance in N2O driver variables. However, in many cases a straightforward coincidence in time was not
achieved, which might be due to several interacting sources of uncertainties and compensatory effects.
We have highlighted different strengths and weaknesses in each model and found these to differ for each
model, which are discussed in the following paragraphs.

4.1. Discussion of the Validation Results in the Context of Other Studies

Previous studies have evaluated themodels DayCent, PaSim, and APSIMwith N2O flux data from lab experi-
ments and on grassland sites under different climatic and soil conditions (Abdalla et al., 2010; Ehrhardt
et al., 2018; Giltrap et al., 2015; Khalil et al., 2016; Y. Li et al., 2005; W. J. Parton et al., 2001; Stehfest &
Müller, 2004; Thorburn et al., 2010; Xing et al., 2011). While some studies focused on the performance of
the average N2O flux estimates across sites (Ehrhardt et al., 2018), most evaluated the dynamics of N2O
fluxes, usually using manual chamber measurements (Abdalla et al., 2010; Giltrap et al., 2015; Khalil
et al., 2016; Stehfest &Müller, 2004; Zimmermann et al., 2018). For instance, Fitton et al. (2014) showed rela-
tive biases for DayCent for three UK sites ranging from −84% to +10%. Further, Zimmermann et al. (2018)
published results from Irish grassland sites with relative biases between −5% and 88% in DayCent, and
further for models not used here with similar to wider biases of −116–71% in DNDC 9.4, −48–87% in
DNDC 9.5, and −1,395–40% in ECOSSE. Our relative biases at Chamau (DayCent −35% to +15%, PaSim
+41% and APSIM −47 to −43%) compared well with findings from other grassland sites. For RMSE,
Zimmermann et al. (2018) found comparable and higher relative values for various sites between 140–

Figure 6. Monthly biases of simulated soil temperature (ΔTsoil), soil water content (ΔSWC), nitrate concentration (ΔNO3
−) and ammonium concentrations (ΔNH4

+), and N2O fluxes (ΔN2O) depicted as a time series. Biases are classified in categories according to their magnitude: For ΔTsoil, the categories 0–4 entail biases
between−2.5–2.5 °C (0), 2.5–5 °C (1), 5–7.5 °C (2), 7.5–10 °C (3) and >10 °C (4). ForΔSWC, categories 0–4 entail biases of−5–5% (0), 5–10% (1), 10–15% (2), 15–20%
(3), and >20% SWC (4). For ΔNO3

− and ΔNH4
+, categories 0–4 entail biases of −5–5 (0), 5–10 (1), 10–15 (2), 15–20 (3), and >20 kg N ha−1(4). White fields indicate

that no data were available.
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234% in DayCent, 261–503% in DNDC 9.4, 352–652% in DNDC 9.5, and 160–2,079% in ECOSSE based on
daily data. RMSE in Fitton et al. (2014) ranged between 144% and 213% across sites for DayCent. The relative
RMSE at our site was similar to lower with 168–173% for DayCent, 221% for PaSim, and 158−161% for
APSIM. Thus, our presented validation results are within the ranges of previous findings but add reliability
to the long measurement period and at high temporal (daily) resolution.

4.2. Best Fits, Blind Spots, and Phantoms Per Model
4.2.1. DayCent
Consistent with our study, for DayCent, Zimmermann et al. (2018) observed large underestimations of N2O
production by denitrification, particularly after fertilizer applications. Zimmermann et al. (2018) further
showed that DayCent performed most accurately at simulating background N2O emissions, while directly
after management events DayCent did not reflect observed emission peaks, which was consistent with
our findings. We frequently observed DayCent to underestimate SWC. Immediate drainage above field capa-
city is assumed by DayCent (and DNDC), which prevented these models simulating higher water contents
than field capacity in poorly drained soils (Brilli et al., 2017) such as at our site Chamau during springtime.
This can lead to inaccurate N2O emission estimates due to underestimated soil water content. Alternatively,
too low denitrification rates or too low N2O:N2 ratios can cause mismatches even if mineral N is simulated
accurately. Stehfest and Müller (2004) found that DayCent generally simulated the denitrification‐related
fluxes from a urine‐affected grassland in NZ well, while it overestimated total N2O emissions by 318% due
to overestimated nitrification‐related N2O. This was attributed to DayCent's fixed nitrification factor, which
does not allow nitrification to happen without significant N2O emissions. In contrast to Stehfest and Müller
(2004), a clear separation between nitrification and denitrification‐related N2O emissions was not possible in
our validation exercise. Soil NO3

− concentrations were underestimated by a factor of 2–4 by DayCent in
Stehfest and Müller (2004). Similarly, Senapati et al. (2016) found underestimations of NO3

− concentrations
and quite accurate NH4

+ concentrations. We observed this in DC1 but not DC2. In DayCent, an underesti-
mation in soil water content coincided with overestimation in NH4

+ concentrations, potentially shifting the
N2O emissions that were related to denitrification to nitrification, and resulting in relatively accurate annual
N2O emissions, but due to inadequate reasons.
4.2.2. PaSim
Validating PaSim at three intensively and two extensively managed European sites, Calanca et al. (2007)
found simulated annual N2O emissions to be 2–10 times higher than observations, compared to 0.4 times
higher at our site. The pattern of larger simulated fluxes during weeks after fertilization as shown in our
study was reported by Calanca et al. (2007) and also by Schmid et al. (2001), where the N2O emission peaks
seem prolonged and as a consequence background fluxes overestimated by PaSim. In our study, we found
the best PaSim performance in summer 2016 in the clover parcel. At this date, N2O emissions occurred with-
out direct N input by a management event. Interestingly, these fluxes were quite high, in the order of mag-
nitude of fertilizer‐induced peaks, but not depicted by most other models (AP1, AP2, and DC1). The pattern
that in the nonfertilized treatment PaSim performed particularly well may be attributed to the fact that
PaSim was developed to simulate N cycling in low input systems (i.e., clover‐ryegrass vegetation).

Generally, PaSim simulated the mineral N concentrations relatively well and also the onset of fertilizer‐
related peaks. For instance, in some months all drivers were simulated accurately; however, simultaneous
N2O emissions were too high (Figure 6). As a consequence of ongoing emissions for weeks after fertilization
and several phantom peaks, cumulative N2O emissions were largely overestimated by PaSim, even if the
model performed well in the simulation of mineral N. This systematic overestimation could be caused by
too high nitrification and/or denitrification rates as defaults.
4.2.3. APSIM
In our study, APSIM represented the onset, magnitude, and duration of postfertilizer peaks best (Figure 4).
However, APSIM omitted several observed peaks and had a general tendency to underestimate N2O fluxes
(Figure 6). APSIM's N2O fluxes were validated by Thorburn et al. (2010), who found that the previously used
default denitrification coefficient of 0.0006 mg kg−1 caused underestimated N2O emissions. They suggested
an optimized parameter (kdenit = 0.001379) at their location. This was not changed in the default parameter-
ization as used here, but an informal investigation showed that the value proposed by Thorburn and collea-
gues would improve the N2O predictions. Similarly, denitrification in APSIM was shown to underestimate
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N2O emissions as reported by Xing et al. (2011). Xing et al. (2011) validated denitrification N2O emissions
using soil incubation measurements. In their study, the underestimation of N2O emissions was attributed
to a too weak response of denitrification to temperature and soil moisture in the model. Xing et al. (2011)
therefore suggested modifying the parameters to obtain a stronger temperature response for denitrification.
Up to date, there has not been sufficient work done to propose a widely applicable response function. We
here showed that an overprediction of exported biomass N was associated with underpredicted N2O emis-
sions in APSIM. This is not necessarily a direct causative relationship, but it does highlight the importance
of accurately predicted biomass for robust N2O flux predictions.

APSIM performed best in summer 2015, which was warm and dry (favorable for nitrification) and preceded
by very wet spring conditions (very high soil water content leading to complete denitrification). Thus, we
might conclude that nitrification was reflected quite well in APSIM. In contrast, denitrification was probably
underestimated during the observation period, as for instance shown in summer 2016. APSIM did not pre-
dict the N2O emission peaks during summer 2016 in Clo and underpredicted them in Ctr. The underesti-
mated N2O emissions coincided with underestimated soil NO3

− (and sometimes NH4
+) concentrations,

while temperature and water conditions were simulated accurately or moderately overestimated. This sug-
gests that low mineralization rates could be a reason for the low N2O emissions.

5. Conclusion

We challenged three biogeochemical process models to simulate N2O emissions and their driver variables
and provided new insights into strengths and limitations of each model for facilitating decision‐making.
Using eddy covariance N2O data, we overcame the limitation in temporal coverage that usually leads to large
uncertainties in annual emissions estimated from sporadic chamber measurements. We recommend that
PaSim's parameterization of nitrification and denitrification should be revised and potentially
nitrification/denitrification rates reduced. APSIM should be used with the optimized, higher denitrification
factor as suggested by Thorburn et al. (2010). DayCent predictions could likely be improved by an improved
soil water module. In choosing an appropriate model, it appears that DayCent would be a good choice if the
goal was to provide annual estimates. However, APSIM better reflects daily variability and therefore might
be chosen if the temporal dynamics are important for the question of interest. Even though single model per-
formance showed significant deficits, the model ensemble improved the assessment of the mitigation poten-
tial of the clover‐based treatment in comparison to the IPCC‐Swiss calculations. This study thus highlights
some of the challenges that remain in modeling the complex biogeochemistry associated with N2O emis-
sions from agricultural systems.
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