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A B S T R A C T

Prior livestock research provides evidence for the importance of accurate detection of pig positions and postures
for better understanding animal welfare. Position and posture detection can be accomplished by machine vision
systems. However, current machine vision systems require rigid setups of fixed vertical lighting, vertical top-
view camera perspectives or complex camera systems, which hinder their adoption in practice. Moreover, ex-
isting detection systems focus on specific pen contexts and may be difficult to apply in other livestock facilities.
Our main contribution is twofold: First, we design a deep learning system for position and posture detection that
only requires standard 2D camera imaging with no adaptations to the application setting. This deep learning
system applies the state-of-the-art Faster R-CNN object detection pipeline and the state-of-the-art Neural
Architecture Search (NAS) base network for feature extraction. Second, we provide a labelled open access da-
taset with 7277 human-made annotations from 21 standard 2D cameras, covering 31 different one-hour long
video recordings and 18 different pens to train and test the approach under realistic conditions. On unseen pens
under similar experimental conditions with sufficient similar training images of pig fattening, the deep learning
system detects pig position with an Average Precision (AP) of 87.4%, and pig position and posture with a mean
Average Precision (mAP) of 80.2%. Given different and more difficult experimental conditions of pig rearing
with no or little similar images in the training set, an AP of over 67.7% was achieved for position detection.
However, detecting the position and posture achieved a mAP between 44.8% and 58.8% only. Furthermore, we
demonstrate exemplary applications that can aid pen design by visualizing where pigs are lying and how their
lying behavior changes through the day. Finally, we contribute open data that can be used for further studies,
replication, and pig position detection applications.

1. Introduction

Understanding pig behavior is important due to the impact of pig
behavior on pig well-being (Vranken and Berckmans, 2017). For in-
stance, reduced activity may help to uncover diseases or discomfort in
animals (Matthews et al., 2016; Weary et al., 2009). Behavioral changes
can be detected early on at the individual or group level with appro-
priate sensor data (Madsen and Kristensen, 2005; Maselyne et al.,
2017). For this purpose, many inexpensive commercial surveillance
cameras with high resolution are installed in research facilities. Human
experts spend days for manually annotating positions and postures in
videos (Brendle and Hoy, 2011). The annotation task is tedious, cannot
be scaled, and thus can only be conducted in research settings (Kalbe
et al., 2018). One promising approach for automating this task is the

use of RFID sensors, which are inexpensive and allow individual iden-
tification of pigs (Adrion et al., 2018; Hammer et al., 2016, 2017). This
approach seems reliable for individual hotspot monitoring, but it is
necessary to install RFID antennas at every location of interest in the
housing environment (hotspot) (Kapun et al., 2018), and equip each
animal with one or two RFID ear tags (Maselyne et al., 2016). Ad-
ditionally, the posture of a pig is not detectable in a standard RFID
setup, but only the presence of the animal in the antenna field (Adrion
et al., 2018). Alternative approaches are posture detection with accel-
erometers, which are frequently used in dairy cows (Borchers et al.,
2016) and automatic position detection systems (Nasirahmadi et al.,
2017b). However, using image analysis for behavior monitoring is
preferable in pigs, because only comparatively small sensors can be
used and the sensors are always at risk of destruction due to the

https://doi.org/10.1016/j.compag.2020.105391
Received 10 December 2018; Received in revised form 26 March 2020; Accepted 28 March 2020

⁎ Corresponding author.
E-mail address: martin.riekert@uni-hohenheim.de (M. Riekert).

Computers and Electronics in Agriculture 174 (2020) 105391

0168-1699/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105391
https://doi.org/10.1016/j.compag.2020.105391
mailto:martin.riekert@uni-hohenheim.de
https://doi.org/10.1016/j.compag.2020.105391
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105391&domain=pdf


exploration behavior of the animals.
Hence, automatic position detection systems for pigs are important

for continuous monitoring without manual work. Such systems require
automatic object detection in video images, which is the algorithmic
task of localizing, and classifying objects in images. Most current ap-
proaches binarize an image into black and white pixels, remove pixels
that are too small, and then try to fit ellipses around white pixels
(McFarlane and Schofield, 1995). This approach achieves an accuracy
between 88.7% (Kashiha et al., 2013) and 95.8% (Nasirahmadi et al.,
2015). Modifications to ellipse-based approaches detect the position of
pigs without enhancing lighting or other methods to improve the visi-
bility of pigs (Brünger et al., 2018; Guo et al., 2015). One of the
adaptations is to use a manually labeled starting point, which is then
used for the detection in the next frame (Brünger et al., 2018). Errors
occur if pigs lie close together or during mounting behavior. This de-
tection system achieves on one pen with one top view camera a de-
tection rate of 90% (Brünger et al., 2018). However, such ellipse-based
approaches require a controlled experimental environment with con-
sistent lighting conditions, in some cases manual blacking of out of pen
equipment from the video, and a vertically aligned camera that points
exactly downwards (top view). Furthermore, most of these approaches
identify pigs of approximately the size in which pigs are shown in the
experimental videos. Therefore, it is difficult to generalize these ap-
proaches to other settings.

Pig locomotion detects whether a pig is changing its location, but
does not detect the posture of the pig. Pig locomotion can achieve an
accuracy of up to 89.8% (Kashiha et al., 2014). The approach proposed
by Ahrendt et al. (2011) integrates geometric distance between the
centroid of the pig in the previous video frame as well as differences in
the color of pixels. This approach requires a starting point and a high
discrepancy between the color value of the pig and the floor; however,
these requirements are not guaranteed in settings with direct daylight
shining on the floor from a window. The performance of the algorithm
was evaluated in a one-time observation, in which one pig was suc-
cessfully tracked over 8 min.

Another approach is to mark pigs with different colors and to detect
the colors in the image (Navarro Jover et al., 2009). This approach
allows to identify each pig individually. While the success rate of the
algorithm is reported as 64.6%, the approach requires a high amount of
work due to the requirement to paint each pig in a different color.
Another approach relies on manually developed features and uses lo-
gistic regression with elastic net regularization. The procedure can
distinguish straw from pigs. However, experiments under daylight
(without artificial light) were excluded because the approach could not
handle such situations (Nilsson et al., 2015).

Pig lying behavior is detected by an ellipsoid-based approach using
floor-viewing cameras mounted on ceilings to detect the position of pigs
(Nasirahmadi et al., 2015). They achieve an accuracy of 95.8%. The
approach to locate pigs in videos is also used to study mounting be-
havior (Nasirahmadi et al., 2016). After detecting pig segments by el-
lipsoids, the ellipsoids are further processed to detect the spatial or-
ientation of pigs and the mounting behavior is predicted by spotting
ellipses that are merging with other ellipses.

Other approaches use 3D Kinect cameras to estimate the weight of
pigs (Condotta et al., 2018; Kongsro, 2014; Pezzuolo et al., 2018), or to
identify standing pigs by detecting objects that are higher than the floor
(Kim et al., 2017; Matthews et al., 2017). 3D cameras also detect the
tail height and are used to detect tail biting (D’Eath et al., 2018).
However, the Kinect depth sensor has a rather low maximum distance
range of 4.5 m (Kim et al., 2017; Mallick et al., 2014). Furthermore, the
resolution of the 3D video is limited to 512 × 424 pixels; hence, only a
small area of a pen can be observed with one camera.

Machine vision research also contributed to automatically detecting
objects in video images (Everingham et al., 2010). The most effective
object detection algorithms adopt deep learning (Huang et al., 2016;
LeCun et al., 2015). These deep learning algorithms have been used

together with 3D cameras to study sow lying behavior evaluated on test
data of 1 sow (Zheng et al., 2018) and 2D cameras to detect the feeding
behavior for group housed pigs evaluated on test data of 1 pen with 4
pigs (Yang et al., 2018).

Overall, our discussion of prior research results highlights an im-
portant gap in the literature, i.e., approaches for automatically de-
tecting pigs’ positions and postures using standard 2D cameras in real-
world settings under different lighting conditions and camera direc-
tions. Additionally, it is still unknown for researchers and practitioners
in pig farming how to adopt and configure deep learning techniques to
achieve high mAP and what the limitations of deep learning algorithms
are (Kamilaris and Prenafeta-Boldú, 2018; Nasirahmadi et al., 2017a).
Overcoming these limitations would help foster the applicability of pig
position detection systems in real-world settings. We propose and
evaluate a solution specifically for detecting pigs in a large number of
different pens including the lying behavior using realistic camera and
lighting settings. Our research contributes to the applicability of pig
detection systems by transferring and applying state-of-the-art deep
learning-algorithms from machine vision to automatically extract the
position of pigs within their pen and determine the lying and not-lying
behavior of pigs. The contributions are (1) an image dataset with 7277
human-made annotations with respect to lying and not lying behavior
of pigs, (2) parametrizations of deep learning algorithms to accurately
extract the position and posture of pigs in still images from videos, and
(3) an out of sample evaluation of our detection models under different
pen setups using state-of-the-art object detection metrics.

2. Material and methods

2.1. Animals and test facility

Place of study was the Boxberg Teaching and Research Centre –
Centre for pig rearing and pig breeding, which is a subunit of the
Ministry of Rural Affairs and Consumer Protection of the federal state of
Baden-Württemberg in Germany. Our study was conducted within these
facilities in two different conventional housing systems for piglet
rearing from about 5 kg to 30 kg and fattening pigs from about 30 kg to
117 kg. Major differences between the two housing systems were the
pen design (e.g., floor structure) and number of pigs per pen. The dis-
tance from pen to window (day light) was different as well. All pigs
studied have the same genetic background (German Genetic) and were
born in the same conventional piglet production at the research centre.

In the Boxberg Teaching and Research Centre a pen is identified by
an identifier (e.g., “B102”), which refers to the building as an alpha-
betical character (e.g., “B”) and the compartment were the pen in the
building is located (e.g., “1”). That is, the compartment identifier
comprises the first two alphanumerical characters (e.g., “B1”) and fi-
nally two numerical letters, which identify the specific pen in the
compartment (e.g., “02”).

The video recordings in our study were not specifically set up for
our study or with machine vision applications in mind. The videos were
recorded by standard 2D video cameras based on requirements of third
party animal researchers to study pig activity. The third party animal
researchers installed the cameras for human annotation of pig behavior
including their activity level and other animal welfare parameters.
Therefore, our approach should be well suited for other pig video re-
cordings.

2.2. Experimental procedure and approach

Our approach treats detecting the position and posture of pigs as an
object detection problem. Object detection is concerned with the task of
providing algorithms for (1) localizing, and (2) classifying objects in
images (Everingham et al., 2010). The localization task was defined by
encompassing a pig with a rectangle (Everingham et al., 2010). This
rectangle is termed a bounding box and defined as a rectangle in an
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image with minimal width and minimal height, when surrounding a pig
completely. The classification task was defined as classifying the iden-
tified bounding box area of an image in one of the pre-defined object
classes. The classes were (i) lying pigs vs. (ii) not lying pigs. Ad-
ditionally, a real-valued confidence for the detection task was de-
termined for evaluating the performance of our automatic detection
approach. Summarizing, the object detection problem requires de-
termining bounding box, corresponding object class and confidence
score for each pig in a video image. Our approach for automatic object
detection is based on deep neural networks (LeCun et al., 2015), which
are trained and evaluated on an image dataset.

2.3. Dataset of annotated pig images

Our pig detection study was conducted using video images from pig

fattening and pig rearing. Table 1 provides an overview of our pig
image dataset. The table is structured hierarchically with the hier-
archical level displayed in the left most column and relevant properties
are provided for each hierarchical level in the rows of the table. The
hierarchical levels are (1) compartments and contained pens, which
were (2) recorded by cameras, which (3) generated one-hour long video
recordings that were used to (4) extract a random sample of 10 images
per video recording.

2.3.1. Pig compartments
The pens for pig fattening were located in building B and C. The

camera perspectives, lighting and equipment in these pens were similar.
The C pens (area of approximately 22 m2) were smaller than B pens
(area of approximately 33 m2). All fattening pens contained a drinking
station, which was located on the border to the dunging area, and a

Table 1
Descriptive statistics of the dataset with respect to different pens. The abbreviations are: N: sample size, M: mean, SD: standard deviation, MIN: minimal value, Q1:
first quartile, Q2: second quartile/median, Q3: third quartile and MAX: maximum value.
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mesh feeder in the lying area. Additionally, in all pens playing material
such as hay, straw or different kinds of pellets were supplied to the pigs.
For example, a swinging hay basket is located at the bottom right corner
in Fig. 1. Fig. 1 depicts one of the C pens.

For three of the pens in compartment B1 one unique camera was
inclined for recording more than three-quarters of the area of each pen.
Additionally, one camera was located between the pens B101 and B102
(see Fig. 2) and one camera was located between the pens B103 and
B104. The cameras between the pens covered about half of the area of
each of the two pens.

The pens for pig rearing were located in building A and D. The
camera perspectives, lighting and equipment in the buildings A and D
were different in almost every aspect. The pen A1003 (area of ap-
proximately 15 m2) was smaller than the pens in compartment D6 (area
of approximately 23 m2) and the shape was also different. The image
dataset for pig rearing covers 2 pens in compartment D6 with similar
lighting and equipment. These 2 pens were recorded by 3 cameras from
2 opposite inclined perspectives (i.e., from the front and the back) and 2
cameras in top-view. All these cameras did not record the complete pen.
Both of the inclined camera perspectives recorded approximately half of

the area of the pen. Fig. 3 provides an example of an inclined camera
perspective of the rearing pens from compartment D6.

Additionally, we trained our pig detection approach using 17
images taken from two top-view cameras above the activity tower (a
dispenser for playing material). The two cameras were installed above
the two activity towers in the pens D601 and D602 (see Fig. 4). There
were no other top view camera perspectives in the training set. In these
video images about one quarter of the area of the pen was visible.

Finally, rearing pen A1003 was recorded by a different camera with
a lower image resolution than the rest of the dataset (see Table 1). Fig. 5
provides an image of pen A1003 with the activity tower from a top-
view perspective. The camera was located directly above it and re-
corded the pigs from a vertical perspective. Note that the posture of pigs
is challenging to be (automatically) determined from the camera angle
used.

2.3.2. Cameras
The cameras recorded in settings with a mixture of artificial light

and day light. The HIKVision DS-2CD2125FWD-I IP Dome camera 2MP
Full HD Outdoor 2.8 mm (HIKVision, Hangzhou, China) was used to

Fig. 1. A video image of compartment C1 with one completely visible fattening pen (C102).

Fig. 2. A video image of compartment B1 with two visible fattening pens (i.e., B101, B102). The cameras between the pens recorded the slatted dunging areas.
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record videos in 1280 × 720 resolution. The recordings of pen A1003
were an exception because they have a resolution of 640 × 480.

The cameras were usually installed in a high angle shot, i.e., cam-
eras were installed higher than the pigs and allow to look down on the
pigs. Note that a high angle shot is not a completely vertically aligned
view. A high angle shot is most convenient for human annotation in
experiments, because it allows to cover a large area of pens without
special equipment (e.g., fisheye lens) and the posture of pigs is clearly
visible. A vertically aligned camera perspective, though, was used in
case exact distances were required to be determined in the experiments.
The videos were recorded during different stages of pig fattening and
rearing in conventional pens. The cameras were installed such that they
overlooked several pens. In some cases, the field of view covered only
specific areas that were most relevant concerning third party research
objectives.

2.3.3. Video image sample
To construct an image dataset, a random sample of 10 images per

one-hour long video was drawn for each camera. 10 images were
chosen as a balance between data management efforts and variability of
the data. Our dataset consists of 31 videos, ensuring a high level of

different pen settings. Because of high human effort in annotating
images from those videos and the repetitive nature of the images from
one video, we took a random sample of only 10 images per video.

Video recordings were split in two sets as noted in Table 1: (1) a set
of images for training deep learning models for pig detection, and (2) a
set of images for evaluating the models out of sample (i.e., the test set).
To measure the out of sample performance of our object detection
models, the holdout method was used, i.e., the test set was used to
apply a trained model once for reliably estimating its application per-
formance (Kohavi, 1995). The trained deep learning model was applied
to the test set without further human interaction and without further
adaptation of the model. We did not apply model selection and there-
fore did not require a validation set.

The dataset was designed to study the performance of our deep
learning models given (1) similar training and test set (Section 3.1) and
(2) a test set that is dissimilar to the training set to indicate the possi-
bility to generalize for out of the box applications of other researchers
(Section 3.2). First, to evaluate the performance given a large training
set with similar images we used the videos recorded in the B and C
building for pig fattening (see Table 1). The dataset for pig fattening
contains 210 images of 16 different cameras that recorded 15 unique

Fig. 3. An image taken by the front camera of compartment D6 with two visible rearing pens (i.e., D601, D602). Note the daylight that is visible in the left-top side of
the image.

Fig. 4. A video image of the top-view of compartment D6 with two visible rearing pens (i.e., D601, D602).
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pens. This dataset for pig fattening contains about two-thirds of all
images used in our study. The camera perspectives and lighting con-
ditions were similar in all cases. To evaluate our algorithms with unseen
cameras the training set contained 0 images and the test set 50 images
of 5 pens of the C2 compartment. Second, to evaluate our approach
regarding unknown pen types and camera perspective the dataset for
rearing pens was used. The dataset for pig rearing consists of 95 images,
covering 3 different pens, recorded by 5 cameras. The camera and pen
setting in A1003 were not in the training set. Therefore, the camera in
A1003 (Fig. 5) recorded an unseen pen, camera type and image re-
solution perspectives (see Table 1). The top view camera perspective in
A1003 was only present in 17 training images of a top view camera in
pen D6 (Fig. 4). Hence, the performance on pen A1003 represents a
scenario where our deep learning model is applied to a new pen without
any training under vastly different conditions. We used the front and
back cameras in D6 to study if 9 images for each camera is sufficient for
training a deep learning model for dissimilar camera perspectives (see
Table 1). Note that the shelter in D6 visible above the lying area at the
left and right wall in the video recordings of the training set (see Figs. 3
and 4) was modified before the videos of the test set were recorded. In
the test set a larger shelter was applied (see Figs. 11 and 12). This larger
shelter was hiding a major part of the lying area in the test images of
compartment D6.

The dataset was recorded at following times. The training set was
recorded in B1 and C1 at 2018-03-20 between 11:05 and 12:50 and all
pens in D6 at 2018-03-27 between 08:13 and 09:14. The test set was
recorded in C1 and C2 at 2018-06-07 and 2018-06-08 between 11:00
and 12:09, in D6 2018-06-05 and 2018-06-15 between 8:00 and 12:57
and in pen A1003 at 2017-06-06 between 14:17 and 15:17 and 2017-
06-07 between 09:18 and 10:18. The test set was recorded after the
training set with the exception of pen A1003, which had no similar pen
in the dataset. This kind of sampling prevents distorting the evaluation
by images that are too similar, because they were recorded at the same
day at a similar time. Please note that video recordings during times
with high pig activity were selected. This is necessary, because pigs are
lying most of the day, which would have further increased the im-
balance of the dataset concerning the distribution of the classes lying
and not lying. Training on such an imbalanced dataset biases the

classifier towards the majority class (“pig lying”) and an overly opti-
mistic test performance would be achieved, because it is advantageous
for the classifier to classify the more common class.

The images were assigned to the training set and test set by sam-
pling videos as follows. The overall image dataset (including the
training and test part) is a randomly stratified sample of the 31 video
recordings with 10 images for each video recording. Of the 310 images
in total, 5 had to be excluded due to privacy concerns, i.e., humans
appeared in the images and could have been identified. All excluded
images were in the training set. The final training set comprises 145
images and the test set comprises 160 images.

The descriptive statistics of the pigs per image in Table 1 were based
on the annotations of the training and test set, i.e. the numbers describe
the annotated pigs per image. Note that number of visible pigs in some
of the video images were lower or higher than the number of housed
pigs in the pens, because of (1) the number of visible pens in the camera
(see Fig. 4), (2) the area of the pen that was visible in the video image
(see Fig. 2), (3) pigs that were hidden behind objects (e.g., other pigs,
the feeder, the drinker or pen barriers) and (4) neighboring pens that
were visible in the video image, but did not count as visible pens be-
cause they were only visible in corners of the video image (see the left
and right pens visible in Fig. 1). The annotation procedure is further
described in the subsequent section.

2.3.4. Dataset annotations
Pigs in each of the 305 images were manually annotated. To draw

the bounding boxes, we followed the guidelines of the reference chal-
lenge Pascal Voc 20101 (Everingham et al., 2010): A pig was considered
truncated if the bounding box did not surround a pig fully in case (1)
the pig extended outside an image, or (2) the pig was positioned behind
a feeder or other object. If a pig was truncated, the bounding box was
required to stop at the least visible part of the pig. A pig was considered
occluded if parts of the pig were hidden. If a pig was occluded, the
complete pig had to be surrounded by one bounding box because the
edges of the pig were visible. These rules were closely followed

Fig. 5. An image of a recording of the top-view of rearing pen A1003.

1 http://host.robots.ox.ac.uk/pascal/VOC/voc2010/guidelines.html.
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throughout the annotation process and were well known to each human
annotator. We modified the Pascal Voc 2010 guideline for our anno-
tation task in the following ways: (1) we did not mark any images as
bad, because all video recordings had good image quality, and (2) we
did not annotate occluded or truncated flags for the pigs and instead
marked occluded and truncated pigs as regular annotations because our
experiments did not require occluded or truncated flags. Furthermore,
the annotations of pigs in neighboring pens were treated as regular
annotations, which slightly increased the difficulty of our detection
problem for the deep learning system, because these pigs were smaller
and also truncated.

The training set was annotated by the corresponding author of the
study. The images of the test set were annotated by two student assis-
tants. Following the procedure of Everingham et al. (2010), no student
annotated any images that were already annotated by the other student,
i.e., each student annotated 5 images of each of the one-hour long vi-
deos. The annotations were checked by the corresponding author of the
study to ensure thorough annotation as described by Everingham et al.
(2010).

The tool “sloth”2 was used for annotating pigs in images. The tool
allows to select a pre-defined class and manually draw all bounding-
boxes of an object in an image that represents this class. These
bounding-boxes served as target variables for the deep learning algo-
rithms. The manual annotations consist of a bounding box and an object
class. We differentiated between lying, i.e., a pig was in a resting po-
sition and showed no muscular activity that was sufficient to detach its
body from the surface, and not lying, i.e., any other activity. In total,
7277 bounding boxes were annotated, in which 5077 pigs were lying
and 2200 pigs were not lying. In the training set, the number of an-
notations per classes were 849 pigs not lying and 2755 pigs were lying
and in the test set 1,351 pigs were annotated not lying and 2322 pigs
were annotated lying.

2.4. Deep learning system for automatic pig detection

We followed the current state of the art for object detection, i.e.,
creating a data-driven model using deep learning (LeCun et al., 2015).
The term deep learning system refers to a feedforward neural network
with a deep hierarchical structure (Schmidhuber, 2015). The images
were provided to the model via an input layer. An output layer returned
the detected bounding boxes with object class and confidence score.
Between the input and output layers, hidden layers were used. Each
layer consisted of nodes that were connected to the previous layers’
nodes via weighted edges. The training phase used the pig annotations
in the training set described in Section 2.3. During the training phase
the weight parameters were iteratively optimized such that the model
detected annotated pigs with minimal error (Schmidhuber, 2015).
However, the training error is no reliable estimator of the out of sample
performance of the model due to possible overfitting (Goodfellow et al.,
2016). Overfitting occurs if the deep learning algorithm fits parameters
to noise in the training set (Poggio et al., 2017). That is, the model may
represent the training set well but may fail on prediction tasks on yet
unseen data. To reduce overfitting, regularization techniques were ap-
plied, e.g. dropout (Srivastava et al., 2014). Additionally, the general-
izability of the model was improved by convolution layers, i.e., a spe-
cific type of network layer (Chollet, 2017). An unbiased performance
estimate regarding overfitting was achieved by out of sample evalua-
tion on the test set as described in Section 2.4.

We used the following state-of-the-art architecture for our deep
neural network. The Faster Region-based Convolutional Neural
Network (Faster R-CNN) was used for object detection (Ren et al.,
2015). Faster R-CNN achieved the highest mAPs in the Microsoft COCO:
Common Objects in Context (MS COCO) reference challenge (Lin et al.,

2014) given equal base networks, if computational resources were not
restricted (Huang et al., 2016). The Faster R-CNN object detection pi-
peline defined the overall structure of the deep learning model. The
Faster R-CNN is composed of three network modules that are stacked in
the following order: (1) a base network, (2) a Region Proposal Network
(RPN), and (3) an object classification network (Ren et al., 2015),
providing detected and classified objects.

The base network was used to extract features from raw image data
(Huang et al., 2016) and was derived from the first layers of the state-
of-the-art image classification network called Neural Architecture
Search (NAS) framework (Zoph et al., 2017). The RPN then proposes
image regions that are likely to contain an object and the object clas-
sifier calculates the bounding boxes of the object and provides a soft
maximum probability score for each possible class (Ren et al., 2015).
The RPN and object classifier of Faster R-CNN were used (Ren et al.,
2015). A visual overview of the Faster R-CNN object detection approach
is provided by Zheng et al. (2018).

NAS represents the current state-of-the-art base network for object
detection according to the reference challenge Microsoft COCO, in
which the mAP of 0.431 was achieved using a Faster R-CNN archi-
tecture (Zoph et al., 2017). For example, Faster R-CNN (Ren et al.,
2015) with NAS (Zoph et al., 2017) achieved higher mAP values than
ResNet-101 (He et al., 2015), RetinaNet (Lin et al., 2017), R-FCN (Dai
et al., 2016), YOLO-v3 (Redmon and Farhadi, 2018) and SSD (Liu et al.,
2016) on the MS COCO reference challenge.

The following software and hardware were used during our ex-
periments. We used tensorflow3 v1.8 as open source deep learning
software framework initially developed by Google Brain Team (Abadi
et al., 2016) and the tensorflow object detection API4 for the object
detection task (Huang et al., 2016). We used the Nvidia CUDA v9.0.176
and Nvidia CUDNN v7.0 to run tensorflow on a Nvidia GeForce GTX
1080 Ti (MSI, Taiwan) graphics card.

For the hyperparameters of the deep learning model, the default
configurations of the tensorflow object detection API were used, leaving
random search-based optimizations to future work (Bergstra and
Bengio, 2012). The weights of our deep learning model were pre-in-
itialized by training on the MS COCO dataset to increase model per-
formance (Lin et al., 2014). This was possible due to transferable
characteristics in object detection tasks (Chollet, 2017). The learning
rate was held constant at 0.0003 and the model was trained for 200,000
iterations. We applied a random horizontal flip for data argumentation,
i.e., with a chance of 50% the ground truth image was flipped hor-
izontally so that the right side of the ground truth image was visible on
the left side of the training example and all annotated bounding boxes
were flipped using the same approach.

We trained three deep learning models (DLM) for our experiments.
The first model (DLM-1) was trained only on the training set to estimate
pig position and posture. DLM-1 was used to calculate the mAP values
for the posture detection. The second model (DLM-2) used only training
data and was trained to estimate pig positions only, i.e., the training set
contained only the class “pig”. We used DLM-2 to calculate the position
AP value in our experiments. The third system (DLM-3) was trained
using the training and test data and was used for comparison to pre-
vious work (Sections 2.6 and 3.3) and exemplary application of the
detection functionality (Section 3.3).

2.5. Evaluation procedures and metrics

In our study we used the following confusion matrix terminology for
evaluating the deep learning models for pig detection (Manning and
Schütze, 1999):

2 https://github.com/cvhciKIT/sloth.

3 https://www.tensorflow.org/.
4 https://github.com/tensorflow/models/tree/master/research/object_

detection
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• True positive (tp): An object class is detected and the image contains
this object class at this position.

• False positive (fp): An object class is detected while this object class is
not at this position of the image.

• False negative (fn): An object class is at a certain position and it was
not detected by the model.

• True negative (tn): No object class is at a certain position and the
model did not detect an object class.

For the object detection task an additional parameter is required to
calculate the variables above because an annotation and the predicted
shape of the bounding box will never match perfectly. Therefore, it is
necessary to define a minimum criterion, defining the accepted differ-
ence between ground truth and a detected bounding box. This para-
meter is called intersection over union (IOU) and it determines the
required relative overlap α of the shape of the bounding boxes Bp and
ground truth Bgt as defined by Everingham et al. (2015):

=
∩

∪
α

area B B
area B B

( )
( )

p gt

p gt

The default value of this parameter is 0.5 (Everingham and Winn,
2010), which we used in our study.

Using the confusion matrix terminology and IOU, the following
metrics were calculated (Manning and Schütze, 1999):

=
+

Recall
tp

tp fn

=
+

Precision
tp

tp fp

The average precision (AP) is an overall measure for the perfor-
mance of an object detector concerning a specific class of an object
detection task. The AP is calculated as follows: (1) ordering all pig
detections based on their confidence score, (2) matching detections
with highest confidence score to ground truth starting from highest
confidence until a recall r higher than recall level r is reached and (3)
calculating precision values based on each recall level r, and (4) in-
terpolating the precision pinterp by the maximum precision that can be
obtained for a recall level r as defined by Everingham et al. (2010):

=
≥

p r p r( ) max ( )interp r r r:

Eleven recall levels ∈ ⋯r {0, 0.1; ,1} with equal distance were used

(Everingham et al., 2010).
Finally, AP is the arithmetic mean of the precision pinterp at different

recall levels according to Everingham et al. (2010):

∑=
∈ …

AP p r1
11

( )
r

interp
{0,0.1; , 1}

The mean average precision (mAP) is the mean of the AP values for
each object class (Karpathy et al., 2014).

We implemented an additional evaluation procedure using 11 h of
video data similar to Nasirahmadi et al. (2015). Nasirahmadi et al.
(2015) studied group lying patterns in video recordings of top view
cameras using a ellipse-based segmentation algorithm. Therefore, the
objective of Nasirahmadi et al. (2015) is similar to our work. In the
accompanying evaluation procedure, the number of housed pigs in the
pen is compared with the detected number of pigs in a pen per image.
This evaluation method is possible without a manually labeled dataset
and can be applied to many hours of video data. Thus, we first recorded
11 h of continuous video data for pen C202. Pen C202 was used because
the video recordings were of high quality, achieved high performance
for posture detection and were similar to the other pens for pig fat-
tening in our dataset. Thus, this example is well suited to demonstrate
the possible application of the deep learning system. Second, we ex-
tracted one image every 10 s from each video, resulting in 3958 images.
Third, we processed each of these images using DLM-3 and identified
the position and posture of the pigs in each image. Because the model
detects all pigs in an image, we removed all pig detections that were not
part of pen C202. Concretely, we removed every detection where the
lower-left edge of the bounding box was above the blue solid line on the
right of Fig. 6. We also removed detections where the lower-right edge
was above the orange dashed line. Then, we compared the number of
detected pigs per image yt at time t = 1, …, n to the number of actual
pigs =y 18 that were housed in pen C202. The error was given by

= −e y yt t and percentage error was defined by =p e y100t t (Hyndman
and Koehler, 2006). Finally, we reported the following metrics
(Hyndman and Koehler, 2006).

Root Mean Squared Error (RMSE):

∑=
=

RMSE
n

e1 ( )
t

n

t
1

2

Mean Absolut Error (MAE):

Fig. 6. Pig detections above the blue and orange lines were removed for the comparison with previous work and exemplary analysis of lying behavior of fattening
pigs in pen C202. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.6. Exemplary application of detection functionality

We also studied pigs’ lying behavior using the position and posture
extracted from the eleven hours of continuous video data for pen C202.
First, we used the detected position and posture data to generate an
activity map of pigs, i.e., a spatial visualization of the areas where pigs
most often were either lying or not-lying. For the activity map, we
plotted a transparent colored rectangle for each detected pig in the
shape of the bounding box. The rectangle was drawn in green if the
detected class of a pig was lying and was drawn in blue if the detected
class was not lying. For the background we used an image of the video
recording and reduced its brightness to 40% of the original value to
improve the visibility of the colors of the behavior analysis. The
background image allows to see the pen layout and to interpret position
and posture of the pigs with respect to the pen.

3. Results

3.1. Performance with high amount of training data for the case of fattening
pigs

This section reports the results of the deep learning systems for pens
with high amount of training data for the case of fattening pigs (see
Table 1). Table 2 provides the AP and mAP values of the deep learning
system for position and posture detection and the AP value for only
detecting the pig position without detecting the posture (no classifica-
tion). These metrics are calculated of images that were extracted of
videos in the test set. Our system achieves a mAP of 80.9% for all pens
in compartment C1. These pens were present in videos in our training
set. A comparable mAP of 80.2% is achieved for the pens in compart-
ment C2. The pens in compartment C2 were only present in our test set.
Note that for both compartments the mAP values for position and
posture detection and AP values for position detection are only different
by less than 8%.

Fig. 7 provides a picture of the detection of only pig position of the
deep learning system. The green bounding boxes mark pigs and only the
class “pig” is classified using DLM-2. Above the green bounding box, the
class name (left) and the confidence (right) of the deep learning system
are depicted. Even pigs that are occluded by parts of an object could be
detected. All pigs except one in the lower left part of the pen could be
detected by the deep learning system.

Figs. 8 and 9 depict results of the deep learning system on images

from the test set. The green bounding boxes mark pigs that are pre-
dicted to be lying and teal colored bounding boxes mark pigs that are
predicted to be not lying. In Fig. 8 two pigs are visible that are trun-
cated by the drinking station on the left side of the picture. One of these
pigs was correctly detected by the deep learning system, but the other
pig was not detected (i.e., a false negative).

Fig. 9 depicts a pen from the compartment C2. Note the pig in the
center, which is classified as lying and not lying in the same image. This
occurs in rare cases if the detection algorithm is uncertain about the
posture of the pig.

3.2. Results with little or no similar training data for the case of rearing
piglets

In Table 3 we provide the corresponding results for pens with little
or no training data. These pens are different from the majority of the
training data concerning almost every aspect (see Table 1). Therefore,
the detection of position and posture of rearing piglets in these video
images is more challenging than position and posture detections of the
previous fattening pigs. For the pen A1003 no training data was
available and the class ‘pig not lying’ achieved an AP of 72.4%, but the
AP of ‘pig lying’ is only 17.1%. Contrary, for the back camera of the
compartment D6 the AP for ‘pig lying’ was 69.6% and 28.9% for ‘pig
not lying’ was achieved. The most likely explanation for these opposing
AP values were the different camera perspectives used, which may have
had different effects on the classification network of DLM-1. The AP of
the pig position without posture detection was 76.8% for A1003 and
73.6% for the back camera of compartment D6.

Fig. 10 depicts the performance of the pig position detection
without posture detection by DLM-2. Fig. 10 demonstrates that the
position of pigs that were close together was detected individually even
for camera perspectives for which only little training data was avail-
able.

Fig. 11 shows position and posture detections for the pen A1003.
Note that the confidence scores (visible in the image on the right side of
the bounding box) of DLM-1 for the detections for this camera per-
spective were lower for some of the detections. This indicates that the
algorithm was uncertain concerning these detections.

Fig. 12 shows the detections of DLM-1 for the pens in compartment
D6 recorded by the camera in the back of the pen. Note the lying pig
detections in the center of the image. For this camera perspective not
lying piglets were often classified as lying if the legs of the pig were
truncated by other piglets. It can be assumed that this specific posture
was not part of the training data in the fattening pens in building C,
because in the pens in building C the feeder of the pen was most often
round and accessible from all sides (see Fig. 9) or it was shorter and
located at the side of the pen, i.e. at a different angle (see Fig. 8).

3.3. Exemplary application using 11 hours of video data

First, we implemented the evaluation procedure for the number of
detected pigs compared to housed pigs per image as described in
Section 2.5 using the 11 h of video recordings of pen C202 for the deep
learning system DLM-3. The RMSE was 1.62, the MAE was 1.25, the
MAPE was 6.9% and the accuracy was 93.1%. The MAE implies that the
number of detected pigs was on average 1.25 pigs higher or lower than
the 18 pigs housed in the pen.

Our deep learning system DLM-3 was used to study the lying be-
havior of fattening pigs as depicted in the activity map in Fig. 13. The
green colored rectangles marked the area where pigs were detected to
be lying, while the blue colored rectangles marked pigs that are de-
tected to be not lying. The detected behavior of the pigs in the video
shows that pigs were lying (green) at the walls of the pen and outside of
the dunging area. Not-lying pigs (blue) were observed in the area be-
tween the drinker and the feeder. Pigs were rarely observed in the
dunging area and were mostly not lying in the dunging area (almost no

Table 2
Evaluation results for test data with high amount of similar training data
available for the respective fattening pen.

Deep learning
system

C1 (5 pens) C2 (5 unseen
pens)

AP only pig position DLM-2 87.2% 87.4%
AP for the class “lying pig” DLM-1 83.3% 78.5%
AP for the class “not lying

pig”
DLM-1 78.6% 81.9%

mAP for pig position and
posture

DLM-1 80.9% 80.2%
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green and only slightly blue).
Fig. 14 depicts a time series of activity during the 11 h of video data

detected by the deep learning system DLM-3. These 11 h of video data
were prepared as described in Section 2.6. In the next step we plotted a
green time series for lying pigs and a blue time series for not lying pigs.
The x-axis depicts the daytime of the analyzed video image and the y-
axis shows the number of pigs.

Fig. 15 depicts a period were no pig was detected lying by DLM-3 in
pen C202 and Fig. 16 shows a period where no pig was detected not
lying by DLM-3 in pen C202. For Fig. 15 these detections were correct
for all pigs in pen C202. For Fig. 16 one detection error is visible at the
feeder of the pen.

4. Discussion

4.1. Findings

This work evaluates deep learning for detecting the position and
posture of pigs in images from standard 2D cameras. Previous work
achieved this in a top view perspective (Nasirahmadi et al., 2015). Our

deep learning system contributes by detecting postures from real-world
non-vertical camera perspectives using 21 cameras in 18 pens. We
evaluated the predictions of the system regarding pigs’ position and
posture with the state-of-the-art mAP metric for object detection. The
position and posture of pigs can be detected with 80% mAP for camera
perspectives that are not entirely vertically directed and for which
sufficient training data are provided. A similar work detected the lying
behavior of one lactating sow from one top view 3D camera for five
posture types using deep learning with 87.1% mAP (Zheng et al., 2018).
However, this mAP value is not comparable to our work because of
different experimental parameters. Position and posture detection for
experiments with little training data and a high angle shot perspective
achieved 49.2% mAP and 58.8% mAP. Position and posture detection
with no training data and a difficult top view camera perspective
achieved 44.8% mAP. Finally, for the detection of the position of a pig
without posture, an AP of over 87% with high amount of training data
and over 67% for little or no training data was found. These results
indicate that the position of a pig without posture can be detected well
for different unseen camera perspectives and pen layouts.

Fig. 7. Detections of pig position of the deep learning system on a test set image for fattening pen C204. Images of this pen were not in the training set.

Fig. 8. Detections of the deep learning system on a test set image for fattening pen C104. Images of this pen were in the training set.
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4.2. Limitations

Our research has several limitations. First, in future investigations
the performance of different deep learning systems should be com-
pared. In this work we used the state-of-the-art Faster R-CNN object
detection pipeline and the state-of-the-art NAS base network. However,
model selection concerning different base networks and object detec-
tion pipelines should be studied using our publicly available dataset,
because the performance of a machine learning algorithm varies for

different detection problems (Wolpert, 1996). Additionally, each deep
learning network comes with various hyperparameters (e.g., learning
rate and number of training steps) for which we used the default con-
figuration. The reason for not applying model selection including hy-
perparameter optimization is that model selection requires an addi-
tional validation set, i.e., a dataset specifically for model selection. This
is necessary because measuring the performance of several models and
choosing the model with highest performance will result in overfitting
of the chosen model to the validation set. Therefore, if model selection

Fig. 9. Detections of the deep learning system on a test set image for fattening pen C205. No images of this pen were in the training set.

Table 3
Evaluation results for test data with little or no training data available for the respective rearing pen.

Deep learning system D6 back camera (18 similar training
images)

D6 front camera (18 similar training
images)

A1003 (no similar training
images)

AP only pig position DLM-2 73.6% 67.7% 76.8%
AP for the class “lying pig” DLM-1 69.6% 53.4% 17.1%
AP for the class “not lying pig” DLM-1 28.9% 62.5% 72.4%
mAP for pig position and posture DLM-1 49.2% 58.8% 44.8%

Fig. 10. Detections of pig position of the deep learning system on a test set image for rearing pens in the compartment D6 (back camera). The training set contained
18 images of this pen type and 9 from this camera.
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would have been applied using the test set as the validation set, the
experiments in Sections 3.1 and 3.2 would not have been possible on an
unbiased estimate of the actual performance of the model (the test set
would have been already used as the validation set). Therefore, given
the provided dataset the most valuable contribution was achieved by
deliberately excluding model selection from these experiments. How-
ever, by making our dataset publicly available, we allow for model
selection experiments to further improve the performance. Researchers
can use our data as a training set and may annotate a validation and test
set based on images of video recordings from unseen pens.

Second, while our AP for position detection on the test set with little

or no training data for rearing pens was satisfactory, the mAP for
posture detection was lower than expected (Section 3.2). Degrading
performance with no similar training data is in accordance with pre-
vious work that used deep learning for detecting the feeding behavior of
pigs (Yang et al., 2018). Transferring the trained detection algorithm on
different piggeries was not successful (Yang et al., 2018). It is worth
noting that in their work another dataset, base network and hy-
perparameter configuration was used, i.e., Faster R-CNN with the base
network ZF-Net and a (different) learning rate of 0.001. A possible
explanation for the degraded performance on dissimilar test images
might be that the training data used in our study and the study of Yang

Fig. 11. Detections of the deep learning system on a test set image for rearing pen A1003. No images of this pen type or camera were in the training set. The training
set contained 17 images of a top view perspective from another compartment.

Fig. 12. Detections of the deep learning system on a test set image for a pen in the rearing compartment D6. The training set contained 18 images of this pen type and
camera perspective.
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et al. (2018) did not exhibit sufficient variety, e.g., concerning the
background, camera type and camera perspective. In our work, the
variety was increased by including 15 cameras and 12 pens in the
training set. However, most reference datasets for object detection (e.g.,
Microsoft Common Objects in Context) have higher variety in their
images, because their data stems from internet image databases (e.g.,
flickr) and each image is unique regarding every aspect (Lin et al.,
2014). Another explanation might be that our model has not been
specifically selected to achieve high performance for pig posture de-
tection. However, this explanation seems unlikely because we achieve
high mAP values (80.2%) given enough similar training data even for
the unseen pens in the C2 compartment (Table 2) and high AP values
for position detection for little and no training data (Table 3). Please
also note that the similar mAP between seen C1 (80.9%) and unseen C2
(80.2%) pens indicates that among similar conditions with enough
training data the deep learning models do not indicate overfitting
(Table 2). However, model selection or hyperparameter optimization
on the available dataset might improve the performance on the pens in
the validation set, but could also degrade the performance on unseen
pens due to overfitting. Thus, fellow researchers who apply our deep
learning system to new pens and camera perspective might not achieve
our results on their data for posture detection. To overcome this

problem, we recommend annotating about 50–100 images of an unseen
pen, adding them to our training set, and fine-tuning the deep learning
system.

Third, the percentage of not lying pigs was 23.6% in the training set
and 36.8% in the test set respectively the difference is largely explained
by the high number of not-lying pigs in rearing pens in the test set,
which showed a not-lying percentage of 61.9% compared to 15.5% not-
lying pigs in rearing pens in the training set. An explanation for the
difference in lying percentage might be that the large lying area in the
rearing pens visible in Figs. 3 and 4 at the left and right wall was hidden
under the closed and larger shelter visible in the area under Figs. 11 and
12, which covered most of the lying pigs. Please note that the discussed
difference in percentage of not-lying pigs in the rearing pens may also
partly explain the decreased performance of the position and posture
detection for rearing pens discussed in the second limitation.

Fourth, we chose video recordings during times with high pig ac-
tivity in our dataset. Therefore, the provided mAP values are not an
estimate of the performance during a complete day. However, a more
balanced class distribution (during times with high pig activity) would
be more challenging for detection tasks, because deep learning systems
are biased towards detecting the majority class of the dataset.
Therefore, mAP evaluated during a complete day might increase,

Fig. 13. Activity map of position and posture of pigs during 11 h of video recording for the fattening pen C202. Green color depicts lying pig locations and blue
depicts not lying pigs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Pig lying behavior within 11 h of video recording for the fattening pen C202. Green depicts lying pigs and blue depicts not lying pigs. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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because the majority class (pig lying) is more likely to occur.
Fifth, our exemplary application of the detection functionality of the

pig lying behavior only includes eleven hours of video data of one pen,
and is thus not a reliable general estimation of pig behavior. However,
our analysis demonstrates possible use of the deep learning system in
behavioral studies as described in Section 4.3.

4.3. Implications

Our study has the following implications for research and practice.
First, future work could optimize our deep learning models using model
selection and identify how hyperparameters should be configured. For
example, the learning rate at 0.0003 and the 200,000 iterations were
the baseline configurations of the tensorflow object detection API. An
inspection of the learning curves of our deep learning models indicates
that the training error converges early on during the training phase.
Therefore, the number of iterations might be reduced during the

training phase to accelerate model selection. Furthermore, varying the
learning rate might improve performance. A chance of 50% horizontal
flip is chosen in the baseline configuration of the tensorflow object
detection API, because it increases the variety in the training set
without providing a downside in the pig position and posture detection
task and is a default procedure for object detection (Girshick, 2015).
Therefore, there is no advantage to select the chance for a horizontal
flip experimentally. Furthermore, different base networks (e.g., ResNet-
101, Inception-ResNet-v2) or object detection pipelines (e.g., SSD or R-
FCN) could be applied.

Second, our experiments in Section 3.2 indicate that applying model
selection or increasing the size of the training set without increasing the
variety of the training set with the aim of increasing the mAP for pos-
ture detection is unlikely to provide generalizable deep learning models
for out of the box applications (see second limitation). Therefore, the
implication for future work is that increasing the variety of experi-
mental conditions in the training images in almost every aspect will

Fig. 15. Highest recorded pig activity during this day at 10:47 for the fattening pen C202. No pigs were detected lying at this time.

Fig. 16. No pigs were detected not lying by the deep learning system at 07:16 for the fattening pen C202.
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likely be necessary for out of the box posture detection applications.
This is difficult to achieve by individual groups of researchers, e.g. we
used the majority of available cameras with different experimental
conditions in our research facility to create our dataset. Therefore,
providing publicly available datasets from a large number of piggeries
might be necessary for out of the box posture detection. Hence, the
short-term application for posture detection are research settings where
the number of studied pens is exhaustive (see third implication). In this
setting, our publicly provided dataset reduces the amount of training
data, because it can be added to the training set of the studied pens.

Third, a further study with a focus on animal behavior is suggested.
For this purpose, position and posture detection functionality can be
utilized over long periods of time (e.g., months or years) in short in-
tervals (e.g., every minute). The position detection functionality (i.e.,
the rectangular area defined by two vectors for each pig) can be used to
monitor activity hotspots and the distance of pigs to an area of interest
(e.g., drinker or feeder) throughout the day. This position detection
functionality can be combined with the lying detection functionality for
each pig, e.g. to count the number of lying pigs in an area or distance of
lying pigs from hotspots. Furthermore, the detection time provides
additional functionality and allows the analysis of time series data
concerning animal behavior as demonstrated in Section 4.3. Therefore,
this further study could analyze several months of video data targeting
the prediction of tail biting, early-disease detection, correct use of the
functional areas of the pen, and other animal welfare parameters. For
example, it would be interesting to further analyze the time series in
Section 3.3 and study if animal welfare threatening behavior can be
detected via time series patterns. In Fig. 15 at 10:47 h we can observe
new food being delivered to the feeding station, which increased the
activity of the pigs. Note that in Fig. 14 the peak is gradually increasing
and decreasing. Between 14:30 and 16:15 several peaks of activity are
visible in the time series. Viewing the video between 14:30 and 16:15
shows that at that time aggressive behavior occurred. It might be that
these short spikes in activity are some indicators of unwanted behavior.
Second, the exact lying behavior classified by our deep learning system
could help to design better pens. Activity maps as demonstrated in
Fig. 13 can be used to better understand pig behavior in different types
of pens.

Fourth, the position and posture detection could also be used for an
automated animal welfare monitoring system for rearing and fattening
pigs that could be used to detect aggression or disease of pigs. The
advantage of image analysis is that animal behavior can be recorded
and analyzed without individual and invasive sensors for each pig.
Further work could study how to apply position and posture detection
for this application. For this purpose, the deep learning system should
be generalized to night recordings, additional camera perspectives and
pen designs.

5. Conclusion

Our work contributes to the understanding of how to adopt deep
learning for detecting the position and posture of pigs using 21 cameras
in 18 pens under realistic conditions. Positions were detected with over
67.7% AP in all our experiments. Position and posture detection led to a
mAP of 80.2% for unseen pens with enough similar training images. For
detecting position and posture with only 0 or 18 similar training
images, the mAP was lower, ranging between 44.8% and 58.8%. The
latter position and posture detection results are not sufficient for most
out-of-the-box posture detection applications. Our results indicate that
increasing the variety of experimental conditions of the training images
might be necessary to increase transferability of the detection models.
Therefore, further research and open access datasets of different pig-
geries are needed to ensure the performance on new camera perspec-
tives or pen layouts. One advantage of deep learning is that the ap-
plicability to new camera perspectives or pen layouts can iteratively be
improved by adding annotations for new camera perspectives or pen

layouts and fine-tuning the deep learning system to this training data.
Specifically, in a research setting with an exhaustive set of similar pens
the approach can be applied with limited effort for position and posture
detection. Practitioners may apply position detection, which may work
out-of-the-box as our limited experiments suggest. Furthermore, we
propose exemplary applications that can support the pen design by
visualizing the location and the active times during the day as a further
contribution. Thus, our research helps to shorten the path for practi-
tioners and researchers to design precise detection models in the con-
text of improving animal welfare. The dataset used in our experiments
is publicly available and can be retrieved from https://wi2.uni-
hohenheim.de/analytics.
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