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1  | INTRODUC TION

Climate change is predicted to shift the distribution of agricultural 
crops and of the insect pest species feeding on them (Bebber, 
Holmes, & Gurr, 2014; Sloat et al., 2020; Tubiello, Soussana, & 
Howden, 2007). While changing climatic conditions might increase 
climatic stress factors and reduce resources for water irrigation of 
crops (Fader, Shi, Von Bloh, Bondeau, & Cramer, 2016), higher tem-
peratures favour the expansion of cultivation and crop diversification 
at higher latitudes (Grünig, Mazzi, Calanca, Karger, & Pellissier, 2020; 
Tuck, Glendining, Smith, House, & Wattenbach, 2006; Walther 
et al., 2002). Climate change is however also associated with greater 
pest pressure (Deutsch et al., 2018). Further, trade flows and human 
travel help insect pests to overcome natural barriers, linking climate 

change and globalization to pest invasions (Hulme, 2009; Paini 
et al., 2016; Robinet & Roques, 2010). Distribution ranges of pest 
species are expected to shift, to the detriment of cropping systems 
(Bebber, Ramotowski, & Gurr, 2013), and thus threaten food pro-
duction (Schmidhuber & Tubiello, 2007) and undermine increasing 
consumer demands for local and more sustainably produced food 
(Feldmann & Hamm, 2015; Lamichhane, Dachbrodt-Saaydeh, Kudsk, 
& Messéan, 2016). Investigating the distribution of niches of pest 
species along climatic gradients can point to future opportunities 
and risks under climate change (Grünig et al., 2020) and help develop 
effective crop protection strategies.

The development of insects is a function of temperature over 
time (Jarošík, Honěk, Magarey, & Skuhrovec, 2011). Under climate 
change, temperatures in Europe, particularly at higher latitudes, 
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Climate change and globalization affect the suitable conditions for agricultural crops 
and insect pests, threatening future food security. It remains unknown whether 
shifts in species’ climatic suitability will be linear or rather non-linear, with crop ex-
posure to pests suddenly increasing when a critical temperature threshold is crossed. 
Moreover, uncertainty of forecasts can arise because of the modelling approach 
based either on species distribution data or on physiological measurements. Here, 
we compared the predictions of two modelling approaches (physiological models and 
species distribution models) for forecasting the potential distribution of agricultural 
insect pests in Europe. Despite conceptual differences, we found good agreement 
overall between the two approaches. We further identified a potential regime change 
in pest pressure along a temperature gradient. With both modelling approaches, we 
found an inflection point in the number of pest species with suitable climatic condi-
tions around a minimum temperature of the coldest month of −3°C. Our results could 
help decision-makers anticipate the onset of rising pest pressure and provide support 
for intensifying surveillance measures, particularly in regions where temperatures 
are already beyond the inflection point.
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are expected to increase more than the global average warming  
(IPCC, 2007; MacDonald, 2010). Ongoing warming allows the culti-
vation of more crops (Maracchi, Sirotenko, & Bindi, 2005) but also 
favours insect pest survival in these regions (Bale & Hayward, 2010). 
Higher winter temperatures are crucial for the survival of insect 
pest species at higher latitudes (Bebber et al., 2013; Jarošík, Kenis, 
Honěk, Skuhrovec, & Pyšek, 2015), although in practice their real-
ized distribution is restricted by additional factors, particularly biotic 
interactions (Hutchinson, 1957). To account for the multitude of fac-
tors that potentially define the climate suitability for insect pests, 
different modelling approaches have been developed, which should 
imply differences in predictions (Kearney, Wintle, & Porter, 2010; 
Newman, 2005; Robertson, Peter, Villet, & Ripley, 2003).

To model the climatic niche of pest species, deductive and in-
ductive approaches have been developed (Tonnang et al., 2017; 
Venette et al., 2010). For the deductive approach adopted in 
physiological models, data from controlled experiments provide 
a basis to project the potential distribution of a species (Tonnang 
et al., 2017). Studies on the life history of species under different 
environmental conditions help define physiological thresholds for 
species survival, development and performance, which are often 
used to develop phenological models (e.g. Schaub, Breitenmoser, 
Derron, & Graf, 2017). By relating these thresholds to climatic vari-
ables in a spatial context (e.g. spatial raster layers of temperature), 
areas where species meet conditions that allow their development 
can be identified (Kearney & Porter, 2004, 2009). Inductive models 
use the occurrence records of a species and link them to climatic 
data to infer the conditions that are suitable for the species (Elith & 
Leathwick, 2009; Guisan & Zimmermann, 2000). Species distribu-
tion models (SDMs) implementing the inductive approach have been 
widely used to model climatic suitability of insect pests (e.g. Arthur, 
Morrison, & Morey, 2019). While deductive and inductive modelling 
approaches target similar goals of mapping suitable climatic condi-
tions for a species in space, they differ in terms of the data used for 
model development. A better understanding of how systems can be 
expected to shift under climate change could potentially be achieved 
by comparing forecasts between those approaches.

The response of a biological system to climate change can be 
linear or non-linear. When the response is not linear, the ecosys-
tem state typically shifts faster than what would be expected for a 
linear response (Dakos et al., 2019), eventually exhibiting disconti-
nuities when critical thresholds in the driving variables are crossed 
(Lenton, 2011). Shifts in pest distributions under climate change may 
display discontinuous behaviour, implying a sudden change in the 
potential for colonization by pest species, including the invasion of 
non-native species, as a result of global warming (Paini et al., 2016). 
Invasive insects are likely to be introduced from geographic areas 
sharing similar climatic conditions (Brockerhoff & Liebhold, 2017; 
Walther et al., 2009). With climate change, temperate regions will 
become warmer and therefore climatically more similar to regions 
where insect diversity is presently disproportionally higher. The 
study of pest species’ climatic niches coupled with climate change 
scenarios help identify potential inflection points for pest suitability.

Here, we investigated the potential pest accumulation in Europe 
under climate change by comparing predictions obtained from de-
ductive physiological models and inductive SDMs. We considered 
a comprehensive set of insect pests that includes a large number of 
quarantine insects. We evaluated whether climatic niches shift along 
a smooth gradient, or whether an inflection point exists, beyond 
which the increase in the number of potential niches accelerates.

Our working hypotheses were as follows:

(i) We expected congruent forecasts of suitable climate with the 
two modelling approaches. Under climate change, we expected 
a general pattern of increasing climatic suitability for insect pests 
across Europe, irrespective of the modelling approach applied.

(ii) We expected non-linear responses to minimum temperatures for 
insect pests, involving thresholds beyond which the number of 
species with a suitable climate increases considerably.

(iii) We expected to observe that temperatures in Southern Europe 
already exceed the threshold temperature identified under (ii). 
Hence, we expected to find that these regions already provide 
suitable climatic conditions for many insect pest species because 
temperatures rarely dip below freezing.

2  | MATERIAL S AND METHODS

2.1 | Physiological data collection

For physiological data, we assembled insect developmental 
thresholds from the PRATIQUE database (Jarošík et al., 2011) and 
published literature. From the PRATIQUE database, we selected 
insect species classified as pests in the EPPO Global Database 
(www.eppo.org), which comprises information generated or as-
sembled by the European and Mediterranean Plant Protection 
Organization. Further, we searched on Google Scholar for stud-
ies applying CLIMEX models for pest species (keyword combina-
tions of “CLIMEX” + “insect” + “pest”). We obtained physiological 
parameters on the lower development threshold (LDT; minimum 
development threshold in CLIMEX studies) and the sum of effec-
tive temperatures (SET), that is, the number of growing degree 
days above the LDT required for the completion of a generation. 
LDTs and SETs reflect a linear relationship between developmen-
tal rate and temperature, and are calculated from the proportion 
of development occurring per unit of time (Jarošík et al., 2011). 
Where multiple entries per species were available, we used the 
average of the values. Further, we searched for lethal tempera-
tures of all species. Whenever we did not find a lower lethal tem-
perature (Tkill,min), we set it to 0°C for species not known to survive 
winter in a dormant stage and to −20°C for species with winter 
diapause. This implies that warm-adapted species are predicted to 
not occur in regions where the minimum temperature of the cold-
est month is below 0°C. We used 40°C as the upper lethal tem-
perature (Tkill,max) for all species, as insects are known to have little 
variability in this regard, with values ranging from 40°C to 50°C 

http://www.eppo.org
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(Heinrich, 1981). We collected data on physiological parameters 
for 75 species (Table S1).

2.2 | Occurrence data collection

We compiled the distribution records of pest species in the pub-
lished literature and the Global Biodiversity Information Facility 
(GBIF, www.gbif.org; Appendix S1 contains the list of datasets 
from which records were taken and download DOIs if available) 
for all pest species in the EPPO Global Database. We searched 
Google Scholar for the following keywords in various combina-
tions: “Pest name”, “distribution”, “records”, “occurrence”, “sampling”, 
“spatial” and “data”. GBIF data were carefully checked for unreli-
able records. We classified the pest species into two categories: 
all species on the EPPO quarantine lists (A1, A2, Alert) were con-
sidered quarantine pests, and all others established pests. Species 
for which we could not obtain more than 20 occurrence records 
were dismissed (Wisz et al., 2008). In total, we gathered occur-
rence data for 173 species (Table S2).

2.3 | Climate data and future scenarios

We acquired climate data from the CHELSA database (www.chels a- 
clima te.org). We used CHELSA V1.2 data for monthly minimum, 
maximum and mean temperatures, as well as bioclimatic variables, 
with a 2.5 arcmin (5 km) grid size resolution (Karger et al., 2017) 
to represent current climatic conditions. Further, we used climate 
change scenarios from the CMIP5 family representing two differ-
ent scenarios (RCP 4.5, RCP 8.5) and four global circulation models 
(GCMs). We selected the following GCMs based on model interde-
pendence to achieve a good representation of uncertainty in climate 
projections (Sanderson, Knutti, & Caldwell, 2015): CESM1-BGC 
(US National Center for Atmospheric Research, NCAR); CMCC-CM 
(Centro Euro-Mediterraneo per i Cambiamenti Climatici, CMCC); 
MIROC5 (University of Tokyo); and ACCESS1-3 (Commonwealth 
Scientific and Industrial Research Organization, CSIRO, and Bureau 
of Meteorology, BOM, Australia).

2.4 | Physiological models

We developed physiological models by coupling physiological data 
with monthly mean, minimum and maximum temperatures fol-
lowing FAO-ECOCROP (Hijmans, Guarino, Cruz, & Rojas, 2001; 
Ramirez-Villegas, Jarvis, & Läderach, 2013) and CLIMEX (Sutherst & 
Maywald, 1985) approaches. The output of the models is a suitability 
index (Si) calculated on cell basis of a spatial raster (5 km). As a global 
equation, we calculated Si as the product of a temperature index (Ti), 
a growing index (Gi) and a killing index (Ki; Equation 1).

Ti was calculated as the fraction of months in which the monthly mean 
temperature (Tk) exceeds LDT (Equation 2).

with

We evaluated Gi based on the growing degree days needed for com-
pletion of development (GDDreq; Equation 3).

For Ki, we checked whether the monthly minimum temperature (Tmin,k) 
fell below the lethal minimum temperature (Tkill,min) and whether the 
monthly maximum temperature (Tmax,k) surpassed the lethal maximum 
temperature (Tkill,max; Equation 4).

with

We evaluated the physiological models using a maximum sensitivity 
approach based on occurrence data. To calculate the sensitivity of the 
model predictions, we projected the models to a global extent in order 
to include all available occurrence records for the evaluations. Models 
with a sensitivity score <0.5 were excluded from the analyses. The out-
puts were classified into binary predictions using the maximum sensi-
tivity threshold calculated with the optimal.thresholds function in the 
‘PresenceAbsence’ package (version 1.1.9; Freeman & Moisen, 2008).

2.5 | Species distribution models

SDMs were calibrated using ensembles (unweighted averages) of 
generalized linear models (GLMs) and generalized additive models (1)Si=Ti∗Gi∗Ki.

(2)Ti=
1
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pk,

pk=

⎧
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0 otherwise
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0 otherwise

.
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(GAMs; Wood, 2006). For each species, we randomly sampled 5,000 
pseudoabsences from the species biomes. We weighted presence 
records in order to balance their weights with the large number of 
pseudoabsence records. We assumed a binomial error distribution 
for both modelling techniques and used fourth-order polynomials to 
adjust the flexibility of the response curve. As predictor variables, we 
used growing degree days above 5°C and minimum temperature of 
the coldest month to reflect the variables used in the physiological 
models. We used a variable selection procedure to reach an accept-
able model performance and projection for as many species as pos-
sible (see Note S1). Further, we followed the standards and guidelines 
for distribution modelling (Araújo et al., 2019). GLMs were fitted with 
the ‘base’ R-package, whereas GAMs were fitted with functions in the 
R-package ‘gam’ (version 1.16.1; Hastie, 2019). For the evaluation of 
model performance, we used a split sample approach (70% calibration 
data and 30% evaluation data) with 20 repetitions to calculate the 
area under the ROC-plot curve (AUC) and true skill statistics (TSS). We 
considered models to be reliable at AUC > 0.7 (Hosmer, Lemeshow, 
& Sturdivant, 2013) and TSS > 0.4 (Descombes et al., 2015) and dis-
carded all others. Additionally, we inspected the quality of all model 
projections visually. For binary classifications of the model outputs, 
we used the optimal TSS threshold (Allouche, Tsoar, & Kadmon, 2006).

2.6 | Comparison of physiological models and SDMs

For each species with reliable projections in both modelling ap-
proaches, we calculated the Pearson correlation coefficient between 
the predicted suitability indices of the two model projections and the 
percentage of agreeing grid cells of the binary projections. Further, we 
calculated the Sørensen index for the community similarity between 
the modelling approaches. For this, we stacked together the predicted 
binary projections of all species for each timestep, resulting in spe-
cies richness raster stacks for the different modelling approaches for 
each timestep. For these raster stacks we calculated the Sørensen dis-
similarity index with the beta.pair function of the ‘betapart’ R-package 
(version 1.5.1; Baselga, Orme, Villeger, De Bortoli, & Leprieur, 2017), 
which we then subtracted from 1 to obtain a similarity index ranging 
from 0 to 1, where 1 indicates complete agreement for the exact same 
set of species and 0 no overlap between the predicted communities. 
To quantify differences between projections of the two modelling ap-
proaches (i.e. absolute model agreement), we subtracted the model 
projection of the SDM from the physiological model projection for 
each species and summed the resulting differences across all species. 
Positive values indicate overrepresentation by the physiological mod-
els, and negative values signify overrepresentation by the SDMs.

2.7 | Analysis of inflection points under 
climate change

Based on the predicted distribution in Europe for each species under 
current climatic conditions, we calculated the relationship between 

the predicted occurrence and the minimum temperature of the cold-
est month by extracting values from all grid cells in the study area. 
Minimum temperature represents the most limiting factor for insect 
distributions (Jarošík et al., 2015). We calculated the average prob-
ability of occurrence for each temperature class (step of 0.1°C). We 
identified the turning-point temperature, marking the border of the 
climatic niche, for each species by fitting GAMs, using the R-package 
‘mgcv’ (version 1.8-31; Wood, 2011), for the relationship between 
minimum temperature of the coldest month and average probability 
for the temperature class. For this, we extracted minimum tempera-
tures, corresponding to occurrence probabilities in the range 0.4 to 
0.6 (in steps of 0.05) from the fitted values of the GAM (Figure S1). 
We ordered species according to the turning-point temperature and 
then investigated the shape of the pattern of the number of species 
along the temperature gradient.

We used the ‘segmented’ R-package (version 1.1.0; Muggeo, 
2003) to identify breakpoints, which mark a change in slope in the 
ordered sequence of turning-point temperatures. To find a suit-
able initial estimate of the number and location of the breakpoints, 
we used the final estimates of the breakpoints and the slopes of 
the linear regression models for the intervals between the break-
points. We isolated the slopes of the two distinct clusters of niches 
and scaled them to the relative number of species used for each 
modelling approach. Finally, we mapped the breakpoint tempera-
tures marking the end of the first cluster, the start of the second 
cluster and the end of the second cluster to highlight the areas 
that are likely to become climatically suitable for warm-adapted 
pests and potentially see a rapid accumulation of newly occurring 
pests. We used representative values of −6°C, 0°C and 6°C as lim-
its for these domains, taking into account the good agreement be-
tween the breakpoints identified for the two different modelling 
approaches (Figure S2).

To determine the inflection point marking the transition between 
the first and the second cluster of pest species, we fitted a GAM 
to the ordered turning-points for each cut-off threshold (0.4–0.6) 
and identified the inflection point temperature with the function 
ese in the ‘inflection’ R-package (version 1.3.5; Christopoulos, 2016). 
We compared the AIC values of the GAMs with linear functions to 
check whether the data follows a non-linear distribution (Table S3). 
We calculated the mean and the confidence interval (0.95%) for the 
inflection zone from the inflection points of the different cut-off 
thresholds. All analyses were done in R version 3.6.3 (R Core Team, 
2020).

3  | RESULTS

3.1 | Model performance and niche limits

The development thresholds varied widely over the study species 
(Figure S3). LDTs were between 1.6°C and 15°C. Degree days re-
quired to complete development ranged from 148 to 1,800 and 
minimum killing temperature ranged from −40°C to 4.5°C. We 
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obtained acceptable model sensitivity (>0.5) for all 75 species, with 
a median of 0.97. We found lower niche limits between −19.3°C and 
10.8°C, with a median over all species of −7.7°C. The upper niche 
limit was the same for all species (12.4°C) and the median niche 
breadth was 20.3°C. For SDMs, we gathered occurrence records 
for 173 pest species. We obtained satisfying model performance 
for 159 pest species, with a median model performance of 0.83 in 
terms of AUC score and 0.59 for TSS. We found lower niche limits 
between −22.8°C and 11.9°C, and upper limits between −4.4°C and 
12.4°C. The median lower niche limit was 0.1, whereas the median 
upper niche limit was 12.4°C. We estimated a median niche breadth 
of 9.2°C.

3.2 | Agreement between modelling approaches

Generally, we observed good agreement between the two model-
ling approaches regarding pest species distributions, despite large 
variation among species and regions. Comparing the pair of model 
projections for all species, we found a median Pearson correlation 
coefficient between the occurrence probability predictions of the 
two modelling approaches of 0.68 under current climatic conditions, 
ranging from −0.8 to 0.88 and with a standard deviation of 0.31. For 
binary projections, this corresponded to agreement of predictions in 

85% of the grid cells. For future climate change scenarios, the pair-
wise model agreement decreased until 2100, where we found a me-
dian Pearson correlation of 0.46 with higher uncertainty (standard 
deviation 0.48), corresponding to agreement in 70% of the grid cells 
(Figures S4 and S5). Concerning the spatial model agreement, we 
observed differences in the community similarity predicted by the 
two modelling approaches. Disagreement arose mainly in Northern 
and Northeastern Europe, as well as in mountain ranges (Figure 1). 
Under future projections, the community similarity increased to-
wards Northeastern Europe, but decreased in southern regions. 
The cumulated model disagreement showed that SDMs were re-
sponsible for the discrepancies in southern regions, because they 
were more restricted at southern range borders (Figures S6 and S7). 
When comparing the niche breadth predicted by the two modelling 
approaches, we observed much broader niches predicted by physi-
ological models than by SDMs. The median of the pairwise niche 
breadth difference was 3.8°C.

3.3 | Shift in modelled pest distribution

Regarding changes in pest species richness over time, agree-
ment between the modelling approaches was good over Central  
Europe and the United Kingdom (Figure 2), while in marginal areas 

F I G U R E  1   Maps of model agreement (Sørensen similarity index) for 2010 (a) and 2100 (b). Blue/red colours indicate lower/higher 
community similarity of predicted species. Results in (b) are based on the RCP8.5 climate change scenario (for results based on the RCP4.5 
scenario, see Figure S8) 
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(Eastern Europe, in particular Belarus and the Ukraine) changes 
were predicted differently by the two modelling approaches. We 
observed an increase in Northeastern Europe and mountainous re-
gions of up to 30 species with physiological model projections and 
up to around 70 species with SDM projections. This corresponds to 
about 50% of species for physiological models and 40% for SDMs. 
When comparing the results of the different RCP scenarios, we 
found a greater increase in the number of species with a suitable 
climate under RCP8.5 than under RCP4.5. In particular, physiologi-
cal models showed a much greater increase in northern regions 
by 2100. For SDMs, the increase across Europe was very similar 
under the two scenarios, but differences arose in southern regions  
(e.g. Iberian Peninsula), where fewer species with suitable climatic 
conditions were predicted for the year 2100 under RCP8.5.

3.4 | Relationship between predicted niche 
distribution and temperature

We observed a non-linear relationship between species rich-
ness and temperature with the physiological models and SDMs 
(Figure 3). Temperature niches showed two distinct groups with 
both modelling approaches. The first group included cold-adapted 

species, predicted to occur in regions that experience minimum 
temperatures of the coldest month below the breakpoint tem-
perature of −6°C. The second group consisted of warm-adapted 
species, existing only in regions where minimum temperatures of 
the coldest month never fall below the breakpoint temperature 
of 0°C. For both modelling approaches, there was only a partial 
overlap between cold-adapted and established species, and be-
tween warm-adapted and quarantine pests. In the warm-adapted 
group, quarantine species were overrepresented (Figure S10). The 
inflection point, marking the switch between the two groups, cor-
responded to a minimum temperature of the coldest month of 
−3.0°C for physiological model predictions and −3.1°C for SDM 
predictions. Additionally, we calculated inflection points for the 
subset of species for which we generated physiological models 
and SDMs (53 species). Including only these species, we observed 
inflection points at −3.0°C (physiological models; ±1.5°C) and 
−1.7°C (SDMs; ±1.5°C).

The spatial dynamics of the inflection point indicated clear shifts 
towards the northeast (Figure 4). The breakpoints (−6°C, 0°C, 6°C) 
are predicted to be dislocated at different rates. While the area 
above the −6°C isoline, marking the border of suitability for all cold-
adapted species, almost covered the entire European continent, 
the other two isolines, marking the start and the end of the cluster 

F I G U R E  2   Change in the number of species between 2010 and 2100, as predicted by (a) physiological models and (b) species distribution 
models (SDMs). The number of modelled pest species was higher for the SDMs (159) than for the physiological models (75), and we 
therefore scaled the changes to 100 species to enable model comparison despite this difference. The white area in central Spain marks the 
region where maximum monthly temperatures above the assumed upper lethal temperature of 40°C in 2100 prevented species occurrence. 
Results shown here are based on the RCP8.5 climate change scenario (for results based on the RCP4.5 scenario, see Figure S9) 
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of warm-adapted pests, were more stable. The area between 0°C 
and 6°C in Figure 4 corresponds to where warm-adapted species 
were predicted to encounter suitable climatic conditions. This area 

increased mainly in Western and Central Europe, but was predicted 
to reach the Atlantic coast of Norway in the North, as well as Poland 
and the coast of the Baltic Sea in the East, by 2100. Slopes of the 

F I G U R E  3   Climatic niches of pest species along a gradient of the minimum temperature of the coldest month. Light blue areas show the 
range in the climatic niche predicted by the physiological models (a) and species distribution models (SDMs; b) for each species, sorted by 
the turning-point temperature obtained with a cut-off threshold of 0.5. Denser blue areas correspond to a higher proportion of grid cells 
with this temperature predicted to be suitable for the species (prob). The dark blue lines show the distribution of turning-point temperatures. 
Inflection points were identified at −3.0°C for physiological model predictions and −3.1°C for SDMs (indicated by the red dashed lines). 
Yellow boxes indicate the group of cold-adapted species (up to the breakpoint of −6°C) and red boxes the group of warm-adapted species 
(between the breakpoints of 0°C and 6°C). For the subset with 53 species, see Figure S11  

F I G U R E  4   Spatial analysis of the 
inflection point across Europe. The maps 
show the minimum temperature of the 
coldest month across Europe in 2010 
(a), 2040 (b), 2070 (c) and 2100 (d) under 
the RCP8.5 scenario. The yellow shaded 
area marks the region where minimum 
temperatures of the coldest month are 
below the −6°C breakpoint. The red 
shaded area marks the region between 
the 0°C and the 6°C breakpoints, where 
a strong acceleration of pest climatic 
suitability is expected. Figure S12 shows 
the results for the RCP4.5 scenario
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increasing number of pests with suitable climatic conditions varied 
between the two groups. With physiological models we found an 
increase of about five species per degree for cold-adapted species 
and seven species per degree for warm-adapted species, and SDMs 
predicted four (cold-adapted) and seven (warm-adapted) species per 
degree.

4  | DISCUSSION

In this study, we compared predictions of species distributions by 
physiological models and SDMs to investigate climatic niches of 
a comprehensive set of insect pest species of agricultural crops. 
Employing both physiological (deductive) and statistical (inductive) 
models entails robustness in cases of agreement and prompts inter-
esting hypotheses when differences arise (Hijmans & Graham, 2006). 
We show general agreement in the predicted species distribution 
between the two modelling approaches. Moreover, with both mod-
elling approaches, we found inflection points around −3°C in the 
minimum temperature of the coldest month, indicating increasing 
pest pressure after this threshold temperature is crossed.

Physiological and statistical models provide coherent results de-
spite conceptual differences. Model projections for current climatic 
conditions showed good agreement for pairwise suitability index 
predictions 0.68), corresponding to 85% of the grid cells for binary 
projections. We found the highest model agreement in areas where 
both approaches predicted similar pest community composition to 
encounter suitable climatic conditions. We found lower similarity in 
Northern Europe (i.e. Scandinavia and the European part of Russia), 
as well as in high mountain ranges (Pyrenees, Alps and Carpathian 
Mountains), mainly because few insect pest species were predicted 
to occur in those regions. Furthermore, the niche breadth obtained 
from models reflects differences between the fundamental and the 
realized niche. We expected niches modelled based on physiological 
limits to be broader than realized niches (Soberón & Arroyo-Peña, 
2017; Venette et al., 2010). The results confirmed this expectation, 
with realized pest niches predicted by SDMs (median niche breadth 
9.2°C) much lower than fundamental climatic niches predicted by 
physiological models (17.1°C). Pairwise comparisons likewise sug-
gested narrower climatic niches predicted with SDMs than with 
physiological models. The broader climatic niches predicted with 
physiological models indicates that SDMs may underestimate the 
climatically suitable area, implying that the regions of potential in-
vasions could be larger than estimated based on SDMs alone. Yet, 
physiological models have also a methodological limitation regard-
ing upper development thresholds, because data are not available 
for most species. Available data for 31 species indicated an average 
of 34.4°C, with only two species having their upper development 
thresholds below 30°C. Monthly mean temperatures above 34°C 
do not occur in Europe under the current climate and are unlikely 
to occur during this century (Figure S13) and thus it is unlikely that 
including upper development thresholds would have altered our pre-
dictions for pest species.

Forecasts of species distributions under climate change have 
been reported to be congruent for deductive and inductive mod-
els (Kearney et al., 2010), although inductive models have also been 
reported to produce more pessimistic predictions than deductive 
models (Lobell & Asseng, 2017). Here, we found a decline in model 
agreement for future projections, with a decrease in median correla-
tion from 0.68 in 2010 to 0.46 in 2100, although the latter value still 
represents relatively good agreement for binary projections (70%). 
We observed that the southern range borders modelled with phys-
iological models remained mostly in the same locations, while SDM 
borders moved towards higher latitudes, resulting in lower commu-
nity similarity in Southern Europe and decreasing model agreement. 
SDMs for future projections are more prone to extrapolation errors 
in areas where new climatic conditions will occur, which is not the 
case for physiological models (Kearney & Porter, 2009). This prob-
lem is particularly important for invasive species because the dis-
tribution is often projected to new environmental conditions (Elith, 
2017), which could explain the decreasing model agreement and 
increasing differences in pairwise comparisons as time progresses.

On the individual species level, we observed differences be-
tween modelling approaches in the predictions of the area with 
suitable climatic conditions for a few species (e.g. Dendroctonus 
ponderosae; Pearson correlation of −0.8). For these species, the 
occurrence records used for the SDMs may not reflect the climatic 
niche represented by the physiological thresholds obtained from 
laboratory studies. For other species, we observed a good spatial 
match between the two approaches regarding distribution ranges 
(e.g. Spodoptera litura; Pearson correlation of 0.88), suggesting that 
the occurrence records for these species well represent their funda-
mental climatic niche, giving additional robustness to the prediction 
(Hijmans & Graham, 2006). For future investigations, we suggest 
using ensemble approaches of physiological models and SDMs for 
a proper understanding of the modelled system, as proposed in 
previous studies (Overmars, de Groot, & Huigen, 2007). One ap-
proach could be to restrict the predicted distribution from correl-
ative SDMs with the fundamental niche produced by physiological 
models (Kearney & Porter, 2009). Physiological models alone are too 
general, predicting only the fundamental climatic niche, while SDMs 
may be too restricting, capturing non-accountable factors (e.g. re-
striction through competition), which distort model projections to 
future conditions (Sinclair, White, & Newell, 2010). However, phys-
iological models give a more direct biological understanding than 
statistical models, which can be more valuable than exact prediction 
(Lobell & Asseng, 2017).

Our results suggest that climate change will lead to an accel-
erated increase in pest pressure over large parts of Europe in the 
near future. We observed a non-linear relationship between niche 
limit positions and the prevalence of insect pest species. Crossing 
the inflection point implies a transition from cold- to warm-adapted 
species, and crossing the breakpoint temperature of 0°C of mini-
mum temperature of the coldest month implies an abrupt increase 
in the number of pests with suitable climatic conditions and there-
fore in the number of pest species that may threaten European crop 
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production. Previous studies have shown that climate change will 
entail northward movement of insect pest species in the near future 
(Bebber et al., 2013; Grünig et al., 2020). Here, we identified an in-
flection point around −3°C in the minimum temperature of the cold-
est month, beyond which the number of pest species with suitable 
climatic conditions in Europe accelerates.

Finding an inflection point for the minimum temperature of the 
coldest month below 0°C would be reasonable, given the physiol-
ogy of insects and their reaction to freezing. Cold tolerance limits 
the distribution of many insects that do not go through winter dia-
pause (Bale & Hayward, 2010). As we considered only monthly mean 
temperatures, the temperatures actually experienced by insects are 
likely to be more extreme than those reported here. For a monthly 
minimum temperature around −3°C, freezing events are very likely 
to occur, even in microhabitats that potentially buffer air tempera-
ture fluctuations and provide shelter to insects for overwintering 
(Danks, 1978). Minimum temperature and freezing events are known 
to act as limiting factors for insect spreading and protect many re-
gions from invasions (Jarošík et al., 2015; Maxmen, 2013), underlin-
ing the importance of the inflection point.

Based on the non-linear response of pest niche distributions 
along a temperature gradient, we investigated the temporal and spa-
tial dynamics of inflection points under climate change. We showed 
that the presence of two groups of species, warm-adapted and cold-
adapted, could lead to two waves of increasing pest pressure. While 
northern regions are currently facing the first wave of insect pest 
invasion, with the cluster of cold-adapted species, Southern and 
Central European regions have already passed the inflection point 
temperatures, and are therefore expected to face the second wave, 
with the cluster of warm-adapted species, in the near future. The 
expected timing of the arrival of the second wave in these regions 
depends on the RCP scenario. Our results support the findings of 
previous studies, showing that abating CO2 emissions could be 
crucial in preventing the impact of pests on crop yields (Deutsch 
et al., 2018), as we find a greater number of species with suitable 
climatic conditions under the RCP8.5 scenario than under RCP4.5. 
Moreover, our results show that some areas are already confronted 
with increased pest pressure, including most parts of Southern 
Europe, the British Isles and Western Europe. Indeed, these regions 
serve regularly as entry gates to Europe for invasive crop pests, such 
as Drosophila suzukii (Calabria, Máca, Bächli, Serra, & Pascual, 2012) 
and Tuta absoluta (Desneux et al., 2010). France and Italy have the 
highest recorded numbers of established alien invertebrates in 
Europe (Roques et al., 2009). While these countries are part of the 
major pathways of global trade and entry gates to Europe for inter-
national shipping traffic, the Mediterranean climate has mild win-
ters, supporting the establishment of more species than in northern 
regions. These findings support the importance of border control 
and improved inspection capacity with increasing trading volume 
(Poland & Rassati, 2019).

The analyses applied in our study have limitations arising from 
data availability and differences in the total number of species 
for which suitable models could be developed depending on the 

modelling approach. Including data on more detailed require-
ments for insect development (e.g. on diapause initiation and 
termination) would improve the individual physiological models, 
however such data is scarce and not available for a broad range 
of species. Further, the size of the sample influences the outcome 
of the general response of species prevalence with respect to 
temperature. We tried to circumvent this problem by including 
data for a wide range of pests, including both cold- and warm-
adapted species, but our list of pests is not complete. In addition, 
the global species pool for invasive insects shows no sign of sat-
uration (Seebens et al., 2017). Indeed, quarantine (i.e. potentially 
invasive) species were underrepresented in this study, suggesting 
an even stronger acceleration of pest pressure after the inflection 
point is crossed. We observed that the inferred inflection zones 
for pests are very similar, irrespective of the chosen modelling 
approach and despite the fact that different sets of species were 
included in the analysis (75 species with physiological models and 
159 with SDMs). We checked whether the same pattern occurs 
with only a subset of the species by only using the 53 species for 
which we could develop models for both the deductive and the 
inductive approach. The results confirmed the existence of an in-
flection point around −3°C. Within the warm-adapted cluster, the 
majority are quarantine species, implying a high invasion risk in 
new areas if minimum temperatures exceed the inflection point 
in these regions. Established pest species, for which we also pre-
dicted range shifts towards higher latitudes and expanding areas 
with suitable climatic conditions within Europe, heighten pest 
pressure in these regions. Increasing temperatures will not only 
promote more invasions of quarantine pests, but also increase 
the spread of established pests, threatening agricultural cropping 
areas that are expanding to more northern latitudes in response 
to global warming.

5  | CONCLUSIONS

We used deductive and inductive models to highlight trends of in-
creasing climate suitability for insect pest species across Europe 
and a non-linear distribution of their climatic niches along a mini-
mum temperature gradient. We found good model agreement 
between physiological models and SDMs under current climatic 
conditions. Forecasts under climate change showed diverging 
model agreement for pest species over time, indicating increasing 
uncertainty. Further, investigating the non-linear relationship be-
tween pest prevalence and minimum temperature made it possible 
to identify an inflection point beyond which the number of pest 
species with suitable climatic conditions increases rapidly. By map-
ping the inflection temperature spatially, we showed temporal and 
spatial dynamics of potential pest pressure under future climate 
change. Such information can inform policy-makers and stakehold-
ers on where and when climatic conditions approach the transi-
tion point for the onset of accelerated pest invasions. New insights 
are necessary for planning crop protection strategies that can 
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effectively help control the new threats. Ultimately, with expand-
ing areas in Europe becoming susceptible to pest pressure in the 
near future, we advise a strengthening of surveillance measures in 
general and border control in particular, and for an improvement in 
inspection capacity.
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