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Abstract: High-throughput sequencing (HTS) technologies have become indispensable tools assist-33 
ing plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample, 34 
without a prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of 35 
the huge amount of generated sequences, it is of utmost importance that researchers can rely on 36 
efficient and reliable bioinformatic tools and can understand the principles, advantages and disad-37 
vantages of the tools used. Here, we present a critical overview of the steps involved in HTS as 38 
employed for plant virus detection and virome characterization. We start from sample preparation 39 
and nucleic acid extraction as appropriate to the chosen HTS strategy, followed by basic data anal-40 
ysis requirements, an extensive overview of the in-depth data processing options and taxonomic 41 
classification of viral sequences detected. By presenting the bioinformatic tools and a detailed over-42 
view of the consecutive steps that can be used to implement a well-structured HTS data analysis in 43 
an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging 44 
in HTS plant virome projects.  45 
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1. Introduction 48 

High-throughput sequencing (HTS) technologies have become an integral part of re-49 
search and diagnostics toolbox in life sciences, including phytopathology and plant virol-50 
ogy [1]. HTS enables the untargeted acquisition of extremely large amounts of sequence 51 
data from diverse sample types and thus represents an ideal and unique solution for ge-52 
neric detection of highly diverse viruses. In the past decade, sequencing prices have sig-53 
nificantly decreased and the technology has become accessible to many more research and 54 
diagnostic labs. From the first uses of HTS for detection of plant viruses in 2009 [2–5], the 55 
use of this technology for detection of known and new plant viruses and the characteriza-56 
tion of viromes in different plant species has escalated dramatically. Many different bio-57 
informatics tools have been developed and different pipelines have been used to detect 58 
and identify plant viruses represented in HTS datasets. The variation in results associated 59 
with the use of different pipelines in different labs has highlighted the significance of un-60 
derstanding different approaches [6]. Arguably, one of the main challenges for less expe-61 
rienced users of HTS is to understand, select and properly use tools for the analysis of 62 
HTS data intended for detection and identification of plant virus sequences. In this review 63 
we aim to present the different and often complementary approaches used for analysis of 64 
HTS data for the detection of plant viruses. Here, we provide a short introduction to the 65 
laboratory work required and then describe the possible steps in data processing for de-66 
tection of plant viruses, including: quality control and trimming of the sequences, de novo 67 
assembly, sequence similarity searches and taxonomic classification of the identified viral 68 
sequences. By including a short glossary (Figure 1), checklists and comparison tables, we 69 
aim to present the topic to the widest possible audience and thus encourage the use of 70 
HTS technologies by researchers with limited experience in the field. 71 

2. What should I anticipate and how should I prepare? 72 

Modern sequencing platforms can generate massive amounts of data, and not all la-73 
boratories wishing to use HTS in their projects have the necessary infrastructure and bio-74 
informatics expertise, which, for example, is one of the main challenges identified for the 75 
adoption of these technologies in diagnostic laboratories [7]. The cost of the bioinformatics 76 
analysis in a HTS project was estimated to be around 15% of the total cost of a program 77 
(an example for whole genome analysis in cancer research), and includes the salary of the 78 
bioinformatician and cost of data storage [8].  79 

Some commercial sequence analysis software is able to handle HTS data (see section 80 
4.3.8), with dedicated modules for common operations (e.g., mapping and assembly). 81 
These software solutions are usually easy to use, regardless of the user’s bioinformatics 82 
skill, but they are also quite expensive and might be limited for some analyses (specific 83 
applications). Furthermore, some “all in 1” viral-detection focused pipelines are available 84 
(see section 4.3.8), which require only limited bioinformatics knowledge or only the help 85 
of a skilled (bio)informatician at the installation stage. 86 

However, to analyze HTS data, particularly for some specific applications, the use of 87 
dedicated bioinformatics software, without easy-to-use graphical user interface, is often 88 
needed to optimize time and efforts. These programs have in a large part been developed 89 
and optimized for the Linux platform, can be used in the command line only and so re-90 
quire specific computing skills. Considering the number of steps with the average HTS 91 
analysis pipeline and the number of samples studied, automation quickly becomes a pri-92 
ority. This can be achieved by writing scripts, as well as grouping and ordering all the 93 
steps of the analysis, which also require expertise in programing languages (e.g., shell, 94 
Python, R). Finally, for the interpretation of the analysis results, skills beyond pure bioin-95 
formatics are needed. A close collaboration between a bioinformatician and a plant virol-96 
ogist (or a plant virologist trained in bioinformatics) is needed to achieve a meaningful 97 
interpretation of the results. 98 

U80807829
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Figure 1. Glossary of terms commonly used in bioinformatics analysis of HTS data for plant virus 100 
detection. 101 
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Beyond the skills of users, IT resources must also be addressed. The amount of data 102 
generated by each project must be anticipated in order to have raw data storage space 103 
available beforehand, and to ensure that data is safely stored at least for several years after 104 
the end of projects. Depending on the sequencing platform, the total size of the raw data 105 
can become very large. For example, the Illumina NextSeq platform can generate from 120 106 
to 300 Gbases (Gb) per run leading to file sizes varying between 39 and 170 GB depending 107 
on the read length. A stable and fast internet connection is often needed to facilitate effi-108 
cient transfer of large data files. The computing resources also need to be anticipated. For 109 
time efficient analysis, it is often necessary to have a more powerful machine than an av-110 
erage workstation to run the various parts of pipelines, regardless of the software used. 111 
An alternative to the acquisition of a powerful computer is making use of online bioinfor-112 
matics platforms and cloud computing solutions. These platforms generally have a struc-113 
ture adapted to the use of software making high demands on system resources (e.g., com-114 
puting clusters). Many research centers or Universities host a Galaxy instance, which rep-115 
resent a very good alternative to the Linux platforms, in a more “user friendly” presenta-116 
tion. 117 

3. Starting the project: How do I prepare samples and sequence nucleic acids? 118 

Sampling, nucleic acids extraction, viral enrichment and sequencing library prepara-119 
tion are essential steps before HTS itself. Since these steps can influence the sequencing 120 
results, we briefly summarize here the most important considerations for some of these 121 
processes. Extensive description of how to control all of these steps is in preparation in 122 
forthcoming international guidelines for the use of HTS tests for the diagnostic of plant 123 
pests [9]. After obtaining the nucleic acids suitable for further analysis using HTS, approx-124 
imate amount of sequence data required per each sample should be estimated according 125 
to the goals of the study. If external sequencing provider will perform HTS, this number, 126 
together with some general characteristic of the samples, should be communicated with 127 
the provider. 128 

3.1. Input material and nucleic acids preparation 129 

The extraction step separates the nucleic acids (including viral nucleic acids) from 130 
other cellular components. There are many methods that can be used to obtain high qual-131 
ity nucleic acids intended for HTS [10–13]. The efficiency of an extraction method is eval-132 
uated by the quantity of nucleic acids obtained, their integrity and the absence of contam-133 
inants that inhibit the enzymatic activities involved in the preparation of sequencing li-134 
braries. Irrespective of the chosen nucleic acid extraction procedure and library prepara-135 
tion methodology, it is recommended to collect several samples per plant to overcome the 136 
uneven distribution of viruses within the plant, especially in the case of low titer viruses. 137 
Different types of nucleic acids can be used as inputs for HTS, combined with different 138 
viral enrichment methods. No method is universal [11,14], each favors certain viral fami-139 
lies or certain experimental objectives [15]. For example, total RNA or small RNA sequenc-140 
ing might be most straight-forward and universal to use for single samples. On the other 141 
hand, for sequencing of pools of many samples, or to optimize the detection of viruses 142 
with a low titer, methods that allow the enrichment of viral nucleic acids, such as Virion-143 
Associated Nucleic Acids extraction (VANA) or the purification of double-stranded RNA 144 
might be preferred. The choice for one of the approaches should be based on the research 145 
question and study design. The purpose of the following paragraphs is to help making 146 
the most appropriate choices for sample preparation. 147 

3.1.1. Total RNA/DNA 148 

Extraction of total RNA and/or, to a lesser extent, DNA is a widely used approach for 149 
HTS analysis of plant tissues infected with viruses. Simple and robust, the method can be 150 
carried out according to several standard extraction protocols in solid phase or in liquid 151 
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phase (Tan and Yiap, 2009) or using commercial kits (mostly based on silica-membrane or 152 
magnetic bead purification). Extraction and sequencing of total DNA can be sometimes 153 
used specifically for the detection of DNA viruses, while sequencing of total RNA is a 154 
very generic approach and can be used for detection of all types of DNA and RNA viruses 155 
and viroids [15]. The high abundance of nucleic acids from the host plant co-extracted 156 
with viral nucleic acids can greatly limit the sequencing sensitivity. The relative propor-157 
tion of viral sequences in the total extracted RNA can be increased by the depletion of the 158 
plant ribosomal RNA [16,17] and the proportion of sequences of circular DNA viruses in 159 
extracted DNA can be enriched by rolling circle amplification [18–20]. 160 

3.1.2 Small RNA (sRNA) 161 

The plant immune system responds to the presence of viruses by activating a defense 162 
response which leads to the cleavage of double stranded forms of viral RNA into small 163 
RNAs (sRNA) of 21 and 22 nucleotides (nt) as well as, more marginally, of 24 nt [21]. The 164 
analysis of sRNAs facilitates the reconstruction of the complete genomes of infecting RNA 165 
and DNA viruses or viroids, as well as those of integrated endogenous viral elements 166 
(EVEs) if they are transcribed [2,15,22,23]. Since sRNAs are more stable than longer RNA 167 
molecules, the method is promising for use in old or even ancient plant samples [24] and 168 
since only very short reads are needed to sequence sRNAs, the method is relatively cost 169 
efficient. On the other hand, de novo assembly from short sequences is complex and might 170 
lead to chimeric sequences in case of multiple infections with different virus strains [25] 171 
and for the same reason, pooled samples used in metagenomic studies including large 172 
number of plants are not recommended to be analyzed with sRNA sequencing. Due to 173 
their short lengths, analyses of recombination events on a read level are also not feasible 174 
with sRNA [22]. 175 

3.1.3 Virion-associated nucleic acids (VANA) 176 

The extraction of Virion-Associated Nucleic Acids (VANA) enriches the samples in 177 
nucleic acids of viral origin by semi-purifying the viral particles by ultracentrifugation. 178 
Viral particles are separated from most of the organelles and plant debris by one or two 179 
differential ultracentrifugation cycles depending on the viral family and the plant mate-180 
rial. After purification of the particles, and a nuclease treatment to degrade non protected 181 
nucleic acids, the viral nucleic acids are extracted according to a standard extraction pro-182 
tocol also used for the extraction of total RNA/DNA. Initially developed for the biochem-183 
ical characterization of viral particles in the 1970s, VANA was used in pioneering studies 184 
of prospecting for viral diversity in wild asymptomatic plants before the advent of HTS 185 
[26,27]. The approach was then extended to the preparation of nucleic acids intended for 186 
HTS [28,29]. It achieves balanced enrichment in high quality viral RNA and DNA and 187 
allows the use of up to several hundred grams of starting material. However, it is based 188 
on the stability of the viral particles mainly determined by the pH and the concentration 189 
of salts in the extraction buffer. Unsuitable for high throughput, and relying on numerous 190 
laboratory operations, the approach only identifies the encapsidated viral nucleic acids as 191 
well as the viruses of the Endornaviridae family, devoid of capsids but encapsulated in 192 
membranous vesicles [28,30]. Moreover, certain viral families are difficult to purify and 193 
VANA is also not the method of choice for extraction of viruses from plants with high 194 
content of phenolic and polysaccharide compounds [31].  195 

3.1.4 Double-stranded RNA 196 

The majority of plant viruses have RNA genomes, accounting for 75% of the total 197 
number of viruses reported [32]. While plants do not produce large quantities of double-198 
stranded (ds)RNAs, RNA viruses generate high molecular weight dsRNA structures dur-199 
ing replication, so their enrichment is a popular strategy used for virus diagnostics 200 
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[10,13,33,34]. Extraction of dsRNA purifies nucleic acids from double-stranded RNA vi-201 
ruses, but also from most single-stranded RNA viruses, viroids as well as from some DNA 202 
viruses [35–38]. This approach allows the detection of a very wide range of RNA virus 203 
species [30,39]. Sequencing of dsRNA is likely not the most effective method for detection 204 
of negative sense single stranded RNA viruses [37]. It is also a laborious approach, even 205 
if, a number of modified protocols have been developed to overcome this limitation 206 
[13,34,40–42].  207 

3.2 Library preparation and sequencing 208 

Following nucleic acid extraction, different methods have been developed for library 209 
preparation using commercially available kits and automated systems. As inputs, the ex-210 
tracted and possibly virus-enriched nucleic acids described in previous paragraphs can 211 
be used. The type of the library preparation and exact protocol is dependent on the input 212 
nucleic acids (e.g., total RNA or DNA, sRNA, dsRNA). Specific libraries are prepared for 213 
different HTS platforms. The library preparation step usually consists of shearing the nu-214 
cleic acids to the size appropriate for intended sequencing platform and the ligation of 215 
short oligonucleotides (adaptors) at one or both extremities of the nucleic acids in order 216 
to allow the sequencing. There are two main groups of HTS platforms: (i) short read HTS 217 
(also termed next generation sequencing – NGS), producing reads up to several hundred 218 
nucleotides, and (ii) long read HTS (also termed single molecule sequencing – SMS), pro-219 
ducing reads up to hundreds of kilobases (kb). Currently, the most commonly used se-220 
quencing platform is Illumina (short read HTS), and, for long read HTS, Pacific Biosci-221 
ences (PacBio) and Oxford Nanopore Technologies. Nanopore sequencing is rapidly de-222 
veloping and is expected to be more widely used in the future [43]. Most of the available 223 
protocols recommend assessing the quality and quantity of the nucleic acids before library 224 
preparation. The integrity and purity of the nucleic acids can be assessed using spectro-225 
photometric and fluorescence-based assays. For some enrichment approaches (e.g., 226 
VANA, dsRNA extraction), the concentrations of the obtained nucleic acids frequently are 227 
below the input required for library preparation so that a random amplification step is 228 
required prior to library construction [13]. 229 

Several samples can be pooled and sequenced in the same sequencing run (multi-230 
plexing). In this case, the oligonucleotides ligated to the nucleic acids during library prep-231 
aration also include specific sequences corresponding to barcodes unique for each sample. 232 
After sequencing, the reads are allocated to the appropriate samples according to the bar-233 
codes used. Most commonly, sequencing reads are contained in a fastq file format, which 234 
also contains some technology-specific descriptors and nucleotide quality values. The 235 
fastq files represent an input for the bioinformatics analysis described in the following 236 
paragraphs. 237 

4. How do I analyze the data? 238 

The first step towards successfully annotating viral reads or contigs is to perform a 239 
quality control of the raw HTS data. After quality control of raw data and prior to any 240 
downstream analysis, it is important to perform pre-processing steps including trimming 241 
low-quality bases, removing adapter sequences and discarding very short and low-qual-242 
ity reads. These steps are explained in more detail in section 4.1. Afterwards, the quality 243 
of pre-processed reads can be checked again. Resulting reads can then be analyzed for 244 
similarity with known viral sequences in several ways as depicted in Figure 2. Trimmed 245 
and filtered reads can be analyzed directly, or they can be first assembled into longer con-246 
tigs (section 4.2). The contigs can then be analyzed for similarity with viral sequences. 247 
Specifically, reads or contigs resulting from assembly can be used directly for similarity 248 
searches against sequence or domain databases, or can be first mapped to a host reference 249 
genome, if available, so that sequences originating from the host can be removed. Reads 250 
that do not map to the host genome can optionally be assembled into longer contigs. The 251 
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contigs obtained from the de novo assembly step can then be annotated using different 252 
strategies depending if they represent known or putative novel viruses. Contigs associ-253 
ated with known viruses can be mapped to the corresponding viral reference genome. In 254 
the case of putative novel viruses, a search of conserved motifs in the translated theoretical 255 
protein sequences can be performed alongside similarity searches at the protein level us-256 
ing BLASTx or DIAMOND tools as explained in section 4.3. Results of those analyses need 257 
to be carefully inspected and further analyses often need to be performed for correct tax-258 
onomic classification of the sequences (section 4.3.7). The described steps can be per-259 
formed using the tools indicated in the flow chart (Figure 2) or other available tools. Fi-260 
nally, the same analyses can also be performed using user-friendly free software with 261 
graphical user interfaces (GUI) available online or using commercial software as described 262 
in section 4.3.8. 263 

 264 

Figure 2: Flowchart representing different approaches for the analysis of HTS data for the detec-265 
tion of plant viruses. Boxes represent different steps in data analysis and interpretation. Arrows 266 
connect different possible sequences of the analysis steps. As an example, a non-exhaustive list of 267 
possible analysis tools is added in the square brackets at each of the analysis steps. Tools desig-268 
nated with * are intended for use with long-read or, specifically, nanopore sequencing data. Point-269 
ing hands lead to the text sections (or figures) with more detailed description of the corresponding 270 
steps. 271 
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4.1. Demultiplexing, quality control and trimming 272 

Each sequencing platform produces a series of quality metrics associated with the 273 
data produced from each sequencing run. A discussion of the metrics with the sequencing 274 
data provider is important before accepting any sequencing data. 275 

If the run was successful, the first step is the demultiplexing of barcoded samples, 276 
which usually carried out using the sequencing platform software or performed by the 277 
sequencing data provider. In the event that data has not been demultiplexed, third party 278 
tools such as Cutadapt [44] can be used to demultiplex the Illumina data by looking for 279 
specific barcode sequences present in the samples. Alternatively, demultiplexing tools de-280 
veloped by the sequencing platform provider are frequently accessible as stand-alone 281 
tools, such as Illumina’s bcl2fastq software [45], or Oxford Nanopore Technologies’ guppy 282 
barcoder script [46]. 283 

Adapter sequences introduced during the library preparation process need to be re-284 
moved. Tools such as Cutadapt [44], Trimmomatic [47] and Porechop [48] or NanoFilt [49] 285 
can be used to carry out this process, with the latter two working specifically for data 286 
generated using nanopore sequencers. At this step, contaminant filtering for synthetic 287 
molecules and/or spike-in is also recommended. 288 

Sequencing data is usually provided in the fastq format, which consists of four lines 289 
per sequence [50], including sequence identifier, raw nucleotide sequence, a separator line 290 
(containing + sign) and sequence quality values. Quality values present in a fastq file rep-291 
resent Phred quality scores, which are encoded as ASCII characters. The quality score (Q) 292 
associated with each nucleotide represents the estimated probability of an error. For ex-293 
ample, a quality score of 0 represents a 100% chance of an error, Q10 = 10% chance of an 294 
error, Q20 = 1% chance of an error etc. 295 

Nucleotides with a low-quality score should be removed to ensure that only high 296 
accuracy bases remain. With Illumina data, values such as Q20 (1% error) and Q30 (0.1% 297 
error) are often used when trimming data, but this value depends on the application and 298 
the sequencing platform used. If accuracy is of the utmost importance (e.g., for detection 299 
of SNPs), selecting a higher quality score will be beneficial. If accuracy is less important 300 
(e.g., for detection of virus), then relaxing constraints on quality when trimming will allow 301 
more data to be available for downstream applications.  302 

Quality control reports can be generated by tools such as FastQC [51], MultiQC [52], 303 
or, specifically for nanopore sequencing data, Poretools [53] or NanoStat [49]. This allows 304 
for the visual inspection of metrics such as per base sequence quality, sequence length 305 
distribution and GC (guanine-cytosine) content. These reports can be generated both be-306 
fore and after trimming, to assess the impact of trimming on different quality parameters. 307 
A number of tools exist to trim sequencing reads based on quality scores, sequence length 308 
or other metrics. These include, but are not limited to, Sickle [54], Trimmomatic [47], 309 
Cutadapt [44], BBDuk (https://sourceforge.net/projects/bbmap/) and NanoFilt for 310 
nanopore sequencing data [49]. Illumina data, particularly longer MiSeq reads, suffer 311 
from lower quality towards the 3’ end of the read. Many trimming strategies start at the 312 
3’ end of such reads and determine the position at which the quality (or the average qual-313 
ity in a region) is high enough to keep. 314 

The order in which these processes are carried out can vary, and some tools can be 315 
used to carry out multiple steps at the same time. The final output should be a series of 316 
demultiplexed samples with reads that have an acceptable sequence quality and no longer 317 
contain sequences added during the sequencing process (e.g., adapters, barcodes). 318 

4.2 De novo assembly  319 

Sequencing technologies have improved in quality and amount of the data generated 320 
in the last ten years. However, up to now, it is not possible to obtain the full-length ge-321 
nome of many organisms in a single high quality read. HTS technologies provide us with 322 
shorter (e.g. Illumina) or longer (e.g. Oxford Nanopore Technologies, PacBio) sequence 323 

https://sourceforge.net/projects/bbmap/
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fragments, which usually need to be assembled in silico to reconstruct complete or near-324 
complete genomes. Compared to bacteria or eukaryotes, viral genomes are simpler and 325 
smaller. Nevertheless, high mutation rates and consequently the great diversity of some 326 
viral populations [55] might represent a challenge for in silico genome reconstruction. As-327 
sembling a genome is like solving a “Jigsaw puzzle”. Similar to a puzzle there could be 328 
pieces fitting together (overlapping reads), missing pieces (regions with low coverage, se-329 
quencing bias) and damaged parts (sequencing errors). The process for which individual 330 
reads sharing sequence similarity are merged to form longer fragments is named de novo 331 
sequence assembly and the nucleotide fragments obtained through this process are called 332 
contigs or contiguous sequences [56]. 333 

Depending on the platform used, the sequence reads can be large or small and from 334 
the computational point of view, different intrinsic features of these two types of output, 335 
led to the development of two major groups of assembly algorithms: (i) de Bruijn graph 336 
(DBG) and (ii) the overlap-layout-consensus (OLC) methods. In the first case, DBGs are 337 
constructed using k-mers, which are substring of the reads of length k; whereas for OLC, 338 
the overlap graphs are constructed directly from reads, eliminating the redundant ones. 339 
The use of k-mers is more widely applied for the assembly of short reads, whilst the OLC 340 
approach is most appropriate for long read data [56,57]. 341 

For short HTS reads, many de Bruijn graph assemblers are available, such as 342 
SOAPdenovo2 [58], ALLPATHS-LG [59], ABySS [60], Velvet [61], IDBA-UI [62] and 343 
(rna)SPAdes [63–65]. One of the first and most widely used and cited assembler [66] in 344 
viral metagenomics [67], is the open-source software Velvet, followed by the more user-345 
friendly and commercially-available CLC Genomics Workbench (https://digi-346 
talinsights.qiagen.com) and Geneious Prime (https://www.geneious.com). The latter has 347 
the advantage of providing a graphical interface for command-line assembly programs 348 
like Velvet and Spades.  349 

Different factors can positively influence the quality of the de novo assembly, e.g., a 350 
preliminary filtering step to eliminate the genomic host plant reads [23] or the selection of 351 
appropriate k-mer values based on the read length [67]. Moreover, approaches in which 352 
de novo assemblies using different k-mer values are generated and then reassembled can 353 
generally improve the completeness of de novo genome assemblies, but this can be a labo-354 
rious and computationally lengthy process. Usually higher sequencing depth and a higher 355 
fraction of viral reads in the dataset will positively affect the completeness of assembled 356 
viral genomes, however, extremely high coverage might have a negative effect on the 357 
completeness of the assembly when using some assemblers, thus, in such cases, assembly 358 
of subsampled data might give better results [15]. Since reads of some viruses can be pre-359 
sent in a very low number, it is important not to set too low cut-offs for contigs length [67], 360 
e.g., a number around or slightly above the 2x length of an average read length is recom-361 
mended. Finally, the use of an additional scaffolding step when using paired-end data can 362 
sometimes further increase the length of the contigs. Nevertheless, despite improvements 363 
in de novo assembly algorithms, 3´ and 5´ ends of viral genomes usually cannot be obtained 364 
in full through de novo assembly. 365 

Although long read HTS platforms can produce reads close to full-length viral ge-366 
nomes, a major issue that could affect the de novo assembly step is the higher error rate (5-367 
15%) of these technologies [68]. Long-read assemblers can algorithmically correct base er-368 
rors before/when building contigs. PBcR [69], Canu [70], Falcon [71] and Pomoxis [72] are 369 
some of the OLC-based de novo assemblers available. Long read nanopore sequencing has 370 
recently been successfully applied to virus discovery, detection and reconstruction of vi-371 
rus genomes, in these studies, Canu is the most cited assembler [73–76].  372 

Contigs generated by de novo assembly can be used in subsequent similarity searches 373 
and finally viral contigs can be used for phylogenetic or recombination analysis. If this is 374 
so, it is important to check the quality of such contigs by mapping the trimmed reads 375 
(explained in section 4.3) to the viral contigs followed by visual inspection of the mapping 376 
and checking the completeness of expected open reading frames contained in this contigs. 377 
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For contigs generated by de novo assembly of nanopore sequencing reads additional qual-378 
ity checking steps might be needed such as assembly polishing [75] or correction of the 379 
consensus sequences using quality data of mapping reads [76]. 380 

When the presence of specific viruses is already known, viral genomes can be recon-381 
structed by mapping the reads (explained in section 4.3) to the closest reference sequences 382 
obtained from sequence databases (after initial similarity searches, section 4.3). This is 383 
then followed by the extraction of new consensus sequence from the mapping, an ap-384 
proach known as reference guided assembly. Sometimes, parts of the viral genomes are 385 
obtained by de novo assembly and parts through reference guided assembly; such an ap-386 
proach is also known as combined assembly. 387 

4.3 How do I find and classify viral sequences in my data? 388 

Identification of viral reads/contigs in massive datasets produced after HTS is most 389 
frequently performed by comparing sequences against known and annotated sequences 390 
in databases. Because longer sequences in almost all cases improve the ability to identify 391 
similarities regardless of the method or databases used, an assembly of quality checked 392 
raw reads is generally recommended prior to similarity searches. At the same time, a prior 393 
assembly will also generally reduce the computing time needed for the similarity search 394 
steps as up to millions of reads can be assembled in a single contig. Annotation of HTS 395 
reads, or contigs, on the basis of similarity with known viral sequences can be performed 396 
using three main strategies: homology searches with tools such as BLAST [77], read/contig 397 
mapping against reference viral genomes using tools such as BWA [78] and the search for 398 
encoded, conserved protein motifs using tools based on Hidden Markov Models (HMMs) 399 
such as HMMER [79]. Each of these approaches and, in turn, each of the specific programs 400 
used to perform them, has advantages and drawbacks. In many cases, they should be seen 401 
as complementary rather than mutually exclusive possibilities. Several additional alterna-402 
tives have also been proposed. For example, the use of e-probes (short unique pathogen-403 
specific reference sequences) [80] or the analysis of the frequency of specific k-mer se-404 
quences (see section 4.3.5). A summary of tools commonly used for similarity searches is 405 
presented in Table 1.  406 

4.3.1 Databases 407 

The database(s) against which sequences are compared is/are of utmost importance 408 
for the efficiency and completeness of the annotation process. The more complete the col-409 
lection of viral sequences, the greater the likelihood of detecting and identifying the pres-410 
ence of a virus. For BLAST and BLAST-like approaches, the most used databases are the 411 
non-redundant nucleotide database (nr/nt, named also just nt) hosted by NCBI, the non-412 
redundant GenBank protein database (nr) or the viral RefSeq database. The GenBank non-413 
redundant nucleotide and protein databases are the most comprehensive and most fre-414 
quently updated public databases, limiting the time from discovery of a novel virus to its 415 
availability for comparisons (provided the local version of these databases is also regu-416 
larly updated). However, the size of these databases has the drawback of increasing the 417 
computing time/power needed to perform a comparison. The reduced viral RefSeq data-418 
base has the benefit of better annotation/curation at the expense of the number of included 419 
sequences and of less frequent updates. For read mapping approaches, smaller dedicated 420 
databases are generally used, such as a subset of all viral sequences from the NCBI nt 421 
database, viral RefSeq or a smaller, locally developed and curated database (for example, 422 
one or several isolates of every virus known to infect the crop of interest). For conserved 423 
protein motifs searches, the most common databases are PFAM [81] and CDD [82]. Iden-424 
tification of viral sequences is critically dependent upon the quality of the database(s) 425 
used. For example, some plant derived proteins might also be misidentified as viral if only 426 
a virus sequence database is used for similarity searches, because some viral proteins are 427 
related to plant encoded proteins. Typical examples are heat shock proteins (i.e.,. Hsp70) 428 
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proteins found in closteroviruses [83], or reverse transcriptase proteins of Caulimoviridae 429 
that have homologs among retrotransposons. Wrongly annotated sequences in the public 430 
databases can also lead to erroneous annotations. 431 

Table 1. Summary of the most commonly used similarity search strategies with advantages and 432 
limitations for each of the strategies. 433 

Tool name Advantages Limits and considerations Important thresholds 

BLASTx or BLASTn High accuracy Slow, intensive use of computing power if large 
database is used, BLASTx needed for detection of 
divergent novel viruses, BLASTn needed for de-
tection of viroids and noncoding regions of viral 
genomes or satellites; performance improved by 
prior assembly of contigs. 

Minimum percentage of identity; 
length of identified region of simi-
larity; minimal e-value, bit-score. 

MegaBLAST Faster than 
BLASTn, 
handles longer 
sequences 

Less sensitive than BLASTn, only useful for detec-
tion of nucleotide sequences very similar to the 
ones in the used database; performance improved 
by prior assembly of contigs. 

Minimum percentage of identity; 
length of identified region of simi-
larity; minimal e-value, bit-score. 

BLASTp High accuracy Slow, need to translate nucleotide sequences to 
proteins first; performance improved by prior as-
sembly of contigs; not applicable for viroids or 
noncoding regions of viral genomes or satellites. 

Minimum percentage of identity; 
length of identified region of simi-
larity; minimal e-value, bit-score. 

DIAMOND Faster than 
BLASTx 

Less sensitive, annotation less accurate than 
BLAST; performance improved by prior assembly 
of contigs; only available for searches against pro-
tein databases; not applicable for viroids or 
noncoding regions of viral genomes or satellites. 

Minimum percentage of identity; 
length of identified region of simi-
larity; minimal e-value, bit-score; 
use sensitive mode. 

Burrows-Wheeler 
transform-based map-
ping algorithms (e.g., 
BWA or Bowtie2) 

Does not re-
quire prior as-
sembly of con-
tigs, high sensi-
tivity for short 
sequences 

Only allows detection of known agents. Difficult 
to adjust mapping stringency to (1) allow detec-
tion of divergent isolates while (2) avoiding cross-
mapping between related agents; prior assembly 
of contigs reduces cross-mapping between related 
agents. 

Mapping stringency (e.g., mis-
match penalties, gap open/exten-
sion penalties, percent of read 
length matching reference, mini-
mum percentage of identity…) 

HMMER or HMM-
Scan 

High efficiency 
for detection of 
distant homo-
logs 

Annotation more complex for protein families 
shared between cellular organisms and viruses; 
not applicable for viroids or noncoding regions of 
viral genomes or satellites. 

Minimal e-value. 

K-mer based classifi-
cation algorithms 
(Kraken or Taxono-
mer) 

Fast Requires large computer memory; accuracy may 
be limited for the shorter genomes of plant vi-
ruses; the confidence scoring of the results is not 
straight forward. 

C/Q ratio for Kraken (advise the 
manual). 

4.3.2 BLAST and BLAST-like approaches 434 

BLAST programs are the most widely used and among the most accurate in detecting 435 
sequence similarity [84]. The BLAST suite [85] comprises different algorithms, each with 436 
its own use: 437 

1. BLASTn can be used to compare a nucleotide sequence with a nucleotide database. 438 
It is less computationally intensive than BLASTx, but because of the higher diver-439 
gence rate of nucleotide sequences, it is less efficient for the annotation of novel vi-440 
ruses not represented in the database used. 441 
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2. BLASTp can be used to compare a protein sequence with a database of protein se-442 
quences. 443 

3. BLASTx can be used to compare a nucleotide sequence translated in all six reading 444 
frames with a database of protein sequences. While computationally intensive, it is 445 
the most efficient BLAST program for the annotation of novel viruses. 446 

4. tBLASTn can be used to compare a protein sequence with all six possible reading 447 
frames of a nucleotide database and is often used to identify proteins in new, unan-448 
notated genomes.  449 

5. tBLASTx can be used to compare all six reading frames of a nucleotide sequence with 450 
all six reading frames of a nucleotide database. It is the costliest in computation time. 451 

6. MegaBLAST can be used to compare nucleotide sequences expected to be already 452 
present or closely related to those in a nucleotide database. It can be much faster than 453 
BLASTn and is able to handle much longer sequences but deals less efficiently with 454 
very divergent sequences. 455 

Short sequences may lead to false positives in BLAST searches and for this reason, 456 
other approaches should be preferred for very short reads or contigs. All BLAST programs 457 
return a table of results, which contain several parameters, among which some are partic-458 
ularly important to check: the identity threshold (threshold for the % of identical nucleo-459 
tides between the query sequence and a hit in a database), e-value (expected number of 460 
random hits in the used database for a given query sequence) and query coverage (% of 461 
the query sequence covered by the database hit). It is very important to consider that some 462 
of these values depend on the size of the database used and that the use of too stringent 463 
parameters (e.g. identity threshold >85% and e-value smaller than 10-10) may lead to a fail-464 
ure to detect some divergent viruses [6]. BLAST is very widely used, but remains, in the 465 
case of millions/billions of reads analyses, a time-consuming algorithm. Restricting the 466 
database used to specific taxa (e.g., viruses) can speed up BLAST searches but care should 467 
be taken as this frequently leads to the identification viral reads which on closer examina-468 
tion, using complete databases, are in fact host sequences (e.g., plant sequences). An ex-469 
tremely fast but considerably less sensitive alternative to BLAST is BLAT (BLAST Like 470 
Alignment Tool) [86]. Another faster alternative to BLASTx is DIAMOND [87] which runs 471 
at 500-20,000x the speed of BLAST, while maintaining a high level of sensitivity, especially 472 
if using the sensitive mode. The DIAMOND annotations have however been observed to 473 
be less optimal in virus species identification than BLAST ones (ML & TC personal obser-474 
vations). 475 

4.3.3 Mapping reads (or contigs) to reference database 476 

Mapping tools are commonly used as a filtering step to remove host genome se-477 
quences or as a complement to similarity searches on short nucleotide sequences. Reads 478 
originating from the host genome can be partially removed by mapping the complete da-479 
taset to reference genomic sequences of corresponding host (if available) and then using 480 
only unmapped reads for further analyses. A reference genome sequence of the host must 481 
be chosen carefully, since it can affect the analysis. Choosing divergent variety/genotype 482 
of the host might reduce the efficiency of the host reads removal. Furthermore, reference 483 
host genomes might contain contaminating or genome-integrated viral sequences, thus, 484 
some viral reads can be lost in this step.   485 

Mapping tools can be also used to perform the alignment of reads or contigs against 486 
a reference viral database (e.g., NCBI Viral RefSeq database or a custom developed data-487 
base containing one or more complete or partial genomes). In comparison to BLAST pro-488 
grams, most of the mapping tools such as Bowtie2 [88] or BWA [78] build an index for the 489 
reference genome or the reads, increasing the speed of the analysis if used against a lim-490 
ited, virus-specific database. The mapping strategy is potentially more sensitive to detect 491 
viruses with low number of reads in analyzed datasets [6], in particular when using 21-24 492 
nt sRNA sequences. Consequently, it is also sensitive to cross-sample contamination due 493 
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to index-hopping, which may require the development of strategies to set a positivity 494 
threshold. On the other hand, mapping strategies are inefficient at detecting novel viruses 495 
or viroids that are absent from the database used. Mapping stringency parameters (see 496 
Table 1) critically affect the outcome of the analyses and should be optimized keeping in 497 
mind the objective of the experiment. Too stringent parameters may result in the failure 498 
to detect divergent viral isolates. Too relaxed parameters may also give rise to erroneous 499 
results, through the mapping of related host genes on a viral genome or through cross-500 
mapping of reads of a virus on the genome of a related virus. It is therefore highly recom-501 
mended to carefully analyze mapping results. An efficient strategy, besides counting the 502 
number of mapped reads on a particular reference genome considers the portion of this 503 
genome covered by the mapped reads, the percentage of similarity between mapped 504 
reads and the reference or other similar indicators to eliminate potential false positive re-505 
sults. Including suitable reference samples as controls during sample preparation and se-506 
quencing can help to eliminate such errors [9]. Similar to reads, contigs generated by de 507 
novo assembly can also be mapped to the reference databases. Due to the greater length of 508 
the contigs, less erroneous mapping results are expected. However, the same recommen-509 
dations for careful inspection of mapping results apply.  510 

4.3.4 Protein domain searches 511 

Searching for known viral domains by matching translated protein sequences of 512 
reads/contigs with Hidden Markov Models (HMMs) of known protein domains using 513 
programs such as HMMER [89] or HMMScan is a popular alternative to BLASTx. With 514 
this method, sequences are first translated in all possible reading frames and the trans-515 
lated protein sequences are compared to a database of conserved protein motifs such as 516 
PFAM [81] or CDD [82]. These approaches are faster than BLAST-based homology 517 
searches and more effective than mapping or BLAST searches for the detection of very 518 
distant homologs [90] and therefore, possibly for the detection of novel, very divergent 519 
viruses. Like with BLAST, a significance e-value is calculated, allowing the evaluation of 520 
the significance of a match. This e-value can be used to filter results, striking a balance 521 
between low values and the reporting of false-positives, and high values and the failure 522 
to detect a divergent virus. 523 

4.3.5 K-mer approaches and machine learning-based approaches 524 

Nucleotide k-mer-based approaches can be used to annotate sequences based on the 525 
presence and frequency of specific k-mers. Comparing these frequencies is computation-526 
ally less demanding and faster than sequence alignment but requires a lot of computer 527 
memory. Even if most of the k-mer-based classification tools, such as Kraken [91,92], Kaiju 528 
[93] or Taxonomer [94], are not dedicated toward detection of plant viruses, they can be 529 
used for such purpose. Kodoja [95] uses a combination of such tools for the taxonomic 530 
classification of plant viruses in metagenomic data. Most of the tools are not very user 531 
friendly and the use of k-mer tools for plant virus detection is fairly new, thus some ques-532 
tions remain to be answered, e.g., the usability of k-mer tools on small RNA data sets [95]. 533 

Methods based on machine learning are being developed for detection of viral se-534 
quences in metagenomics datasets. Several tools have already been published, e.g., Vira-535 
Miner [96], DeepVirFinder [97] or Virnet [98] for human virus detection purpose. Given a 536 
metagenome with known composition, a machine learning approaches attempt to find 537 
some meaningful patterns that allow to differentiate the host from the virus. When un-538 
known metagenome dataset is provided, the software should be able to discriminate virus 539 
sequences from host sequences using the learnt pattern. Machine learning tools are new 540 
in this field, thus, we still lack their in-depth comparison with the more known approaches 541 
discussed above. 542 



Microorganisms 2021, 9, x FOR PEER REVIEW 14 of 31 
 

 

 543 

Figure 3: Checklist of the most important considerations to keep in mind during HTS data pro-544 
cessing for detection of plant viruses 545 

4.3.6 Which analysis approach should I choose? 546 

The variety in similarity-based annotation approaches is striking. Choosing the most 547 
relevant one will depend on criteria such as the aims of the study (diagnostic, meta-548 
genomics) and the time/computational power available. Whichever program/approach is 549 
selected, it is important to consider its limitations and to properly set the key parameters 550 
to avoid false-positive or false-negative results. Fast programs can be used as a filtering 551 
step and then validated by slower approaches, or alternatively, two approaches can be 552 
used to validate each other. If computational time or power is not a serious limitation, 553 
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combining several approaches may enhance the ability to obtain an accurate annotation 554 
[99]. We also provide a checklist, identifying the most important considerations, which 555 
should be taken into account when analyzing HTS data (Figure 3). 556 

Moreover, when analyzing the data obtained from long-read technologies, one 557 
should pay special attention to using approaches which enable efficient processing of such 558 
data. Mapping algorithms have been developed for processing of long read data with 559 
higher error rates, such as Minimap2 [100]. For BLASTx-like similarity searches, algo-560 
rithms, which can handle frame-shift mutations (caused by the relatively higher error 561 
rates), such as DIAMOND [87], are preferred. Assembly and polishing of long read data 562 
can improve further processing [101] and improve the chances for correct identification of 563 
viral sequences in the data. 564 

4.3.7 Taxonomic classification 565 

To assign viruses to taxonomic ranks species demarcation criteria specifically set for 566 
different viral genera need to be followed. Often, identities <75% at the nucleotide or pro-567 
tein level are indicative of a new viral species, however, the threshold might be also lower 568 
or higher, such as at <91% for begomoviruses. Identities <60% might be indicative of a 569 
new viral genus, however, the threshold might be also lower or higher, such as <45% 570 
within Betaflexiviridae family. As noted, these criteria differ substantially between virus 571 
families and genera but up-to-date information is published by the International Commit-572 
tee on Taxonomy of Viruses (ICTV) in the latest taxonomy reports [102,103] that can be 573 
found online (https://talk.ictvonline.org/taxonomy/). Once a sequence is identified to a 574 
family or genus level, a pairwise sequence comparison (PASC) webtool [104] to support 575 
virus classification, hosted by NCBI (https://www.ncbi.nlm.nih.gov/sutils/pasc/), can 576 
quickly provide an indication on how a new sequence fits in that genus or family. In cases 577 
where virus sequence identity is near the limit of the identity cut-off values for different 578 
species, additional information and/or justification may be required for their definite clas-579 
sification. These could include biological information such as host species, vector species 580 
or symptom types, but if enough isolates have been sequenced population genomics ap-581 
proaches can also be employed [105].  582 

Strains of viruses do not fall under official taxonomy. Rather, they are definitions 583 
utilized by communities of practice around virus species and would thus require a review 584 
of the literature concerning the specific virus species to be able to classify the sequence to 585 
a particular strain or phylotype. This is a process that generally includes phylogenetic 586 
analysis of the identified sequence with published virus (reference) sequences.  587 

The approach described above can be rather straightforward if complete genomes of 588 
viruses with a single genome segment have been assembled. However, things can become 589 
more ambiguous in situations where a new virus has multiple genome segments or have 590 
been incompletely assembled, resulting in several contigs corresponding to different parts 591 
of a viral genome. The individual contigs for a novel virus may be equally distantly related 592 
to several known viruses and can then show the highest level of similarity with different 593 
viruses, which could lead to the erroneous interpretation that several new viruses are 594 
found in the same sample. This issue will often manifest itself in the previous step of sim-595 
ilarity searches, and to resolve this the first recommended step is to identify the taxonomic 596 
position of all the best hits identified for the different viral contigs. If several best hits fall 597 
within the same genus or family, one could suspect they may correspond to the same 598 
virus. The next step would be to investigate the general viral genome structures in the 599 
identified genus or family from the ICTV reports and ascertain if the different best hits 600 
correspond to the same or different genomic regions for that type of virus. If they are all 601 
different, it is likely that a single new species is present, if the same region is covered by 602 
multiple contigs which differ significantly from each other, then the scenario of multiple 603 
new viruses belonging to a similar taxonomic group is more probable. A checklist in Fig-604 
ure 4 contains most important points to keep in mind for taxonomic classification of viral 605 
sequences obtained by HTS. 606 
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 607 

Figure 4: Checklist of the most important considerations during taxonomic classification of plant 608 
viruses detected by HTS. 609 

New viruses belonging to previously undescribed families and/or genera can often 610 
only be reliably aligned by using the translated amino acid sequences of conserved genes 611 
such as polymerases and coat proteins. In these cases, phylogenies generated with viruses 612 
from related genera or families are needed to determine the exact taxonomic position. 613 
Additional criteria, such as number of open reading frames and overall genomic organi-614 
zation need to be considered to classify a virus as a member of a new genus or family. 615 
When there is uncertainty, viruses can be categorized as unclassified new species, until 616 
new evidence arises that can support a definite classification. 617 

Irrespective of the situation encountered, to become officially recognized species, 618 
generally a near complete genome sequence, including the complete coding sequence in-619 
formation, is required by the ICTV to assign a ‘sequence only’ virus to a species level. If 620 
relevant supportive biological data is available that rule is more relaxed and will be de-621 
termined by the relevant virus family study groups. 622 
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4.3.8 “Quick start” methods 623 

Depending on the computational background of the user, there are different ways to 624 
approach the analysis. Many software solutions are available for detecting the presence 625 
of (plant) viruses in HTS datasets, summarized recently by several reviews [106,107]. For 626 
beginners or newcomers in the field, all these tools can be overwhelming. The quick-start 627 
guide (Figure 5) might be handy to select an appropriate tool or pipeline.  628 

 629 

Figure 5: Quick-start guide assisting selection of analysis approaches for plant virus detection 630 
from HTS data. 631 
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Among these options, easy-to-use pipelines that do not requiring extensive compu-632 
tational expertise might be a good start. These pipelines present a user-friendly interface 633 
on-line or directly on the computer. A first group of pipelines can be considered as “all in 634 
one”: they automatically start on the raw data to deliver the final results as a list of viruses 635 
detected. They may or may not allow the adaptation of parameters. A second group cor-636 
responds to pipelines for which the different steps of the process have to be done sepa-637 
rately and independently. This is the case when using commercial software such as CLC 638 
Genomics Workbench or Geneious Prime, which both also enable the building of custom-639 
ized “all-in-one” workflows. Table A1 summarizes the pros and cons of the most common 640 
“easy-to-use” analysis solutions. Ease of use may generate a false sense of confidence in 641 
the results and as with all pipelines. Understanding of the steps and the parameters of the 642 
pipelines, as well as critical interpretation of the results is always required. 643 

4.4 What to do when the data analysis is concluded? 644 

4.4.1 Identity confirmation by an independent technique 645 

As for many other test methods, HTS may sometimes provide false positive results. 646 
If consequential, it is therefore important that HTS results are confirmed.  647 

The need to confirm the identity of a pest depends on the context of the analysis and 648 
on the type of organism identified (e.g., identification of a quarantine compared to an en-649 
demic pest). The results must be confirmed in cases considered critical to national or in-650 
ternational plant protection programs. These are the detection of a pest in an area where 651 
it is not known to occur or in a consignment originating from a country where it is de-652 
clared to be absent; and also, when a pest is identified by a laboratory for the first time 653 
(EPPO PM 7/76, 2019). The identity of any uncharacterized pest with potential risks to 654 
plant health should also be confirmed by another test. Whilst a virus in its common host 655 
is unlikely to require confirmation (if not regulated), it may be useful if associated with 656 
different symptoms (e.g., an emerging strain) or if detected in a new host.  657 

When confirmation is needed, it is recommended to use a test or a combination of 658 
tests based on different biological principles (e.g. ELISA or targeted PCR instead of rese-659 
quencing the sample using the same protocol). If available, validated tests should be used 660 
and a new sample extract obtained for analysis. The selection of confirmatory tests de-661 
pends on the performance characteristics required, the general characteristics of methods 662 
for plant virology have been reviewed by Roenhorst et al. (2018). If no other tests are avail-663 
able to confirm the identity of the pest (i.e., poorly characterized and uncharacterized or-664 
ganisms), primers should be designed and tested, based on the HTS sequence data and 665 
available sequence information in the sequence databases. Alternatively, generic primers 666 
that enable the amplification of viruses within a genus or family, including the targeted 667 
one(s), followed by Sanger sequencing of the amplicons could be used to confirm the iden-668 
tity.  669 

4.4.2 Biological characterization post HTS detection 670 

Based on HTS, the list of thus far unknown or poorly characterized viruses for which 671 
only genome data are available is rapidly increasing [109]. This presents a challenge for 672 
the further steps necessary to determine the causative relationship to a disease and guide 673 
phytosanitary diagnostic laboratories on data interpretation and recommendations. Vi-674 
ruses for which only genome data are available can indeed be taxonomically assigned but 675 
the real challenge is to attribute biological meaning to their detection. The interpretation 676 
of the biological relevance applies mainly to poorly characterized and uncharacterized or 677 
newly discovered viruses. For example, the viral sequences detected may correspond to a 678 
bona fide virus infecting other organisms associated with the sample, including bacteria, 679 
fungi or arthropods [110,111] or to viral sequences integrated into the plant genome 680 
[112,113]. As stated previously [113], relevant scientific expertise is essential for sound 681 
biological interpretation of HTS results, in particular when identifying a target with a low 682 
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titer, a poorly characterized species, an uncharacterized organism or sequences integrated 683 
in the host genome [67,114].  684 

The extent to which additional biological characterization is performed depends 685 
largely on the potential risk the organism(s) would pose to plant health, although acqui-686 
sition of such data may take time or may not be possible (e.g., lack of human and/or fi-687 
nancial resources). The scaled and progressive scientific framework proposed by Massart 688 
et al. (2017) is a useful tool for guiding the biological characterization and the risk assess-689 
ment of an uncharacterized or poorly characterized plant virus detected by HTS.  690 

4.4.3 Sharing data to leverage knowledge 691 

After the detection of the virus in the laboratory, the researcher or diagnostician faces 692 
an important dilemma: when and how to share data publicly. As shown by recent exam-693 
ples [115–117], pre-publication data sharing between laboratories brings valuable infor-694 
mation to address the risks raised by a virus. Sharing data will give a more global picture 695 
of its geographical repartition, its genetic diversity, its host range and symptomatology, 696 
allowing a contextualized risk analysis and avoiding unnecessary regulatory action. 697 
When shared, the genome information usefulness is leveraged. Data sharing must also 698 
include metadata from the sample (e.g., origin, species, cultivar, time point, organ of sam-699 
pling). Nevertheless, data sharing is not always easy due to regulatory implications and 700 
for commercial work laboratories may be bound by confidentiality agreements [7]. Be-701 
sides sharing sequence data itself, sharing of analysis pipelines, protocols and experiences 702 
between labs can greatly contribute to the harmonization of the field and provide useful 703 
resources for newcomers to the field. The recently established Plant Health Bioinformatics 704 
Network (PHBN) aims to foster this approach and provide protocols, pipelines 705 
(https://gitlab.com/ilvo/phbn-wp2-training) and reference datasets 706 
(https://gitlab.com/ilvo/VIROMOCKchallenge) [118] that can be widely employed. It also 707 
aims to organize community efforts to advance certain aspects of plant health bioinfor-708 
matics (https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening). 709 

4.4.4 Additional bioinformatics analyses 710 

Further analyses, beyond viral detection and taxonomic classification, can be per-711 
formed on HTS data, depending on the goal of the study. For instance, the large amount 712 
of sequence generated by HTS allows a good resolution of the within-host genetic diver-713 
sity of the viral populations. Assessing the genetic diversity within and among viral pop-714 
ulations can provide a better understanding of virus evolution and help to determine pop-715 
ulation genetic parameters or epidemiological patterns. This can be done using single nu-716 
cleotide polymorphism (SNP) calling algorithms, which need to allow detection of low 717 
frequency variants expected in virus populations. Other analysis, like genetic recombina-718 
tion detection, can also be performed. The most popular software solutions, which detect 719 
recombination patterns comparing full or partial viral genomes and run on Windows, are 720 
RDP4 [119], SimPlot [120] and TreeOrder Scan [121]. ViReMa (Viral Recombination Map-721 
per) can be used for detection of recombination junctions, as well as insertion/substitution 722 
events and multiple recombinations within single reads [122], and has been successfully 723 
applied for the analysis of recombination events in plant virus genomes [22,123,124]. Phy-724 
logenetic relationships among the detected and previously known viruses can also be in-725 
vestigated using fast neighbor-joining algorithms [125], more precise maximum likeli-726 
hood approaches [126,127] or Bayesian analysis approaches [128]. Freeware phylogenetic 727 
analysis suites, such as MEGAN [129], or phylogenetic analysis algorithms integrated 728 
within commercial software, such as CLC Genomics Workbench and Geneious Prime, can 729 
be used. Studying the time of emergence of viral species and strains including the distri-730 
bution of the genetic diversity across geographical sites can be done using software such 731 
as BEAST [130] and SPAGeDI [131]. 732 

733 

https://gitlab.com/ilvo/VIROMOCKchallenge
https://gitlab.com/ilvo/PHBN-WP4-RNAseq_Community_Screening
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5. Conclusions and outlook 734 

In this review we aimed to provide an informative primer on the generation and 735 
analysis of HTS data for detection of plant viruses. Even though the field of HTS is trans-736 
forming rapidly and new platforms and analysis tools are being developed constantly, the 737 
basic concepts of data analysis reviewed here will remain relevant in the future. In the 738 
next few years, we expect a great increase in the use of the long read HTS platforms. New 739 
algorithms and pipelines for analysis of data will continually be developed, building on 740 
some of the concepts described above. These developments are likely to focus in two main 741 
areas. Firstly, the adoption of deep learning approaches will likely be more and more in-742 
tegrated into the field of virus detection, on different levels, from similarity searches to 743 
the estimation of detection confidence levels, to enable the more robust detection of virus 744 
sequences that are more distantly related to those we currently recognize. Secondly, with 745 
the further development of nanopore sequencing-based platforms, potentially facilitating 746 
on-site HTS analysis of samples, we will need faster and more memory-efficient analysis 747 
approaches to enable rapid data analysis, potentially away from centralized facilities. 748 
Moreover, guidelines are being developed to enable validation and verification of HTS-749 
based detection of plant pathogens in research and diagnostic settings, which also include 750 
bioinformatics steps of the analysis [9]. These guidelines will provide detailed information 751 
on how to use appropriate controls and which specific results parameters to use to ensure 752 
the validity of the results, briefly covered in Figure 3 and Figure 4 in this text. Finally, we 753 
encourage the readers to use this guide as a starting point for the selection of appropriate 754 
analysis approaches and to get further informed about the specifics of the algorithms (Fig-755 
ure 5). By combining knowledge on the analysis approaches with a sound plant virology 756 
background, we can maximize the potential of these technologies and provide sound in-757 
terpretation of the results. 758 
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Appendix  770 

Table A1: List of selected easy-to-use analysis solutions for detection of plant viruses with their pros and cons 771 

Pipeline 
Brief descrip-
tion 

Web link / Pub-
lication 

Pros Cons 

Virusdetect 

Virus discovery 
using sRNA and 
RNAseq se-
quences 

http://vi-
rusdetect.fei-
lab.net 
[132] 

• Easy to use: single command to run one or multiple datasets 
simultaneously.  

• Performs de novo assembly and reference mapping in parallel, 
including optional host genome subtraction and identified 
contigs through BLASTn & BLASTx.  

• Automatic results organization and presentation in html table 
providing key metrics on coverage, sequence depth, virus and 
genus name and link to visual map and NCBI GenBank refer-
ence sequence.  

• Options to modify key assembly, mapping and reporting pa-
rameters. 

• Windows version with visual interface & automatic quality 
control and trimming to be released in 2021. 

• Available via user account online. 

• Uses complete NCBI GenBank database for vi-
ruses (divided along host type) for reference map-
ping and identity searches. NCBI GenBank se-
quences are poorly curated and may lead to re-
ports of wrong results. 

• Creating & formatting new custom or up to date 
NCBI GenBank reference library is not very 
straightforward and ready formatted updates are 
not uploaded very regularly to the VirusDetect 
webpage. 

• Currently requires Linux environment, which is 
an impediment for many diagnosticians.  

• Default reporting cutoff settings are optimized for 
siRNA to minimize false positives due to index-
hopping, however may lead to non-reporting of 
low concentration viruses. 

Virtool 

HTS sample 
manager with vi-
rus detection, 
discovery and 
analysis work-
flows 

www.virtool.ca 
 
https://github.co
m/virtool/vir-
tool 
 
[36] 

• Open source modern graphical optimized for cloud compu-
ting. 

• User and group control with password protection; sample 
data management; security and QA features. 

• Support for multiple workflows and versioned databases for 
viral and non-viral pathogens.  

• Can process short and long reads (Illumina, Oxford Nanopore 
Technologies). 

• Result visualization, filtering, and sorting. 
• HTTP API for automation or integration with other services 

such as LIMS. 

• Requires some more computational skills for user 
(or help of informatician) to install a local server 
on Linux operating system. 

• limited ability to change parameters within a 
workflow. 

http://virusdetect.feilab.net/
http://virusdetect.feilab.net/
http://virusdetect.feilab.net/
http://www.virtool.ca/
https://github.com/virtool/virtool
https://github.com/virtool/virtool
https://github.com/virtool/virtool
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Pipeline 
Brief descrip-
tion 

Web link / Pub-
lication 

Pros Cons 

virAnnot 

Command-line 
tool for virus de-
tection and viral 
diversity estima-
tion 

[133] 

• Wide options to modify assembly, mapping, annotation and 
clustering parameters. 

• Performs parallel analysis of samples from the same dataset. 
• Estimation of viral diversity through Operational Taxonomic 

Units (OTUs). 
• Easy results visualization with Krona and phylogenic trees. 

 

• Requires a Linux environment, which is an imped-
iment for many diagnosticians.  

• Need a cluster access for the annotation step. 
• Requires a good knowledge of command-line and 

Unix packages installation. 

VirFind 
Online virus dis-
covery tool 

http://virfind.or
g  
[134] 

• Available via user account online. 
• Performs reference mapping, de novo assembly and conserved 

domain searches in parallel or subsequently. 

• Analysis by online version can take several days. 
• Output only in text files: experience needed for 

further interpretation. 

Angua 
Command-line 
tool for virus de-
tection 

https://fred.fera.
co.uk/smc-
greig/angua3 

• Simple - can be executed with one command, but has a num-
ber of parameters/tools which can be tweaked 

• Uses full nt and nr GenBank databases so is sensitive 
• Manual inspection of results with a local MEGAN installation 

improves accuracy 
• Supports single and paired-end analysis 
• Supports blastn/MEGAN parallelisation 

• Requires a Linux environment, which is an imped-
iment for many diagnosticians.  

• Dependent on locally stored nt and nr GenBank 
databases. 

• Blastx stage can take a long time. 
• Manual inspection of results with a local MEGAN 

installation is required. 

Kodoja 

k-mer based 
command-line 
tool for virus de-
tection 

https://github.co
m/abaizan/ko-
doja  
[95] 

• Available as Galaxy plug-in or as command-line tool that can 
be installed using conda. 

• k-mer based rather than assembly and mapping, which makes 
it more sensitive and computationally less intensive. 

• Requires a Linux environment for the command-
line tool, which is an impediment for many diag-
nosticians.  

Truffle 

Targeted virus 
detection using 
e-probes based 
approach 

[135] 
• Results easy to interpret, good sensitivity.  
• Requires relatively low computational resources. 

• Undescribed virus or viral strain will not be de-
tectable using this pipeline. 

• Only grapevine and citrus viruses are available, 
however e-probes for other viruses can be de-
signed.  

• Requires a Linux environment, which is an imped-
iment for many diagnosticians. 

Kaiju 
Online meta-
genomic analysis 
tool 

http://kaiju.binf.
ku.dk/  
[93] 

• Both standalone and web server available. 
• Quick analysis not requiring any knowledge in bioinformatics 

and data analysis. 
• Prepared downloadable databases available. 

• Not specifically made for virus detection. 
• Protein based, hence blind for non-coding se-

quences (viroids, satellites). 

http://virfind.org/
http://virfind.org/
https://github.com/abaizan/kodoja
https://github.com/abaizan/kodoja
https://github.com/abaizan/kodoja
http://kaiju.binf.ku.dk/
http://kaiju.binf.ku.dk/
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Pipeline 
Brief descrip-
tion 

Web link / Pub-
lication 

Pros Cons 

Galaxy 
Workflow sys-
tem for compu-
tational analyses 

https://usegal-
axy.org  
[136] 

• Web-based platform. 
• Open source. 
• Vast choice of computational biology tools. 

• Limit in data upload, unless if you establish own 
local galaxy server.  

• Not specifically made for virus detection. 

ID-Seq 
Online meta-
genomic analysis 
tool 

https://id-
seq.net/  
[137] 

• Easy-to-use visual interface of results. 
• Quick analysis not requiring any knowledge in bioinformatics 

and data analysis. 

• Not possible to change parameters of the work-
flow. 

• Complementary software needed for reads align-
ment. 

• Not specifically made for virus detection. 

Geneious Prime 

Software for mo-
lecular biology 
and sequence 
analysis 

https://www.ge-
neious.com  

• Graphical interface. 
• Multiple plugins available, including some frequently used 

freeware assembly algorithms.  
• Automated, customizable workflows.  
• Constant release of updated versions and customer support.  
• Nice and efficient visualization tools. 
• Free trial version available. 

• Licensed, including license fee;  
• HTS data analysis requires computational re-

sources. 

CLC Genomics 
Workbench 

Comprehensive 
software solu-
tion of molecular 
biology analysis 
tools 

https://digi-
talinsights.qi-
agen.com/prod-
ucts-over-
view/discovery-
insights-portfo-
lio/analysis-
and-visualiza-
tion/qiagen-clc-
genomics-work-
bench/  

• Graphical interface. 
• Automated, customizable workflows. 
• Constant release of updated versions and customer support.  
• Nice and efficient visualization tools. 
• Free trial version available. 

• Expensive ongoing licensing fee. 
• HTS data analysis requires computational re-

sources. 

 772 
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https://usegalaxy.org/
https://usegalaxy.org/
https://idseq.net/
https://idseq.net/
https://www.geneious.com/
https://www.geneious.com/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench/


Microorganisms 2021, 9, x FOR PEER REVIEW 24 of 31 
 

 

References 774 

1.  Villamor, D.E.V.; Ho, T.; Al Rwahnih, M.; Martin, R.R.; Tzanetakis, I.E. High throughput sequencing for plant virus detection 775 

and discovery. Phytopathology 2019, 109, 716–725, doi:10.1094/PHYTO-07-18-0257-RVW. 776 

2.  Kreuze, J.F.; Perez, A.; Untiveros, M.; Quispe, D.; Fuentes, S.; Barker, I.; Simon, R. Complete viral genome sequence and 777 

discovery of novel viruses by deep sequencing of small RNAs: A generic method for diagnosis , discovery and sequencing 778 

of viruses. Virology 2009, 388, 1–7, doi:10.1016/j.virol.2009.03.024. 779 

3.  Adams, I.P.; Glover, R.H.; Monger, W.A.; Mumford, R.; Jackeviciene, E.; Navalinskiene, M.; Samuitiene, M.; Boonham, N. 780 

Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Mol. Plant Pathol. 2009, 781 

10, 537–545, doi:10.1111/j.1364-3703.2009.00545.x. 782 

4.  Al Rwahnih, M.; Daubert, S.; Golino, D.; Rowhani, A. Deep sequencing analysis of RNAs from a grapevine showing Syrah 783 

decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 2009, 387, 395–401, 784 

doi:10.1016/j.virol.2009.02.028. 785 

5.  Donaire, L.; Wang, Y.; Gonzalez-Ibeas, D.; Mayer, K.F.; Aranda, M.A.; Llave, C. Deep-sequencing of plant viral small RNAs 786 

reveals effective and widespread targeting of viral genomes. Virology 2009, 392, 203–214, doi:10.1016/j.virol.2009.07.005. 787 

6.  Massart, S.; Chiumenti, M.; De Jonghe, K.; Glover, R.; Haegeman, A.; Koloniuk, I.; Kominek, P.; Kreuze, J.; Kutnjak, D.; Lotos, 788 

L.; et al. Virus detection by high-throughput sequencing of small RNAs: large scale performance testing of sequence analysis 789 

strategies. Phytopathology 2018, doi:10.1094/PHYTO-02-18-0067-R. 790 

7.  Olmos, A.; Boonham, N.; Candresse, T.; Gentit, P.; Giovani, B.; Kutnjak, D.; Liefting, L.; Maree, H.J.; Minafra, A.; Moreira, A.; 791 

et al. High-throughput sequencing technologies for plant pest diagnosis: challenges and opportunities. EPPO Bull. 2018, 48, 792 

219–224, doi:10.1111/epp.12472. 793 

8.  Weymann, D.; Laskin, J.; Roscoe, R.; Schrader, K.A.; Chia, S.; Yip, S.; Cheung, W.Y.; Gelmon, K.A.; Karsan, A.; Renouf, D.J.; 794 

et al. The cost and cost trajectory of whole-genome analysis guiding treatment of patients with advanced cancers. Mol. Genet. 795 

Genomic Med. 2017, 5, 251–260, doi:10.1002/mgg3.281. 796 

9.  Valitest EU project consortium Guidelines for the selection, development, validation and routine use of high-throughput sequencing 797 

analysis in plant health diagnostic laboratories: grant agreement N. 773139: deliverable N° 2.2. (confidential); 2020; 798 

10.  Maliogka, V.I.; Minafra, A.; Saldarelli, P.; Ruiz-García, A.B.; Glasa, M.; Katis, N.; Olmos, A. Recent advances on detection and 799 

characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses 2018, 10, 436, 800 

doi:10.3390/v10080436. 801 

11.  Roossinck, M.J. Deep sequencing for discovery and evolutionary analysis of plant viruses. Virus Res. 2017, 239, 82–86, 802 

doi:10.1016/j.virusres.2016.11.019. 803 

12.  Roossinck, M.J.; Martin, D.P.; Roumagnac, P. Plant virus metagenomics: Advances in virus discovery. Phytopathology 2015, 804 

105, 716–727, doi:10.1094/PHYTO-12-14-0356-RVW. 805 

13.  Marais, A.; Faure, C.; Bergey, B.; Candresse, T. Viral Double-Stranded RNAs (dsRNAs) from Plants: Alternative Nucleic Acid 806 

Substrates for High-Throughput Sequencing. In Viral Metagenomics: Methods and Protocols, Methods in Molecular Biology, vol. 807 

1746; Pantaleo, V., Chiumenti, M., Eds.; Springer Nature: New York, 2018; pp. 45–53 ISBN 978-1-4939-7682-9. 808 

14.  Massart, S.; Olmos, A.; Jijakli, H.; Candresse, T. Current impact and future directions of high throughput sequencing in plant 809 

virus diagnostics. Virus Res. 2014, 188, 90–96, doi:10.1016/j.virusres.2014.03.029. 810 

15.  Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next generation sequencing 811 

for detection and discovery of plant viruses and viroids: Comparison of two approaches. Front. Microbiol. 2017, 8, 812 

doi:10.3389/fmicb.2017.01998. 813 

16.  Boone, M.; De Koker, A.; Callewaert, N. Survey and summary capturing the “ome”: The expanding molecular toolbox for 814 

RNA and DNA library construction. Nucleic Acids Res. 2018, 46, 2701–2721, doi:10.1093/nar/gky167. 815 



Microorganisms 2021, 9, x FOR PEER REVIEW 25 of 31 
 

 

17.  Visser, M.; Bester, R.; Burger, J.T.; Maree, H.J. Next-generation sequencing for virus detection: Covering all the bases. Virol. 816 

J. 2016, 13, 4–9, doi:10.1186/s12985-016-0539-x. 817 

18.  Idris, A.; Al-Saleh, M.; Piatek, M.J.; Al-Shahwan, I.; Ali, S.; Brown, J.K. Viral metagenomics: Analysis of begomoviruses by 818 

illumina high-throughput sequencing. Viruses 2014, 6, 1219–1236, doi:10.3390/v6031219. 819 

19.  Sukal, A.C.; Kidanemariam, D.B.; Dale, J.L.; Harding, R.M.; James, A.P. Assessment and optimization of rolling circle 820 

amplification protocols for the detection and characterization of badnaviruses. Virology 2019, 529, 73–80, 821 

doi:10.1016/j.virol.2019.01.013. 822 

20.  Wyant, P.S.; Strohmeier, S.; Schäfer, B.; Krenz, B.; Assunção, I.P.; Lima, G.S. de A.; Jeske, H. Circular DNA genomics 823 

(circomics) exemplified for geminiviruses in bean crops and weeds of northeastern Brazil. Virology 2012, 427, 151–157, 824 

doi:10.1016/j.virol.2012.02.007. 825 

21.  Vivek, A.T.; Zahra, S.; Kumar, S. From current knowledge to best practice: A primer on viral diagnostics using deep 826 

sequencing of virus-derived small interfering RNAs (vsiRNAs) in infected plants. Methods 2019, 827 

doi:10.1016/j.ymeth.2019.10.009. 828 

22.  Kutnjak, D.; Rupar, M.; Gutierrez-Aguirre, I.; Curk, T.; Kreuze, J.F.; Ravnikar, M. Deep Sequencing of Virus-Derived Small 829 

Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population. J. 830 

Virol. 2015, 89, 4760–4769, doi:10.1128/JVI.03685-14. 831 

23.  Seguin, J.; Rajeswaran, R.; Malpica-López, N.; Martin, R.R.; Kasschau, K.; Dolja, V. V.; Otten, P.; Farinelli, L.; Pooggin, M.M. 832 

De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs. PLoS One 2014, 9, 1–8, 833 

doi:10.1371/journal.pone.0088513. 834 

24.  Smith, O.; Clapham, A.; Rose, P.; Liu, Y.; Wang, J.; Allaby, R.G. A complete ancient RNA genome: Identification, 835 

reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. 2014, 4, 1–6, 836 

doi:10.1038/srep04003. 837 

25.  Turco, S.; Golyaev, V.; Seguin, J.; Gilli, C.; Farinelli, L.; Boller, T.; Schumpp, O.; Pooggin, M.M. Small RNA-omics for virome 838 

reconstruction and antiviral defense characterization in mixed infections of cultivated solanum plants. Mol. Plant-Microbe 839 

Interact. 2018, 31, 707–723, doi:10.1094/MPMI-12-17-0301-R. 840 

26.  Melcher, U.; Muthukumar, V.; Wiley, G.B.; Min, B.E.; Palmer, M.W.; Verchot-Lubicz, J.; Ali, A.; Nelson, R.S.; Roe, B.A.; Thapa, 841 

V.; et al. Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya. J. 842 

Virol. Methods 2008, 152, 49–55, doi:10.1016/j.jviromet.2008.05.030. 843 

27.  Muthukumar, V.; Melcher, U.; Pierce, M.; Wiley, G.B.; Roe, B.A.; Palmer, M.W.; Thapa, V.; Ali, A.; Ding, T. Non-cultivated 844 

plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate 845 

fractions. Virus Res. 2009, 141, 169–173, doi:10.1016/j.virusres.2008.06.016. 846 

28.  Bernardo, P.; Charles-Dominique, T.; Barakat, M.; Ortet, P.; Fernandez, E.; Filloux, D.; Hartnady, P.; Rebelo, T.A.; Cousins, 847 

S.R.; Mesleard, F.; et al. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant 848 

viruses at the ecosystem scale. ISME J. 2018, 12, 173–184, doi:10.1038/ismej.2017.155. 849 

29.  Filloux, D.; Dallot, S.; Delaunay, A.; Galzi, S.; Jacquot, E.; Roumagnac, P. Metagenomics approaches based on virion-850 

associated nucleic acids (VANA): An innovative tool for assessing without a priori viral diversity of plants. Methods Mol. Biol. 851 

2015, 1302, 249–257, doi:10.1007/978-1-4939-2620-6_18. 852 

30.  Ma, Y.; Marais, A.; Lefebvre, M.; Theil, S.; Svanella-Dumas, L.; Faure, C.; Candresse, T. Phytovirome Analysis of Wild Plant 853 

Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J. Virol. 854 

2019, 94, doi:10.1128/jvi.01462-19. 855 

31.  Roossinck, M.J. Plants, viruses and the environment: Ecology and mutualism. Virology 2015, 479–480, 271–277, 856 

doi:10.1016/j.virol.2015.03.041. 857 



Microorganisms 2021, 9, x FOR PEER REVIEW 26 of 31 
 

 

32.  Hull, R. Origins and Evolution of Plant Viruses. In Plant Virology; Elsevier, 2014; pp. 423–476. 858 

33.  Al Rwahnih, M.; Daubert, S.; Golino, D.; Islas, C.; Rowhani, A. Comparison of next-generation sequencing versus biological 859 

indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 2015, 105, 758–763, doi:10.1094/PHYTO-860 

06-14-0165-R. 861 

34.  Kesanakurti, P.; Belton, M.; Saeed, H.; Rast, H.; Boyes, I.; Rott, M. Screening for plant viruses by next generation sequencing 862 

using a modified double strand RNA extraction protocol with an internal amplification control. J. Virol. Methods 2016, 236, 863 

35–40, doi:10.1016/j.jviromet.2016.07.001. 864 

35.  Loconsole, G.; Saldarelli, P.; Doddapaneni, H.; Savino, V.; Martelli, G.P.; Saponari, M. Identification of a single-stranded 865 

DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae. Virology 2012, 432, 866 

162–172, doi:10.1016/j.virol.2012.06.005. 867 

36.  Rott, M.; Xiang, Y.; Boyes, I.; Belton, M.; Saeed, H.; Kesanakurti, P.; Hayes, S.; Lawrence, T.; Birch, C.; Bhagwat, B.; et al. 868 

Application of next generation sequencing for diagnostic testing of tree fruit viruses and viroids. Plant Dis. 2017, 101, 1489–869 

1499, doi:10.1094/PDIS-03-17-0306-RE. 870 

37.  Weber, F.; Wagner, V.; Rasmussen, S.B.; Hartmann, R.; Paludan, S.R. Double-Stranded RNA Is Produced by Positive-Strand 871 

RNA Viruses and DNA Viruses but Not in Detectable Amounts by Negative-Strand RNA Viruses. J. Virol. 2006, 80, 5059–872 

5064, doi:10.1128/jvi.80.10.5059-5064.2006. 873 

38.  Gaafar, Y.Z.A.; Ziebell, H. Comparative study on three viral enrichment approaches based on RNA extraction for plant 874 

virus/viroid detection using high-throughput sequencing. PLoS One 2020, 15, 1–17, doi:10.1371/journal.pone.0237951. 875 

39.  Thapa, V.; McGlinn, D.J.; Melcher, U.; Palmer, M.W.; Roossinck, M.J. Determinants of taxonomic composition of plant viruses 876 

at the Nature Conservancy’s Tallgrass Prairie Preserve, Oklahoma. Virus Evol. 2015, 1, doi:10.1093/ve/vev007. 877 

40.  Blouin, A.G.; Ross, H.A.; Hobson-Peters, J.; O’Brien, C.A.; Warren, B.; MacDiarmid, R. A new virus discovered by 878 

immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies. Mol. Ecol. Resour. 879 

2016, 16, 1255–1263, doi:10.1111/1755-0998.12525. 880 

41.  Kobayashi, K.; Tomita, R.; Sakamoto, M. Recombinant plant dsRNA-binding protein as an effective tool for the isolation of 881 

viral replicative form dsRNA and universal detection of RNA viruses. J. Gen. Plant Pathol. 2009, 75, 87–91, doi:10.1007/s10327-882 

009-0155-3. 883 

42.  Roossinck, M.J.; Saha, P.; Wiley, G.B.; Quan, J.; White, J.D.; Lai, H.; Chavarría, F.; Shen, G.; Roe, B.A. Ecogenomics: Using 884 

massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 2010, 19, 81–88, doi:10.1111/j.1365-885 

294X.2009.04470.x. 886 

43.  Chalupowicz, L.; Dombrovsky, A.; Gaba, V.; Luria, N.; Reuven, M.; Beerman, A.; Lachman, O.; Dror, O.; Nissan, G.; Manulis-887 

Sasson, S. Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol. 2019, 68, 229–238, 888 

doi:10.1111/ppa.12957. 889 

44.  Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17, 10, 890 

doi:10.14806/ej.17.1.200. 891 

45.  Illumina bcl2fastq and bcl2fastq2 Conversion Software 2019. 892 

46.  Oxford Nanopore Technologies Guppy: Local accelerated basecalling for Nanopore data 2018. 893 

47.  Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 894 

2114–2120, doi:10.1093/bioinformatics/btu170. 895 

48.  Wick, B. Porechop 2017. 896 

49.  De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read 897 

sequencing data. Bioinformatics 2018, 34, 2666–2669, doi:10.1093/bioinformatics/bty149. 898 

50.  Cock, P.J.A.; Fields, C.J.; Goto, N.; Heuer, M.L.; Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, 899 



Microorganisms 2021, 9, x FOR PEER REVIEW 27 of 31 
 

 

and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2009, 38, 1767–1771, doi:10.1093/nar/gkp1137. 900 

51.  Andrews, S. FastQC 2010. 901 

52.  Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a 902 

single report. Bioinformatics 2016, 32, 3047–3048, doi:10.1093/bioinformatics/btw354. 903 

53.  Loman, N.J.; Quinlan, A.R. Poretools: A toolkit for analyzing nanopore sequence data. Bioinformatics 2014, 30, 3399–3401, 904 

doi:10.1093/bioinformatics/btu555. 905 

54.  Najoshi sickle - A windowed adaptive trimming tool for FASTQ files using quality 2011. 906 

55.  Andino, R.; Domingo, E. Viral quasispecies. Virology 2015, 479–480, 46–51, doi:10.1016/j.virol.2015.03.022. 907 

56.  Paszkiewicz, K.; Studholme, D.J. De novo assembly of short sequence reads. Brief. Bioinform. 2010, 11, 457–472, 908 

doi:10.1093/bib/bbq020. 909 

57.  Sohn, J. Il; Nam, J.W. The present and future of de novo whole-genome assembly. Brief. Bioinform. 2018, 19, 23–40, 910 

doi:10.1093/bib/bbw096. 911 

58.  Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically 912 

improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, doi:10.1186/2047-217X-1-18. 913 

59.  Gnerre, S.; MacCallum, I.; Przybylski, D.; Ribeiro, F.J.; Burton, J.N.; Walker, B.J.; Sharpe, T.; Hall, G.; Shea, T.P.; Sykes, S.; et 914 

al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. U. S. 915 

A. 2011, 108, 1513–1518, doi:10.1073/pnas.1017351108. 916 

60.  Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.M.; Birol, I. ABySS: A parallel assembler for short read sequence 917 

data. Genome Res. 2009, 19, 1117–1123, doi:10.1101/gr.089532.108. 918 

61.  Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 919 

821–829, doi:10.1101/gr.074492.107. 920 

62.  Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing 921 

data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428, doi:10.1093/bioinformatics/bts174. 922 

63.  Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; 923 

Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. 924 

Biol. 2012, 19, 455–477, doi:10.1089/cmb.2012.0021. 925 

64.  Nurk, S.; Bankevich, A.; Antipov, D.; Gurevich, A.A.; Korobeynikov, A.; Lapidus, A.; Prjibelski, A.D.; Pyshkin, A.; Sirotkin, 926 

A.; Sirotkin, Y.; et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 927 

2013, 20, 714–737, doi:10.1089/cmb.2013.0084. 928 

65.  Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. RnaSPAdes: A de novo transcriptome assembler and its 929 

application to RNA-Seq data. Gigascience 2019, 8, 1–13, doi:10.1093/gigascience/giz100. 930 

66.  Edwards, D.J.; Holt, K.E. Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data. 931 

Microb. Inform. Exp. 2013, 3, doi:10.1186/2042-5783-3-2. 932 

67.  Massart, S.; Chiumenti, M.; De Jonghe, K.; Glover, R.; Haegeman, A.; Koloniuk, I.; Komínek, P.; Kreuze, J.; Kutnjak, D.; Lotos, 933 

L.; et al. Virus detection by high-throughput sequencing of small RNAs: Large-scale performance testing of sequence analysis 934 

strategies. Phytopathology 2019, 109, 488–497, doi:10.1094/PHYTO-02-18-0067-R. 935 

68.  Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From squiggle to basepair: Computational approaches for improving nanopore 936 

sequencing read accuracy. Genome Biol. 2018, 19, 1–11, doi:10.1186/s13059-018-1462-9. 937 

69.  Koren, S.; Schatz, M.C.; Walenz, B.P.; Martin, J.; Howard, J.T.; Ganapathy, G.; Wang, Z.; Rasko, D.A.; McCombie, W.R.; Jarvis, 938 

E.D.; et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 2012, 30, 693–939 

700, doi:10.1038/nbt.2280. 940 

70.  Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read 941 



Microorganisms 2021, 9, x FOR PEER REVIEW 28 of 31 
 

 

assembly via adaptive κ-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736, doi:10.1101/gr.215087.116. 942 

71.  Chin, C.S.; Peluso, P.; Sedlazeck, F.J.; Nattestad, M.; Concepcion, G.T.; Clum, A.; Dunn, C.; O’Malley, R.; Figueroa-Balderas, 943 

R.; Morales-Cruz, A.; et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 2016, 944 

13, 1050–1054, doi:10.1038/nmeth.4035. 945 

72.  Oxford Nanopore Technologies Pomoxis - bioinformatics tools for nanopore research 2018. 946 

73.  Filloux, D.; Fernandez, E.; Loire, E.; Claude, L.; Galzi, S.; Candresse, T.; Winter, S.; Jeeva, M.L.; Makeshkumar, T.; Martin, 947 

D.P.; et al. Nanopore-based detection and characterization of yam viruses. Sci. Rep. 2018, 8, doi:10.1038/s41598-018-36042-7. 948 

74.  Boykin, L.M.; Sseruwagi, P.; Alicai, T.; Ateka, E.; Mohammed, I.U.; Stanton, J.A.L.; Kayuki, C.; Mark, D.; Fute, T.; Erasto, J.; 949 

et al. Tree lab: Portable genomics for early detection of plant viruses and pests in sub-saharan africa. Genes (Basel). 2019, 10, 950 

632, doi:10.3390/genes10090632. 951 

75.  Naito, F.Y.B.; Melo, F.L.; Fonseca, M.E.N.; Santos, C.A.F.; Chanes, C.R.; Ribeiro, B.M.; Gilbertson, R.L.; Boiteux, L.S.; de Cássia 952 

Pereira-Carvalho, R. Nanopore sequencing of a novel bipartite New World begomovirus infecting cowpea. Arch. Virol. 2019, 953 

164, 1907–1910, doi:10.1007/s00705-019-04254-5. 954 

76.  Leiva, A.M.; Siriwan, W.; Lopez-Alvarez, D.; Barrantes, I.; Hemniam, N.; Saokham, K.; Cuellar, W.J. Nanopore-Based 955 

Complete Genome Sequence of a Sri Lankan Cassava Mosaic Virus (Geminivirus) Strain from Thailand. Microbiol. Resour. 956 

Announc. 2020, 9, doi:10.1128/mra.01274-19. 957 

77.  Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–958 

410, doi:10.1016/S0022-2836(05)80360-2. 959 

78.  Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–960 

1760, doi:10.1093/bioinformatics/btp324. 961 

79.  Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011, 962 

39, W29–W37, doi:10.1093/nar/gkr367. 963 

80.  Stobbe, A.H.; Daniels, J.; Espindola, A.S.; Verma, R.; Melcher, U.; Ochoa-Corona, F.; Garzon, C.; Fletcher, J.; Schneider, W. E-964 

probe Diagnostic Nucleic acid Analysis (EDNA): A theoretical approach for handling of next generation sequencing data for 965 

diagnostics. J. Microbiol. Methods 2013, 94, 356–366, doi:10.1016/j.mimet.2013.07.002. 966 

81.  Punta, M.; Coggill, P.C.; Eberhardt, R.Y.; Mistry, J.; Tate, J.; Boursnell, C.; Pang, N.; Forslund, K.; Ceric, G.; Clements, J.; et al. 967 

The Pfam protein families database. Nucleic Acids Res. 2012, 40, 290–301, doi:10.1093/nar/gkr1065. 968 

82.  Marchler-Bauer, A.; Panchenko, A.R.; Shoemarker, B.A.; Thiessen, P.A.; Geer, L.Y.; Bryant, S.H. CDD: A database of 969 

conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 2002, 30, 281–283, 970 

doi:10.1093/nar/30.1.281. 971 

83.  Agranovsky, A.A.; Boyko, V.P.; Karasev, A. V.; Koonin, E. V.; Dolja, V. V. Putative 65 kDa protein of beet yellows 972 

closterovirus is a homologue of HSP70 heat shock proteins. J. Mol. Biol. 1991, 217, 603–610, doi:10.1016/0022-2836(91)90517-973 

A. 974 

84.  Tangherlini, M.; Dell’Anno, A.; Zeigler Allen, L.; Riccioni, G.; Corinaldesi, C. Assessing viral taxonomic composition in 975 

benthic marine ecosystems: Reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci. Rep. 976 

2016, 6, doi:10.1038/srep28428. 977 

85.  Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and 978 

applications. BMC Bioinformatics 2009, 10, 1–9, doi:10.1186/1471-2105-10-421. 979 

86.  Kent, W.J. BLAT---The BLAST-Like Alignment Tool. Genome Res. 2002, 12, 656–664, doi:10.1101/gr.229202. 980 

87.  Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60, 981 

doi:10.1038/nmeth.3176. 982 

88.  Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the 983 



Microorganisms 2021, 9, x FOR PEER REVIEW 29 of 31 
 

 

human genome. Genome Biol. 2009, 10, R25, doi:10.1186/gb-2009-10-3-r25. 984 

89.  Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in homology search: HMMER3 and convergent evolution 985 

of coiled-coil regions. Nucleic Acids Res. 2013, 41, e121--e121, doi:10.1093/nar/gkt263. 986 

90.  Bzhalava, Z.; Hultin, E.; Dillner, J. Extension of the viral ecology in humans using viral profile hidden Markov models. PLoS 987 

One 2018, 13, e0190938, doi:10.1371/journal.pone.0190938. 988 

91.  Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 989 

15, R46, doi:10.1186/gb-2014-15-3-r46. 990 

92.  Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 1–13, 991 

doi:10.1186/s13059-019-1891-0. 992 

93.  Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 993 

7, doi:10.1038/ncomms11257. 994 

94.  Flygare, S.; Simmon, K.; Miller, C.; Qiao, Y.; Kennedy, B.; Di Sera, T.; Graf, E.H.; Tardif, K.D.; Kapusta, A.; Rynearson, S.; et 995 

al. Taxonomer: An interactive metagenomics analysis portal for universal pathogen detection and host mRNA expression 996 

profiling. Genome Biol. 2016, 17, 1–18, doi:10.1186/s13059-016-0969-1. 997 

95.  Baizan-Edge, A.; Cock, P.; MacFarlane, S.; McGavin, W.; Torrance, L.; Jones, S. Kodoja: A workflow for virus detection in 998 

plants using k-mer analysis of RNA-sequencing data. J. Gen. Virol. 2019, 100, 533–542, doi:10.1099/jgv.0.001210. 999 

96.  Tampuu, A.; Bzhalava, Z.; Dillner, J.; Vicente, R. ViraMiner: Deep learning on raw DNA sequences for identifying viral 1000 

genomes in human samples. PLoS One 2019, 14, 1–17, doi:10.1371/journal.pone.0222271. 1001 

97.  Ren, J.; Song, K.; Deng, C.; Ahlgren, N.A.; Fuhrman, J.A.; Li, Y.; Xie, X.; Poplin, R.; Sun, F. Identifying viruses from 1002 

metagenomic data using deep learning. Quant. Biol. 2020, 8, 64–77, doi:10.1007/s40484-019-0187-4. 1003 

98.  Abdelkareem, A.O.; Khalil, M.I.; Elaraby, M.; Abbas, H.; Elbehery, A.H.A. VirNet: Deep attention model for viral reads 1004 

identification. In Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES); 1005 

IEEE: Cairo, Egypt, 2018; pp. 623–626. 1006 

99.  Ren, Y.; Xu, Y.; Lee, W.M.; Di Bisceglie, A.M.; Fan, X. In-depth serum virome analysis in patients with acute liver failure with 1007 

indeterminate etiology. Arch. Virol. 2020, 165, 127–135, doi:10.1007/s00705-019-04466-9. 1008 

100.  Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100, 1009 

doi:10.1093/bioinformatics/bty191. 1010 

101.  Warwick-Dugdale, J.; Solonenko, N.; Moore, K.; Chittick, L.; Gregory, A.C.; Allen, M.J.; Sullivan, M.B.; Temperton, B. Long-1011 

read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. 1012 

PeerJ 2019, 2019, 1–28, doi:10.7717/peerj.6800. 1013 

102.  Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of 1014 

the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717, doi:10.1093/nar/gkx932. 1015 

103.  Davison, A.J. Journal of general virology - Introduction to ‘ICTV virus taxonomy profiles.’ J. Gen. Virol. 2017, 98, 1, 1016 

doi:10.1099/jgv.0.000686. 1017 

104.  Bao, Y.; Chetvernin, V.; Tatusova, T. Improvements to pairwise sequence comparison (PASC): a genome-based web tool for 1018 

virus classification. Arch. Virol. 2014, 159, 3293–3304, doi:10.1007/s00705-014-2197-x. 1019 

105.  Gibbs, A.J.; Hajizadeh, M.; Ohshima, K.; Jones, R.A.C. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses 2020, 1020 

12, 132, doi:10.3390/v12020132. 1021 

106.  Jones, S.; Baizan-Edge, A.; MacFarlane, S.; Torrance, L. Viral diagnostics in plants using next generation sequencing: 1022 

Computational analysis in practice. Front. Plant Sci. 2017, 8, doi:10.3389/fpls.2017.01770. 1023 

107.  Blawid, R.; Silva, J.M.F.; Nagata, T. Discovering and sequencing new plant viral genomes by next-generation sequencing: 1024 

description of a practical pipeline. Ann. Appl. Biol. 2017, 170, 301–314, doi:10.1111/aab.12345. 1025 



Microorganisms 2021, 9, x FOR PEER REVIEW 30 of 31 
 

 

108.  Roenhorst, J.W.; de Krom, C.; Fox, A.; Mehle, N.; Ravnikar, M.; Werkman, A.W. Ensuring validation in diagnostic testing is 1026 

fit for purpose: a view from the plant virology laboratory. EPPO Bull. 2018, 48, 105–115, doi:10.1111/epp.12445. 1027 

109.  Simmonds, P.; Adams, M.J.; Benk, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; 1028 

Harrach, B.; et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168, 1029 

doi:10.1038/nrmicro.2016.177. 1030 

110.  Rwahnih, M. Al; Daubert, S.; Úrbez-Torres, J.R.; Cordero, F.; Rowhani, A. Deep sequencing evidence from single grapevine 1031 

plants reveals a virome dominated by mycoviruses. Arch. Virol. 2011, 156, 397–403, doi:10.1007/s00705-010-0869-8. 1032 

111.  Marzano, S.Y.L.; Domier, L.L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere 1033 

phytobiomes. Virus Res. 2016, 213, 332–342, doi:10.1016/j.virusres.2015.11.002. 1034 

112.  Kreuze, J. siRNA Deep Sequencing and Assembly: Piecing Together Viral Infections. In Detection and Diagnostics of Plant 1035 

Pathogens; Gullino, M.L., Bonants, P.J.M., Eds.; Springer Netherlands: Dordrecht, 2014; pp. 21–38 ISBN 978-94-017-9020-8. 1036 

113.  Massart, S.; Candresse, T.; Gil, J.; Lacomme, C.; Predajna, L.; Ravnikar, M.; Reynard, J.S.; Rumbou, A.; Saldarelli, P.; Škoric, 1037 

D.; et al. A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and 1038 

viroids identified by NGS technologies. Front. Microbiol. 2017, 8, doi:10.3389/fmicb.2017.00045. 1039 

114.  Kreuze, J.F.; Perez, A.; Gargurevich, M.G.; Cuellar, W.J. Badnaviruses of Sweet Potato: Symptomless Coinhabitants on a 1040 

Global Scale. Front. Plant Sci. 2020, 11, 1–13, doi:10.3389/fpls.2020.00313. 1041 

115.  Koloniuk, I.; Thekke-Veetil, T.; Reynard, J.S.; Pleško, I.M.; Přibylová, J.; Brodard, J.; Kellenberger, I.; Sarkisova, T.; Špak, J.; 1042 

Lamovšek, J.; et al. Molecular characterization of divergent closterovirus isolates infecting Ribes species. Viruses 2018, 10, 1043 

doi:10.3390/v10070369. 1044 

116.  Sõmera, M.; Kvarnheden, A.; Desbiez, C.; Blystad, D.R.; Sooväli, P.; Kundu, J.K.; Gantsovski, M.; Nygren, J.; Lecoq, H.; Verdin, 1045 

E.; et al. Sixty years after the first description: Genome sequence and biological characterization of European wheat striate 1046 

mosaic virus infecting cereal crops. Phytopathology 2020, 110, 68–79, doi:10.1094/PHYTO-07-19-0258-FI. 1047 

117.  Hammond, J.; Adams, I.; Fowkes, A.R.; McGreig, S.; Botermans, M.; van Oorspronk, J.J.A.; Westenberg, M.; Verbeek, M.; 1048 

Dullemans, A.M.; Stijger, C.C.M.M.; et al. Sequence analysis of 43-year old samples of Plantago lanceolata show that Plantain 1049 

virus X is synonymous with Actinidia virus X and is widely distributed. Plant Pathol. 2020, 1–10, doi:10.1111/ppa.13310. 1050 

118.  Tamisier, L.; Haegeman, A.; Foucart, Y.; Fouillien, N.; Rwahnih, M. Al; Buzkan, N.; Candresse, T.; Chiumenti, M.; Jonghe, K. 1051 

De; Lefebvre, M.; et al. Semi-artificial datasets as a resource for validation of bioinformatics pipelines for plant virus detection. 1052 

Zenodo (preprint) 2020, doi:10.5281/zenodo.4273791. 1053 

119.  Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in 1054 

virus genomes. Virus Evol. 2015, 1, doi:10.1093/ve/vev003. 1055 

120.  Lole, K.S.; Bollinger, R.C.; Paranjape, R.S.; Gadkari, D.; Kulkarni, S.S.; Novak, N.G.; Ingersoll, R.; Sheppard, H.W.; Ray, S.C. 1056 

Full-Length Human Immunodeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters in India, with 1057 

Evidence of Intersubtype Recombination. J. Virol. 1999, 73, 152–160, doi:10.1128/jvi.73.1.152-160.1999. 1058 

121.  Simmonds, P.; Midgley, S. Recombination in the Genesis and Evolution of Hepatitis B Virus Genotypes. J. Virol. 2005, 79, 1059 

15467–15476, doi:10.1128/jvi.79.24.15467-15476.2005. 1060 

122.  Routh, A.; Johnson, J.E. Discovery of functional genomic motifs in viruses with ViReMa-a virus recombination mapper-for 1061 

analysis of next-generation sequencing data. Nucleic Acids Res. 2014, 42, 1–10, doi:10.1093/nar/gkt916. 1062 

123.  Xu, C.; Sun, X.; Taylor, A.; Jiao, C.; Xu, Y.; Cai, X.; Wang, X.; Ge, C.; Pan, G.; Wang, Q.; et al. Diversity, Distribution, and 1063 

Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J. Virol. 2017, 91, 1–14, doi:10.1128/JVI.00173-1064 

17. 1065 

124.  Bertran, A.; Ciuffo, M.; Margaria, P.; Rosa, C.; Resende, R.O.; Turina, M. Host-specific accumulation and temperature effects 1066 

on the generation of dimeric viral RNA species derived from the S-RNA of members of the Tospovirus genus. J. Gen. Virol. 1067 



Microorganisms 2021, 9, x FOR PEER REVIEW 31 of 31 
 

 

2016, 97, 3051–3062, doi:10.1099/jgv.0.000598. 1068 

125.  Saitou, N.; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 1069 

4, 406–425, doi:10.1093/oxfordjournals.molbev.a040454. 1070 

126.  Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate 1071 

maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321, 1072 

doi:10.1093/sysbio/syq010. 1073 

127.  Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 1074 

30, 1312–1313, doi:10.1093/bioinformatics/btu033. 1075 

128.  Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; 1076 

Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. 1077 

Biol. 2012, 61, 539–542, doi:10.1093/sysbio/sys029. 1078 

129.  Huson, D.H.; Beier, S.; Flade, I.; Górska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.J.; Tappu, R. MEGAN Community 1079 

Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 2016, 12, 1–1080 

12, doi:10.1371/journal.pcbi.1004957. 1081 

130.  Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic 1082 

data integration using BEAST 1.10. Virus Evol. 2018, 4, doi:10.1093/ve/vey016. 1083 

131.  Hardy, O.J.; Vekemans, X. SPAGeDI: A versatile computer program to analyse spatial genetic structure at the individual or 1084 

population levels. Mol. Ecol. Notes 2002, 2, 618–620, doi:10.1046/j.1471-8286.2002.00305.x. 1085 

132.  Zheng, Y.; Gao, S.; Padmanabhan, C.; Li, R.; Galvez, M.; Gutierrez, D.; Fuentes, S.; Ling, K.S.; Kreuze, J.; Fei, Z. VirusDetect: 1086 

An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 2017, 500, 130–138, 1087 

doi:10.1016/j.virol.2016.10.017. 1088 

133.  Lefebvre, M.; Theil, S.; Ma, Y.; Candresse, T. The virannot pipeline: A resource for automated viral diversity estimation and 1089 

operational taxonomy units assignation for virome sequencing data. Phytobiomes J. 2019, 3, 256–259, doi:10.1094/PBIOMES-1090 

07-19-0037-A. 1091 

134.  Ho, T.; Tzanetakis, I.E. Development of a virus detection and discovery pipeline using next generation sequencing. Virology 1092 

2014, 471–473, 54–60, doi:10.1016/j.virol.2014.09.019. 1093 

135.  Visser, M.; Burger, J.T.; Maree, H.J. Targeted virus detection in next-generation sequencing data using an automated e-probe 1094 

based approach. Virology 2016, 495, 122–128, doi:10.1016/j.virol.2016.05.008. 1095 

136.  Afgan, E.; Baker, D.; Batut, B.; Van Den Beek, M.; Bouvier, D.; Ech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; 1096 

et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 1097 

2018, 46, W537–W544, doi:10.1093/nar/gky379. 1098 

137.  Kalantar, K.L.; Carvalho, T.; de Bourcy, C.F.A.; Dimitrov, B.; Dingle, G.; Egger, R.; Han, J.; Holmes, O.B.; Juan, Y.F.; King, R.; 1099 

et al. IDseq-An open source cloud-based pipeline and analysis service for metagenomic pathogen detection and monitoring. 1100 

Gigascience 2020, 9, 1–14, doi:10.1093/gigascience/giaa111. 1101 
 1102 


	1. Introduction
	2. What should I anticipate and how should I prepare?
	3. Starting the project: How do I prepare samples and sequence nucleic acids?
	3.1. Input material and nucleic acids preparation
	3.1.1. Total RNA/DNA
	3.1.2 Small RNA (sRNA)
	3.1.3 Virion-associated nucleic acids (VANA)
	3.1.4 Double-stranded RNA

	3.2 Library preparation and sequencing

	4. How do I analyze the data?
	4.1. Demultiplexing, quality control and trimming
	4.2 De novo assembly
	4.3 How do I find and classify viral sequences in my data?
	4.3.1 Databases
	4.3.2 BLAST and BLAST-like approaches
	4.3.3 Mapping reads (or contigs) to reference database
	4.3.4 Protein domain searches
	4.3.5 K-mer approaches and machine learning-based approaches
	4.3.6 Which analysis approach should I choose?
	4.3.7 Taxonomic classification
	4.3.8 “Quick start” methods

	4.4 What to do when the data analysis is concluded?
	4.4.1 Identity confirmation by an independent technique
	4.4.2 Biological characterization post HTS detection
	4.4.3 Sharing data to leverage knowledge
	4.4.4 Additional bioinformatics analyses


	5. Conclusions and outlook
	References

