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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Cropping system effects on crop 
phenology are currently unknown but 
likely to affect yields and thus food 
security. 

• We examined the applicability of Phe-
noCams for tracking crop phenology and 
the effects of cropping systems on 
phenology. 

• Crop phenology was significantly 
affected by cropping systems for both 
crops studied and linked to yield of 
winter wheat. 

• Organic farming, which changes early 
growing season conditions, might affect 
yield via changes in crop phenology. 

• PhenoCams are a powerful tool to assess 
drivers of phenology and yields to 
potentially increase food security.  
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A B S T R A C T   

CONTEXT: Crop phenology integrates information of how environmental drivers and management practices 
affect plant performance and crop yield. However, little is known about the impact of cropping systems (CS) on 
crop phenology and how this relates to differences in yield. 
OBJECTIVES: We assessed the applicability of PhenoCams to track crop phenology, how four CS, i.e., organic vs. 
conventional farming with either intensive or conservation (no/reduced) tillage affect the phenology of a pea- 
barley mixture and winter wheat, how crop phenology is related to harvest characteristics, e.g., grain yield 
and total N uptake, and explains CS effects on these characteristics. 
METHODS: We used time-lapse cameras (PhenoCams) to track vegetation changes in the two crops and extracted 
the green chromatic coordinate (GCC) to estimate different phenological metrics, i.e., dates with major changes 
in GCC (PhenoTimePoints), the duration between those (PhenoPhases), and the rate of increasing or decreasing 
GCC (PhenoSlopes). We assessed how phenological metrics were affected by different CS, and related pheno-
logical metrics to harvest characteristics. 
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RESULTS AND CONCLUSIONS: CS significantly affected phenological metrics of both crops, with less pronounced 
effects in the unfertilized pea-barley mixture compared to the fertilized winter wheat, and stronger effects for 
early-season than for late-season PhenoTimePoints. For winter wheat, organic compared to conventional farming 
caused an initial growth lag (up to 7 days) and a shorter duration (approximately 10 days) of the period of stable 
GCC. Winter wheat in reduced/no-tillage systems showed a tendency of delayed phenology (up to 5 days) 
compared to intensive tillage. While phenological metrics explained harvest characteristics of winter wheat well, 
they were almost unrelated to those of pea-barley, most likely because pea-barley yields were similar among CS. 
For winter wheat, effects of CS on harvest characteristics could be well explained by phenological metrics (max. 
R2 

= 0.9). Thus, we demonstrated that delayed phenology acted as an important factor causing lower yield in 
organic compared to conventional farming. 
SIGNIFICANCE: PhenoCams are valuable tool for high-resolution temporal monitoring of crop phenology. As 
different CS have been proposed as a tool for climate change adaptation, we suggest that the effects of CS on crop 
phenology need to be considered as they may impact yield via changes in crop phenology, particularly in organic 
agriculture.   

1. Introduction 

Phenology, the timing of recurring biological phases, plays a critical 
role in major ecosystem functions such as water and carbon fluxes (Du 
et al., 2019; Yao et al., 2017). It drives seasonal soil C dynamics (Hoff-
mann et al., 2018), determines plant water and nutrient acquisition 
(Nord and Lynch, 2009), and thus controls gross primary productivity 
and crop yield (Chen et al., 2019; Liu et al., 2016; Xia et al., 2015). 
Minor changes in phenology can lead to significant variations in 
ecosystem productivity (Xia et al., 2015; Yan et al., 2019). For example, 
the length of the growing season was reported to be positively related to 
net ecosystem productivity (Baldocchi, 2008; Churkina et al., 2005; 
Craufurd and Wheeler, 2009). The impact of phenology on plant phys-
iology has been widely studied to understand the ecological responses of 
vegetation changes to water supply (Estrada-Medina et al., 2013), 
nutrient conditions (Wang and Tang, 2019), and climate change (Eyshi 
Rezaei et al., 2017; Macgregor et al., 2019; Piao et al., 2019). How the 
phenology of crops is affected by agricultural practices is, however, 
much less understood. 

Previous studies on crop phenology focused mostly on tracking 
changes due to climate change (Craufurd and Wheeler, 2009; Rezaei 
et al., 2018) or on mapping the large-scale spatial variation of crop 
phenology (de Castro et al., 2018; Gao and Zhang, 2021), or both (Yang 
et al., 2020), and were typically based on remote sensing data. As part of 
regional or global PhenoCam networks, changes in vegetation and 
phenology of croplands have been monitored, but the drivers of varia-
tion in phenology specifically for croplands, such as crop types or 
management practices, have rarely been addressed (Brown et al., 2016; 
Richardson et al., 2018a). Management practices at farm or field level 
can be categorized into distinct agricultural systems (i.e., cropping 
systems such as organic and conventional farming) and are likely to 
affect crop phenology. Compared to unmanaged or extensively managed 
systems such as forests or unfertilized grasslands, the phenology of 
croplands is rather complex as the relationship between intensive agri-
cultural management and crop phenology is bidirectional. On the one 
hand, agricultural management practices, including fertilization, pesti-
cide and herbicide applications, are often applied according to a specific 
crop phenological stage, and are thus guided by phenology. On the other 
hand, crop phenology is not only determined by environmental factors, 
but also by management practices, such as sowing date (Klepeckas et al., 
2020; Mo et al., 2016), cultivar or genotype choices (Aasen et al., 2020; 
Eyshi Rezaei et al., 2017; Mo et al., 2016; Rezaei et al., 2018; Schoving 
et al., 2020) or nitrogen additions (Wang and Tang, 2019). For example, 
a meta-study showed that phenological changes after nitrogen additions 
were more pronounced in cropland than in grassland (Wang and Tang, 
2019). Therefore, it is necessary to monitor phenology to provide 
guidance for agricultural management. 

To sustainably provide high-quality food from cropland, various 
management practices have been proposed, including conservation (no/ 
reduced) tillage and the use of cover crops (e.g., Wittwer et al., 2017). 

Due to their ecological benefits such as the mitigation of greenhouse 
gases and carbon sequestration (Gattinger et al., 2012; Huang et al., 
2018; Skinner et al., 2019), the preservation of soil fertility (Loaiza 
Puerta et al., 2018), and the reduction of soil erosion (Seitz et al., 2019), 
these practices are promising tools to improve the sustainability and 
performance of cropping systems, e.g., organic and conventional 
farming. Thus, although extensive research has shown how these prac-
tices affect crop yield (Huang et al., 2018; Knapp and van der Heijden, 
2018; Pittelkow et al., 2015; Reganold and Wachter, 2016), insight into 
the impact of different cropping systems on crop phenology and devel-
opment is still lacking. 

Furthermore, looking solely on final yield does not necessarily allow 
for assessing in-season management interactions with crop development 
(Verhulst et al., 2011), and thus limits our understanding of the impacts 
of different management practices. Continuous monitoring of crop 
growth and development could help to determine in-season crop 
phenology and to gain mechanistic insights into the consequences of 
cropping systems on crop growth and development. Digital time-lapse 
photography with PhenoCams has been widely used to track large- 
scale vegetation phenology for many ecosystems, e.g., in the Pheno-
Cam network (Filippa et al., 2016; Migliavacca et al., 2011; Wingate 
et al., 2015), to characterize the development of canopy structure such 
as leaf area index (Garrity et al., 2011; Keenan et al., 2014), to explain 
temporal changes in CO2 fluxes (Migliavacca et al., 2011), and to 
quantify the relationship between phenology and gross primary pro-
ductivity (Ahrends et al., 2009; Toomey et al., 2015). Traditionally, crop 
growth dynamics during the growing season were measured by assessing 
stand harvest characteristics, such as plant height or leaf area index. 
Despite the ability of PhenoCams to track growth dynamics in cropland 
(Aasen et al., 2020), to our knowledge, studies using PhenoCams to 
understand the effect of agricultural practices on crop phenology are still 
missing. Moreover, the link between crop phenology and crop yield as 
affected by different cropping systems has not yet been studied in detail, 
which is limiting our understanding of how cropping systems affect crop 
performance during the growing season. 

Here, we used time-lapse PhenoCams to track crop phenology in a 
large cropping system experiment, since these cameras are easy-to-use 
and cost-efficient tools to obtain high resolution temporal information 
on crop growth. We then assessed how crop phenology is affected by 
different cropping systems, i.e., organic vs. conventional farming with 
either intensive or conservation (no/reduced) tillage. We further studied 
how crop phenology affects different aspects of crop performance at 
harvest (harvest characteristics), and predicted harvest characteristics 
using cropping systems and phenological metrics. Assessing not only 
yield per area, but different harvest characteristics allows for a more 
comprehensive insight into the effects of cropping systems and 
phenology on crop performance. To do so, we tested the following 
hypotheses: 
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1. PhenoCams can be used to track phenology and extract different 
phenological metrics for arable crop species. 

2. Cropping systems, i.e., organic vs. conventional farming and con-
servation vs. intensive tillage, influence crop phenology.  

3. Crop phenology affects harvest characteristics, such as grain and 
straw yields, total N uptake, thousand kernel weight (TKW), and ear 
density.  

4. Crop phenology explains the effects of different cropping systems on 
harvest characteristics. 

2. Materials and methods 

2.1. Study site and cropping systems 

The study site is located at the Swiss Federal Research Station 
Agroscope Reckenholz near Zurich, Switzerland (47◦26′20′′N, 
8◦31′40′′S). The long-term average annual temperature is 9.6 ◦C, the 
average annual precipitation sums up to 978 mm (1980 to 2019; 
MeteoSwiss, 2020). Our two-year study utilized a long-term field trial 
that aims at investigating the productivity and ecological impacts of 
important arable cropping systems (Farming Systems and Tillage 
Experiment, FAST; Wittwer et al., 2017). The FAST experiment started 
in August 2009 and follows a 6-year crop rotation with winter wheat 
(year 1), maize (year 2), a grain legume crop (year 3), winter wheat 
(year 4) and a grass-clover mixture (years 5 and 6), representing major 
crop types for Swiss agriculture. Each year, the respective crops are 
sown in main plots measuring 6 m × 30 m. The crossed combination of 
two farming systems (conventional vs. organic) and two levels of tillage 
intensity (intensive tillage vs. no/reduced tillage) results in four crop-
ping systems, i.e., conventional intensive tillage (C-IT), conventional no- 
tillage (C-NT), organic intensive tillage (O-IT), organic reduced tillage 
(O-RT). Reduced tillage, instead of no-tillage, is still applied under 
organic management as herbicides are prohibited for weed control. The 
four cropping systems were replicated four times in four blocks with a 
randomized block design, resulting in 16 plots. This study was con-
ducted in 2018 and 2019, during which a pea-barley mixture (Pisum 
sativum L. and Hordeum vulgare L. sown on 26 March 2018, harvested on 
16 July 2018) and winter wheat (Triticum aestivum sown on 25 October 
2018, harvested on 24 July 2019) were grown. The same cultivar for 
each crop was sowed in all cropping systems. Both crops, pea-barley and 
winter wheat, are important field crops in Switzerland and beyond, and 
at the same time differ in functional composition (grass-legume mixture 
vs. grass monoculture), which makes it particularly valuable to study 
these two distinct crops. 

The soil type of the site is a calcareous Cambisol on glacially 
deposited Pleistocene sediments, with 23% clay, 34% loam and 43% 
sand (according to Wittwer et al., 2017). In the conventional systems, 
mineral fertilizers and herbicides were regularly used, while the organic 
systems relied only on organic fertilizers and mechanical weed control. 
None of the studied plots used cover crops. Intensive tillage (IT) was 
performed with a moldboard plough to a depth of 20 cm in both organic 
and conventional systems. In the no-tillage management practice of the 
conventional systems (NT), the soil was not tilled since the beginning of 
the trial in 2009. Reduced tillage (RT) was performed to a target depth of 
5 cm (maximum 10 cm) with a rotary harrow and rototillers. 

The pea-barley mixture did not receive any fertilization from sowing 
to harvest. Fertilization of winter wheat in the conventional managed 
plots was done with mineral N (nitrogen), as ammonium nitrate (140 kg 
N ha− 1 in total), divided into one dose of 60 kg N ha− 1 on 31 March and 
two doses of 40 kg N ha− 1 on 7 April and 27 May 2019. The organic plots 
were fertilized with a total of 136.4 kg ha− 1 N, separated into 76.4 kg N 
ha− 1 (40 m3 ha− 1) as cattle slurry on 21 March and an equivalent of 60 
kg N ha− 1 as Biorga Quick pellets on 7 April 2019. While the amount of 
total fertilizer N applied to the crops was similar, timing and dosing 
differed between organic and conventional cropping systems due to the 
temporal availability of organic fertilizer and the application of the 

national recommendations for fertilization (Richner and Sinaj, 2017). 
Thus, potential effects of differences in dosing and timing on plant 
growth are included in the statistical comparison of organic vs. con-
ventional systems. 

2.2. Camera installation 

We installed time-lapse cameras (TLC 100, Brinno) in all 16 plots to 
record images of the crops. The cameras were mounted at 1.5 m high on 
wooden poles that were installed on the south side of the plots, pointing 
downwards to the crops (60◦ angle from horizontal) and northwards to 
the center of each plot. Images were recorded hourly from 24 May (DOY 
144) to 11 July (DOY 192) in 2018 for the pea-barley mixture, as well as 
half-hourly from 5 April (DOY 95) and 10 April (DOY 100) at conven-
tional plots (C-IT and C-NT) and organic plots (O-IT and O-RT), 
respectively, to 30 June (DOY 181) at all plots in 2019 for winter wheat. 
According to the automatic mode of the cameras, pictures were taken 
during daytime but not when it was completely dark. During our study 
period, this was approximately from 5.00 am to 9.00 pm. For the pea- 
barely mixture, the camera installation was delayed, thus early pheno-
logical data in 2018 is missing. In both years, data recorded by the 
cameras were downloaded a few days before the respective harvests 
since cameras had to be taken down due to logistical reasons. 

2.3. Image analysis and extraction of the Green Chromatic Coordinate 

In total, our PhenoCam dataset was composed of valid observations 
from 15 plots in the pea-barley mixture and 15 plots in winter wheat. 
Pictures were missing in one O-RT plot in pea-barley mixture and one C- 
IT plot in winter wheat due to recording failures. We only used images 
from 10 Apr (DOY 100) until 21 June (DOY 172) for winter wheat as the 
cameras were started on different dates, and some of the cameras ran out 
of batteries earlier than expected. All analyses were performed with the 
R version 4.0.2 (2020-06-22; R Code Team, 2020). 

Image processing and analysis were performed with the R package 
“Phenopix” (Filippa et al., 2016). First, we determined the region of the 
image that depicted the crop (region of interest, ROI; Fig. 1) and 
calculated the Green Chromatic Coordinate (GCC, eq. 1), which is able 
to efficiently demonstrate a color change of the vegetation by reducing 
the effect of scene illumination (caused by weather or atmospheric ef-
fects, or solar illumination geometry, Richardson et al., 2018a) and can 
be used with non-calibrated cameras (Sonnentag et al., 2012). 

GCC =
greenDN

redDN + greenDN + blueDN
(1) 

where greenDN, redDN, and blueDN represent the average digital 
number (DN) of the green, red, and blue channels extracted from the 
ROI, respectively. To calculate any other CC value (e.g., BCC), the 
nominator needs to be replaced accordingly. 

We excluded nighttime images by excluding images with a bright-
ness (i.e., the sum of redDN, greenDN and blueDN) lower than 85. To 
exclude images with cloudy or rainy weather conditions, low illumina-
tion and dirty lenses, we used a set of filtering processes in a sequence of 
“blue, mad, spline, max” as embedded in the function AutoFilter, see Fil-
ippa et al. (2016). The “blue” filter was designed to remove images with 
clouds or snow using a threshold on BCC values (Julitta et al., 2014). The 
“mad” filter detects outliers based on the double-differenced time series 
using the median of absolute deviation about the median (Papale et al., 
2006). The “spline” filter is based on recursive spline smoothing and 
residual computation, removing outliers falling outside a given residual 
envelope (Migliavacca et al., 2011). Finally, we used the “max” filter to 
aggregate GCC values to the daily 90th percentile. Subsequently, a 
three-day moving average was calculated based on the daily GCC values 
in order to reduce day-to-day variations, mainly caused by changing 
illumination under different weather conditions (Hufkens et al., 2012; 
Sonnentag et al., 2012). 
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2.4. Fitting the GCC seasonal course 

The GCC signal represents an integrated signal of canopy greenness 
(Aasen et al., 2020; Keenan et al., 2014; Yang et al., 2014). To capture 
the GCC seasonal course, we fitted a double logistic regression function 
per plot to the filtered GCC values (eq. 2) (Beck et al., 2006). The Beck 
double logistic regression function models the GCC as a function of time 
(t) using six parameters, 

GCC(t) = GCCmin +(GCCmax − GCCmin)*
(

1
e(− rsp*(t− SOS) ) +

1
e(− rau*(t− EOS) )

)

(2)  

where GCCmin represents the minimum GCC and GCCmax represents 
maximum GCC, SOS (start of season) and EOS (end of season) represent 
the increasing and decreasing inflection points, and rsp and rau repre-
sent the rate of increase or rate of decrease in GCC at SOS and EOS, 
respectively. In addition, we tested differences in the GCC seasonal 
courses among the four cropping systems with a repeated measures 
ANOVA (F-test) by including cropping system as fixed effect, time (DOY) 
as a random factor and daily GCC values as the response variable in a 
linear mixed model using the lmer function from the package “lme4” 
(Bates et al., 2015). 

2.5. Extraction of phenological metrics 

Based on the seasonal GCC curves for each plot in both years, we 
calculated several phenological metrics from each fitted seasonal curve 
(Fig. 1, Table 1). A detailed description of all extracted phenological 
metrics is shown in Table 1. We defined three categories of phenological 
metrics, i.e., “PhenoTimePoints”, “PhenoPhases” and “PhenoSlopes”. A 
“PhenoTimePoint” is a day during the year (DOY) that refers to an event 
with major changes in GCC. A “PhenoPhase” is a temporal period during 
the phenological development with a certain duration (Aasen et al., 
2020), usually framed by two PhenoTimePoints, while a “PhenoSlope” 
represents the rate of increase or decrease in GCC during a PhenoPhase. 
We tested the effect of cropping systems on each of the phenological 
metrics with the respective linear mixed models, using lmer from R 
package “lme4” (Bates et al., 2015). The cropping system was treated as 
a fixed effect (four levels), while the experimental block (four levels) 
was treated as a random effect. 

2.6. Stand characteristics 

Plant height was measured from the ground to the highest natural 
point (first leaf or ear) with ten replicates per plot per species, with a 
folding ruler. It was measured during sunny and non-windy days at noon 
four times between 22 May and 9 July 2018 for the pea-barley mixture, 
and six times between 6 Mar and 27 June 2019 for winter wheat. Ten 
plants within the central region (1 m × 1.5 m) of each plot were chosen 
randomly for these height measurements. The Leaf Area Index (LAI; m2 

m− 2) measurements consisted of one measurement above the canopy, 
followed by nine measurements below the canopy at ground height 
(replicated three times during each measurement) at regular intervals 
during 23 April and 25 June 2019 using a LAI-2000 (Li-Cor, Logan, UT, 
USA), also within the central region. LAI was measured for winter wheat 
only. Additionally, the Normalized Different Vegetation Index (NDVI) 
was computed from aerial images taken with a multispectral camera 
(Parrot Sequoia, Parrot SA, Paris) capturing Green (550 nm), Red (660 
nm), Red Edge (735 nm) and Near Infrared (790 nm) reflectance values, 
mounted on an autonomous unmanned aerial vehicle (eBee, SenseFly, 
Parrot SA, Paris). Five flights were carried out between 20 April and 10 
July 2018 for the pea-barley mixture, and five flights between 22 March 
and 4 June 2019 for winter wheat, at an average ground resolution of 5 
cm per pixel. Additional to camera setting calibrations, a sunshine 
sensor (Parrot Sequoia) and a reflectance panel were used for radio-
metric calibration of the pictures during image processing with the 
software Pix4Dmapper (Pix4D SA, Prilly). For each flight, reflectance 
maps for each band were generated and an NDVI map calculated (eq. 3) 
as: 

NDVI = (NIR − Red)/(NIR+Red) (3) 

where NIR and Red are the reflectance values at 790 nm and 660 nm, 
respectively. NDVI values at the plot level were then extracted as mean 
pixel values from the inner 50% area of each plot. 

To compare the seasonal dynamics of GCC, NDVI and other stand 
characteristics qualitatively, we normalized their values (χ0) relative to 
their minimum and maximum values (χmax and χmin) over the growing 
season for each individual plot (eq. 4). 

X norm =
χ0 − χmin

χmax − χmin
(4)  

where χ0 refers to NDVI, LAI, plant height or daily means of fitted GCC 

Fig. 1. From PhenoCam pictures (a) to phenology (b). A region of interest (ROI in a) was used to determine daily Green Chromatic Coordinate (GCC) values (black 
dots in b), to which a double logistic equation (eq. 2 in methods section) was fitted, resulting in a continuous seasonal course of GCC. Phenological metrics were then 
determined with different methods, either based on the first derivative of the fitted GCC values (dashed vertical lines) or according to the approaches suggested by Gu 
et al. (solid vertical lines; (Gu et al., 2009). Abbreviations and explanations for all phenological metrics (PhenoTimePoints, PhenoPhases and PhenoSlopes) are given 
in Table 1. 

Y. Liu et al.                                                                                                                                                                                                                                      



Agricultural Systems 195 (2022) 103306

5

for each plot. 

2.7. Harvest characteristics and their relation to phenology and cropping 
systems 

Aboveground biomass was collected within two 0.25 m2 areas that 
contains three rows of crops per plot by cutting the plants 1 cm above the 
ground on 16 July 2018 for pea-barley mixture and 24 July 2019 for 
winter wheat. After drying grains and straws at 60 ◦C until constant 
weight, grain yield and straw yield (t/ha of 100% dry matter) were 
recorded separately. Yield was calculated by transferring the weight of 
two 0.25 m2 areas per plot to tons per hectare (t/ha). The thousand 
kernel weight (TKW; given in g/1000) was calculated by weighing 100 
randomly selected grains or peas, respectively. Ear density (ears/m2) 
was estimated by counting the number of wheat and barley ears or pea 
plants per m2 in the harvested areas. N concentration (N%; g/kg of dry 
matter) in grain and straw was measured using an elemental analyzer 
(Euro EA, HEKAtech, Wegberg). Total N uptake (kg N/ha) was calcu-
lated according to eq. 5: 

Total N uptake = N%grain × grain yields+N%straw × straw yields (5)  

where N%grainN%grain and N%strawN%straw represent N concentrations in 
grain and straw, respectively. 

For both crops, we analyzed how each harvest characteristic is 
affected by cropping system with separate linear mixed models. Crop-
ping system was a fixed effect, and the experimental block was a random 
effect. For winter wheat only, to evaluate the relevance of phenology for 
crop performance at harvest, we first explored the relations between the 
harvest characteristics (i.e., grain yield, straw yield, total N uptake, TKW 
and ear density) and the phenological metrics with the Pearson corre-
lation coefficient (Pearson’s r). Second, to analyze the combined effects 
of multiple phenological metrics on harvesting characteristics, we 
selected the phenological metrics that showed a significant correlation 
with the harvest characteristics (from the last step) and included them in 
multiple regression models for each of the harvest characteristics. To 
determine the most influential phenological metrics, we performed a 
stepwise model selection based on the Akaike information criterion 
(AIC). The thereby selected phenological metrics were included in a 
multiple regression model together with the cropping systems to 

perform variance partitioning and disentangle the combined effects of 
cropping system and phenology on harvest characteristics. Third, as 
varpart allows for a maximum of four explanatory variables, cropping 
system for sure needs to be considered as a variable, which means three 
phenological metrics at most can be used for variance participating. In 
cases where more than three phenological metrics were included in the 
multiple regression models from the last step, we conducted another 
model selection prior to the variance partitioning, using the regsubsets 
function from the R package “leaps” to select the three best predictors 
with the highest explanatory power to explain harvest characteristics 
(Lumley, 2020). This was, however, only done when more than three 
phenological metrics were significantly related to harvest characteristics 
(i.e., total N uptake, ear density). Last, we used varpart from the R 
package “Vegan” (Oksanen et al., 2020), which partitions the variation 
in the response variable (i.e., harvest characteristics) into components 
accounted for by up to four explanatory variables, i.e., cropping systems 
and no more than three phenological metrics (selected from last step). 

3. Results 

3.1. Phenology across different cropping systems 

3.1.1. Seasonal GCC courses of the two crops 
The phenology could be continuously tracked with GCC from late 

spring for pea-barley mixture and from early spring for winter wheat 
throughout the growing season until crop senescence/ripening set in 
before the respective harvests (Fig. 2). The pea-barley mixture reached 
its maximum GCC value (POP, i.e., position of peak greenness) around 
DOY 150 (except for C-NT) and stayed at relatively high values (up to 
0.4) rather long (until around DOY 170, the DD, i.e., Downturn Date), 
before decreasing relatively fast. Low GCC values (of around 0.34 after 
DOY 185) were reached during ripening, prior to harvest. 

A slightly different course of the GCC-based phenology was observed 
for winter wheat (Fig. 2b). Here, GCC values increased gradually from 
low values of the overwintering plants (0.37 for C-NT and O-RT and 0.38 
for C-IT and O-IT at DOY 100) and reached their maxima (POP; at DOY 
130) relatively fast (within 30 days). Both organic cropping systems (O- 
IT and O-RT) showed a relatively short period with outstanding high 
GCC values (StablePhase; period between SD and DD, i.e., between Sta-
bilisation Date and Downturn Date) in the middle of the growing season 

Table 1 
Phenological metrics used in this study with their abbreviations, calculation method and related references.  

Abbreviation Name of feature Calculation methods Methods and references 

(1) PhenoTimePoints 
SOS Start of growing season (green 

up) 
The date when GCC’(t) was largest Derivative method (Filippa et al., 

2016) 
SD Stabilization date Based on a combination of local maxima in the first derivative, the intersection 

between recovery line and maxline defines the reaching of the plateau  Gu method (Gu et al., 2009), 
adapted by (Filippa et al., 2016) 

POP Position of peak greenness The date of maximum GCC of the fitted GCC curves Derivative method (Filippa et al., 
2016) 

DD Downturn date Based on a combination of local maxima in the first derivative, the intersection 
between the plateau line and the senescence line 

Gu method (Gu et al., 2009), 
adapted by (Filippa et al., 2016) 

EOS End of season The date when GCC’(t) was at the minimum Derivative method (Filippa et al., 
2016)  

(2) PhenoPhases 
GreenUpPhase Period of ascending GCC Length of phase between SOS and SD Gu method (Gu et al., 2009), 

adapted by (Filippa et al., 2016) 
StablePhase Period with relatively stable GCC Length of phase between SD and DD, refers to a relatively steady stage of crop 

development in the middle of the growing season 
Derivative method (Filippa et al., 
2016) 

BrownDownPhase Period with descending GCC Length of phase between DD and EOS This study 
LOS Length of growing season Length of phase between SOS and EOS This study  

(3) PhenoSlopes 
GreenUpSlope Slope of ascending GCC during 

GreenUpPhase 
The linear slope of GCC between the day of SOS and SD, represented by times 
10,000 

This study 

BrownDownSlope Slope of descending GCC during 
BrownDownPhase 

The linear slope of GCC between the day of POP and EOS, represented by times 
10,000 

This study  
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(up to 0.45). The StablePhase for both conventional cropping systems (C- 
IT and C-NT) was longer and characterised by lower GCC values (up to 
0.41). For all cropping systems, GCC values then steadily decreased, 
reaching low, stable GCC values (around 0.36 at DOY 170) during 
ripening, prior to harvest. 

3.1.2. Effect of cropping systems on phenological metrics 
The phenology, represented by seasonal GCC courses, of pea-barley 

mixture as well as winter wheat were significantly different among 
cropping systems (repeated measures ANOVA, pea-barley mixture: F =
23.42, P < 0.001; winter wheat: F = 552.79, P < 0.001). Not only the 
seasonal course of GCC values differed among the cropping systems, but 
also many of the phenological metrics derived from the curves differed 
(Table 2). In pea-barley, POP was earliest in O-RT (DOY 145.7), followed 
by O-IT and C-IT (DOY 148.4 and 148.5; respectively), and significantly 
later in C-NT (DOY 160.3). No effects of cropping systems in the pea- 
barley mixture were detectable on the BrownDownPhase and its associ-
ated DD and EOS (End of Season) dates. Much in contrast, in winter 

wheat, cropping systems particularly affected the early season Pheno-
TimePoints, i.e., SOS, SD, and POP, while the late season PhenoTime-
Points, i.e., DD and EOS, were again unaffected. Noticeably, winter 
wheat grown under intensive tillage (C-IT and O-IT) had an earlier 
growth compared to those managed under no/reduced tillage (C-NT and 
O-RT), indicated by relatively early dates of SOS, SD and POP, in both 
conventional and organic systems. For example, SOS was earliest in C-IT 
(DOY 103.3), followed by C-NT and O-IT (DOY 107.8 and 110.3; 
respectively), and latest in O-RT (DOY 114.8), while POP was earliest in 
C-IT (DOY 124), followed by O-IT, C-NT and O-RT (DOY 130.5, 131.8 
and 133.9; respectively). This resulted in an almost two times longer 
StablePhase for winter wheat in the two conventional systems (22 to 28 
days) than those in two organic systems (13 to 14 days). Subsequently, 
with relative early dates of DD and late dates of EOS, both organic 
systems completed the growing season with a significantly longer 
BrownDownPhase (13 to 14 days) compared to the two conventional 
systems (7 to 10 days; Table 2). Additionally, the BrownDownSlope was 
steepest in C-IT (− 5.3), indicating the slowest decrease in GCC toward 
ripening, followed by C-NT (− 14.3) and O-IT (− 20.4)), and slowest in O- 
RT (− 27.3). In contrast, no cropping system effects were found on 
GreenUpSlope and LOS, suggesting that the increase in GCC before its 
peak was irrespective of cropping systems (Fig. 2b, Table 2). 

3.1.3. Relationships between phenology and stand characteristics 
We observed similar seasonal dynamics for GCC and NDVI in both 

crops (Fig. 3), with NDVI slightly lagging behind GCC (by about 10 
days). Moreover, while GCC and NDVI showed pronounced maxima and 
decreased towards the end of the growing season, crop height of all crop 
species increased until after the GCC and NDVI maxima and stayed high 
until harvest. Crop height maximums occurred near the date of DD in 
pea-barley mixture (Fig. 3a) and even after EOS in winter wheat (DOY 
151; Fig. 3b). Moreover, GCC peaked much earlier than stand LAI and 
crop height for winter wheat (Fig. 3b). LAI was still very low (10% of its 
maximum value) during the GreenUpPhase before rapidly increasing 
during the StablePhase (SD at DOY 120), reaching its maximum shortly 
after the end of the StablePhase (DD at DOY 140). When GCC peaked at 
DOY 130, LAI had reached 76% of its maximum value, while height was 
only at 45% of its maximum. LAI remained stable throughout the 
BrownDownPhase (EOS at DOY 151), only decreasing very late as crop 
ripening/senescence approached (Fig. 3b). These findings also held true 
when assessed for each cropping system separately (Fig. S1). 

3.2. Harvest characteristics 

3.2.1. Effects of cropping systems on harvest characteristics 
For pea-barley mixture, only ear density was affected by cropping 

systems, while all other harvest characteristics such as total grain and 
straw yield, total N uptake, and TKW were not affected by cropping 
systems. The highest ear density was achieved in O-IT (approximately 
235 per m2), compared to those in other cropping systems (between 130 
and 151 per m2). In winter wheat, on the other hand, all five harvest 
characteristics were significantly affected by cropping systems. Grain 
yield (on average 5.7 t/ha) were highest in C-IT, intermediate in C-NT 
and O-IT, and lowest in O-RT. Even more pronounced were the differ-
ences for straw yield, which were 25% higher in the two conventional 
systems (8 to 8.2 t/ha) than in two organic systems (5.7 to 6.4 t/ha). 
Similar to straw yield, total N uptake (on average 172 kg N/ha) was 47% 
higher in conventional systems than in organic systems. In contrast, 
TKW (on average 39 g/1000 grain) was 7.6% higher in organic than in 
conventional systems. In case of ear density, we observed highest 
numbers in the two conventional systems (on average 272 ears/m2), 
intermediate numbers in O-IT (213 ears/m2, and lowest ear density in O- 
RT (178 ears/m2, Table 2). 

3.2.2. Effects of phenology on harvest characteristics 
In general, phenological metrics were more strongly correlated with 

Fig. 2. Seasonal course (dots and curves) of Green Chromatic Coordinate (GCC) 
and phenological metrics of cropping systems for (a) pea-barley mixture and (b) 
winter wheat. Curves were fitted to the daily mean GCC values of each cropping 
system (i.e., the average of the replicated plots in four blocks). Different sym-
bols indicate the four cropping systems. Start and end of each box represent the 
measurement periods during the two years, with a later start for pea-barley 
mixture in 2018. Phenological metrics are shown as means and standard er-
rors of PhenoTimepoints. PhenoPhases are shown with different colors. Ab-
breviations and explanations for all phenological metrics are given in Table 1. 
Cropping systems are conventional intensive tillage (C-IT), conventional no- 
tillage (C-NT), organic intensive tillage (O-IT) and organic reduced tillage (O- 
RT). Statistical results for effects of cropping systems on each single pheno-
logical metric are given in Table 2. Please note that the range of the x-axes 
differs for the two panels. 
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Table 2 
Effects of cropping systems on phenological metrics and harvest characteristics in pea-barley mixture and winter wheat. Mean values and standard errors of 
phenological metrics and harvest characteristics for each cropping system are shown. Asterisks indicate significant effects of cropping systems: *** P < 0.001, ** 0.001 
≤ P < 0.01, * 0.01 ≤ P < 0.05 according to linear mixed models. Significant effects of cropping systems are given in bold (P < 0.05), with letters indicating significant 
differences among cropping systems derived from Tukey post-hoc tests (P < 0.05, n = 16 for pea-barley mixture and winter wheat respectively for harvest charac-
teristics; n = 15 for pea-barley mixture and winter wheat respectively for phenological metrics). Cropping systems are conventional intensive tillage (C-IT), con-
ventional reduced tillage (C-NT), organic intensive tillage (O-IT) and organic reduced tillage (O-RT). Abbreviations for phenological metrics: see Table 1. NA = not 
available due to missing data.   

Pea-barley mixture Winter wheat  

F C-IT C-NT O-IT O-RT F C-IT C-NT O-IT O-RT 

PhenoTimePoints 
(DOY)           

SOS NA NA NA NA NA 4.07* 103.3 ± 
1.5a 

107.8 ± 
1.4ab 

110.3 ± 
2.5ab 

114.8 ± 
3.0b 

SD NA NA NA NA NA 5.06* 111.2 ± 
3.3a 

119.2 ± 
3.0ab 

122.3 ± 
4.3b 

126.6 ± 
2.6b 

POP 25.70*** 148.5 ± 
2.8a 

160.3 ± 
3.3b 

148.3 ± 
2.9a 

145.7 ± 0.3 
a 

4.92* 124.0 ± 
1.5a 

131.8 ± 
1.5b 

130.5 ± 
2.2b 

133.8 ± 
1.7b 

DD 0.21 172.2 ± 0.9 171.0 ± 1.4 170.6 ± 2.1 171.6 ± 2.0 0.40 139.6 ± 3.3 141.5 ± 1.6 138.3 ± 2.5 140.5 ± 1.7 
EOS 0.35 176.5 ± 0.7 177.0 ± 1.2 175.8 ± 1.1 176.7 ± 0.9 2.77 150.0 ± 1.7 148.8 ± 0.9 152.5 ± 1.9 153.8 ± 1.1 
PhenoPhases (days)           
GreenUpPhase NA NA NA NA NA 1.09 7.8 ± 3.1 11.4 ± 2.1 12.0 ± 0.7 11.8 ± 0.8 
StablePhase NA NA NA NA NA 3.61* 28.4 ± 

6.4ab 
22.3 ± 3.9a 16.0 ± 0.8b 13.9 ± 1.2b 

BrownDownPhase 0.73 4.3 ± 0.5 6.0 ± 0.7 5.2 ± 1.0 5.1 ± 1.2 3.81* 10.4 ± 
1.9ab 

7.3 ± 0.7a 14.2 ± 1.5b 13.3 ± 2.1b 

LOS NA NA NA NA NA 1.35 46.7 ± 2.7 41.0 ± 1.9 42.3 ± 2.1 39.0 ± 3.8 
PhenoSlopes           
GreenUpSlope NA NA NA NA NA 0.55 18.9 ± 13.3 12.2 ± 2.4 23.6 ± 4.6 16.5 ± 5.8 
BrownDownSlope  

Harvest 
characteristics 

2.58 - 21.5 ± 8.3 - 19.6 ± 7.2 − 44.8 ± 9.5 − 20.2 ± 6.6 7.65* ¡5.3 ± 
2.1b 

¡14.3 ± 
5.1ab 

¡20.4 ± 
4.1ab 

¡27.3 ± 
4.6a 

Grain yield (t/ha) 2.42 4.35 ± 0.60 3.50 ± 0.31 3.92 ± 0.38 3.25 ± 0.18 6.84*** 6.55 ± 
0.15c 

6.15 ± 
0.37bc 

5.35 ± 
0.52ab 

4.60 ± 
0.52a 

Straw yield (t/ha) 2.73 3.08 ± 0.40 2.48 ± 0.17 2.95 ± 0.25 2.45 ± 0.05 7.31 ** 8.00 ± 
0.36b 

8.20 ± 
0.39b 

6.55 ± 
0.75a 

5.73 ± 
0.50a 

Total N uptake (kg N 
/ha) 

1.47 164.50 ±
22.50 

139.75 ±
12.86 

141.25 ±
18.09 

124.00 ±
7.47 

24.12** 219.75 ± 
13.22b 

225.50 ± 
14.77b 

137.25 ± 
20.86a 

108.25 ± 
15.39a 

TKW (g/1000 grain) 1.53 273.58 ±
5.50 

294.34 ±
7.50 

281.29 ±
8.40 

277.64 ±
7.30 

7.54** 38.15 ± 
0.45a 

37.29 ± 
0.99a 

40.24 ± 
0.66b 

41.05 ± 
0.87b 

Ear density (ears/m2) 5.91* 151.25 ± 
25.22a 

130.00 ± 
18.97a 

235.00 ± 
34.65b 

136.00 ± 
16.86a 

19.67*** 265.75 ± 
9.59c 

278.25 ± 
9.41c 

212.75 ± 
15.96b 

178.25 ± 
14.64a  

Fig. 3. Seasonal courses of Green Chromatic Coordinate (GCC) and NDVI in relation to further stand characteristics, i.e., LAI and plant height in (a) pea-barley 
mixture and (b) winter wheat. For comparability, all measurements were normalized to range from 0 to 1. Solid lines indicate mean values of each variable 
averaged over all plots (for GCC: n = 15 for pea-barley mixture and winter wheat each; for all other variables: n = 16 for both crops). Shaded areas around the lines 
represent standard errors. Underlying colors indicate PhenoPhases (as defined in Fig. 2). Please note that the range of the x-axes differs for the two panels. PhenoCam 
images displayed below the panels were taken from the same plot, managed organically with intensive tillage (O-IT). 
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harvest characteristics in winter wheat than in the pea-barley mixture 
(Fig. 5). In the pea-barley mixture, the BrownDownSlope correlated 
significantly with total N uptake (Pearson’s r = 0.52), indicating that a 
slower rate of descending GCC was related to higher N uptake. Because 
smaller (more negative values) of BrownDownSlope depict a steeper 
decrease of the GCC curves, this positive correlation indicated that the 
higher the N uptake, the flatter the decrease in GCC between DD and 
EOS. However, all other phenological metrics showed no significant 
correlation with any harvest characteristics of the pea-barley mixture (−
0.35 < Pearson’s r < 0.39). When analysing the harvest characteristics 
for pea and barley separately, BrownDownSlope was found to be posi-
tively correlated with grain yield, straw yield and total N uptake of pea 
(Pearson’s r > 0.55, Fig. S2). However, none of the phenological metrics 
correlated with any harvest characteristics of barley (Fig. S2). 

Much in contrast, grain and straw yields as well as total N uptake and 
ear density of winter wheat were negatively correlated to SOS, SD, POP 
and EOS (Pearson’s r < − 0.59), and positively correlated with the length 
of the StablePhase, and BrownDownSlope (Pearson’s r > 0.60). Specif-
ically, harvest characteristics decreased the most with SOS and SD, thus 
the later the season started, the later GCC peaked, and the shorter the 
StablePhase, the lower was the crop performance. Among all Pheno-
Phases, the StablePhase (i.e., the period between SD and DD) showed the 
highest positive correlations with harvest characteristics (except with 
TKW; Pearson’s r > 0.60), demonstrating that the longer the StablePhase, 
the higher the harvest characteristics. However, GreenUpPhase, Brown-
DownPhase, and LOS showed no or only weak correlations to harvest 
characteristics, suggesting that especially the start (SD) of the Sta-
blePhase was highly relevant for crop performance, also because SD but 
not DD was responsible for differences in the length of the StablePhase. 
Regarding the two PhenoSlopes, the BrownDownSlope was strongly 
positively correlated with all harvest characteristics (Pearson’s r > 0.70; 
except TKW), while on the contrary, the GreenUpSlope had no correla-
tions to harvest characteristics (Fig. 4). In the case of TWK, significant 
positive correlations were found with SD, EOS, and BrownDownPhase, 
but a negative correlation with BrownDownSlope, indicating that TKW 
was rather determined at the end of the growing season (Fig. 4). 

Using those phenological metrics which significantly correlated with 
harvest characteristics of winter wheat (P < 0.05, Fig. 4), we explored 
the best fitting model to predict harvest characteristics (Table 3). 
BrownDownPhase and BrownDownSlope together explained 50.5% of the 
variability in TKW. For grain yield and straw yield, two and three 
phenological metrics explained together approximately 80% of the 
variability, respectively. For total N uptake and ear density, four 
phenological metrics explained together around 90% of the variability. 
Specifically, both POP and StablePhase (with positive coefficients) as 
well as SOS and EOS (with negative coefficients) explained multiple 
harvest characteristics. 

3.2.3. Phenology explaining cropping systems effects on harvest 
characteristics 

To facilitate the variance partitioning, we restricted the multiple 
regressions to a combination of cropping systems and a maximum of 
three phenological metrics, namely those showing the strongest re-
lationships with all harvest characteristics (see section 2.7 for details). 

SD and EOS explained 29% and 12% of the variability in grain yield, 
respectively (Fig. 5a). Another 26% of the variability in grain yield was 
explained jointly by the cropping systems, SD and EOS, and 20% 
together by the cropping system and SD. For straw yield, the largest 
fractions of the variability (24% and 23%) were explained by the com-
bination of cropping system, SD, POP, and EOS, as well as the combi-
nation of SD and POP, respectively (Fig. 5b). In the case of total N 
uptake, 26% of the variability was explained by the shared fraction of 
EOS with cropping system, and another 20% of the variability was 
explained by the combination of cropping system, SOS and StablePhase 
(Fig. 5c). Similar to the results shown in Table 3, also accounting for 
cropping system in the variance partitioning for TKW yielded a large 

proportion of unexplained variance (residuals = 0.54). The variability in 
TKW was explained by BrownDownSlope (8%), the combination of 
cropping systems with BrownDownSlope (19%), BrownDownPhase (17%), 
and the combination of all the three factors (12%) (Fig. 5d). The biggest 

Fig. 4. Pearson correlation coefficients (Pearson’s r) of phenological metrics 
and harvest characteristics, including grain yield, straw yield, total N uptake, 
Thousand Kernel Weight (TKW), and ear density in the pea-barley mixture (n =
15) and in winter wheat (n = 15). Pearson’s r is given as a pie chart and is color 
coded. Abbreviations and explanations for all phenological metrics (PhenoTi-
mePoints, PhenoPhases and PhenoSlopes) are given in Table 1. Levels of sig-
nificance are given as * (P < 0.05), ** (P < 0.01) and *** (P < 0.001). 

Table 3 
Best fitting models explaining harvest characteristics by multiple phenological 
metrics for winter wheat in the year 2019. Harvest characteristics are grain 
yield, straw yield, total N uptake, thousand-kernel weight (TKW) and ear den-
sity. The best regression models were identified by a stepwise reduction of 
predictors according to the minimum AIC of the respective model.  

Harvest 
characteristics 

Model and predictors AIC Adjusted 
R2 (%) 

Grain yield (t/ 
ha) 

39.56–0.11*SD – 0.14*EOS − 19.57 80.9 

Straw yield (t/ 
ha) 

48.36 + 0.12*POP – 0.20*SD – 
0.22*EOS 

− 8.65 78.9 

Total N uptake 
(kg N /ha) 

2043.51–5.12*SOS + 3.86*POP 
+3.508*StablePhase − 12.44*EOS 

93.72 89.7 

TKW (g/1000 
grain) 

34.91 + 0.22*BrownDownPhase – 
0.11*BrownDownSlope 

15.05 50.5 

Ear density(ears/ 
m2) 

1316.43–4.16*SOS + 3.79*POP 
+2.10*StablePhase +
1.31*BrownDownSlope 

88.18 88.9  
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Fig. 5. Variance partitioning of the effects of cropping systems vs. phenological metrics on harvest characteristics of winter wheat: (a) grain yield, (b) straw yield, (c) 
total N uptake, (d) thousand kernel weight (TKW), and (e) ear density (n = 15 each). Abbreviations and explanations for all phenological metrics (PhenoTimePoints, 
PhenoPhases and PhenoSlopes) are given in Table 1. Numbers represent respective fractions of total variance (based on adjusted R2). The fraction explained by 
cropping systems is displayed with a bold line. For further details on the variance partitioning, see methods section. 
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fraction of the variability in ear density (43%; Fig. 5e) was explained by 
the shared fraction of cropping system and SOS, POP and BrownDown-
Phase, followed by 24% of the variability in ear density explained by the 
shared fraction of cropping system with BrownDownPhase. Therefore, 
cropping systems by themselves did not explain any additional vari-
ability in most of the harvest characteristics (Fig. 5), except for ear 
density (17% explained by cropping systems). 

4. Discussion 

4.1. PhenoCams as an effective tool for monitoring phenology and 
vegetation development in arable crops 

In this study, we successfully tracked the phenology of two different 
arable crops, a pea-barley mixture and winter wheat, based on GCC 
values extracted from PhenoCam images and GCC-derived phenological 
metrics. PhenoCam-based phenological metrics were previously used in 
natural and semi-natural vegetation (Klosterman et al., 2014; Richard-
son et al., 2018a), and only few studies were able to identify pheno-
logical metrics in annual vegetation such as summer-dry grasslands 
(Julitta et al., 2014; Migliavacca et al., 2011) or arable land (Aasen et al., 
2020). With PhenoCams, we were able to automatically and continu-
ously monitor crop growth near real-time, with low-cost cameras, albeit 
complex data processing and statistical analyses. Thus, PhenoCams 
monitored the peak and the growth rate of greenness, which are not 
detectable by a human observer. However, the complex data processing 
and statistical analyses might restrict the applicability of such a tech-
nique to more scientific applications unless image processing and data 
analyses are embedded in easy-to-use decision support tools for farmers, 
e.g., comparing current crop development to benchmark curves from 
earlier seasons. However, since smart farming and precision farming 
have progressed quite far and fast in recent years (Finger et al., 2019; 
Walter et al., 2017), the use of near-real time phenological data in early- 
detection or warning tools against detrimental environmental and bio-
logical impacts can be expected to be the next logical step to further 
develop sustainable arable agriculture, and to assess the effects of 
climate change on crop productivity. The application of PhenoCams can 
also effectively contribute to expanding agro-phenological databases 
with real-time observations and thus improve crop model stimulations 
(Ceglar et al., 2019). 

To cover larger spatial scales, many studies on crop phenology are 
based on remote sensing data. For example, Sadeh et al. (2019) and 
Sakuma and Yamano (2020) used satellite observations to estimate crop 
growth patterns of different crops under agricultural management, 
suggesting the potential of high temporal resolution time series satellite 
imagery for crop phenology studies. Also, commercial products based on 
satellite imagery provide real-time field maps and help to monitor plant 
growth and health conditions. However, spatial and temporal resolu-
tions usually limit the use of satellite-based data, especially in hetero-
geneous, fragmented ecosystems (Bégué et al., 2018; Weiss et al., 2020). 
In contrast, digital repeat photography with PhenoCams provides a high 
temporal frequency and finer spatial scale (Richardson et al., 2009), 
which is well suitable to track local scale crop phenology, unpick the 
causes of yield gaps (Duncan et al., 2015), and validate remote-sensing 
products (Browning et al., 2017; Richardson et al., 2018b; Thapa et al., 
2021). Moreover, studies comparing PhenoCam and satellite-derived 
phenology found higher accuracy of PhenoCam observations in assess-
ing the gradual process towards ripening and senescence phases (Liu 
et al., 2017; Yan et al., 2019). Thus, in combination with our results, we 
can conclude PhenoCams are highly valuable tools to continuously 
observe crop development. 

Previous studies compared the seasonal dynamics of GCC with leaf 
physiological characteristics such as chlorophyll content or stand gross 
photosynthesis, but often only in forests (Liu et al., 2015). However, 
although GCC and NDVI were generally positively correlated in our 
study, PhenoCam phenology provided different information than field 

measurements of stand characteristics such as LAI, as we found a tem-
poral mismatch between peak GCC (POP) and plant height or canopy 
LAI. In addition, NDVI lagged behind GCC, which is consistent with 
findings in forest and grassland, suggesting that GCC is more sensitive to 
changes in leaf color, while NDVI is sensitive to changes in leaf area and 
therefore stand structure (Filippa et al., 2018; Keenan et al., 2014). 
Thus, our results indicate that canopy greenness was rather decoupled 
from stand biomass production, which is usually closely related to LAI. 
Depending on the specific objectives of a study, a combination of 
different methods might therefore be needed to best assess crop per-
formance and growth beyond phenological development. 

4.2. Crop management as a driver of phenology and harvest 
characteristics 

Although we used the same cultivar and the same sowing dates for 
respective crops in all cropping systems, the temporal development of 
the crops differed between management. However, these effects seem to 
be crop-specific and/or depended on the intensity of crop management, 
most likely driven by fertilizer additions. In total, we had five pheno-
logical metrics in common for pea-barley and winter wheat. For the 
unfertilized pea-barley, we found only one out of five phenological 
metrics being significantly affected by cropping systems, while there 
were three out of five phenological metrics for the fertilized winter 
wheat. Effects of crop management on phenology are in line with pre-
vious studies, which reported crop phenology to respond to different 
fertilization intensities (meta-analysis by Wang and Tang, 2019) and 
different levels of tillage (Basir et al., 2016; Chevalier and Ciha, 1986; 
Engel et al., 2009). 

We demonstrated that early-stage PhenoTimePoints (only recorded 
in winter wheat) and peak greenness (recorded in both crops) were more 
affected by cropping systems than the late-stage PhenoTimePoints. This 
suggests that management practices, which change the conditions dur-
ing the early growing season, might impact crop yield most. Late 
phenological stages might depend more on weather and seasonal 
changes and are thus less responsive to crop management. In this 
respect, organic farming is known to affect plant health, soil fertility and 
N losses (Röös et al., 2018). In spring, the availability of mineral N in soil 
is usually lower with only organic fertilizers than with mineral fertilizer 
(Barłóg et al., 2020; Dahlin et al., 2005). Thus, the delay in phenology in 
organic farming might be due to low nitrogen availability, limiting the 
early establishment and growth of crops, which, as reported in other 
studies (e.g., Olesen et al., 2007, led to organic crops not being able to 
efficiently suppress weed development). Weeds were also observed in 
our images and thus considered together with crops in the calculations 
of GCC and phenology metrics. However, weed biomass accounted for 
only a small proportion of the total biomass at harvest (5.3% of pea- 
barley mixture, 2.7% of winter wheat). Therefore, the potential bias 
created by weeds was negligible. 

We observed an initial growth lag under no/reduced tillage systems. 
Thus, the negative effects of conservation tillage such as increased 
prevalence of pests or weeds (Fernández-Ugalde et al., 2009; Mohler, 
1993), lower quality of seed placement (Van den Putte et al., 2010), 
greater penetration resistance (Fernández-Ugalde et al., 2009; Lamp-
urlanés and Cantero-Martínez, 2003) and delayed soil warming (Ras-
mussen, 1999) seemed to have outweighed possible benefits such as 
increased water availability (Holland, 2004) or greater water storge (Su 
et al., 2007) in our study. A lower mineralization rate in no/reduced 
tillage compared to conventional tillage (Six et al., 2002) is also likely to 
be detrimental for initial crop growth. Additionally, significantly lower 
root biomass could be observed under no/reduced compared to con-
ventional tillage (Haddaway et al., 2017), suggesting that root growth 
might have been hampered, resulting in the initial growth lag under no/ 
reduced tillage in our study. 

Grain yield differed between organic and conventional systems only 
for winter wheat, most likely because nitrogen supply was lower with 
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organic fertilizer compared to mineral fertilizer (Askegaard et al., 2011). 
However, this difference was not observed in the pea-barley mixture, 
where no fertilizer was applied. Since legumes have been reported to 
have a considerably smaller yield gap than cereals when either one is 
grown in monoculture (Röös et al., 2018), growing a mixture of legumes 
(pea) with cereals (barley) was obviously beneficial to overcome this 
yield gap. This clearly illustrates the potential of legumes to increase 
yield in low-input arable agriculture by intercropping. 

4.3. Crop phenology as a driver for harvest characteristics 

Many previous studies have pointed out the importance of growing 
season length for harvest characteristics (Mueller et al., 2015), e.g., 
using growing season length to predict crop yield (Gadanakis and Areal, 
2020; Jägermeyr and Frieler, 2018). However, in our study, we 
demonstrated for the first time that the timing of the start of high GCC 
values (SD) was more important than the length of the period with high 
GCC values (StablePhase), as SD explained more variations in grain and 
straw yield than the StablePhase (Fig. 5). Noticeably, early-stage 
phenological metrics such as SD and POP contributed to the large 
fraction of explained variation in grain yield (29% only explained by SD) 
and straw yield (7% only by SD; 23% shared by SD and POP), much 
larger than the fraction of variability explained only by the late-stage 
EOS (12% for grain yield; 5% for straw yield). This is in agreement 
with de Cárcer et al. (2019) who showed that climatic conditions around 
the heading phase, thus during the early crop development, explained 
about 22% of the variance in long-term wheat yields, while the effects of 
soil tillage and late-stage phenological metrics on yield were negligible. 
In contrast to yield, EOS explained a larger share of the variability in 
total N uptake (12% only by EOS) than early-stage phenological metrics 
in our study (2% only by SOS; Fig. 5). TKW was also rather determined 
by late-stage phenological metrics, i.e., BrownDownPhase and Brown-
DownSlope, which is not surprising as grain formation and filling 
happened exactly during this late phase. Overall, our results suggest that 
the timing of early crop establishment is crucial for the final yield, while 
the timing towards the end of growing season is relevant for TKW. 

Moreover, the tight links between vegetation indices and yield sup-
port earlier studies using NDVI, either derived from remote sensing data 
(Shammi and Meng, 2021) or drone-mounted hyperspectral cameras 
(Herrmann et al., 2020). Fernandez-Gallego and colleagues highlighted 
that the differences in canopy color were key in assessing grain yield of 
wheat (Fernandez-Gallego et al., 2019). The use of RGB imagery was 
reported to be highly relevant in estimating barley biomass (Brocks and 
Bareth, 2018). 

4.4. Phenology explains the effects of cropping systems on harvest 
characteristics 

Disentangling the combined effects of cropping system and 
phenology on harvest characteristics, our study has shown that cropping 
systems did not explain any additional share of the variability in any of 
the harvest characteristics when phenology was included in the models. 
This can be seen as an indication that cropping system effects on harvest 
characteristics act strongly via changes in crop phenology. Other effects 
of cropping systems, such as differences in fertilizer dosing and timing, 
nutrient availability, and the competition of crops and weeds (Birkhofer 
et al., 2008; Wittwer et al., 2017) were integrated in these phenological 
shifts, and cannot be assessed separately in our study system. Otherwise, 
cropping systems would have explained an individual share of the 
variability in harvest characteristics, in addition to what was explained 
by phenology. Up to now, lower yields in organic farming has been 
explained by lower available fertilizer, higher pest damage, and weed 
pressure in comparison to conventional farming (Röös et al., 2018). In 
this study, we demonstrated that delayed phenology acted as an 
important factor that caused lower yield in organic farming compared to 
conventional farming. 

Phenological metrics were strongly correlated with harvest charac-
teristics only for winter wheat but not for pea-barley. One of the reasons 
might be that–other than for winter wheat–most of the harvest charac-
teristics for pea-barley mixture were unaffected by cropping systems, 
most likely because crop management in the unfertilized and unsprayed 
pea-barley mixture was generally less intensive and thus resulted in 
smaller differences among the four cropping systems compared to 
winter wheat. This indicates that the relationship between phenology 
and crop yield might only become evident once cropping systems 
considerably affect crop phenology and especially crop yield. 

5. Conclusions 

Our results clearly demonstrated the possibility of tracking crop 
phenology and growth dynamics with PhenoCams, representing a 
valuable tool for high-resolution temporal monitoring of crops in sci-
ence, and potentially also in practice. We found strong effects of crop 
management on crop phenology, in particular delayed phenology by 
organic and reduced/no-tillage practices, resulting in lower crop yields 
for winter wheat. This finding adds a new, highly relevant aspect to the 
discussion about the mechanisms of potential yield-gaps in organic and 
conservation agriculture. However, future research needs to test if 
cropping system effects on harvest characteristics acting via changes in 
crop phenology also occur for other crops than the ones studied here. 
Moreover, if these findings also hold true under conditions with envi-
ronmental stress, e.g., during a drought, remains to be investigated. This 
will help to understand the effects of crop management and environ-
mental drivers such as climate change on food production, the selection 
of suitable crop varieties, and the temporal adjustment of management 
practices to optimize cropping systems. 
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Engel, F.L., Bertol, I., Ritter, S.R., Paz González, A., Paz-Ferreiro, J., Vidal Vázquez, E., 
2009. Soil erosion under simulated rainfall in relation to phenological stages of 
soybeans and tillage methods in Lages, SC. Brazil. Soil Tillage Res. 103, 216–221. 
https://doi.org/10.1016/j.still.2008.05.017. 

Estrada-Medina, H., Santiago, L.S., Graham, R.C., Allen, M.F., Jiménez-Osornio, J.J., 
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Jägermeyr, J., Frieler, K., 2018. Spatial variations in crop growing seasons pivotal to 
reproduce global fluctuations in maize and wheat yields. Sci. Adv. 4, eaat4517. 
https://doi.org/10.1126/sciadv.aat4517. 

Julitta, T., Cremonese, E., Migliavacca, M., Colombo, R., Galvagno, M., Siniscalco, C., 
Rossini, M., Fava, F., Cogliati, S., Morra di Cella, U., Menzel, A., 2014. Using digital 
camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. 
For. Meteorol. 198–199, 116–125. https://doi.org/10.1016/j. 
agrformet.2014.08.007. 

Keenan, T.F., Darby, B., Felts, E., Sonnentag, O., Friedl, M.A., Hufkens, K., O’Keefe, J., 
Klosterman, S., Munger, J.W., Toomey, M., Richardson, A.D., 2014. Tracking forest 
phenology and seasonal physiology using digital repeat photography: A critical 
assessment. Ecol. Appl. 24, 1478–1489. https://doi.org/10.1890/13-0652.1. 
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