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APPARATUS AND METHOD FOR 
ASSESSING A CHARACTERISTIC OF A 

PLANT 

[ 0001 ] The present disclosure relates to a method and 
apparatus for assessing a characteristic of a plant . More 
particularly , but not exclusively , the present disclosure 
relates to a method and apparatus for assessing a character 
istic of a plant based upon an electrical signal obtained from 
the plant using a machine learning technique . 
[ 0002 ] It is known that electrical potential differences , or 
membrane potentials , are maintained across cell membranes 
in plants . However , it remains as a challenge to detect a 
health status of a plant with a reasonable - degree of confi 
dence based upon an electrical signal obtained from the 
plant . 
[ 0003 ] Thus , there is a need to provide an improved 
method and apparatus for accessing a characteristic of a 
plant based upon an electrical signal obtained from the plant . 
[ 0004 ] According to a first aspect described herein , there 
is provided a method of assessing a characteristic of a plant , 
comprising : obtaining a training dataset , wherein the train 
ing dataset comprises first data characterising a first electri 
cal signal obtained from a first plant during a first time 
period when a stressor is present in the first plant or in a 
growth environment of the first plant , second data charac 
terising a second electrical signal obtained from the first 
plant during a second time period when a stressor is not 
present in the first plant or in the growth environment of the 
first plant , and third data indicative of a characteristic of the 
first plant during the first time period and a characteristic of 
the first plant during the second time period ; training a 
machine learning model based upon the training dataset ; 
obtaining a third electrical signal from a second plant ; and 
assessing , using the trained machine learning model , a 
characteristic of the second plant based upon the third 
electrical signal . 
[ 0005 ] By using a training dataset which comprises data 
characterising electrical signals obtained from a first plant to 
train a machine learning model , the trained machine learning 
model is able to assess a characteristic of a second plant 
based upon an electrical signal obtained from the second 
plant . In this way , the first aspect provides an effective way 
to assess an unknown characteristic of a plant based upon the 
electrical signal obtained therefrom , and allows a plant 
grower to take preventive measures before initial symptoms 
appear on the plant . 
[ 0006 ] The first plant may be a single plant , and the first 
electrical signal may comprise electrical signals obtained 
from the plant at multiple different times , at multiple dif 
ferent parts of the plant , and / or when the plant is at multiple 
different locations . Alternatively , and more preferably , the 
first plant may comprise a group of plants , and the first 
electrical signal may comprise electrical signals obtained 
from each of the plants . 
[ 0007 ] It will be appreciated that the expression “ first data 
characterising a first electrical signal ” means that the first 
data indicates a characteristic of the first electrical signal and 
is obtained by processing the first electrical signal . The 
expression “ second data characterising a second electrical 
signal ” has a similar meaning . 
[ 0008 ] The stressor may be any factor which causes a 
change to the growth environment or the physiology of the 
first plant . The stressor typically causes the first plant to have 
a corresponding characteristic ( e.g. , light deficit / excess , 

water deficit / excess , nutrition deficit / excess , slow / fast 
metabolism , temperature deficit / excess , CO2 deficit / excess , 
salt deficit / stress , insect infestation , pathogen presence 
where a pathogen may be a virus , fungus or bacteria , 
premature or delayed growth , flowering or fruit maturing 
etc. ) associated with the nature of the stressor . Therefore , the 
characteristics of the first plant during the first and the 
second time periods are associated with the presence / ab 
sence of the stressor . Accordingly , the third data indicative 
of the characteristics of the first plant may be obtained based 
upon the presence / absence of the stressor within the growth 
environment without requiring further sensors . Alterna 
tively , the third data may be obtained by monitoring a 
physiological marker of the first plant and / or an environ 
mental condition of the first plant using a suitable sensor . 
The physiological marker ( e.g. , the leaf turgor pressure , 
stage of development of the plant , stem diameter , leaf 
fluorescence , leaf temperature , leaf colour , etc. ) and / or the 
environmental condition ( e.g. , the ambient lighting condi 
tion , the ambient CO2 level , the air temperature , the soil 
water content , etc. ) directly and accurately indicate the 
characteristic of the first plant . 
[ 0009 ] The machine learning model may be a regression 
model or a classification model ( i.e. , a classifier ) . 
[ 0010 ] The first plant and the second plant may be of 
different plant varieties . Alternatively , but not necessarily , 
the first plant and the second plant may be of the same plant 
variety . 
[ 0011 ] The first plant and the second plant may be the 
same plant . In particular , the first plant may be used at an 
earlier time for generating the training dataset to train a 
machine learning model , and it may be required to assess a 
characteristic of the same plant at a later time using the 
trained model . Alternatively , the first plant and the second 
plant are separate plants ( which may be of the same plant 
variety or different plant varieties ) . 
[ 0012 ] The first , second and third electrical signals may be 
signals in the time domain . 
[ 0013 ] The terms “ first ” and “ second ” used the “ first time 
period ” and the “ second time period ” are merely labels to 
allow clear references to the time periods , and in no way 
implies temporal limitations to the time periods or the order 
in which they occur . 
[ 0014 ] The third electrical signal may be obtained during 
periodic monitoring or continuous monitoring of the second 
plant . 
[ 0015 ) Obtaining the training dataset may comprise : intro 
ducing the stressor to the first plant or the growth environ 
ment of the first plant ; obtaining the first electrical signal 
from the first plant during the first time period when the 
stressor is being applied to the first plant or the growth 
environment of the first plant ; and obtaining the second 
electrical signal from the first plant during the second time 
period when the stressor is not applied to the first plant or the 
growth environment of the first plant . 
[ 0016 ] Obtaining the training dataset may further com 
prise : processing the first electrical signal to generate the 
first data ; and processing the second electrical signal to 
generate the second data . 
[ 0017 ] Processing the first electrical signal to generate the 
first data may comprise : performing signal conditioning on 
the first electrical signal . 
[ 0018 ] Performing signal conditioning may comprise per 
forming analogue and / or digital signal conditioning . 
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[ 0019 ] Said signal conditioning may comprise one or more 
of : amplifying , filtering , normalising , and / or down - sampling 
the first electrical signal . 
[ 0020 ] Processing the first electrical signal to generate the 
first data may comprise : obtaining data samples from the 
first electrical signal at a predetermined sampling frequency . 
[ 0021 ] At least one of the data samples may comprise a 
data segment obtained by applying a window function to the 
first electrical signal . 
[ 0022 ] Applying a window function to the first electrical 
signal may comprise multiplying the window function and 
the first electrical signal . The window function may have 
non - zero values within a chosen time interval and may be 
zero - valued outside of the chosen time interval . 
[ 0023 ] At least one of the data samples may comprise a 
plurality of data segments which are obtained by applying a 
plurality of window functions , respectively , to the first 
electrical signal , and the plurality of window functions have 
different time intervals from one another . 
[ 0024 ] The window function or at least one of the window 
functions may have a time interval of less than 1 minute . 
[ 0025 ] The window function or at east one of the window 
functions ay have a time interval of greater than 10 minutes . 
[ 0026 ] Processing the first electrical signal to generate the 
first data may further comprise extracting at least one 
characterising feature from each data segment . The first data 
may comprise the at least one characterising feature . 
[ 0027 ] The at least one characterising feature may be 
derived by means of atistical analysis or principal compo 
nent analysis 
[ 0028 ] The at least one characterising feature may com 
prise one or more of : a generalised Hurst exponent ; a 
skewness ; an estimation of a power of a colour of noise ; an 
interquartile range ; a min or max value of coefficients 
obtained by a wavelet decomposition of a respective data 
segment . 
[ 0029 ] Processing the first electrical signal to generate the 
first data may further comprise normalising the extracted at 
least one characterising feature . 
[ 0030 ] Obtaining the training dataset may further com 
prise labelling the data samples using the third data . 
[ 0031 ] The second data may be generated based upon the 
second electrical signal in the same way as the generation of 
the first data . 
[ 0032 ] The training dataset may comprise a plurality of 
data entries , at least one of which comprising the at least one 
characterising feature extracted from a respective data 
sample and a label of the same data sample . 
[ 0033 ] The machine learning model may comprise a clas 
sifier . 
[ 0034 ] The classifier may be a gradient boosted tree 
model . 
[ 0035 ] The stressor may be configured to affect a lighting 
condition of the first plant . 
[ 0036 ] The stressor ay be configured to cause the first 
plant to have water stress . 
[ 0037 ] Further or alternatively , the stressor may be con 
figured to cause the first plant to be infested by insects , to be 
infected with a pathogen such as a virus , fungus or bacte 
rium , to have CO2 deficit . to have excess or insufficient 
nutrients , to have temperature stress ( i.e. , temperature being 
too hot or too cold for optimal growth ) , to have salt stress 
( e.g. , salt level in the growth medium being too high or too 

low for optimal growth ) , and / or to prematurely cause or 
delay growth , flowering , or fruit maturing of the first plant . 
[ 0038 ] Assessing a characteristic of the second plant based 
upon the third electrical signal may comprise : processing the 
third electrical signal to generate data characterising the 
third electrical signal ; and providing the generated data as 
input data to the trained machine learning model . 
[ 0039 ] The data characterising the third electrical signal 
may be generated based upon the third electrical signal in the 
same way as the generation of the first data . 
[ 0040 ] The training dataset may further comprise environ 
mental data characterising the growth environment of the 
first plant during the first and the second time periods . 
[ 0041 ] The environmental data , the first data and the 
second data may form the input features of the training 
dataset . The third data may form the output features of the 
training dataset . 
[ 0042 ] The method may further comprise : obtaining envi 
ronmental data characterising a growth environment of the 
second plant ; and assessing , using the trained machine 
learning model , the characteristic of the second plant based 
upon the third electrical signal and the environmental data 
characterising the growth environment of the second plant . 
[ 0043 ] That is , the environmental data characterising the 
growth environment of the second plant may be provided as 
input data to the trained machine learning model . 
[ 0044 ] The environmental data may comprise one or more 
of : data indicative of a light intensity in the growth envi 
ronment , data indicative of soil water content of the growth 
environment , data indicative of a temperature ( e.g. , an air 
temperature ) of the growth environment , data indicative of 
a humidity level of the growth environment . The environ 
ment data may be directly output by available sensors 
located in the growth environment , or may be processed 
sensor data . 
[ 0045 ] The method may further comprise : generating 
plant data indicative of an assessment result of the charac 
teristic of the second plant . 
[ 0046 ] The plant data may be an output of the trained 
machine learning model , or may be generated based upon 
the output of the trained machine learning model . 
[ 0047 ] The generated plant data may be used by a user to 
identify diseased plants within a growth environment ( e.g. , 
in a field ) . 
[ 0048 ] The method may further comprise : sending an alert 
based upon the plant data . 
[ 0049 ] Advantageously , the alert prompts a user o perform 
manual treatment to the second plant . 
[ 0050 ] The method may further comprise : generating a 
plant control signal based upon the plant data , wherein the 
plant control signal is configured to change a growth envi 
ronment of the second plant . Advantageously , the plant 
control signal automatically adjusts the growth environment 
of the second plant without requiring human intervention . 
[ 0051 ] The plant control signal may be configured to 
adjust an operation of a nutrigation pump associated with the 
second plant . By adjusting an operation of a nutrigation 
pump , the throughput of the nutrigation pump may be 
increased or decreased . More specifically , the plant control 
signal may be configured to switch on or off the nutrigation 
pump . 
[ 0052 ] Further or alternatively , the plant control signal 
may be configured to adjust the operation of at least one 
device , with the at least one device comprising one or more 
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of a heater , a fan , a lighting , a pump which deliver a 
chemical substance to a growth medium of the second plant , 
and a pesticide pump . By adjusting the operation of the at 
least one device , the throughput and / or the output power of 
the device may be increased or decreased . More specifically , 
the plant control signal may be configured to switch on or off 
the at least one device . Further or alternatively , the plant 
control signal may be configured to alter a vent positon in 
the growth environment of the second plant . 
[ 0053 ] According to a second aspect described herein , 
there is provided a computer program comprising computer 
readable instructions arranged to cause a processor to carry 
out a method according to the first aspect described here . 
[ 0054 ] According to a third aspect described herein , there 
is provided a computer readable medium carrying a com 
puter program according to the second aspect described 
herein . 

[ 0055 ] According to a fourth aspect described herein , 
there is provided an apparatus for assessing a characteristic 
of a plant comprising : a processor arranged to carry out a 
method according to the first aspect described here ; and a 
capture device configured to sense the first and second 
electrical signals from the first plant . and configured to sense 
the third electrical signal from the second plant . 
[ 0056 ] The capture device may comprise a first electrode 
attached to the first / second plant , and a second electrode 
attached to a growth medium of the first / second plant or an 
alternative reference site ( e.g. , the stem or the root ) of the 
first / second plant . 
[ 0057 ] The first electrode and the second electrode may 
attached to two different parts of the same plant , with the two 
different parts having different distances from the growth 
medium . 
[ 0058 ] The first electrode may be a capture electrode 
attached to a first part of a plant . The second electrode may 
be a reference electrode attached to a second part of the same 
plant . The first part may be further away from the growth 
medium than the second part . 
[ 0059 ] According to a fifth aspect described herein , there 
is provided an apparatus for assessing a characteristic of a 
plant comprising : a computer readable storage medium 
storing a machine learning model , wherein the machine 
learning model has been trained using a training dataset , 
wherein the training dataset comprises first data character 
ising a first electrical signal obtained from a first plant during 
a first time period when a stressor is present in the first plant 
or in a growth environment of the first plant , second data 
characterising a second electrical signal obtained from the 
first plant during a second time period when a stressor is not 
present in the first plant or in the growth environment of the 
first plant , and third data indicative of a characteristic of the 
first plant during the first time period and a characteristic of 
the first plant during the second time period ; a capture device 
configured to sense a third electrical signal from a second 
plant ; and a processor configured to assess a characteristic of 
the second plant based upon the machine learning model and 
the third electrical signal . 
[ 0060 ] The computer readable storage medium may store 
a first machine learning model which has been trained by a 
first training dataset for assessing a first characteristic of a 
plant , and a second machine learning model which has been 
trained by a second training dataset for assessing a second 
different characteristic of a plant . 

[ 0061 ] The first training dataset may further comprise first 
environmental data characterising a first condition of the 
growth environment , and the second training dataset may 
further comprise second environmental data characterising a 
second different condition of the growth environment . 
[ 0062 ] The processor may select one of the first and 
second machine learning models for assessing a correspond 
ing characteristic of the second plant . 
[ 0063 ] The first / second machine learning model may be 
for assessing a nutrient insufficiency of a plant . The first / 
second environmental data of the first / second training data 
set may comprise data indicative of a light intensity in the 
growth environment and data indicative of soil water content 
of the growth environment . 
[ 0064 ] The first / second machine learning model may be 
for assessing whether a plant is infested by insects . The 
first / second environmental data of the first / second training 
dataset may comprise data indicative of a temperature ( e.g. , 
an air temperature ) of the growth environment . 
[ 0065 ] The first / second machine learning model may be 
for assessing whether a plant is infected with a pathogen 
( e.g. , fungus ) . The first / second environmental data of the 
first / second training dataset may comprise data indicative of 
a humidity level of the growth environment . 
[ 0066 ] The processor may receive environmental data 
characterising a condition of a growth environment of the 
second plant , and to assess a characteristic of the second 
plant based upon one of the stored machine learning models , 
the third electrical signal , and the received environmental 
data . 
[ 0067 ] Alternatively , the computer readable storage 
medium may store a first machine learning model which has 
been trained by a first training dataset for assessing a first 
characteristic of a plant , and a second machine learning 
model which has been trained by a second training dataset 
for assessing the same first characteristic of a plant . The first 
training dataset may further comprise first environmental 
data characterising a first condition of the growth environ 
ment , and the second training dataset may further comprise 
second environmental data characterising a second different 
condition of the growth environment . 
[ 0068 ] The processor may be configured to : receive envi 
ronmental data characterising a particular condition of a 
growth environment of the second plant , determine that the 
particular condition is same as the first condition , and select 
the first machine learning model for assessing the first 
characteristic of the plant . 
[ 0069 ] According to a sixth aspect described herein , there 
is provided a system comprising an apparatus according to 
the fifth aspect , and a plant control system configured to 
automatically change a growth environment of the second 
plant based upon the assessed characteristic of the second 
plant . 
[ 0070 ] According to a seventh aspect described herein , 
there is provided a method of training a machine learning 
model for assessing a characteristic of a plant . The method 
comprises obtaining a training dataset , wherein the training 
dataset comprises first data characterising a first electrical 
signal obtained from a first plant during a first time period 
when a stressor is present in the first plant or in a growth 
environment of the first plant , second data characterising a 
second electrical signal obtained from the first plant during 
a second time period when a stressor is not present in the first 
plant or in the growth environment of the first plant , and 
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third data indicative of a characteristic of the first plant 
during the first time period and a characteristic of the first 
plant during the second time period . The method further 
comprises training the machine learning model , using the 
training dataset , to assess a characteristic of a second plant 
based upon a third electrical signal obtained from the second 
plant . 
[ 0071 ] There is also provided a computer readable 
medium comprising a trained machine learning model , 
wherein the model has been trained according to the method 
of the seventh aspect . 
[ 0072 ] According to an eighth aspect described herein , 
there is provided a method of obtaining a training dataset for 
training a machine learning model for assessing a charac 
teristic of a plant . The method comprises obtaining first data 
characterising a first electrical signal from a first plant 
during a first time period when a stressor is present in the 
first plant or in a growth environment of the first plant , 
obtaining second data characterising a second electrical 
signal from the first plant during a second time period when 
a stressor is not present in the first plant or in the growth 
environment of the first plant , and obtaining third data 
indicative of a characteristic of the first plant during the first 
time period and a characteristic of the first plant during the 
second time period . Said training dataset comprises said first 
data , said second data and said third data . 
[ 0073 ] Where appropriate any of the optional features 
described above in relation to one of the aspects described 
herein may be applied to another one of the aspects 
described herein . 
[ 0074 ] Embodiments are now described , by way of 
example only , with reference to the accompanying drawings , 
in which : 
[ 0075 ] FIG . 1 schematically illustrates a plant health 
monitoring device in use with a plant ; 
[ 0076 ] FIG . 2 schematically illustrates the device shown 
in FIG . 1 in more detail ; 
[ 0077 ] FIG . 3 illustrates ( a ) turgor pressure variation and 
( b ) electric signal variation on plants in response to water 
deficit ; 
[ 0078 ] FIG . 4 illustrates ( a ) turgor pressure variation and 
( b ) electric signal variation on plants during full irrigation , 
half irrigation and no irrigation ; 
[ 0079 ] FIGS . 5 and 6 illustrate the results of principal 
component analysis performed on the raw data of the 
electrical signals obtained from plants ; 
[ 0080 ] FIG . 7 is a flowchart showing processing steps 
carried out to pre - process the electrical signals obtained 
from plants before the application of a machine learning 
technique ; 
[ 0081 ] FIG . 8 shows the performances of five classifier 
models with respect to classification of lighting conditions 
of plants ; 
[ 0082 ] FIG . 9 shows the performances of five classifier 
models with respect to classification of water stress statuses 
of plants ; 
[ 0083 ] FIG . 10 is a flowchart showing processing steps 
carried out to generate a training dataset for use to train a 
machine learning model ; 
[ 0084 ] FIG . 11 is a flowchart showing processing steps 
carried out to assess a characteristic of a plant using a 
training dataset and a machine learning model ; and 

[ 0085 ] FIG . 12 is a flowchart showing processing steps 
carried out to monitor a characteristic of a plant and to 
automatically adjust a growth environment of the plant . 
[ 0086 ] In the figures , like parts are denoted by like refer 
ence numerals . It will be appreciated that the drawings are 
for illustration purposes only and are not drawn to scale . 
[ 0087 ] All living organisms have evolved complex signal 
ling networks in response to the changing environment . The 
use of electrical signals is a universal way to transmit 
information rapidly . In animals , the bioelectrical activity in 
muscle ( electromyogram ) , in heart ( electrocardiogram ) or in 
brain ( electroencephalogram ) can provide an indication of 
the health status of an animal . In plants , such practical use 
based on the bioelectrical activity is in its infancy and 
transposition of such technology could therefore , by anal 
ogy , provide an indication of the physiological status of a 
plant . 
[ 0088 ] Plants have evolved several paths for long - range 
signal transmissions between cells , tissues and organs in 
order to adapt their physiology in response to a changing 
environment . This long - range signal communication can be 
triggered by biotic or abiotic stimuli that are sensed locally 
by a few cells and translated into mobile signals such as 
small molecules , peptides , second messengers , or phytohor 
mones or mechanical vibrations . In contrast to the mobile 
signals , electrical signals are capable of transmitting infor 
mation more rapidly over long distances . Electrical signals 
are known to regulate a wide variety of physiological 
processes , which may include growth , gas exchange , respi 
ration , variation of photosynthesis and transpiration , modi 
fication of gene expression ( e.g. protease inhibitor ) , plant 
motion , and expression of phytochemical like jasmonates , 
flowering , fruiting and maturation of fruits . 
[ 0089 ] Most studies on electrical signals in plants have 
been carried out under laboratory - controlled conditions . For 
instance , researchers focused on the description of these 
signals , e.g. , the amplitude , the frequency , the velocity , the 
distance and direction of signal propagation . Studies are 
now dedicated to identify the nature of the protein involved 
and how it is integrated in the complex signalling network 
to regulate physiological processes from the cellular level to 
the whole plant level . Approaches to study electrical signals 
include intracellular and extracellular measurements . The 
intracellular measurement can directly record the value of a 
potential of an individual cell membrane , while the extra 
cellular measurement detects the spatiotemporal sum of the 
depolarization - repolarization process in a large group of 
cells . Amongst them , in plants , there are three different types 
of electrical signals : action potential ( AP ) , variation poten 
tial ( VP ) , and system potential or electric potential ( SP or 
EP ) . AP is induced by non - damaging stimuli ( e.g. , cold , 
mechanical and electrical stimuli ) , whereas VP is induced by 
damaging stimuli ( e.g. , burning and cutting ) . Both of AP and 
VP are widespread signalling phenomena which can rapidly 
transmit information over long distances . SP is a sub 
threshold response induced by changes in the environmental 
factors , e.g. soil , water , fertility , light , air temperature and 
humidity . However , it is quite often that mixed electrical 
potential waves are recorded , for instance , as results of 
overlapping APs , VPs and SPs from a variety of sources 
within the plant . This creates a complex web of systemic 
information in which several electrical signals may be 
layered on top of each other in time and space , and makes 
it hard to perform a conclusive signal analysis . 
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[ 0090 ] In the following description , instrumentation 
which allows the recording of aggregate bioelectrical activ 
ity from plants without the use of a Faraday cage is 
described , and a machine learning technique which predicts 
( or assesses ) a characteristic of a plant based upon an 
electrical signal obtained from the plant is also described . 
[ 0091 ] As shown in FIG . 1 , a plant health monitoring 
device 1 is arranged to monitor the health of a plant 2. The 
plant 2 is grown in a growth medium 3 which is contained 
within a container 4. The growth medium 3 may be any 
suitable medium in which the plant 2 is able to grow . For 
example , the medium 3 may be soil , compost , water or the 
like . The growth medium 3 may also be referred to as a 
“ substrate ” . 
[ 0092 ] A reference electrode 5 is attached to or inserted 
into a stem of the plant 2 , and is connected , by a lead 6 , to 
the plant health monitoring device 1. A capture electrode 7 
is attached to a petiole of a leaf 2a of the plant 2 , and is 
connected , by a second lead 8 , to the plant health monitoring 
device 1. Alternatively , the reference electrode 5 may be 
inserted into , or otherwise attached to , a portion of root of 
the plant 2 , or into the growth medium 3. Attaching the 
reference electrode 5 to the stem / root of the plant 2 allows 
signal uncertainties coming from the medium 3 to be 
removed . For example , it has been found that variations in 
the moisture level of the medium 3 result in variations in the 
electrical signal sensed at the reference electrode 5. There 
fore , it is more preferable to attach the reference electrode 5 
to the stem / root of the plant 2 than to insert it into the 
medium 3 . 
[ 0093 ] In an example where both the reference electrode 5 
and the capture electrode 7 are attached to the plant 2 , it is 
preferable to attached the reference electrode 5 to a part of 
the plant 2 which is closer to the growth medium , and to 
attach the capture electrode 7 to another part of the plant 2 
which is further away from the growth medium . 
[ 0094 ] It will be appreciated that the capture electrode 7 
may comprise a plurality of capture electrodes which can be 
attached to a plurality of plants 2 or multiple different parts 
of a single plant 2. Similarly , the reference electrode 5 may 
comprise one or more reference electrodes . In an exemplary 
set - up , the plant health monitoring device 1 has a plurality 
of reference electrodes 5 and a plurality of capture electrodes 
7 , and may be able to obtain electrical signals from eight 
different plants or from eight different parts of the same 
plant , at the same time . 
[ 0095 ] FIG . 1 further shows that the plant 2 is within a 
growth environment 50. The growth environment 50 may be 
a growing chamber , a greenhouse or field . In an example , a 
light source 51 and an irrigation system 52 are provided 
within the growth environment 50. The irrigation system 52 
is connected to the growth medium 3 via a tube 53. There is 
also provided a plant control device 100 in communication 
with the plant health monitor device 1 via a communication 
link 101. The plant health monitoring device 1 obtains 
electrical signals from the plant 2 , and the electrical signals 
are used to assess a characteristic of the plant 2 by the device 
1 or another device connected to the device 1. The commu 
nication link 101 may be a direct or an indirect communi 
cation link ( e.g. , via another device ) , Based upon the 
assessed characteristic of the plant 2 , the plant control device 
100 automatically controls the environmental conditions in 
which the plant 2 is grown , by , for example , controlling the 
light source 51 and the irrigation system 52. The plant 

control device 100 , the light source 51 and the irrigation 
system 52 thus collectively provide a plant control system . 
It will , of course , be appreciated that various combinations 
of environmental conditions may be controlled by the plant 
control system . Indeed , other aspects of the plant's environ 
ment may be controlled than those described above . For 
example , in addition to ( or instead of ) one or more of the 
light source 51 and the irrigation system 52 , the plant control 
system may comprise a device which applies fungicide or 
insecticide to the plant 2 , a device which controls the 
humidity within the environment 50 , a nutrigation pump or 
other device which delivers nutrition to the plant 2 , a pump 
which delivers chemical substance ( e.g. , salt ) to the growth 
medium 3 , a heater , a fan , and / or a vent , etc. The plant 
control device 100 may be configured to automatically 
control any of the devices within the plant control system , so 
as to control various environment conditions of the growth 
environment 50 . 
[ 0096 ] As shown in more detail in FIG . 2 , the plant health 
monitoring device 1 comprises a data acquisition module 10 
and a controller 12. The leads 6 , 8 are connected to inputs 
of the data acquisition module 10. The data acquisition 
module 10 measures voltage potential differences present 
between each pair of the electrodes 5 , 7 in the plant 2 . 
Electrical signals may be recorded in mV level as a function 
of time and may be recorded at a rate of 240 Hz ( i.e. , 240 
samples per second ) by the data acquisition module 10. The 
recording frequency of the data acquisition module 10 may , 
for example , be any value between 1 Hz to 10 KHz . 
[ 0097 ] In more detail , the data acquisition module 10 
comprises an analog filter 9 , an amplifier 13 , and an analog 
to - digital converter ( ADC ) 14. The analog filter 9 may be a 
low - pass filter . In an example , the analog filter 9 may be a 
DC - 30 Hz filter with a gentle 6 dB / octave roll off . Such a 
filter is useful for minimal ringing so that the transient 
waveforms have minimal distortion in the time domain . The 
amplifier 13 may be an analog , non - switching , instrumen 
tation amplifier and may provide an amplification factor 
between 0 and 100. In an example , the amplifier 13 provides 
an amplification factor of 4 . 
[ 0098 ] The ADC 14 may be of a Successive Approxima 
tion Register ( SAR ) design . In an example , the ADC 14 may 
be a 18 - bit SAR ADC capable of processing 100K samples 
per second . In particular , the ADC 14 has a sample - and - hold 
input and may return a full 18 - bit signed value over a 
+/- 2.048V range for each input . The ADC 14 may be 
implemented using ADS8777 ADC made by Texas Instru 
ments . 
[ 0099 ] The controller 12 comprises a processor 12a which 
is configured to read and execute instructions stored in a 
volatile memory 12b which takes the form of a random 
access memory . The volatile memory 12b stores instructions 
for execution by the processor 12a and data used by those 
instructions . For example , in use , the data acquired by the 
data acquisition module 10 may be stored in the volatile 
memory 12b . 
[ 0100 ] The controller 12 further comprises non - volatile 
storage in the form of a hard disc drive 12c . The data 
acquired by the data acquisition module 10 may be stored on 
the hard disc drive 12c . The controller 12 further comprises 
an I / O interface 12d to which are connected data capture and 
peripheral devices used in connection with the controller 12 . 
A display 12e is connected to the I / O interface 12d to display 
output from the controller 12. The display 12e may , for 
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example , display a representation of the data acquired by the 
data acquisition module 10. The display 12e may be pro 
vided locally to the plant health monitoring device 1 ( e.g. as 
a screen ) , or remotely from the plant health monitoring 
device 1. For example , a display associated with a separate 
device ( e.g. a mobile computing device ) may be used as a 
display for the plant health monitoring device 1. Addition 
ally , the display 12e may display images generated by 
processing of the data acquired by the data acquisition 
module 10. Additionally , a touchscreen associated with the 
display 12e may operate as a user input device , so as to allow 
a user to interact with the controller 12. Alternatively or 
additionally , separate input devices may be also connected to 
the I / O interface 12d . A network interface 12f allows the 
controller 12 to be connected to an appropriate computer 
network so as to receive and transmit data from and to other 
computing devices . The processor 12a , volatile memory 
12b , hard disc drive 12c , 1/0 interface 12d , and network 
interface 12f , are connected together by a bus 12g . 
[ 0101 ] In addition to the peripheral devices described 
above being connected to the I / O interface 12d , the output 
of the data acquisition module 10 is also connected to the I / O 
interface 12d . By virtue of these connections , potential 
differences sensed at the electrodes 5 , 7 can be processed and 
converted to a digital signal by the data acquisition module 
10 and subsequently processed by the processor 12a and 
stored in the hard disc drive 12c . 
[ 0102 ] The controller 12 may be connected to an external 
computer / server via the network interface 12f . In that case , 
the external computer / service may further process the digi 
talised signals obtained by the controller 12. In an example , 
the digitalised signals may be extracted and processed using 
a data processing software by the external computer / server . 
Further or alternatively , the controller 12 may be connected 
to a single board computer via the network interface 12f , 
such that the digitalised signals obtained by the controller 
are collected into the single board computer . 
[ 0103 ] The controller 12 may comprise a microcontroller 
to which the output of the ADC 14 is fed . In an example , the 
controller 12 may comprise a single board computer which 
provides a STM32F103 microcontroller . The STM32F103 
microcontroller uses the ARM M3 processor design and runs 
at 72 MHz , The STM32F103 microcontroller also provides 
USB connectivity 
[ 0104 ] In general , due to natural and man - made terrestrial 
electromagnetic noise as well as the low - voltage level of the 
potential variations produced by the plant 2 , a Faraday cage 
is typically used to surround the plant 2 , the leads 6 , 8 and 
the device 1 when electrical signals are obtained from the 
plant 2. The Faraday cage acts to shield the plant the leads 
6 , 8 and the device 1 from external sources of electromag 
netic radiation . 
[ 0105 ] In order to allow for operating the device 1 outside 
of a Faraday cage , one or more of the following design 
implementations may be made to the device 1 . 
[ 0106 ] Electrostatic discharge ( ESD ) protection circuits 
may be provided to the inputs of the data acquisition module 
10. The pre - ADC analog filter 9 may be designed for 
minimal overshoot and ringing so that the transient wave 
forms have minimal distortion in the time domain . As 
described above , in an example , the analog filter may be a 
DC - 30 Hz filter with a gentle 6 dB / octave roll off . An 
ultra - low input bias current instrumentation amplifier may 
be selected for use as the amplifier 13. The analog filter 9 , 

the amplifier 13 , and the ADC 14 may be typically imple 
mented on a printed circuit board ( PCB ) . In that case , the 
PCB may be designed such that it includes multiple ( e.g. , at 
least two ) ground planes connected to one another by a 
plurality of vias , thereby ensuring short electrical ground 
current return paths . Further , the ADC 14 may be designed 
such that the analog input signal to the ADC 14 is over 
sampled ( i.e. , sampled at a sampling rate significantly higher 
than the Nyquist rate ) , and the output signal of the ADC 14 
is then processed through a digital filter and a decimator . 
Moreover , a digital notch filter , such as a 50 Hz / 100 Hz or 
60 Hz / 120 Hz digital notch filter may be included to process 
the output signal of the ADC 14 . 
[ 0107 ] In addition to the above described design imple 
mentations to the device 1 , the leads 6 , 8 may be coaxial 
cables which are arranged to connect each of the electrodes 
5 , 7 to the plant health monitoring device 1. The coaxial 
cables may be useful for shielding the leads 6 , 8 from 
external sources of electromagnetic radiation . 
[ 0108 ] For the ease of description , the coaxial cable con 
nected to the reference electrode 5 is referred to as a 
" reference cable ” and the coaxial cable connected to the 
capture electrode 7 is referred to as a “ capture cable ” . A 
coaxial cable typically comprises an inner conductor sur 
rounded by a tubular insulating layer , further surrounded by 
a tubular outer conducting shield . The inner conductors of 
the coaxial cables act as the leads 6 , 8 and are used to 
transfer signals sensed by the electrodes 5 , 7 to the plant 
health monitoring device 1. The outer conducting shields of 
the coaxial cables act as the EM shield 9 to shield electro 
magnetic interference on the signals sensed by the electrodes 
5 , 7 . 
[ 0109 ] The coaxial cable has a capacitance between its 
inner conductor and its outer conducting shield . The capaci 
tance of the coaxial cable may distort the signals sensed by 
the electrodes 5 , 7. Thus , to compensate for the capacitance 
of the capture coaxial cable , a compensation circuit may be 
provided with the capture cable . 
[ 0110 ] In more detail , the capture coaxial cable may be 
electrically connected to the capture electrode 7 via its inner 
conductor alone . The inner conductor of the capture cable 
provides an electrical signal sensed by the capture electrode 
7 to the plant health monitoring device 1. The compensation 
circuit includes a buffer circuit with an amplification factor 
of ‘ l ’ for the capture cable . The buffer circuit receives a 
voltage signal from the inner conductor of the capture cable 
and outputs a voltage signal to drive the outer conducting 
shield of the same cable . In this way , the voltage difference 
between the inner conductor and the outer conducting shield 
of the capture coaxial cable is maintained at substantially O 
Volt by the buffer circuit . Accordingly , the capacitance of the 
capture cable does not charge or discharge based upon signal 
level fluctuations , and the distortion caused by the capaci 
tance of the capture cable to the signals sensed by the 
electrodes 5 , 7 may be reduced to a negligible level . The 
buffer circuit may , for example , take the form of a voltage 
follower . The voltage follower may be an op - amp circuit 
which has a negative feedback and a voltage gain of ' 1 ' . 
[ 0111 ] The reference cable may be electrically connected 
to the reference electrode 5 via both of its inner conductor 
and outer conducting shield . That is , the inner core and the 
outer conducting shield of the reference cable may be 
electrically coupled together with a voltage difference of 
substantially 0 Volt . The outer conducting shield is driven 
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with a voltage of 0 Volt ( i.e. ground ) , to provide a low 
impedance path for channeling any interference to the 
ground . The inner conductor of the reference cable , which is 
also at a voltage of substantially 0 Volt , provides an elec 
trical signal to the plant health monitoring device 1. In this 
configuration , the reference cable does not require a com 
pensation circuit to compensate for the capacitance of the 
cable . 
[ 0112 ] Alternatively , the reference cable may be con 
nected to the reference electrode 5 via its inner conductor 
alone , and accordingly may have its own compensation 
circuit as described above with reference to the capture 
cable . In either of these two configurations for the reference 
cable , the voltage difference between the inner core and the 
outer conducting shield of the reference cable is substan 
tially zero . Accordingly , the capacitance of the reference 
cable does charge or discharge during signal acquisition , so 
its effect to the electrical signal sensed by the electrodes 5 , 
7 may be considered to be insignificant . Thus , transient 
distortions of the electrical signals obtained from the refer 
ence electrode 5 as a result of cable capacitance may be 
considered to be insignificant . 
[ 0113 ] The plant health monitoring device 1 allows either 
short - term or long - term monitoring of electrical signals 
obtained from plants . Short - term or live recordings of elec 
trical signals may be followed with wireless devices con 
nected with the controller 12 via the network interface 12f . 
Long - term monitoring of electrical signals obtained from 
plants using the device 1 is described below with reference 
to FIGS . 3 and 4 . 
[ 0114 ] By way of example , the device 1 is used to perform 
long - term monitoring of electrical signals obtained from 
tomato plants . The tomato plants are grown in greenhouses 
in either Rockwool mineral substrate or an organic substrate 
composed of compost of bark ( 35 % ) , a peat substitute 
( 30 % ) . Coco peat ( 20 % ) and topsoil 15 % . It will be appre 
ciated other suitable substrates may be used for the plants . 
An organic nutrient solution based on biogas digestate may 
be provided to the tomato plants as fertiliser . 
[ 0115 ] For crop production in greenhouses , the climate 
management is crucial as well as the control of irrigation . 
Control of water uptake and the maintenance of water status 
are key for the survival and optimal growth of plants . 
Environmental factors such as radiation , air temperature , 
rainfall , and humidity have a high impact on plant water 
balance . Hence , plants require a coordinated and timely 
response in above - ground and below - ground organs to cope 
with the changing need to take up and preserve water . 
[ 0116 ] In order to monitor the plants ' responses to chang 
ing watering conditions , a group B of tomato plants was 
submitted to varying irrigation regimes , and a group A of 
tomato plants was placed under full irrigation all the time . 
Each group has more than 10 plants . In particular , the 
group - B plants were placed under full irrigation ( corre 
sponding to soil water content of 35 % by volume ) during a 
period Q1 of two and a half days . Subsequently the group - B 
plants were submitted to half of the irrigation during a period 
Q2 of three and a half days leading to a drop of soil water 
content that is maintained at around 25 % by volume . During 
a subsequent period of Q3 of 36 hours , irrigation was 
completely stopped for the group - B plants and the soil dried 
out to a soil water content of 18 % by volume . After the 
period Q3 , the group - B plants were again placed under full 
irrigation ( in a period Q4 ) . The periods for the irrigation 

regimes are shown in each of FIGS . 3 ( a ) and 3 ( b ) . In each 
of FIGS . 3 ( a ) and 3 ( b ) , the vertical arrow indicates the 
beginning of the period Q4 when the group - B plants were 
watered again after drought condition . The soil water con 
tent may be measured by any suitable soil water sensor , such 
as , for example , the WET sensor made by Delta - T Devices 
Ltd , Cambridge , UK . The soil water sensor may also mea 
sure other parameters of the substrate , such as , the tempera 
ture and / or the electrical conductivity of the substrate . The 
soil water sensor may conduct three measurements per day . 
[ 0117 ] A leaf turgor sensor was mounted onto the group - A 
plants and the group - B plants to detect the leaf turgor 
pressure of the plants . It was understood that the leaf turgor 
pressure may be useful to reflect the health state of the 
plants . The leaf turgor sensor may be a commercialized Yara 
Water - Sensor made by Yara International ASA . The Yara 
water - sensor measures the relative changes in the leaf's 
turgor pressure of a plant , and may record the relative 
changes at a rate of 1 sample per minute . FIG . 3 ( a ) illustrates 
the mean turgor pressure measured from each of the group - A 
plants ( i.e. , curve 16 ) and the mean turgor pressure measured 
from each of the group - B plants ( i.e. , curve 18 ) , with 
reference to the left Y axis . FIG . 3 ( a ) further illustrates the 
variations of the soil water content ( i.e. , curve 20 ) of the 
group - B plants with reference to the right Y axis . 
[ 0118 ] For comparison , the plant health monitoring device 
1 as described above was attached to the group - A plants and 
the group - B plants to detect the electrical signals of the 
plants . FIG . 3 ( b ) illustrates the mean electrical signal mea 
sured from each of the group - A plants ( i.e. , curve 22 ) and the 
mean electrical signal measured from each of the group - B 
plants ( i.e. , curve 24 ) , with reference to the left Y axis . FIG . 
3 ( b ) further illustrates the variations of the soil water content 
( i.e. , curve 20 ) of the group - B plants with reference to the 
right Y axis . 
[ 0119 ] As shown in FIG . 3 ( a ) , the leaf turgor pressure 
shows a daily variation with a minimum leaf turgor during 
the night and a maximum reached during the day . To better 
characterize this daily variation , the leaf turgor signals were 
normalised and split into 24 - hour cycles as shown in FIG . 
4 ( a ) . In FIG . 4 ( a ) , the curve 25 shows the leaf turgor signal 
of plants which were under full irrigation , the curve 26 
shows the leaf turgor signal of plants which were under half 
irrigation and the curve 27 shows the leaf turgor signal of 
plants which were under no irrigation . As shown in FIG . 
4 ( a ) , in water deficit regime ( e.g. , during the periods Q2 and 
Q3 ) , the daily variation of leaf turgor is modified with a drop 
of turgor during the day . The more the soil water content 
diminishes , the more the leaf turgor drops until the signal is 
lost . As shown in FIG . 3 ( a ) , the leaf turgor signal is not 
recovered even after the irrigation had been restored during 
the period Q4 . This indicates a limit of the leaf turgor sensor 
for indicating the plant status . 
[ 0120 ] Turning to FIG . 3 ( 6 ) , as a general observation , the 
electrical signals obtained from the plants A and B present 
cyclic pattern with a minimum during late night / early morn 
ing and a maximum during the middle of the day ( i.e. , solar 
noon at about 14 h ) . To better characterize this daily rhythm , 
the electrical signals were normalised and split into 24 - hours 
cycles as shown in FIG . 4 ( b ) . In FIG . 4 ( a ) , the curve 28 
shows the electrical signal of plants which were under full 
irrigation , the curve 29 shows the electrical signal of plants 
which were under half irrigation and the curve 30 shows the 
electrical signal of plants which were under no irrigation . As 
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shown in FIG . 4 ( b ) , when the group - B plants were under full 
irrigation , an initial slight peak is observed at dawn and 
during the first hours of the days . It was followed by a 
long - lasting peak with a higher amplitude in the middle of 
the day . This daily rhythm is similar to that recorded under 
controlled conditions on avocadoes or cucumber and 
strongly suggests an effect of the biological rhythm . 
[ 0121 ] With further reference to FIG . 3 ( b ) , the variations 
of the electrical signals obtained from the group - B plants ( as 
shown in curve 24 ) show a progressive hyperpolarization 
during the half - irrigation regime i.e. , Q2 ) , because the 
centreline of the electrical signals kept decreasing during the 
period Q2 . In general , hyperpolarization is a change in a 
cell's membrane potential that makes it more negative . The 
resulting electrical signal could be positive or negative as it 
is being used to communicate the state of stress throughout 
the plant . At the beginning of the period 04 , a strong 
transient hyperpolarization is evoked with an amplitude of 
-32 mV . During the period Q4 , after the variation of the 
electrical signals slowly repolarizes , the electrical signals 
show the same daily rhythm as in the beginning . 
[ 0122 ] The results presented by FIGS . 3 and 4 demon 
strate that in severe conditions of water deficit , monitoring 
the electrical variations is more efficient than monitoring the 
leaf turgor for the recovery phase . The results further dem 
onstrate that the electrical signals obtained from plants by 
the device 1 contain useful information indicative of the 
water stress conditions of the plants . 
[ 0123 ] Daily electrical variations have been reported on 
different plant species such as maize , prunes or avocado . 
Therefore it will be appreciated that the device 1 can be used 
to monitor electrical signals ( either in short - term or in 
long - term ) obtained from various species of plants which are 
in no way limited to tomato plants . 
[ 0124 ] With reference to FIGS . 5 and 6 , the raw data of the 
electrical signals obtained from plants have been analysed 
using principal component analysis ( PCA ) in order to 
explore the variability of the electrical signals with respect 
to night / day periods and the irrigation status . 
[ 0125 ] By way of example , the device 1 is used to obtain 
electrical signals from a tomato plant described above . It 
will of course be appreciated that different species of plants 
may be used . 
[ 0126 ] In order to explore the variability with respect to 
night / day periods , the obtained electrical signals have been 
arranged in a matrix Xn , p with p being the number of days 
in which the plant was monitored and n being the number of 
data samples recorded each day . In an example , p is equal to 
17 , and the data samples are recorded at a frequency of 1 
sample per minute , thus making n equal to 1440. Each data 
item in the matrix Xnp represents the amplitude of the 
obtained electrical signal . 
[ 0127 ] After performing the PCA on the matrix Xp , the 
obtained factorial map of the PCA according to the first two 
factor scores is shown in FIG . 5 ( a ) . The X axis of FIG . 5 ( a ) 
represents the first principal component ( CP1 ) which 
accounts for 71 % of the overall variability of the data . The 
Y axis of FIG . 5 ( a ) represents the second principal compo 
nent ( CP2 ) which accounts for 13.5 % of the overall vari 
ability of the data . FIG . 5 ( a ) shows that the day and night 
periods can be separated into two distinct groups . In FIG . 
5 ( a ) , the data group 31 corresponds to the night period , and 
the data group 32 corresponds to the day period . This means 
that some portions of the raw electrical signals contain 

relevant information for measuring a different behaviour of 
the plant between the periods of day and night . In order to 
determine at what time of day the relevant information 
contained in the electrical signals is located , the correlation 
between the factorial coordinates of the first principal com 
ponent and the raw data of the electrical signals was calcu 
lated for each data sample recorded within a day . The results 
of the calculated correlation are shown in FIG . 5 ( b ) . With 
reference to FIG . 5 ( b ) , the strongest correlations are at 
around 2 pm ( solar noon ) and to a lesser extent at around 10 
am and 4 pm . 
[ 0128 ] In order to explore the variability with respect to 
the irrigation status of the plant , the obtained electrical 
signals have been arranged in a matrix Znp with n being the 
number of days in which the plant was monitored and p 
being the number of data samples recorded each day . In an 
example , n is equal to 17 , and the data samples are recorded 
at a frequency of 1 sample per minute , thus making p equal 
to 1440. Each data item in the matrix Znp represents the 
amplitude of the obtained electrical signal . In some of the 
monitored days , the plant was placed under optimal full 
irrigation while in the other days , the plant was in conditions 
of water deficit . The irrigation status of the plant within the 
monitored 17 days results from the irrigation scheme 
imposed on the plant and may be manually recorded in a 
diary . Alternatively , the irrigation status of the plant may be 
automatically measured using a soil water sensor described 
above . Thus , the irrigation status of the plant within the 
monitored 17 days is known . 
[ 0129 ] After performing the PCA on the matrix the 
obtained factorial map of the PCA according to the fifth and 
sixth principle components is shown in FIG . 6 ( a ) . The X 
axis of FIG . 6 ( a ) represents the fifth principal component 
( CP5 ) which accounts for 3 % of the overall variability of the 
data . The Y axis of FIG . 6 ( a ) represents the sixth principal 
component ( CP6 ) which accounts for 2.7 % of the overall 
variability of the data . The factorial map shown in FIG . 6 ( a ) 
allows for obtaining two different groups that are over 
lapped . In FIG . 6 ( a ) , the data group 33 corresponds to the 
water deficit ( i.e. , water - stress ) state , and the data group 34 
corresponds to the full irrigation ( i.e. , water - comfort ) state . 
The correlation between the factorial coordinates of the fifth 
principal component and the raw data of the electrical 
signals was calculated for each of the monitored days . The 
results of the calculated correlation are shown in FIG . 6 ( b ) . 
With reference to FIG . 6 ( b ) , almost all of the monitored days 
appear important and are able to give information to distin 
guish the stressed plant from the non - stressed plant . How 
ever , the overall variability of the data that explains the 
difference between water - comfort and water - stress is rela 
tively small when the electrical signals are used in the raw 
configuration . Thus , in order to better extract information 
related to water stress from the electrical signals , more 
sophisticated processing to the electrical signals may be 
useful . 
[ 0130 ] FIG . 7 illustrates processing steps carried out to the 
raw data of the electrical signals obtained from plants , in 
order to reduce the data dimensionality and to extract 
meaningful information from the electrical signals . The raw 
data of the electrical signals may be obtained by the leads 6 , 
8 of the device 1 as described above . In an example , the raw 
data comprises data obtained from five different tomato 
plants , and each plant has been monitored continuously for 
two weeks by the device 1 . 
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[ 0131 ] During the two - week monitoring time for each 
plant , the lighting condition for the plants is recorded . The 
lighting condition may be manually recorded , or alterna 
tively may be automatically detected and recorded by a light 
sensor installed in a growth environment ( e.g. , the growth 
environment 50 ) in which the plants grow . Further , during 
the two - week monitoring time , the level of irrigation ( e.g. , 
100 % , 20 % and 0 % ) for each plant has been varied pur 
posely according to a predetermined schedule . Data indi 
cating the variations of the level of irrigation may be kept in 
a record . It is recognised that in general , the plants are in 
water stress three hours after the irrigation is reduced or 
removed . Thus , the water stress statuses of the plants during 
the two - week monitoring time may be derived based upon 
the level of irrigation . Alternatively or in addition , the water 
stress statuses of the plants may be characterised and 
recorded by using a leaf turgor sensor as described above . In 
general , the lighting condition record and the water - stress 
status record of the plants indicate the lighting condition and 
the water stress statuses of the plants , respectively , within 
the entire two - week monitoring time . 
[ 0132 ] The processing of FIG . 7 may also be referred to as 
“ data pre - processing ” . The data pre - processing may be 
carried out by the device 1 , and / or an external computer / 
server which is connected to the device 1 via the network 
interface 12f . Alternatively , the raw data may be stored in the 
device 1 for subsequent processing by any suitable device 
( s ) . With reference to FIG . 7 , the data preprocessing com 
prises five phases : signal conditioning ( step S1 ) , windowing 
( step S2 ) , extracting features ( step S3 ) , labeling ( step S4 ) , 
and normalising ( step S5 ) . 
[ 0133 ] At Step S1 , signal conditioning is performed on the 
raw data of the electrical signals obtained from plants . 
Various types of signal conditioning may be used ( both in 
the analogue and digital domains ) to remove any unwanted 
signal components , or to enhance other signal components 
as required . In particular , the signal conditioning may com 
prise one or more of : amplifying , filtering , normalising , 
and / or down - sampling the first electrical signal . It will be 
appreciated that the signal conditioning may be partly per 
formed by the hardware provided in the data acquisition 
model 10 of the device 1 , and / or suitable device ( s ) external 
to the device 1. For instance , the analog filter 9 of the data 
acquisition model 10 performs signal conditioning in the 
analogue domain to remove unwanted frequency compo 
nents , and the amplifier 13 of the data acquisition model 10 
performs signal conditioning in the analogue domain by 
amplifying the sensed signals to a level which is suitable for 
digitisation . Further , as described above , a digital filter and 
a decimator may be provided to perform signal conditioning 
on the digitised signal output by the ADC 14 , by performing 
digital filtering and decimation ( i.e. , down - sampling ) . The 
digital filter may be a digital notch filter , such as a 50 Hz / 100 
Hz or 60 Hz / 120 Hz digital notch filter , Moreover , the 
signals obtained from various plants or various parts of the 
same plant may be normalised at step S1 . It will be appre 
ciated , however , that the use of any particular signal con 
ditioning device is optional . Alternatively signal artefacts 
contained within the raw data may be removed manually or 
automatically . After step Si , conditioned data is obtained . 
[ 0134 ] At step S2 , a data sample is taken from the con 
ditioned data periodically ( e.g. , at a rate of one sample per 
every 5 minutes ) . Each data sample includes at least one data 
segment obtained by applying a window function to the raw 

data . The window function has non - zero values within a 
chosen time interval and is zero - valued outside of the chosen 
time interval . Thus , by multiplying the window function and 
the raw data , a data segment in the time domain is obtained . 
[ 0135 ] In the event that each data sample includes multiple 
data segments , multiple window functions with different 
time intervals ( i.e. , window sizes ) are applied to the condi 
tioned data separately to obtain the multiple data segments . 
In one example , the time intervals of the multiple window 
functions may start at the same time but end at different 
times . In another example , the time intervals of the multiple 
window functions may start at different times but end at the 
same time . In an example , each data sample includes seven 
data segments which are obtained by applying seven differ 
ent window functions to the raw data . The time intervals of 
the seven window functions may be 15 seconds , 30 seconds , 
1 minute , 2 minutes , 5 minutes , 10 minutes and 30 minutes , 
respectively . Thus , the data segments included within one 
data sample have different temporal lengths ( i.e. , corre 
sponding to the window sizes ) . Depending upon the par 
ticular window functions being used , it would be appreci 
ated that the beginning and / or the end of the conditioned 
electrical signals may be discarded for the purpose of 
obtaining data samples at step S2 . 
[ 0136 ] It will be understood that in the event that the 
maximum window size of the window function ( s ) used is 30 
minutes , if data samples are taken from the conditioned data 
at a rate of greater than 1 sample per 30 minutes ( e.g. , a 
sample per 5 minutes ) , the data segments included within 
neighbouring data samples may be partially overlapping in 
time . 
[ 0137 ] At step S3 , each data segment obtained at step S2 
is processed to extract characterising features of the data 
segment . In an example , 26 characterising features are 
extracted from each data segment . The 26 features may 
include : simple statistical features ( i.e. , min , max , mean , 
variance , skewness , kurtosis and interquartile range ) , Hjorth 
parameters ( i.e. , mobility and complexity ) , generalized 
Hurst exponent , wavelet entropy ( i.e. , Shannon and loga 
rithmic ) and the estimation of the power of each color of 
noise ( i.e. , white , pink , brown , blue and purple ) contained in 
the respective data segment . Further , wavelet decomposition 
may be performed on each data segment to more than one 
level , and simple statistical features ( min , max , average ) of 
the coefficients extracted at at least one level of the wavelet 
decomposition may be calculated . In an example , data 
processing software ( e.g. , Matlab ) may be employed to 
perform wavelet decomposition to eight levels on each data 
segment , and the coefficients at three of the eight levels , e.g. , 
level - 1 ( high frequencies ) , level - 4 ( medium frequencies ) 
and level - 8 ( low frequencies ) , may be extracted . The min , 
max and average values of the coefficients ( e.g. , the approxi 
mation and / or the detail coefficients ) extracted at each of the 
three levels are then calculated , thereby resulting in 9 
characterising features in total . The wavelet decomposition 
is a multi - level discrete wavelet transform and may be 
implemented using the “ wavedec ” function in Matlab soft 
ware . Performing wavelet decomposition to multiple levels 
generally requires multiple levels of wavelet analyses . When 
each data sample includes seven data segments of different 
window sizes , it will be understood that each sample has 
26 * 7 ( 182 ) characterising features in total . 
[ 0138 ] At step S4 , each data sample is labelled with a 
corresponding lighting condition and a corresponding water 
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stress status of the respective plant . The labelling is based 
upon the lighting condition record of the plants and the 
water - stress - status record of the plants as described above . 
The corresponding lighting condition forms Class 1 label 
and may indicate " day " or " night ” . The corresponding water 
stress status forms Class 2 label and may indicate “ normal ” 
or " water stressed ” . 
[ 0139 ] At step S5 , normalisation is applied to the extracted 
characterising features of the data samples obtained across 
different plants , to compensate for the inter - plant variability 
in the extracted features . More precisely , the values of each 
feature vector may be transformed in the interval between 0 
and 1 using Equation ( 1 ) below : 

that is trained with stochastic gradient descent using back 
propagation . The GBT model 39 may be a forward learning 
ensemble method , in which regression trees on all the 
features of the dataset rebuilt sequentially fully 
distributed way . 
[ 0145 ] The performances of the five models with respect 
to Class 1 classification are shown in FIG . 8. This means that 
the output variables ( Y ) in this instance include the Class 1 
labels of the data samples only . The performance indicators 
include accuracy 41 , precision 42 and recall 43. The accu 
racy 41 represents the fraction of correct predictions pro 
vided by a classifier model . The precision 42 represents the 
fraction of correct positive predictions provided by cas 
sier model.The recall43 represents the fraction of correct 
predictions of actual positives . These indicators are com 
monly used to assess the performance of a classifier . 
[ 0146 ] As shown in FIG . 8. the GBT model provides the 
best performance among all of the models used . In particu 
lar , the GBT model achieves a great accuracy value of 
94,6 % , a precision value of 95.4 % and a recall value of 
95.6 % . 
[ 0147 ] An assessment of the top 20 strongest input vari 
ables and their corresponding weights with respect to Class 
1 classification are listed in Table 1 below . 

( 1 ) 
Xnf X - Xf , min 

Xf , max – Xf , min 

TABLE 1 

Input variables and weights with respect to Class 1 classification 

Input variables Weight 
1 
2 
3 
4 . 
5 

7 
8 

[ 0140 ] where x , and Xng are the raw feature vector gener 
ated at step S3 and the normalized feature vector , respec 
tively , while Xf , min is the feature vector minimum and Xf , max 
is the feature vector maximum . 
[ 0141 ] After the data preprocessing of FIG . 7 is per 
formed , each data sample obtained at step S2 provides one 
data entry , which includes the extracted characterising fea 
tures ( i.e. , input features ) of the data sample obtained at step 
S3 and the corresponding labels ( i.e. , output features ) of the 
data sample obtained at step S4 . In an example , a dataset of 
24246 data entries are obtained after the data preprocessing 
of FIG . 7. 60.3 % of the data entries are labelled as " day " 
under the Class 1 label , and 39.7 % are labelled as “ night ” 
under the Class 1 label . With regard to the Class 2 label , 
30.8 % of the data entries are labelled as " water stressed ” and 
69.2 % are labelled as “ normal ” . 
[ 0142 ] The dataset obtained by the data preprocessing of 
FIG . 7 are then split into a learning dataset ( also referred to 
as a “ training dataset ” ) and a validation dataset . The learning 
dataset may take up to 80 % of the whole dataset , and the 
validation dataset may take up to 20 % of the whole dataset . 
[ 0143 ] The learning dataset is provided to a classifier to 
train the classifier . A classifier is a supervised machining 
learning algorithm which approximates a mapping function 
( F ) from input variables ( X ) to discrete output variables ( Y ) . 
The input variables ( X ) may correspond to the extracted 
characterising features of each data sample . The output 
variables ( Y ) may correspond to the Class 1 and / or Class 2 
labels of the data samples . Each of the input variables has a 
corresponding weight , which indicates the strength of the 
input variable in determining an output variable . Training a 
classifier basically means calibrating all of the weights . 
After the classifier is trained , the validation dataset is used 
to test the performance of the trained classifier . For example , 
the trained classifier generates an output value based upon 
the input features of a data entry within the validation set , 
and the generated output value is then compared to the 
known output feature of the data entry to see whether or not 
the prediction provided by the trained classifier is correct . 
[ 0144 ] By way of example , the classifier algorithms used 
include the logistic regression ( LR ) model 35 , the deep 
learning ( DL ) model 36 , the decision trees ( DT ) model 37 , 
the random forest ( RF ) model 38 and the gradient boosted 
tree ( GBT ) model 39. The models may be provided by open 
source platforms . In particular , the DL model 36 may be 
based on a multi - layer feedforward artificial neural network 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

w30_genhurst 
w10_genhurst 
w5_genhurst 
wl_genhurst 
w15s_genhurst 
w30s_genhurst 
w2_genhurst 
w10_w4_mean 
w10_noise_brown 
w10_skewness 
w30_skewness 
w1w4_mean 
w15s_w4_mean 
w30s W4_mean 
w5_skewness 
w10_noise_white w5_noise_pink 
w5_noise_white 
w2 w1 
w2_noise_pink 

1.000 
0.947 
0.886 
0.877 
0.877 
0.877 
0.868 
0.768 
0.678 
0.637 
0.615 
0.601 
0.601 
0.601 
0.580 
0.565 
0.533 
0.530 
0.525 
0.523 

max 

[ 0148 ] With reference to Table 1 , Variables 1 to 7 refer to 
the generalised Hurst exponents extracted from data seg 
ments which have temporal lengths of 30 minutes , 10 
minutes , 5 minutes , 1 minute , 15 seconds , 30 seconds , 2 
minutes , respectively . As described above . the temporal 
lengths of data segments are determined by the window 
sizes of window functions applied to the raw data . Variable 
8 ( “ w10_w4_mean ” ) refers to the mean value of the coef 
ficients extracted at level 4 of a wavelet decomposition ( e.g. , 
an 8 - level wavelet decomposition ) performed on a data 
segment which is of a temporal length of 10 minutes . 
[ 0149 ] Variable 9 ( “ w10_noise_brown ) refers to the power 
ofthebrownie contained with data segment which 

of temporalength of minutes . Variables 10 
skewness " ) , 11 ( “ w30_skewness " ) and 15 " w5_skewness " ) 
refer to the skewnesses of data segments which have tem 
prengths of minutes , 30 minutes and 5minutes , 
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TABLE 2 - continued 

Input variables and weights with respect to Class 2 classification 

Input variables Weight 
19 
20 

wl_interquartile 
w2_wl_max 

0.691 
0.667 

respectively . Variables 12 to 14 , i.e. , “ wl_w4_mean ” , 
" w15s_w4_mean " , " w30s_w4_mean ” , refer to the mean 
values of the coefficients extracted at level - 4 of wavelet 
decompositions ( e.g. , 8 - level wavelet decompositions ) per 
formed on data segments which are of temporal lengths of 
1 minute , 15 seconds and 30 seconds , respectively . Variables 
16 ( “ w10_noise_white ” ) and 18 ( “ w5_noise_white ” ) refer 
to the power levels of the white noise contained within data 
segments which are of temporal lengths of 10 minutes and 
5 minutes , respectively . Variables 17 ( “ w5_noise_pink " ) and 
20 ( “ w2_noise_pink ” ) refer to the power levels of the pink 
noise contained within data segments which are of temporal 
lengths of 5 minutes and 2 minutes , respectively . Variable 19 
( ' w2_w1_max " ) refers to the max value of the coefficients 
extracted at level - 1 of a wavelet decomposition ( e.g. , an 
8 - level wavelet decomposition ) performed on a data seg 
ment which is of a temporal length of 2 minutes . 
[ 0150 ] The above results indicate that the generalised 
Hurst exponents extracted from the data segments , regard 
less of the temporal lengths of the data segments , are strong 
input variables and play an important role in determining the 
lighting conditions ( e.g. , " day " or " night " ) of plants . The 
above results further demonstrate that the lighting conditions 
of plants can be accurately predicted ( or assessed ) by a 
classifier solely based upon the electrical signals obtained 
from the plants . 
[ 0151 ] Further , from Table 1 , it appears that the power 
levels of noise contained within data segments , the skewness 
of data segments , as well as statistical features ( e.g. , max , 
mean ) of the coefficients obtained by wavelet decomposition 
( in particular , the level - 1 and level - 4 coefficients of the 
wavelet decomposition ) also play an important role in 
determining the lighting conditions of plants . 
[ 0152 ] The performances of the five classifier models with 
respect to Class 2 classification are shown in FIG . 9. This 
means that the output variables ( Y ) in this instance include 
the Class 2 labels ( e.g. , “ normal ” or “ water stressed ” ) of the 
data samples only . The performance indicators include accu 
racy 41 , precision 42 and recall 43. As shown in FIG . 9 , the 
GBT model again provides the best performance among all 
of the models used . In particular , the GBT model achieves 
a great accuracy value of 98.5 % , a precision value of 99.3 % 
and a recall value of 98.5 % . 

[ 0153 ] An assessment of the top 20 strongest input vari 
ables and their corresponding weights with respect to Class 
2 classification are listed in Table 2 above . 
[ 0154 ] With reference to Table 2 , Variables 1 to 7 refer to 
the generalised Hurst exponents extracted from data seg 
ments which have temporal lengths of 5 minutes , 30 min 
utes , 10 minutes , 2 minutes , 15 seconds , 30 seconds , 1 
minute , respectively . Variables 8 to 10 , i.e. , “ w15s_w1_ 
max ” , “ w30s_wl_max " , " wl_w1_max ” , refer to the max 
values of the coefficients extracted at level - 1 of wavelet 
decompositions ( e.g. , 8 - level wavelet decompositions ) per 
formed on data segments which are of temporal lengths of 
15 seconds , 30 seconds , and 1 minute , respectively . Vari 
ables 11 to 16 refer to the min values of the coefficients 
extracted at level - 1 of wavelet decompositions ( e.g. , 8 - level 
wavelet decompositions ) performed on data segments which 
are of temporal lengths of 15 seconds , 30 seconds , 1 minute , 
5 minutes , 2 minutes and 10 minutes , respectively . Variables 
17 to 19 , i.e. , " w15s_interquartile " , " w30s_interquartile " 
and “ wl_interquartile ” refer to the interquartile ranges of 
data segments which are of temporal lengths of 15 seco econds , 
30 seconds , and 1 minute , respectively . Variable 20 ( " w2_ 
wl_max " ) refers to the max value of the coefficients 
extracted atlevel - 1 of a wavelet decomposition ( e.g. , an 
8 - level wavelet decomposition ) performed on a data seg 
ment which is of a temporal length of 2 minutes . 
[ 0155 ] Among the above listed input variables , the gen 
eralised Hurst exponents extracted from the data segments , 
regardless of the temporal lengths of the data segments , are 
strong input variables and play an important role in deter 
mining the water stress statuses ( e.g. , “ normal ” or “ water 
stressed ” ) of plants . The above results further demonstrate 
that the water stress statuses of plants can be predicted or 
assessed , with a high - degree of confidence , by a classifier 
solely based upon the electrical signals obtained from the 
plants . 
[ 0156 ] Further , from Table 2 , it appears that the statistical 
features ( e.g. , max , min ) of the coefficients extracted at 
level - 1 of wavelet decompositions performed on data seg 
ments ( in particular those having a temporal length of not 
greater than 10 minutes ) as well as the interguartile ranges 
of data segments ( in particular those having a temporal 
length of not greater than 1 minute ) also play an important 
role in determining the water stress statuses of plants . 
[ 0157 ] It will be appreciated that the results shown in 
Table 1 and Table 2 are based upon the particular dataset 
gathered and the particular classifier being used , and that a 
different dataset ( e.g. , which is obtained from different 
plants and / or for predicting a different plant status ) or a 
different machine learning model may result in different 
dominating input variables and different weightings . 
[ 0158 ] The results shown in FIGS . 8 and 9 as well as 
Tables 1 and 2 prove that machine learning algorithms 
provide good classification performance and also confirm 
that the electrical signals obtained from plants contain useful 
patterns for identifying potential plant stress conditions . 

TABLE 2 

Input variables and weights with respect to Class 2 classification 

Input variables Weight 
1 
2 
3 
4 . 
5 
6 
7 
8 
9 

w5_genhurst 
w30_genhurst 
w10_genhurst 
w2_genhurst 
w15s_genhurst 
w30s_genhurst 
wl_genhurst 
w15s_wl_max 
w30s_wl_max 
wl_w1 max 
w15s_wl_min 
w30s_wl_min 
wl_wl_min 
w5_wl_min 
w2_w1_min 
w10_wl_min 
w15s_interquartile 
w30s_interquartile 

1.000 
0.999 
0.999 
0.949 
0.859 
0.859 
0.859 
0.774 
0.774 
0.774 
0.759 
0.759 
0.759 
0.726 
0.725 
0.706 
0.691 
0.691 

10 
11 
12 
13 
14 
15 
16 
17 
18 
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[ 0159 ] Further , while the examples provided above are for 
binary classification in which the plant status is classified 
into one of two classes , such as , “ normal ” or " water 
stressed ” ) , it will be appreciated that supervised machine 
learning algorithms can be used to perform multinomial 
classification ( in which the plant status is classified into one 
of three or more classes ) or even regression ( in which the 
plant status is predicted within a continuous output ) . This 
depends upon the particular training dataset and the particu 
lar machine learning model being used for performing the 
prediction . For example , each data entry in a training dataset 
may be labelled with a corresponding value ( e.g. , any value 
within 0 % to 100 % ) indicating a percentage of the actual 
irrigation received as compared to the full amount of irri 
gation . This particular training dataset may be used to train 
a regression model which predicts the percentage of irriga 
tion received by a plant . In another example , each data entry 
in the training dataset may be labelled with a lighting 
condition selected from the group of “ no lighting ” , “ strong 
lighting ” and “ weak lighting ” . This particular training data 
set may be used to train a multinomial classifier . Using the 
trained multinomial classifier , the lighting condition of a 
plant may be classified into one of three classes ( i.e. , “ no 
lighting " , " strong lighting " and " weak lighting " ) . 
[ 0160 ] It will further be appreciated that supervised 
machine learning algorithms can be used to predict ( or 
assess ) many types of plant statuses which are in no way 
limited to the lighting condition or the water stress status of 
a plant . In general , it is expected that a characteristic of a 
plant can be predicted with a reasonable - degree of confi 
dence by a machine learning model solely based upon the 
electrical signal obtained from the plant . 
[ 0161 ] FIG . 10 illustrates a flowchart showing processing 
steps carried out to generate a training dataset for use to train 
a machine learning model . 
[ 0162 ] At step S10 , a stressor is introduced to a first plant 
or a growth environment ( e.g. , the environment 50 ) of the 
first plant . The variety of the first plant and the type of the 
stressor may be suitably chosen depending upon the needs of 
a plant grower . In general , the growth environment of the 
first plant may be growing chambers , greenhouses or fields , 
and the first plant may be cultivated under controlled con 
ditions to simulate normal growing environments . The 
stressor introduced purposely to simulate natural occur 

prematurely cause or delay growth , flowering , or fruit 
maturing of the first plant , etc. The substance may be 
directly applied to a part ( e.g. , leaf , stem or root ) of the first 
plant . 
[ 0164 ] The first plant may be one or more plants . Prefer 
ably , the first plant may include a plurality of plants which 
tend to provide better statistical results than a single plant . 
[ 0165 ] At step S11 , a first electrical signal is obtained from 
the first plant during a first time period when the stressor is 
applied to the growth environment of the first plant . 
[ 0166 ] At step S12 , a second electrical signal is obtained 
from the first plant during a second time period when the 
stressor is not being applied to the growth environment of 
the first plant . 
[ 0167 ] Steps S10 to S12 may take any suitable temporal 
order which is not limited to the sequence shown in FIG . 10 . 
For example , the obtaining of the second electrical signal at 
step 12 may be performed first , followed by an introduction 
of the stressor at step S10 and the obtaining of the first 
electrical signal at step Sil . 
[ 0168 ] The first and second electrical signals may be raw 
data obtained by the leads 6 , 8 of the plant health monitoring 
device 1 described above . In particular , the device 1 may 
operate outside of a Faraday cage . The first time period and 
the second time period collectively form the monitoring time 
of the first plant . Alternatively , the first and second electrical 
signals may be digitised signals output by the ADC 14 of the 
device 1 and may be in the time domain . 
[ 0169 ] At step S13 , the first electrical signal and the 
second electrical signal are processed to generate a training 
dataset . Step S13 may be carried out by the device 1 and / or 
an external computer / server which is connected to the 
device 1 via the network interface 12f of the device 1 . 
Alternatively , step S13 may be carried out by any suitable 
device ( s ) to which the first electrical signal and the second 
electrical signal are provided . 
[ 0170 ] The data pre - processing steps shown in FIG . 7 may 
be used to process the first and second electrical signals at 
step S13 . In particular , the first and second electrical signals 
are processed by steps S1 to 55 sequentially . After step S5 , 
a training dataset is generated as described above . 
[ 0171 ] Step S4 requires that each data sample is labelled 
with a corresponding characteristic of the first plant . The 
labels of the data samples may be obtained by monitoring a 
physiological marker of the first plant and / or an environ 
mental condition of the first plant during the first and second 
time periods . The physiological marker may include , for 
example , the leaf turgor pressure , the stage of development 
of the plant , the stem diameter , the leaf fluorescence , the leaf 
temperature , and / or the leaf colour , etc. The environmental 
condition includes , for example , the ambient lighting con 
dition , the ambient CO2 level , the air temperature , and / or the 
soil water content , etc. The monitoring may be implemented 
by any suitable sensor available in the market . The particular 
physiological marker and / or environmental condition being 
monitored depend upon the nature of the stressor introduced 
at step S10 . For example , if the stressor causes a change to 
the irrigation of the first plant , a leaf turgor sensor may be 
employed to monitor the leaf turgor pressure ( i.e. , a physi 
ological marker ) of the first plant , or a soil water sensor may 
be used to monitor the soil water content of the first plant . 
The obtained leaf turgor pressure or the obtained soil water 
content may be used as labels to label the data samples at 
step S4 . In addition , depending upon the particular type of 

rences . 

[ 0163 ] The stressor may be any factor which causes a 
change to the growth environment or the physiology of the 
first plant . Typical examples of a change to the growth 
environment include a change to the lighting condition of 
the first plant , a change to the irrigation of the first plant 
( which , for example , may be caused by switching on / off an 
irrigation pump ) , a change to the application of nutrients to 
the first plant ( which , for example , may be caused by 
switching on / off a nutrigation pump ) , a change to the 
ambient temperature of the first plant , a change to the 
ambient humidity of the first plant , a change to the ambient 
CO2 level of the first plant , a change to the ambient pollutant 
( e.g. , hydrogen sulphide or dust ) level of the first plant , or a 
change to the chemical composition ( e.g. , the salt level ) of 
the growth medium . Typical examples of a change to the 
physiology of the first plant include an introduction of a 
substance ( e.g. , an insect or other pest , a chemical substance , 
or a pathogen which may be a virus , fungus or bacteria , etc. ) 
which pose a threat to the first plant , and a change to 
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the stressor introduced , the ambient lighting condition , the 
ambient humidity level , the ambient pollutant level , the 
ambient CO , level , the chemical composition of the growth 
medium , the presence of pests , and / or the air temperature of 
the first plant may be monitored using , for example , a light 
sensor , a humidity sensor , a pollution sensor , a CO2 sensor , 
a chemical sensor , a pest detection sensor , and / or a tempera 
ture sensor , respectively , to generate the labels used at step 
S4 . 

[ 0172 ] In the event that more than one stressor has been 
introduced to the growth environment of the first plant , it 
will be appreciated that each data sample may have more 
than one label which indicates more than one characteristic 
of the first plant . In that case , all of the labels of each data 
sample collectively form the output features of the generated 
training dataset . 
[ 0173 ] Alternatively , the labels of the data samples may be 
obtained solely based upon the presence and the absence of 
the stressor . This is because the stressor typically causes the 
first plant to have a corresponding characteristic ( e.g. , light 
deficit / excess , water deficit / excess , nutrition deficit / excess , 
slow / fast metabolism , temperature deficit / excess , CO2 defi 
cit / excess , salt deficit / excess , insect infestation or pathogen 
presence where a pathogen may be a virus , fungus or 
bacteria , etc. ) associated with the nature of the stressor . 
Therefore , it is possible to derive a status of the first plant 
based upon the presence / absence of the stressor without 
requiring further sensors ( such as those sensing the physi 
ological marker and / or the environmental condition of the 
first plant ) . The derived statuses of the first plant may be 
used to label the data samples at step S4 . For example , it may 
be assumed that the first plant has a “ water deficit ” status 
during the first time period when a stressor of switching off 
irrigation pump is applied , and has a “ normal ” status during 
the second time period when the same stressor is not applied . 
However , it will be understood that a training dataset 
obtained by labelling the data samples using the derived 
“ binary ” statuses may not be ideal for training all kinds of 
supervised machine learning algorithms ( such as , multino 
mial classification or regression algorithms ) . 
[ 0174 ] The data pre - processing steps shown in FIG . 7 
include a normalisation step at step S5 . When the first and 
second electrical signals are obtained from multiple plants 
( which collectively form the “ first plant ” ) , step S5 may be 
useful to normalise the extracted characterising features of 
the data samples obtained across different plants , because 
the electrical signals obtained from different plants may 
have different amplitudes . When the first and second elec 
trical signals are obtained from a single plant ( which forms 
the " first plant " ) at multiple different times , at multiple 
different parts of the plant , and / or when the plant is at 
multiple different locations , step S5 may be useful to elimi 
nate any variations in the amplitude of the electrical signals 
obtained at different times / parts / locations but under the 
same stressor condition . It will , however , be appreciated that 
step S5 is optional for the generation of a training dataset . 
[ 0175 ] Further , the data pre - processing steps shown in 
FIG . 7 include a signal conditioning step at step S1 . It will 
be appreciated that depending upon the quality of the first 
and second electrical signals , step S1 may be omitted . For 
example , if the first and second electrical signals are those 
output by the data acquisition module 10 of the device 1 

which already performs amplification , digitisation , analog / 
digital filtering and decimation to the raw signal , then step 
S1 may be dispensed with . 
[ 0176 ] In an example , the training dataset may also com 
prise environmental data characterising the growth environ 
ment of the first plant during the first and the second time 
periods . In such an embodiment , the flowchart of FIG . 10 
may further include additional processing steps such as , for 
example : a step of obtaining the environmental data char 
acterising the growth environment of the first plant during 
the first time period when the stressor is applied to the 
growth environment of the first plant , and a step of obtaining 
the environmental data characterising the growth environ 
ment of the first plant during the second time period when 
the stressor is not being applied to the growth environment 
of the first plant . The environmental data may , for example , 
comprise one or more of : data indicative of a light intensity 
in the growth environment , data indicative of soil water 
content of the growth environment , data indicative of a 
temperature ( e.g. , an air temperature ) of the growth envi 
ronment , data indicative of a humidity level of the growth 
environment , etc. The environment data may be directly 
output by available sensors located in the growth environ 
ment , or may be processed sensor data . 
( 0177 ] The environmental data may be processed together 
with the first and second electrical signals at step S13 to 
generate the training dataset . The data pre - processing steps 
shown in FIG . 7 may be used to process the environmental 
data and the first and second electrical signals at step S13 . 
In particular , the environmental data may be labelled with a 
corresponding characteristic of the first plant in the same 
way as the labelling of the data samples as described above . 
The environmental data may further be normalised at step 
S5 to remove undesired variations . 
[ 0178 ] FIG . 11 illustrates a flowchart showing processing 
steps carried out to assess a characteristic of a plant using a 
training dataset and a machine learning model . 
[ 0179 ] At step S20 , a training dataset is obtained . The 
training dataset may be generated by the processing steps as 
shown in FIG . 10 , or may be generated in other suitable 
ways . For example , during long - term monitoring of plants , 
a plant grower may have accumulated data comprising 
electrical signals obtained from plants and corresponding 
physiological markers and / or environmental condition data 
of the plants . While the plant grower did not intentionally 
introduce any stressor to the plants or the growth environ 
ment of the plants , stressors naturally occur during a part of 
the monitoring period . Thus , the data accumulated by the 
plant grower may be processed according to step S13 of 
FIG . 10 to generate a training dataset . Step S20 may be 
performed by any suitable computer / server . 
[ 0180 ] In general , each data entry within the training 
dataset includes input features which characterise or are 
derived from the electrical signals obtained from a plant , and 
at least one output feature indicative of a known character 
istic of the plant . It will be appreciated that the input features 
are obtained by processing the plant's electrical signals . In 
this way , a machine learning model trained by the training 
dataset can be used to predict an unknown characteristic of 
a particular plant based upon electrical signals obtained from 
that plant . 
[ 0181 ] Each data entry may have multiple output features 
indicative of multiple types of characteristics of the plant . 
The multiple types of characteristics may be associated with 
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the presence / absence of multiple stressors within the plant or 
the growth environment of the plant . A training dataset 
having such data entries can be used for training a machine 
learning model having multiple output variables . The trained 
model may be useful to predict multiple types of unknown 
characteristics of a particular plant based upon the electrical 
signals obtained from that plant , 
[ 0182 ] Further , the training dataset includes at least one 
data entry when a stressor is present within a plant or its 
growth environment , and at least one data entry when the 
same stressor is not present within the plant or its growth 
environment . Accordingly , the electrical signals of the plant 
can be distinguished with respect to the presence / absence of 
the stressor . 
[ 0183 ] The training dataset may include first data charac 
terising a first electrical signal obtained from a first plant 
during a first time period when a stressor is present in the 
first plant or a growth environment of the first plant , second 
data characterising a second electrical signal obtained from 
the first plant during a second time period when a stressor is 
not present in the first plant or the growth environment of the 
first plant , and third data indicative of a characteristic of the 
first plant during the first time period and a characteristic of 
the first plant during the second time period . 
[ 0184 ] The first data may be extracted characterising fea 
tures of data sample obtained from the first electrical signal 
at step S3 of FIG . 7 or the normalised version of the 
extracted characterising features if step S5 of FIG . 7 takes 
place . The second data may be extracted characterising 
features of data sample obtained from the second electrical 
signal at step S3 of FIG . 7 or the normalised version of the 
extracted characterising features if step S5 of FIG . 7 takes 
place . The third data may comprise labels of the data 
samples used at step S4 of FIG . 7 and described above . 
[ 0185 ] At step S21 , the training dataset obtained at step 
S20 is used to train a machine learning model . The machine 
learning model may be a regression model or a classification 
model ( i.e. , a classifier ) . The classifier may be a binary 
classifier or a multinomial classifier , Further , the classifier 
may be a linear classifier . For example , the linear classifier 
may be Support Vector Machine ( SVM ) with a linear kernel 
or may be logistic regression based . Alternatively , the clas 
sifier may be a non - linear classifier such as a neural network . 
In a particular example , the machine learning model may be 
a gradient boosted tree ( GBT ) model as described above . 
Step S21 may be performed by any suitable computer / 

ticular , the third electrical signal may be digitised signals 
output by the ADC 14 of the device 1 and may be in the time 
domain . The second plant is preferably , but not necessarily , 
of the same plant variety as the first plant from which the 
training dataset is derived . It has been found that a training 
dataset obtained from plant ( s ) of a particular plant variety 
can be used to train a machine learning model for assessing 
a characteristic of plant ( s ) of a different plant variety . 
[ 0189 ] At step S23 , the trained machining learning model 
is used to assess a characteristic of the second plant based 
upon the third electrical signal . This may require processing 
the third electrical signal to generate input data correspond 
ing to the input variables of the model . The input data may 
be data characterising the third electrical signal . In an 
example , the third electrical signal may be processed accord 
ing to steps S1 to S3 of FIG . 7 to extract features charac 
terising the third electrical signal and the extracted features 
are the input data . The input data is then fed into the trained 
model , and the output data of the model indicates the 
predicted characteristic of the second plant . The character 
istic of the second plant may be assessed in near real - time if 
the trained model is loaded to the device 1 or an external 
computer / server which is connected to the device 1 . 
[ 0190 ] In the event that the training dataset obtained at 
step S20 includes environmental data characterising the 
growth environment of the first plant during the first and the 
second time periods , it will be appreciated that an additional 
step of obtaining environmental data characterising a growth 
environment of the second plant may be included before step 
S23 takes place . The obtained environmental data is pref 
erably of the same type as the environment data included in 
the training dataset . Subsequently , the trained machine 
learning model is used to assess the characteristic of the 
second plant based upon the third electrical signal and the 
obtained environmental data characterising the growth envi 
ronment of the second plant . That is , the environmental data 
characterising the growth environment of the second plant 
may also be provided as input data to the trained machine 
learning model . 
[ 0191 ] FIG . 12 illustrates a flowchart showing processing 
steps carried out to monitor a characteristic of a plant and to 
adjust a growth environment of the plant . 
[ 0192 ] At step S30 , at least a part of the machine learning 
model trained at step S21 of FIG . 11 is exported to a plant 
health monitoring device 1 or a plant control system ( for 
example , the plant control device 100 ) as shown in FIG . 1 . 
[ 0193 ] At step S31 , the plant health monitoring device 1 
obtains an electrical signal from a plant . The device to which 
the trained model is exported ( e.g. , the plant health moni 
toring device 1 and / or the plant control device 100 ) assesses 
a characteristic of the plant using the trained machine 
learning model and the obtained electrical signal , and may 
generate plant data indicative of an assessment result of the 
characteristic of the plant . The plant data may be an output 
of the trained machine learning model , or may be generated 
based upon the output of the trained machine learning 
model . 
[ 0194 ] At step S32 , the plant data is analysed to determine 
whether the plant is stressed ( i.e. , whether a stressor is 
present within the plant or the growth environment of the 
plant ) . This step may be performed by the device to which 
the trained model is exported ( e.g. , the plant health moni 
toring device 1 and / or the plant control device 100 ) or by 
another device connected thereto . 

server . 

[ 0186 ] The input variables ( X ) of the machine learning 
model may correspond to the types of the first / second data 
characterising the first / second electrical signal . The output 
variables ( Y ) of the machine learning model may correspond 
to the type ( s ) of the third data indicating characteristics of 
plants . Each of the input variables has a corresponding 
weight , which indicates the strength of the respective input 
variable in determining the output variables . Training a 
machine learning model basically means calibrating all of 
the weights . 
[ 0187 ] After the machine learning model is trained , the 
model or a part of the model may be uploaded to the device 
1 or an external computer / server which is connected to the 
device 1 via the network interface 12f of the device 1 . 
[ 0188 ] At step S22 , a third electrical signal is obtained 
from a second plant . The third electrical signal may be 
obtained by the plant health monitoring device 1. In par 
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[ 0195 ] When it is determined at step S32 that the plant is 
not stressed , then the processing proceeds back to step S31 
in which the plant health monitoring device 1 and the plant 
control system continue to monitor the plant and to assess 
the characteristic of the plant . 
[ 0196 ] When it is determined at step S32 that the plant is 
stressed , the processing proceeds to perform one or both of 
steps S33 and S34 . 
[ 0197 ] At step S33 . the plant control device 100 sends an 
alert to the plant grower by , for example , sending a message 
to the mobile phone of the grower . The alert allows the plant 
grower to make an informed decision and prompts the 
grower to perform manual treatment to the plant if it is 
deemed necessary . The alert may include information 
indicative of the plant data . 
[ 0198 ] At step S34 , the plant control device 100 may 
cooperate with other devices of the plant control system 
( e.g. , the light source 51 , the irrigation system 52 , a nutri 
gation pump , a heating source , a fan , a vent , and a pesticide 
pump , etc. ) to automatically change the growth environment 
of the plant based upon the plant data , In particular , the plant 
control device 100 may generate a plant control signal which 
triggers events , such as , adjusting the operation of an 
irrigation / nutrigation pumps , heaters , fans or lightings , alter 
ing vent positions , adjusting the operation of pumps which 
deliver chemical substances to the growth medium and / or a 
pesticide pump , so as to automatically adjust the growth 
environment of the plant . Following step S34 , the processing 
proceeds to step S31 where the plant health monitoring 
device 1 and the plant control system continue to monitor the 
plant and to assess the characteristic of the plant , 
[ 0199 ] The method and system described above provides 
an efficient agronomic tool which allows the plant growers 
to accurately monitor the health / vitality of plants and to take 
preventive measures before initial symptoms appear on the 
plants . 
[ 0200 ] The machine learning model trained at step S21 of 
FIG . 11 may also be exported to a diagnostic device . The 
diagnostic device may have the functionality of the plant 
health monitoring device 1 , thus being able to obtain elec 
trical signals from plants using electrodes and leads . The 
diagnostic device may further be able to perform step S23 of 
FIG . 11 so as to identify the presence / absence of stressor ( s ) 
within a plant or its growth environment . The diagnostic 
device may have a display configured to show plant data 
indicative of an assessment result of the plant . The plant data 
may be used by the plant grower to identify stressed plants . 
The diagnostic device may preferably be portable . It will be 
appreciated that subject to the limited computational power 
of a portable device , the diagnostic device may be limited to 
identify the presence of a specific stressor , or limited set of 
stressors , only . 
[ 0201 ] Optionally , more than one machine learning model 
trained at step S21 may be exported to the diagnostic device . 
The multiple machine learning models stored in the diag 
nostic device may be trained using different training data 
sets . 
[ 0202 ] In an example , the plurality of machine learning 
models stored in the diagnostic device may each be for 
assessing different characteristics of a plant . For instance , 
the diagnostic device may store a first machine learning 
model for assessing a nutrient insufficiency or a growth 
condition of a plant . The first machine learning model may 
be trained using a training dataset comprising environmental 

data , such as , data indicative of a light intensity in the 
growth environment and data indicative of soil water content 
of the growth environment . These particular environmental 
factors are known to be correlated with the growth of a plant . 
The diagnostic device may further store a second machine 
learning model for assessing whether a plant is infested by 
insects . The second machine learning model may be trained 
using a training dataset comprising environmental data , such 
as , data indicative of a temperature ( e.g. , an air temperature ) 
of the growth environment . The diagnostic device may 
further store a third machine learning model for assessing 
whether a plant is infected with a pathogen ( e.g. , fungus ) . 
The third machine learning model may be trained using a 
training dataset comprising environmental data , such as , 
data indicative of a humidity level of the growth environ 
ment . In order to use a particular one of the stored machine 
learning models to assess a corresponding characteristic of 
a plant , environmental data which characterises a condition 
of a growth environment of the plant and which is also of the 
same type as that used to train the model may be provided . 
Accordingly , the received environmental data and the elec 
trical signals obtained from the plant to be assessed are fed 
to the input layer of the trained model to assess the charac 
teristic of the plant . 
[ 0203 ] In an alternative example , the multiple machine 
learning models stored in the diagnostic device may be for 
assessing the same characteristic of a plant . For instance , the 
plurality of machine learning models may include a first 
model which has been trained with a first training dataset , 
and a second model which has been trained with a second 
training dataset . The first training dataset may include first 
environmental data characterising a first condition of the 
growth environment . The second training dataset may 
include second environmental data characterising a second 
different condition of the growth environment . In each 
model , the environmental data is fed into the input layer of 
the model to train the model . As such , when the diagnostic 
device receives particular environment data of a plant to be 
assessed and electrical signals obtained from the plant , the 
diagnostic device determines the type of the received envi 
ronment data , and selects one of the stored models based 
upon the received environment data . In this way , the diag 
nostic device can select a suitable machine learning model 
for assessing the characteristic of the plant based upon the 
available environmental data . 
[ 0204 ] It will of course be understood that the number of 
machine learning models and / or categories of environmental 
data used may be varied . Moreover , various ( and possibly 
overlapping ) combinations of environmental data may be 
used with different machine learning models . For example , 
temperature and humidity data may be used to train a first 
machine learning model for assessing a first characteristic of 
a plant , while temperature and light intensity data may be 
used to train a second machine learning model for assessing 
a second characteristic of a plant . 
[ 0205 ] In general terms , it will be understood that where 
it is described herein that a characteristic of a plant is 
assessed , or the presence / absence of a stressor within a plant 
or its growth environment is identified , such an assessment 
or identification may also be referred to as a diagnosis ( e.g. 
a diagnosis of a particular health condition of a plant being 
present ) . Similarly , an assessment or identification may be 
referred to as a prediction ( e.g. a prediction of a particular 
condition or status of a plant being present ) . 
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[ 0206 ] Although the disclosure has been described in 
terms of preferred embodiments as set forth above , it should 
be understood that these embodiments are illustrative only 
and that the claims are not limited to those embodiments . 
Those skilled in the art will be able to make modifications 
and alternatives in view of the disclosure which are con 
templated as falling within the scope of the appended claims . 
Each feature disclosed or illustrated in the present specifi 
cation may be incorporated in the disclosure , whether alone 
or in any appropriate combination with any other feature 
disclosed or illustrated herein . 

1-33 . ( canceled ) 
34. A method of assessing a characteristic of a plant , 

comprising : 
obtaining a training dataset , wherein the training dataset 

comprises first data characterising a first electrical 
signal obtained from a first plant during a first time 
period when a stressor is present in the first plant or in 
a growth environment of the first plant , second data 
characterising a second electrical signal obtained from 
the first plant during a second time period when a 
stressor is not present in the first plant or in the growth 
environment of the first plant , and third data indicative 
of a characteristic of the first plant during the first time 
period and a characteristic of the first plant during the 
second time period ; 

training a machine learning model based upon the training 
dataset ; 

obtaining a third electrical signal from a second plant ; and 
assessing , using the trained machine learning model , a 

characteristic of the second plant based upon the third 
electrical signal . 

35. The method of claim 34 , wherein obtaining the 
training dataset comprises : 

introducing the stressor to the first plant or the growth 
environment of the first plant ; 

obtaining the first electrical signal from the first plant 
during the first time period when the stressor is being 
applied to the first plant or the growth environment of 
the first plant ; and 

obtaining the second electrical signal from the first plant 
during the second time period when the stressor is not 
applied to the first plant or the growth environment of 
the first plant . 

36. The method of claim 34 , wherein obtaining the 
training dataset further comprises : 

processing the first electrical signal to generate the first 
data ; and 

processing the second electrical signal to generate the 
second data . 

37. The method of claim 36 , wherein processing the first 
electrical signal to generate the first data comprises : 

performing signal conditioning on the first electrical sig 
nal . 

38. The method of claim 36 , wherein processing the first 
electrical signal to generate the first data comprises : 

obtaining data samples from the first electrical signal at a 
predetermined sampling frequency . 

39. The method of claim 38 , wherein at least one of the 
data samples comprises a data segment obtained by applying 
a window function to the first electrical signal . 

40. The method of claim 39 , wherein processing the first 
electrical signal to generate the first data further comprises : 

extracting at least one characterizing feature from each 
data segment , and wherein the first data comprises the 
at least one characterizing feature . 

41. The method of claim 38 , wherein obtaining the 
training dataset further comprises : 

labelling the data samples using the third data . 
42. The method of claim 40 , wherein : 
obtaining the training dataset further comprises labelling 

the data samples using the third data ; and 
the training dataset comprises a plurality of data entries , 

at least one of which comprising the at least one 
characterizing feature extracted from a respective data 
sample and a label of the same data sample . 

43. The method of claim 34 , wherein the stressor is 
configured to : 

affect a lighting condition of the first plant ; and / or 
cause the first plant to have water stress ; and / or 
cause the first plant to be infested by insects ; and / or 
cause the first plant to be infected with a pathogen ; and / or 
cause the first plant to have CO2 deficit ; and / or 
cause the first plant to have excess or insufficient nutri 

ents ; and / or 
cause the first plant to have temperature stress ; and / or 
cause the first plant to have salt stress , and / or 
prematurely cause or delay growth , flowering , or fruit 

maturing of the first plant . 
44. The method of claim 34 , wherein assessing a charac 

teristic of the second plant based upon the third electrical 
signal comprises : 

processing the third electrical signal to generate data 
characterising the third electrical signal ; and 

providing the generated data as input data to the trained 
machine learning model . 

45. The method of claim 34 , wherein the training dataset 
further comprises environmental data characterising the 
growth environment of the first plant during the first and the 
second time periods . 

46. The method of claim 45 , further comprising : 
obtaining environmental data characterising a growth 

environment of the second plant ; 
assessing , using the trained machine learning model , the 

characteristic of the second plant based upon the third 
electrical signal and the environmental data character 
ising the growth environment of the second plant . 

47. The method of claim 34 , further comprising : 
generating plant data indicative of an assessment result of 

the characteristic of the second plant . 
48. The method of claim 47 , further comprising : 
generating a plant control signal based upon the plant 

data , wherein the plant control signal is configured to 
change a growth environment of the second plant . 

49. An apparatus for assessing a characteristic of a plant 
comprising : 

a computer readable storage medium storing a machine 
learning model , wherein the machine learning model 
has been trained using training dataset , wherein the 
training dataset comprises first data characterising a 
first electrical signal obtained from a first plant during 
a first time period when a stressor is present in the first 
plant or in a growth environment of the first plant , 
second data characterising a second electrical signal 
obtained from the first plant during a second time 
period when a stressor is not present in the first plant or 
in the growth environment of the first plant , and third 
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data indicative of a characteristic of the first plant 
during the first time period and a characteristic of the 
first plant during the second time period ; 

a capture device configured to sense a third electrical 
signal from a second plant ; and 

a processor configured to assess a characteristic of the 
second plant based upon the machine learning model 
and the third electrical signal . 

50. The apparatus of claim 49 , wherein the computer 
readable storage medium is configured to store a first 
machine learning model which has been trained by a first 
training dataset for assessing a first characteristic of a plant , 
and a second machine learning model which has been 
trained by a second training dataset for assessing a second 
different characteristic of a plant , and wherein the first 
training dataset further comprises first environmental data 
characterising a first condition of the growth environment , 
and the second training dataset further comprises second 
environmental data characterising a second different condi 
tion of the growth environment . 

51. The apparatus of claim 49 , wherein the computer 
readable storage medium is configured to store a first 
machine learning model which has been trained by a first 
training dataset for assessing a first characteristic of a plant , 
and a second machine learning model which has been 
trained by a second training dataset for assessing the first 
characteristic of a plant , and wherein the first training dataset 
further comprises first environmental data characterising a 

first condition of the growth environment , and the second 
training dataset further comprises second environmental 
data characterising a second different condition of the 
growth environment . 

52. A system comprising : 
an apparatus according to claim 49 , and 
a plant control system configured to automatically change 

a growth environment of the second plant based upon 
the assessed characteristic of the second plant . 

53. A method of training a machine learning model for 
assessing a characteristic of a plant , the method comprising : 

obtaining a training dataset , wherein the training dataset 
comprises first data characterising a first electrical 
signal obtained from a first plant during a first time 
period when a stressor is present in the first plant or in 
a growth environment of the first plant , second data 
characterising a second electrical signal obtained from 
the first plant during a second time period when a 
stressor is not present in the first plant or in the growth 
environment of the first plant , and third data indicative 
of a characteristic of the first plant during the first time 
period and a characteristic of the first plant during the 
second time period ; and 

training the machine learning model , using the training 
dataset , to assess a characteristic of a second plant 
based upon a third electrical signal obtained from the 
second plant . 


