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A B S T R A C T

Monitoring crop N status by means of proximal and remote sensing data can help enhancing N use efficiency at 
various farm scales. This study compares five optical sensor platforms, commonly used in practice and research, 
based on their usability and accuracy in measuring crop N status at field level. The data were gathered in 2019 in 
two sites in northeast Switzerland that were cropped with winter wheat (Triticum aestivum). The optical sensor 
platforms employed included a Sentinel-2 satellite, two different unmanned aircraft systems (UAS fixed-wing and 
quadcopter), a tractor-mounted system, and a handheld field spectrometer. We used a power regression to 
compare the measured crop N uptake with spectral vegetation indices computed from the different sensors. The 
reported normalized difference red-edge (NDRE) index values were distributed in a broad range from 0.17 to 
0.74, with the Sentinel-2 satellite records in the higher part of the range (0.59–0.74) and those of the handheld 
spectrometer in the low range (0.17–0.29). The study’s key finding was the information collected was signifi-
cantly different across the five sensing platforms, in terms absolute values from the sensors. However, the cor-
relations between NDRE values from all sensors and the measured N uptake were comparably robust, with r >
0.8 a root mean square error ranging from 29 to 37 kg N/ha. Furthermore, the N application maps produced for 
the satellite and UAS platforms showed that the best compromise between detailed spatial resolution and 
matching of the working width of the machinery used was achieved by resampling the UAS-based maps at 10 m 
resolution with the calculation used in this study. We concluded that sensor-based N status assessment across 
different sensing levels can support the improvement of N use efficiency by allowing a more precise management 
of in-field variability, with the precondition of having a good calibration for climatic location and variety. 
However, factors such as the degree of detail needed to capture in-field variability while matching the working 
width should be evaluated for each specific case.

1. Introduction

Finding solutions to reduce the adverse consequences of imprecise 
nitrogen (N) fertilizer application at different farm scales is necessary. 
To better understand and manage N flows in the agro-ecosystem, 
proximal and remote sensing information from crops can be valuable 
(Corti et al., 2018; Scharf et al., 2002; Wang et al., 2019; Warner et al., 
2009). In fact, the distribution of N available to the plant is often het-
erogeneous at field-level, as it is influenced by several environmental 
and management factors (Kindred et al., 2015; Williams et al., 2016). 

Therefore, using site-specific management strategies based on optical 
sensors that consider the spatial dynamics on N demand from the crop 
and N supply from various inputs, such as soil and fertilizer, can lead to 
improved nutrient use efficiency (Coquil and Bordes, 2005; Cohan et al., 
2018; Heege et al., 2008; Mittermayer et al., 2021; Mulla, 2013; Walter 
et al., 2017). Significant gains in N use efficiency have been shown in a 
number of field studies that compare sensor-based N management with 
conventional farming approaches (Aula et al., 2020; Sharma and Bali, 
2017). In these studies, the risk of N loss was reduced without lowering 
yields or affecting quality (grain protein content). Moreover, it was 
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shown that with sensor-based approaches for N management, N fertil-
izers were saved from 4 % up to 46 % (Colaço and Bramley, 2018; Koch 
et al., 2004) and N surplus in the soil was reduced up to 30–50 % 
(Diacono et al., 2013).

1.1. Proximal and remote sensing for monitoring vegetation and N-status

With numerous proximal and remote optical sensing platforms, using 
spectral data to monitor canopy structure and plant growth dynamics 
has led to better understanding of plant growth and nutrient uptake 
(Gabriel et al., 2017; Roberts et al., 2012; Samborski et al., 2009). In this 
study, we refer to optical sensors as sensors or cameras that collect 
spectral information and to platforms as the carriers of the sensors, 
which can be, for example, a satellite-platform, an unmanned aircraft 
system (UAS) or a tractor. At present, many optical sensor platforms 
operating at various levels of proximity and automation are used for 
precision agricultural applications on land vehicles (Gnyp et al., 2016; 
Mezera et al., 2021), as well as on UASs (Bendig et al., 2015; Raj et al., 
2020), and satellite platforms (Magney et al., 2017; Perich et al., 2021). 
Mainly multispectral sensors providing highly-resolved spatial and 
temporal data are used for precision farming practices to monitor crop 
development and make crop management decisions (Jin et al., 2017). To 
calibrate the sensors’ data appropriately, however, data on plant 
parameters—such as dry matter, N concentration, and N uptake—are 
frequently required (Perich et al., 2021).

Different approaches have been developed for monitoring crop N 
status, from hyperspectral and multispectral spectroscopy, used to 
compute spectral vegetation indices (SVI) (Cammarano et al., 2011; 
Barnes et al., 2000; Li et al., 2014; Zhao et al., 2018) to radiative transfer 
models (Féret, 2011). It has been demonstrated that the crop’s spectral 
signature shows constant shifts depending on the N status and that the 
SVIs calculated from the near-infrared (NIR) band provide the most 
relevant information, as light reflectance has higher values compared to 
the visible region (Guyot et al., 1988; Raun et al., 2005; Tucker, 1979). 
In practical applications to crop management, numerous studies have 
used SVI to estimate specific regions of the electromagnetic spectrum, 
commonly between the R (620–700 nm) and NIR region (790–840 nm) 
(Berger et al, 2020; Muñoz-Huerta et al., 2013). Several crops, such as 
wheat, maize, and sugar beet, exhibit a consistent direct association 
between this region and their biomass and N status (Bean et al., 2018; Li 
et al., 2018; Prey and Schmidhalter, 2019). Inside this region of the 
spectrum, indices such as the normalized vegetation index red-edge 
index (NDRE) are superior to other indices such as the normalized dif-
ference vegetation index (NDVI) because they are less affected by can-
opy saturation in dense vegetation and provide better sensitivity to 
variations in chlorophyll content and nitrogen status (Argento et al. 
2021; Magney et al., 2017). In most cases, the estimation of the N status 
via proximal or remote sensing needs to be translated into an N appli-
cation map to be useful in practical site-specific nutrient management at 
the field level. The exception is automated systems on the move (on-the- 
go), in which data are processed online in the field by edge computing. 
Several approaches and algorithms are used in decision-support systems 
to create a fertilizer recommendation, but they typically require an 
expert evaluation. Examples can be found at research (Basso et al., 2016; 
Liebisch et al., 2014; Samborski et al., 2009) and commercial levels in 
large areas (Coquil and Bordes, 2005). One additional key aspect of 
creating an application map is the issue of matching the resolution of the 
information provided by the different optical sensors to the practical 
working width in the field so that the information can be used at an 
optimized level.

Effective N uptake assessment is crucial for optimizing fertilization 
strategies. The comparison of multiple optical sensor platforms aims to 
determine their reliability in estimating vegetation indices linked to 
crop nitrogen status from different sensors and thus farm implementa-
tion approaches. It is important for users to know the practical advan-
tages and limitations of each technology, therefore providing a more 

solid ground for better-informed decisions on investments and use by 
precision agriculture actors.

1.2. Motivation for the study

Currently available optical sensor platforms for vegetation and N 
status monitoring provide different information on various temporal and 
spatial levels. Using these technologies allows us to better determine 
plant needs and improve the efficiency of N fertilizer use, thereby 
reducing N surplus risk in crops such as winter wheat. The choice of 
platform is often dictated by budget restrictions and project-specific 
objectives and constraints. Relevant knowledge to support this choice 
is the comparability of the information from different platforms and its 
effects on certain applications. To address this gap, the present study 
undertakes a comparative analysis of five distinct optical sensor plat-
forms that are readily accessible on the market and are frequently 
employed in both practical agricultural applications and research for 
monitoring N status in winter wheat. The platforms are discussed based 
on the literature, integrated with a practical example based on data from 
a field experiment with winter wheat conducted in Switzerland in 2019. 
The main objective of the study was to quantitatively assess whether the 
spectral information provided by the five platforms performs similarly 
for monitoring the N-status of winter wheat. The secondary objective 
was to show the potential differences for the creation of an N status and 
application maps from the spectral information for site-specific man-
agement from various optical sensor platforms and their application at 
different spatial resolutions.

2. Methods

2.1. Study location and choice of optical sensor platforms

A case study was used as base for the comparison of the spectral 
sampling with five distinct optical sensor platforms. The choice of op-
tical sensor in the case study reflects typical market availability as well 
as availability at the partner institutions participating in the study in the 
season chosen (Fig. 1a-e). The data for the case study were gathered in 
2019 in two sites (F2 & F3, Fig. 1f) in northeast Switzerland where 
winter wheat (Triticum aestivum), cultivar Arnold (Saatzucht Donau, 
Austria), was planted. The names of the fields were kept as in the 
original study (Argento et al., 2020, 2022) for consistency with the 
published material (field F1 is not included in this study).

The five employed optical sensor platforms were selected according 
to availability at research farm and time of the experiment and to be 
representative of different, commercially-available sensing levels 
(Fig. 1, a-e). The satellite platform of choice was Sentinel-2 satellite of 
the Copernicus Mission from the European Space Agency orbiting at ~ 
790 km from Earth (Fig. 1a). The satellite is equipped with a Multi-
spectral Instrument (MSI), a passive sensor with a field of view of 290 
km and a temporal resolution (revisit time) of 5 days. The MSI has a 
spectral resolution of 13 spectral bands distributed across the visible and 
near-infrared (NIR) spectrum (Fig. 2) and a spatial resolution between 
10 and 60 m depending on the band (ESA, 2023). In Fig. 2, for the MSI 
and multispectral cameras, the bands were used according to the source 
(ESA) or producer (MicaSense and Parrot). For the Isaria sensor, the 
range is assigned following Mezera et al. (2021), and for the ASD 
Spectrometer, the full range is shown, given that the sensor has a 
hyperspectral range.

The fixed-wing UAS platform is a WingtraOne (Wingtra AG, Zurich, 
CH; Verling et al., 2017) (Fig. 1b). Flight height was 100 m (Table 1) 
with a side overlap of 80 %. The UAS was equipped with a 5-band 
multispectral camera, RedEdge-M (MicaSense, Seattle, USA). The cam-
era measured a blue (B) band at 475 nm (20 nm full-width half max 
(FWHM), a green (G) band at 560 nm (20 nm FWHM), a red (R) band at 
668 nm (20 nm FWHM), a red-edge (RE) band at 717 (10 nm FWHM), 
and a NIR band at 840 nm (40 nm FWHM) (Fig. 2). For additional 
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information refer to Merz (2022). The quadcopter UAS platform was 
constituted by a Phantom 4 Pro (DJI, Shenzhen, China) equipped with a 
“Sequoia” multispectral camera (Parrot, Paris, France) (Fig. 1, c). Four 
bands were used to record the crop’s spectrum data (Fig. 2), namely G 
centered at 550 nm, R centered at 660 nm, RE centered at 735 nm, and 
NIR centered at 790 nm, with a bandwidth of 10 nm for the RE and of 40 
nm for the G, R and NIR channels. The ground sampling distance (GSD) 
was 8.4 cm pixel− 1 at 80 m flight altitude (Table 1) and 70 % overlap. 
For further details refer to Argento et al. (2020).

The tractor-mounted ISARIA proximal crop active sensor system 
(ISARIA Digital Farming, formerly Fritzmeier, Aying, DE) was used as a 
tractor-based sensor. The sensor (Fig. 1d) measures at a height of 
50–100 cm above the crop with four active LEDs (Table 1) at four 
spectral wavelengths in the range 660–780 nm (Fig. 2, Mezera et al., 
2021). The output was recorded as two indices: the Isaria Biomass Index 
(IBI), related to biomass and calculated from reflectance in the visible R 

and NIR radiation and the Isaria Reflectance Measurement Index (IRMI), 
proposed to be related to N nutritional status based on the reflectance of 
the R, NIR, and RE spectral bands. The sensor was not connected to the 
fertilizer spreader in an “on-the-go” system but operated for monitoring 
purposes only. The field spectrometer ASD FieldSpec4® (ASD Inc., 
Malvern Panalytical, Malvern, UK) was used as a hand-held sensor 
(Fig. 1, e). The FieldSpec4 was operated manually at plot level to collect 
reflectance data from the crop at an approximate height if 100 cm above 
the ground (Table 1). The spectrometer had a continuous range in the 
interval 350–2500 nm, which was subsequently resampled to 1-nm 
bands (Fig. 2).

2.2. Field management and sampling

The two fields F2 and F3 (Fig. 1f) were part of a larger project to test 
variable rate N application in medium- to small-scale fields (Argento, 

Fig. 1. Optical sensor platforms (a) a Sentinel-2 satellite platform (ESA, 2023), (b) a Wingtra unmanned aircraft system (UAS, fixed-wing), (c) a DJI Phantom UAS 
(quadcopter), (d) a tractor-mounted system, and (e) an ASD hand-held field spectrometer. Location overview of the case study: f) experimental fields F2 and F3. 
Source for base orthophoto in (f): Google Maps®.
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2021) and were divided into 30 × 90 m plots (30 x 45 m for two plots in 
field F2) with different N-fertilizer treatments: a variable-rate applica-
tion with ranges varying from 95 to 149 kg N/ha and a farm standard 
treatment of 155 kg N/ha of mineral fertilizer (ammonium nitrate 27.5 
% N) application and controls with no applied fertilizer. This study 
focused on the interaction between sensors and plant traits rather than 
on the fertilizer treatments. Therefore, the treatments are not described 
in detail; however, there is a detailed description of the experiment for 
reproducibility in previous studies (Argento et al., 2020, 2022; Argento, 
2021; Perich et al., 2021, 2023).

To collect the plant samples, in each field each fertilization plot was 
divided in two to three subplots of 30 x 30 m and crop data were 
collected from an undisturbed area of 10 x 30 m inside the subplot. In 
this area, a metal frame of 0.5 x 0.5 m was randomly placed on the 
ground and the crop cut at soil level (~1 cm). This process was repeated 
two times to obtain two frame-cuts of plant material, which were 
collected in one bag for each of the subplots. This process generated in 
total 52 bags of plant material, 28 for field F2 and 24 for field F3. The 
fields were sampled at two different time points during the season. The 
mid-season sampling took place around 15 April 2019 (± 2 days) cor-
responding to the second split application of fertilizer (BBCH 31, 
beginning of stem elongation, according to Meier et al., 2009). The late- 
season sampling took place around 15 May 2019 (± 2 days) corre-
sponding to the time of the third split fertilizer application (BBCH 37, 
flag leaf). The plant material was dried at 40 ◦C for 48 h and grounded 

into fine material for further analysis of N concentration (Nconc). The 
final dataset was therefore composed of 104 samples of plant dry 
biomass and N uptake (Nup = biomass per area × Nconc in crop). Further 
details about sampling and analysis methods for plants and soil can be 
found in Argento et al. (2020, 2022).

2.3. Data collection and data processing for sensor comparison

The corresponding spectral data from the different optical sensor 
platforms were collected around the same date of the two biomass 
samplings (± 2 days) (15 April 2019 and 15 May 2019), with the 
workflow shown in the diagram inf Fig. 3. The Sentinel-2 satellite im-
ages, for which the scenes were filtered for clouds twice: once on the full 
S2 tile (100 × 100 km) for cloud cover < 75 % and once on the field level 
(individual shapefile) for cloud cover < 0 % resulting in the selection of 
two images (20 April 2019 and 30 May 2019). The spectral data (except 
for the tractor-mounted sensor) were pre-processed to obtain reflectance 
data. Data processing pipelines can vary depending on the optical sensor 
platform used. For satellite data, the service provider performs basic 
processing, such as georeferencing and terrain correction (ESA, 2023). 
The Sentinel-2 imagery used in this study was provided with atmo-
spheric correction by ESA (L2A product). The Sentinel-2 images were 
downloaded in atmospherically corrected L2A format from the ‘Cre-
odias’ platform. The pre-processing was carried out as described by 
Perich et al. (2023): (1) for each scene, the 20 m bands were resampled 
to 10 m using ‘cubic’ interpolation settings and all bands were written 
to a 10-band stacked TIFF file (Perich et al., 2023), (2) plot-level 
reflectance was extracted using the custom-written Python-package 
‘EOdal’ (Graf et al., 2022), and (3) filtered by clouds using the cloud 
mask provided by ESA.

Image data (single images) from the UAS were stitched together in 
the software Pix4D Mapper (Pix4D, Lausanne, CH, V4.6.1) for the 
Sequoia camera and the software Agisoft Metashape (Agisoft, St. 
Petersburg, RU) for the RedEdge camera with a structure-from-motion 
approach to create map layers for further analysis. Both output maps 
for the two UAS platforms were processed by calibrating the raw images 
using a reflectance target (Airinov and MicaSense). The output maps 
were spatially corrected by means of ground control points (GCPs). The 
post-processing pipeline required to extract field-specific data was then 
similar for the atmospherically corrected L2A Sentinel images and the 
UAS images. Geospatial analysis and data extraction were carried out for 
all image data using the QGIS software (QGIS Development Team, 2023, 
version 3.22.3) and automatized in pipelines with the programming 
languages R and Python. On-the-go tractor-based sensors do not need 
external geo-referencing because of the internal link of the machinery 
with the d-GPS. For the Isaria sensor, we therefore extracted the map for 
the indices, as provided by the sensor, without additional processing. 
The spatial point data were recovered from the tractor terminal as 

Fig. 2. Visual comparison of the bands of the five optical sensors in the range of 
visible to near-infrared: Sentinel-2 satellite Multispectral Instrument (MSI; ESA, 
2023), MicaSense RedEdge multispectral camera, Parrot Sequoia multispectral 
camera, tractor-mounted Isaria sensor from Fritzmeier, and ASD field 
spectrometer.

Table 1 
Overview of different proximal and remote optical sensing platforms used in the study and their properties. The term platform comprises the carrier of the sensor such 
as a satellite, an unmanned aircraft system (UAS), a tractor, or an operator. The optical sensor is the physical sensor /camera that is used for collecting spectral 
information.

Platform Optical sensor Typea Distance to crop GSD Spectral 
resolution

Digitization Footprintb

Sentinel-2 Satellite Multispectral Instrument P 786 km 10–60 m/ px 13 bands 
443–2190 nm

0.0007 MB/ ha

Wingtra UAS fixed-wing MicaSense, RedEdge P 70–120 m 5–10 cm/ px 5 bands 
475–840 nm

1000 MB/ ha

DJI P4 UAS quadcopter Parrot, Sequoia P 50–100 m 5–10 cm/ px 4 bands 
550–790 nm

800 MB/ ha

Tractor Isaria®, Fritzmeier A 0.5–1 m ~cm Several bands 
660–780 nm

0.25 MB/ ha

Hand-held from operator FieldSpec4®,ASD P 0.5–1 m ~cm Continuous range 
350–2500 nm

125 MB/ ha

a Type of sensor: A = active sensor with own light source; P = passive sensor measuring reflection of sun light.
b Digitization footprint with raw output information of the sensor as indicator (Marinello et al., 2019).
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“shapefile”). As reported by Mezera et al. (2021), To minimize the 
impact of boundary effects, points as far as 20 m from the plot bound-
aries were removed from the dataset. The ASD was calibrated with a 
white reflectance panel before each measurement. The output values 
were recorded in a CSV file containing reflectance for each band and 
sampling plot, and the GNNS position (coordinates) of each measure-
ment was later assigned to the corresponding sampling plot (see Fig. 1f, 
green polygons). The four spectral bands corresponding to those of 
Parrot Sequoia (authors’ choice) i.e., RE centered at 735 nm, and NIR 
centered at 790 nm, with a bandwidth of 10 nm for the RE and of 40 nm 
NIR channels were extracted for further analysis.

The data were organized in polygons (green polygons with cross lines 
fill in Fig. 1, f) i.e., the measured Nup value was assigned to each polygon 
and the spectral information (NDRE or IRMI) was extracted for all de-
vices in that same polygon. A regression was done by using the data of 
measured Nup vs the corresponding NDRE value. For the statistical 
analysis, the base R function nls in R (version 3.6.3; R Core Team, 2024) 
was used for the power regression between Nup and the normalized 
difference red-edge index, calculated with the following formula ac-
cording to Barnes et al. (2000): NDRE = [NIR – RE] / [NIR + RE], and 
the IRMI index (Mezera et al., 2021).

For all spectral data, polygons corresponding to the sampling area of 
the corresponding plot were used to extract the spectral information so 
that it was directly comparable with the corresponding crop sample and 
Nup. For Sentinel-2, the band 8 and resampled band 5 were used for 
calculating the NDRE. For the multispectral cameras the corresponding 
NIR and RE bands were used as reported in section 2.1 and for the ASD 
the resampled NIR and RE were used. For the correlation, the root mean 
square error (RMSE, kg N/ha) and mean absolute error (MAE, kg N/ha) 
were calculated. The predicted Nup was compared to plant measured Nup 
by means of Passing-Bablok regression (mcr package in R; Manuilova 
and Schuetzenmeister, 2021). Additionally, also the Lin’s concordance 
correlation (DescTools package in R; Signorell, 2021) was computed. 
The Pearson’s correlation coefficient (r) and Lin’s concordance corre-
lation coefficient (CCC) are reported. The statistics for the range of the 
values within the maps: min, max, median, and coefficient of variation 
(CV) were extracted from the maps and calculated with R (version 3.6.3; 
R Core Team, 2024).

An ANOVA test was carried out to explore the differences between 

the ranges of the sensor values. ANOVA was chosen because the data 
involve multiple groups (different devices) with NDRE measurements, 
and ANOVA efficiently compares the means across more than two 
groups. It reduces the risk of Type I errors compared to using multiple t- 
tests and provides a robust framework for testing overall group differ-
ences. A Tukey’s HSD post-hoc test was then used to identify specific 
pairwise differences.

2.4. Data processing and analysis of the simulated N application maps

The calculated output NDRE maps from the section above were used 
to calculate an example of output N application maps for the two UAS 
platforms and for the Sentinel-2 data. The strategy used was to redis-
tribute spatially more N fertilizer to pixels with lower NDRE values and 
vice versa. The calculation was done at pixel level with the formula Nfert 
= NST − N correction from Argento et al. (2021), in which the reference 
value (NST) was the standard application decided by the farm manager 
and the N correction was calculated by multiplying a correction factor 
(reflectance at single pixel − value of the field mean reflectance 
normalized by the field mean reflectance) for NST to obtain the he 
relative conversion of reflectance into kg N/ha px-1. This conversion was 
done for two scenes representing the time of two different split fertilizer 
applications: the second split fertilizer application at growth stage BBCH 
31, based on a reference value of 60 kg N/ha, and the third split fertilizer 
application at BBCH 37, based on a reference value of 25 kg N/ha.

The statistics for the ranges of the values (minimum, maximum, 
median, and CV) were extracted from the maps and calculated with the 
software R version 3.6.3 (R Core Team, 2024). The maps for the same 
three optical sensor platforms were then resampled by using the ‘nearest 
neighbor’ function in QGIS (V 3.22.3) at three different spatial resolu-
tions of 1.5, 10, and 30 m to match the potential tractor’s working width 
at one growth stage (BBCH 31), corresponding to the second split fer-
tilizer application, based on a reference value of 60 kg N/ha. For the 
resampling, the bilinear resampling function of the Rasterio package 
(Gillies et al., 2013) in the programming language Python version 3.11.5 
was employed. All maps were also cropped with a 10-m buffer from the 
field borders to exclude any influence of the field margins.

Fig. 3. Diagram of the pre-processing workflow of the spectral information for the five optical sensor platforms to produce the spectral indices NDRE and IRMI, and 
of the plant data to obtain the N uptake. The workflow was repeated at BBCH31 and BBCH32 for the 52 sampling polygons for a final dataset of 104 data point of N 
uptake, NDRE and IRMI.
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3. Results

3.1. Comparison of spectral information

A comparison of the output captured with the five different optical 
sensor platforms is reported in this section. As an example, different 
output maps of the same scene in mid-May 2019 for field F2 (winter 
wheat) are illustrated in Fig. 4. Two main clusters can be identified in 
the maps: spatially continuous pixel-based maps (Fig. 4a–c) deriving 
from the two UAS platforms and the Sentinel-2 scene and a point-based 
map resulting from the tractor-mounted sensor and the field spectrom-
eter (Fig. 4d, e).

The NDRE values were distributed in a broad range, from 0.17 to 
0.74 (Fig. 4 and Table 2). Notably, the distribution of the values was 
significantly different across the optical sensors, as shown in Fig. 4. The 
Sentinel map (GSD 10 m) reported a more homogenous pixel color 
distribution corresponding to higher NDRE values, with a median of 
0.74 and a CV of 6.59 %. The Mica Sense map (GSD 10 cm) reported 
lower values, with a median of 0.56 and a CV of 4.32 %. By contrast, the 
Sequoia map (GSD 5.4 cm) had a median of 0.43 and a CV of 7.69 %. 
Lastly, the NDRE values calculated in the point-based ASD map had a 
median of 0.29 and a CV of 11.85 %. The IRMI absolute values were not 
comparable to NDRE values; however, the CV of 4.86 % was in the lower 
range of the other instruments.

An ANOVA test showed that the differences between the means of 
the value ranges due to the effect of the sensor were significant (p <
0.001). The strong effect of sensor type on NDRE values was confirmed 
by calculating effect size (η2 = 0.95), indicating substantial differences 
between optical sensors. The post-hoc Tukey’s HSD test further showed 
that each device was significantly different from the others (letters 
added in Table 2 to the mean). The results of the HSD test indicate that 

all pairwise comparisons between the devices and their respective NDRE 
measurements are statistically significant. Specifically, the confidence 
intervals for the comparisons are as follows: for ASD vs. Sequoia, the 
interval ranges from 0.173 to 0.222 (p = 1.15e-14); for ASD vs. Mica-
Sense, the interval ranges from 0.281 to 0.329 (p = 1.15e-14); for 
ASD_NDRE vs. Sent2_NDRE, the interval ranges from 0.431 to 0.479 (p 
= 1.15e-14); for Sequoia vs. MicaSense, the interval ranges from 0.0828 
to 0.131 (p = 2.51e-14); for Sequoia vs. Sentinel-2, the interval ranges 
from 0.233 to 0.282 (p = 1.15e-14); and for MicaSense vs. Sentinel-2, 
the interval ranges from 0.126 to 0.175 (p = 1.15e-14). None of the 
confidence intervals include zero, suggesting significant differences 
between all pairs.

Despite the significant difference observed in range in the examples 
above, the regression performed between the NDRE index and the IRMI 
with the corresponding ground-truth values for N uptake (Nup, kg N/ha) 
from the two sampling campaigns at BBCH 31 and 37, showed compa-
rable results and patterns (Fig. 5). The Sentinel-2 NDRE values were in 

Fig. 4. Normalized difference red-edge (NDRE) index and Isaria Reflectance Measurement Index (IRMI) maps of field F2 from the sampling at BBCH 37 (15 May 
2019) for the different optical sensor platforms: (a) Sentinel-2, (b) MicaSense RedEdge, (c) Parrot Sequoia, (d) ASD, and (e) Isaria Fritzmeier (IRMI). The legends for 
NDRE and IRMI are reported with the individual ranges of each map.

Table 2 
Range and coefficient of variation among the pixel and point values of the NDRE 
index maps for the different optical sensors for the field F2 at BBCH37 as re-
ported in Fig. 4. The minimum, maximum, mean (with significance levels; p <
0.001), and median are reported as NDRE values. The coefficient of variation 
(CV) is shown as a percentage.

NDRE IRMI

ASD Sequoia RedEdge Sentinel-2 Isaria

Min 0.17 0.38 0.49 0.59 20.53
Max 0.29 0.50 0.58 0.74 25.63
Mean 0.24d 0.44c 0.55b 0.70a 24.06n.a.

Median 0.25 0.43 0.56 0.72 24.37
CV (%) 11.85 7.96 4.32 6.59 4.86
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the range 0.55–0.8. The Power and Passing-Bablok regressions based on 
all Sentinel-2 data were computed on a subset of the original dataset (n 
= 93) to exclude the points that were biased by “border effects,” that is, 
those whose pixel values were confounded by proximity to the field 
borders. The points removed from the regression are shown as black dots 
in Fig. 5a and 5b, while the points used are displayed in orange and 
green (BBCH 31 and 37, respectively), as in the other plots. The Lin’s 
concordance correlation coefficient (CCC) and Pearson’s correlation 
coefficient (r) for the subset regression between the measured Nup and 
predicted Nup were 0.869 and 0.871, respectively.

The NDRE values for the UAS-mounted cameras ranged between 
0.35 and 0.6 for the MicaSense RedEdge (Fig. 5c) and 0.2 and 0.5 for the 
Parrot Sequoia (Fig. 5e). The regression for the RedEdge reported the 
highest coefficients among all optical sensors, with CCC = 0.875 and r =
0.880 (Fig. 5d), respectively, while it reported CCC = 0.797 and r =
0.817 for the Sequoia (Fig. 5f). The NDRE values for the ASD spec-
trometer were in the range 0.10–0.30 and the regression resulted in CCC 
of 0.833 and r of 0.845 (Fig. 5g, h). Finally, for the Isaria sensor, the 
regression based on the predicted Nup from IRMI reported CCC = 0.799 
and r = 0.815 (Fig. 5i, j).

The evaluation of the power regression models reported in Table 3
for the two fields F2 and F3 showed different degrees of sensitivity to Nup 
(Fig. 5a, c, e, g, i), depending on the growth stage. The Nup values ranged 
between 30 and 300 kg N/ha. The sensitivity to Nup appeared generally 
higher for the sampling at BBCH 31, with both the root mean square 
error (RMSE, 10─16, kg N/ha) and the mean absolute error (MAE, 
7─12) of the different optical sensors being lower compared to the RMSE 
(29─41, kg N/ha) and MAE (21─36, kg N/ha) at BBCH 37, as well as to 
the RMSE (29─37, kg N/ha) and MAE (22–28, kg N/ha) of the full model 
BBCH 31 + 37. The Sentinel-2 model with excluded values (n = 93) and 
the MicaSense model reported the lowest RMSE and MAE values for the 
full model among all optical sensors.

3.2. Calculation of N application maps

In this section, we report an example of parametrization and the 
creation of an application map from the pre-processed NDRE index maps 
for three selected platforms (Fig. 6). Handheld sensors are less 
frequently used for variable rate fertilizer applications, and tractor- 
mounted sensors are usually integrated in on-the-go systems that need 
no processing. Therefore, the focus of this section is on the aerial plat-
forms, that is, on the UASs and satellite images. There were differences 
in patterns between the two scenes, which were taken one month apart, 
as well as between maps from the different optical sensors for the same 
scene. The two UASs with high spatial resolution showed similar pat-
terns and values compared to the satellite-based N map, which appeared 
to be more homogenous in both scenes. This is confirmed by the ranges 
of the pixel values reported in Table 4. For the Sentinel-2, the CV was the 
lowest, at 3 % for both vegetation stages, with the values ranging from 
56–66 kg N/ha and a median of 60 at BBCH 31 to 24–27 kg N/ha with a 
median of 25 at BBCH 37.

For the two UAS-mounted optical sensors, the CV was higher at 
BBCH 31, with 10 % and 14 % for MicaSense and Sequoia, respectively. 
At BBCH 37, the CV was lower but still higher than the Sentinel-2, with 
8 % and 9 % for MicaSense and Sequoia, respectively. The median values 
of 60 kg N/ha at BBCH 31 and 25 kg N/ha at BBCH 37 were the same for 
both UAS-mounted optical sensors and also matched the median of the 
Sentinel-2 sensor.

The range for MicaSense was between 35 and 122 kg N/ha at BBCH 
31 and between 17 and 47 kg N/ha at BBCH 37. For Sequoia, the ranges 
were 20–123 kg N/ha at BBCH 31 and 18–43 kg N/ha at BBCH 37. The 
extreme values at the margins of the range were likely outliers, and 
according to the pixel distribution, most values were between 40 and 80 
kg N/ha, indicating that the probable range of applications was lower 
than that observed in the maps.

The resampled N application maps at three possible resolutions (1.5, 

10, and 30 m) to match the potential tractor’s working width for the 
three optical sensor platforms at one growth stage (BBCH 31, Fig. 7) 
showed how the application range can vary significantly depending on 
the chosen device and the precision of the fertilizer spreader used. At a 
resampled pixel size of 30 m/px, the overall number of pixels and the 
relative information in terms of spatial variability were reduced 
(Fig. 7a–c). Additionally, the algorithm used discarded/kept different 
pixels for the Sentinel-2 map. At a 10 m/px resolution, which would be 
the original resolution of the satellite images, the main pattern of within- 
field variability was still observed in the UAS-based maps (Fig. 7d–f). At 
1.5 m, the two UAS-based maps offered a higher level of detail 
(Fig. 7g–i), but the variance of the satellite maps did not increase.

4. Discussion

This study aimed to evaluate the performance of five commonly used 
optical sensor platforms in assessing nitrogen status in winter wheat, 
addressing the practical implications for precision agriculture. Given the 
varying spatial and temporal resolutions of these technologies, under-
standing their comparability is essential for optimizing nitrogen man-
agement and minimizing surplus risks. By integrating insights from the 
literature with field experiment data, we assessed the extent to which 
different platforms provide consistent spectral information for N moni-
toring in wheat and key differences in their suitability for generating N 
status maps and guiding site-specific fertilization, emphasizing the 
importance of selecting the appropriate platform based on specific 
technical and agronomic aspects.

4.1. N status detection with different optical sensor platforms

The results presented show a significant shift in normalized differ-
ence red edge (NDRE) index absolute values (ranges, means and me-
dian) between the different optical sensor platforms (excluding the 
tractor-mounted sensor, having a different range of values), clearly 
indicating that the information captured differs significantly. This is 
mainly due to the differences in sensor properties, such as bandwidth 
and center: the NDRE of Sentinel-2 and MicaSense is calculated with 
similar bands while the NDRE for the ASD was computed by using the 
same bandwidth of the Parrot Sequoia. The radiometric resolution may 
explain the differences between the two groups but inside the same 
group the Sequoia is significantly different from the ASD and the 
MicaSense from Sentinel-2. An explanation for these differences could 
be that the sensors undergo different optical calibration procedures 
(reflectance panels or atmospheric correction) further influencing the 
absolute values but not the relative difference between pixels, therefore 
the range distributions correlate well with each other and with winter 
wheat N uptake measured analytically, as shown in previous studies (Li 
et al., 2018; Singh et al., 2015; Zhao et al., 2018). The interpretation of 
these results suggests that the information provided by the sensors, 
although differing at absolute values, can be calibrated with analytically 
measured crop N uptake data to provide similar and meaningful in-
dications of the N status of the crop. Eventually, the differences between 
the absolute values of the sensors could be mitigated with a cross- 
calibration that corrects for variations in spectral information (Wang 
et al., 2024). However, it would require a comprehensive data set con-
taining crop N status standards, as presented in this study, but ideally 
also optical standards, such as panels with different gray intensities.

4.1.1. Effect of sensor type on data ranges
An examination of the maps generated for field F2 (winter wheat) in 

mid-May 2019 exemplifies distinct map-type clusters, with unmanned 
aerial system (UAS) platforms and Sentinel-2 producing spatially 
continuous pixel-based maps, while the tractor-mounted sensor and 
field spectrometer generated point-based maps. Notably, the range of 
NDRE values varies significantly between the different optical sensors, 
with Sentinel-2 exhibiting a more homogeneous distribution compared 
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Fig. 5. Power regression between measured N uptake (Nup, kg N/ha) and the indices NDRE and IRMI (n = 104) for the two fields F2 and F3 (circles and triangles) and 
two growth stages BBCH 31 and 37 (orange and green) for the five optical sensors with the corresponding Passing-Bablok regression between the measured Nup (kg 
N/ha) and the predicted Nup (kg N/ha).
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to others. An ANOVA test was carried out to explore the differences 
between the ranges of the sensor values. ANOVA was chosen because the 
data involve multiple groups (different devices) with NDRE measure-
ments, and ANOVA efficiently compares the means across more than 
two groups. It reduces the risk of Type I errors compared to using 
multiple t-tests and provides a robust framework for testing overall 
group differences. A Tukey’s HSD post-hoc test was then used to identify 
specific pairwise differences. This approach ensures statistical rigor 
when analysing NDRE variability.

These results have important implications for the study. The vari-
ability observed across platforms suggests that device choice could in-
fluence the accuracy and reliability of NDRE measurements. Such 
variability may impact how NDRE is interpreted in field studies, 

particularly if the measurements are used for decision-making in 
nutrient management or crop monitoring. Therefore, the findings 
emphasize the need to carefully consider the platform used for NDRE 
measurements in future studies, as different devices may yield different 
results under the same conditions. Moreover, the statistical significance 
of these differences suggests that further research is warranted to 
investigate the causes of this variability—whether it stems from tech-
nical differences in sensor calibration, environmental factors, or other 
variables. Understanding these sources of variability could help stan-
dardize NDRE measurements across platforms, leading to more consis-
tent and reliable data for agricultural applications.

Table 3 
Sensitivity of NDRE and IRMI to the measured plant trait (N uptake) at mid- 
(BBCH 31, mid-April) and late-season (BBCH 37, mid-May), as well as for the 
two combined (BBCH 31 + 37), extracted from the different optical sensors. The 
root mean square error (RMSE, kg N/ha) and mean absolute error (MAE, kg N/ 
ha) of the power regression model for the different optical sensors are reported. 
Lower error values indicate higher sensitivity.

BBCH 31 BBCH 37 BBCH 31 þ 37

RMSE MAE RMSE MAE RMSE MAE

​ NDRE ​ ​ ​ ​ ​
ASD spectrometer 12 9 29 21 35 25
Parrot Sequoia 13 9 38 29 37 27
MicaSense RedEdge 10 7 37 29 30 22
Sentinel-2 16 12 43 36 29 23
​ ​ ​ IRMI ​ ​
Fritzmeier Isaria 12 8 34 27 37 28

Fig. 6. Theoretical N application map (kg N/ha) based on NDRE for three optical sensor platforms. The two rows report two different split applications: (a–c) at 
BBCH 31 (ref. value 60 kg N/ha) and (d–f) at BBCH 37 (ref. value 25 kg N/ha). The green lines in (c) and (f) represent a 10-m buffer from the field borders (red).

Table 4 
Range and coefficient of variation among the pixel and point values of the N- 
status maps for the three optical sensors. The minimum, maximum, and median 
are reported as kg N/ha. The coefficient of variation (CV) is shown as a 
percentage.

N application (kg N/ha)

Sentinel-2 MicaSense Sequoia

BBCH 31 Min 56 35 20
Max 65 122 123
Med 60 60 60
CV (%) 3 10 14

BBCH 37 Min 24 17 18
Max 27 47 43
Med 25 25 25
CV (%) 3 8 9
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4.1.2. Choice of spectral vegetation index
The choice of this spectral vegetation index (SVI) was facilitated by 

the fact that it has been used in several studies that investigated variable 
rate N fertilization and remote N uptake estimation due to the use of RE 
and NIR bands (Barnes et al., 2000; Diacono et al., 2013; Jiang et al., 
2021; Prey and Schmidhalter, 2019). In the base study associated with 
the case study (Argento, 2021; Argento et al., 2022), several SVIs were 
tested against different plant traits, such as N uptake, N nutrition index, 
N concentration, and dry biomass. The NDRE had the best relationship 
with the N uptake of winter wheat. NDRE and IRMI appear superior to 
the normalized difference vegetation index (NDVI) for in-season nitro-
gen fertilization decisions because they are less affected by optical 
saturation in dense vegetation and provide better sensitivity to varia-
tions in chlorophyll content and nitrogen status. The saturation effect 
observed with NDVI (Clay et al., 2012), was not predominant for NDRE 
in this study, as previously shown (Magney et al., 2017). The IRMI was 
the SVI provided by the tractor-based sensor provider, suggested to be 
related to the N status (Mezera et al., 2021). This was confirmed by our 
study.

4.1.3. Correlation between NDRE and N uptake
The analysis of the NDRE values versus crop N uptake revealed dif-

ferences in value ranges but generally good correlations across optical 
sensors. The regression analyses highlighted strong correlations be-
tween NDRE values and N uptake, particularly evident with the RedEdge 

and corrected Sentinel-2 full models, which demonstrated the highest 
correlation coefficients and lowest errors. These two sensors have a 
similar bands distribution compared to the Parrot Sequoia and the ASD 
(for which the indices were calculated following the band’s structure of 
Sequoia). Moreover, the study addresses challenges such as border ef-
fects. This issue can occur especially for sensors with large spatial res-
olution, for which the pixels located at the borders may contain 
information from outside the field borders and therefore be a source of 
error. This was resolved by excluding pixels that were partly outside the 
field borders with a subset regression for Sentinel-2 data (Perich et al., 
2021). Overall, while each sensor platform offers unique advantages and 
limitations, its ability to correlate NDRE values with N uptake un-
derscores its utility in precision agriculture applications.

4.2. Creation of an application map from different sources

In this section, we discuss the different application maps created 
utilizing pre-processed NDRE index maps from three selected platforms. 
Given that handheld sensors are less commonly employed for variable 
rate fertilizer application and tractor-mounted sensors are typically in-
tegrated into on-the-go systems requiring minimal processing, our focus 
here lies on UASs and satellite imagery. The visual examination of these 
maps revealed differences in patterns not only between scenes taken one 
month apart but also among maps from different sensors capturing the 
same scene. Notably, UASs with high spatial resolutions exhibited (in 

Fig. 7. N application map (kg N/ha) resampled at three spatial resolutions: (a–c) 30 m, (d–f) 10 m, and (g–i) 1.5 m to match the potential tractor’s working width for 
the three optical sensor platforms. Values for one split fertilizer application at BBCH 31 (ref. value 60 kg N/ha). All maps were cropped with a 10-m buffer.
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much higher detail) similar general field patterns compared to the more 
homogenous satellite-based N maps in both scenes. These observations 
show the importance of considering both temporal and spatial variations 
when implementing precision agriculture strategies and highlight the 
complementary strengths of UAS and satellite-based approaches in N 
fertilizer application mapping. In this case study, the satellite-based 
maps appeared to provide a lower range of fertilizer applications, 
which may in turn reduce their usefulness for site-specific management. 
This may be a problem for small-scale fields, but it is very much 
dependent on inherent within-field variability and should not be 
generalized based on this study.

4.2.1. Resampling of the N application maps
The resampling of the N application maps at three possible resolu-

tions (1.5, 10, and 30 m) to match potential or common machinery 
working width for the three optical sensor platforms at one growth stage 
showed that the application range can vary significantly depending on 
the chosen device and the precision of the map or used machinery, such 
as fertilizer spreader used. At a coarser resampled resolution of 30 m, the 
overall number of pixels and the relative information in terms of spatial 
variability were reduced. Additionally, the function ‘nearest neighbor’ 
used for the resampling had a different output in terms of pixel distri-
bution inside the field borders for the Sentinel-2 map compared to the 
UAS maps. At 10 m resolution, which would be the original resolution of 
the satellite images, the main pattern of within-field variability could 
still be observed even in the UAS-based maps; this seems to be an ideal 
resolution to match most typically used fertilizer spreaders with a range 
from 12-30 m working width. At 1.5 m, the two UAS-based maps offered 
a higher level of detail compared to the satellite map. However, this type 
of precision can be matched in field management only by a pneumatic 
spreader with variable section control. Especially for coarser resolution, 
it is relevant to state that the fixed orientation of the pixels in the maps 
(N-S) does not match the direction of driving and management in the 
field. This results in a loss of information and imprecise representation of 
the fertilizer application zones in the field.

The differences observed in Fig. 6 between UAS-based images and 
satellite-derived maps highlight the impact of spatial resolution on site- 
specific nitrogen application. Higher-resolution UAS data (1.5 m) cap-
tures finer within-field variability, enabling more precise fertilizer 
application, while coarser resolutions (10 m and 30 m) may smooth out 
spatial heterogeneity, potentially leading to suboptimal management 
decisions. However, the practical relevance of these differences depends 
on both the working width of the application machinery and the initial 
assessment of within-field variability. Since identifying variability is the 
first step in site-specific management, the choice of sensor plays a crucial 
role in shaping the fertilization strategy. High-resolution sensors may be 
beneficial for fields with strong spatial heterogeneity, whereas lower- 
resolution data might be sufficient for more uniform fields, aligning 
data collection efforts with practical management needs.

4.2.2. Reference values for N application
Finally, it is critical to establish a reference value for spatial N 

application adjustment. The amount was provided manually in the case 
study, as the approach was built as a decision-support system. Real-time 
N sensing coupled with machine learning approaches, such as reinforced 
learning, could improve estimating this process, which is presently 
based on best fertilization practices (Jordan-Meille et al., 2023; Sinaj 
and Richner, 2017), local farming and technical experience. We used the 
NDRE maps to calculate N application maps for both the UAS platform 
system and Sentinel-2 data. Following the methodology outlined by 
Argento et al. (2021), which involves the spatial redistribution of N 
fertilizer based on NDRE values, we generated maps representing the 
second and third split fertilizer applications at BBCH 31 and 37, 
respectively. The reference values, determined by the farm manager, 
served as standards for converting reflectance into kg N/ha px-1. Spatial 
variations in crop growth are addressed as a reference to the field mean 

and therefore also reflects seasonal changes in the vegetation. Because 
the design contained border, or so-called cut-off values, plots with 
additional fertilizer and plots without any fertilizer, the mean value of 
the field’s spectral vegetation index was employed in this work. It may 
not always be the most effective option, though, as this mean value 
should reflect the ideal crop N status.

The calculation of the N application rate with different algorithms 
may lead to different results: according to current research, the 95th 
percentile (Stamatiadis et al., 2018), the median, or the most frequent 
pixel value may serve as indicators of reference values (Samborski et al., 
2009). Other widely used sensing algorithms typically use reference 
sensor values of a controlled area in which the N status of the crop is 
estimated to be optimal in conjunction with the sensor values of a target 
area (Franzen et al., 2016; Padilla et al., 2018; Yao et al., 2015). These 
algorithms usually make use of a sufficiency index (Holland and 
Schepers, 2010) or response index of the crop (Raun et al., 2005). These 
algorithms such as machine learning-based models or those incorpo-
rating more detailed environmental variables could offer advantages in 
capturing crop growth variability more effectively. While the approach 
used in this study provides a consistent framework for N mapping, it may 
be limited in its ability to account for complex, dynamic factors such as 
changes in crop development, soil heterogeneity, and weather condi-
tions over time. Other methods may therefore provide more potential for 
improving the accuracy and adaptability of N application maps, 
particularly in variable field conditions.

4.3. Advantages, limitations and error sources of sensor approaches

Different sensor platforms have varying properties, such as distance 
to the crop and spectral resolution, which can significantly influence the 
resulting information. Therefore, the use of handheld, tractor- mounted, 
UAS, and satellite-carried sensors offers distinct advantages and limi-
tations (Muñoz-Huerta et al., 2013; Tremblay et al., 2011). This study 
addresses the gap in research by comparing different platforms and 
sensors for N fertilization decision support, offering a comprehensive 
analysis of their effectiveness in correlating nitrogen uptake with spec-
tral indices. While previous research has focused on individual sensors, 
this study’s comparison allows for a more robust understanding of how 
each platform captures the relationship between spectral data and ni-
trogen dynamics. By evaluating the sensors’ ability to accurately esti-
mate nitrogen uptake, we provide valuable insights that can guide the 
selection of the most suitable sensor for N fertilization decisions. 
Knowing that these sensors can deliver comparable quality of informa-
tion, empower users to make informed decisions based on practical and 
financial factors when considering investments and integrating this 
technology into their farm operations.

4.3.1. Technical strengths and weaknesses of sensor-based nutrient 
monitoring

Handheld sensors such as field spectrometers or leaf clip sensors 
provide valuable data for fertilizer management, but their low spatial 
resolution may limit decision-making for field management and fertil-
izer application (Chunjiang et al., 2007; Perich et al., 2021). In terms of 
cost-effectiveness, they are therefore rather low compared to the other 
(medium to high costs, low resolution and time-intensive). Tractor- 
mounted sensors offer on-the-go information and automated data pro-
cessing, making them efficient for variable rate applications (Adamchuk 
et al., 2004). However, only in certain cases are the calibration and 
calculation processes transparent (Isaac and Na, 2016). Moreover, in 
terms of cost-effectiveness they are the simplest to use as no data pro-
cessing is required but excessive costs may influence their adoption 
depending also on the farm size (Lowenberg-DeBoer and Erickson, 
2019).

Low-altitude remote sensing using UASs allows for high-resolution 
imagery with high spatial, spectral, and temporal monitoring capabil-
ities. It provides the opportunity to create maps shortly before fertilizer 
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application (below-clouds) but requires processing knowledge and 
effort. The cost-effectiveness of commercial UASs and cameras for 
agricultural applications compared to scientific-grade equipment makes 
them a potential option, even for small-scale farming. These platforms 
provide a clear advantage in spatial resolution, allowing for high- 
precision data collection across large fields. By integrating UAV-based 
optical sensors, farmers can achieve more accurate and detailed as-
sessments of N distribution and uptake across different areas of their 
fields. This spatially resolved information supports targeted nutrient 
management strategies, reducing fertilizer use and improving crop 
yield. Furthermore, the flexibility and efficiency of UAVs in capturing 
real-time, high-resolution data make them a powerful tool for opti-
mizing N fertilization practices and enhancing overall farm productivity. 
However, data processing may be time- and knowledge-intensive. High- 
altitude remote sensing using satellite imagery offers a large coverage 
area with less time-intensive data acquisition for end users. However, 
also in this case the data processing may require skilled labor or addi-
tional costs, and atmospheric and cloud conditions can affect data 
quality. Thus, satellite-based information products are often offered by 
specialized companies or governmental institutions. Cloud cover in 
some regions can affect in-season monitoring for optical satellites, such 
as Sentinel-2.

4.3.2. Digitization footprint
In terms of digitization footprints, based on the estimation done with 

the data of this study, the satellite platform appears to have the lower 
footprint while the two UAS platforms have the highest footprint. The 
digitation footprint concept (Marinello et al., 2019) was applied here by 
calculating the raw output information of the sensor as indicator. This is 
a relatively simple assessment, as it does not consider the necessary 
processing power needed to obtain final information that can be used by 
the farmers and neither the processing power of the tractor’s computer, 
which may be comparable across devices with the exception of the 
tractor-mounted sensor. For that reason, it is not surprising that the UAS 
platforms, containing the highest level of spatial resolution among the 
investigated devices, show the highest footprint. In the future, such in-
dicators should be actively used and be more standardized to assess also 
the impact of new technologies in terms of energy and resources 
required.

The digitization footprint varies significantly across sensor platforms 
due to differences in spectral and spatial resolution, affecting data vol-
ume, processing requirements, and practical usability. Hyperspectral 
sensors like ASD capture detailed spectral information (350–2500 nm) 
at a high data cost (~2.5 MB per spectrum), while multispectral UAV 
sensors (e.g., Micasense, Sequoia) balance data size (~1.6 GB per field) 
with agronomic relevance. Tractor-mounted ISARIA provides frequent, 
point-based measurements (~500 KB per field), optimizing real-time 
decision-making. Sentinel-2, though lower in resolution (10–30 m), of-
fers scalable, cost-effective monitoring (~700 MB per scene). These 
differences influence sensor suitability for site-specific nitrogen man-
agement—high-resolution UAV and ground-based sensors enable pre-
cise within-field applications, while satellite imagery supports broader- 
scale assessments. Understanding this trade-off is critical for integrating 
data effectively in precision agriculture.

4.3.3. Economic aspect
In summary, the utilization of (pre-processed) satellite information 

theoretically presents an opportunity for the lowest costs per hectare 
and a reduced setup time, making this technology widely accessible to 
farmers and other users interested in spatial crop and field information. 
Extension services at the regional to national level could provide the 
information at a fixed cost per unit surface, as seen in large-scale busi-
ness operations, reducing the time- and knowledge-investment which 
makes these technologies less attractive for farmers. Several missions, 
such as the Landsat and Copernicus missions from NASA and ESA, 
include a free data policy, thus widely increasing availability of high- 

quality data for different users. Alternatively, satellite-based informa-
tion can be purchased from companies with prices ranging from 6 to 20 
EUR/ha or annual subscriptions. Some examples are Earth Daily Agro 
and OneSoil at the global level, Farmstar-Conseil in France (Coquil and 
Bordes, 2005), VISTA in Germany other emerging start-ups globally. The 
adoption of optical sensors for N management in agriculture varies 
depending on factors such as farm size, technical knowledge, ease of 
integration, and data availability (Fabiani et al., 2020; Li et al., 2020; 
Lowenberg-DeBoer and Erickson, 2019). As technology becomes more 
accessible and affordable, the use of optical sensors is generally expected 
to increase (Groher et al., 2020). The environmental benefits of using 
these sensors, including reduced fertilizer inputs, coupled with specific 
subsidies may further promote their adoption (Späti et al., 2021).

4.3.4. Multi-source data integration
An additional aspect is the multi-source data integration of different 

sensors. In their review, Alvarez-Vanhard et al. (2021) report that data 
fusion is a powerful strategy in precision agriculture, combining multi-
ple data sources to create enhanced datasets by integrating spatial, 
spectral, and temporal dimensions. Most studies focus on pixel-level 
fusion to improve time series data resolution, such as mapping intra- 
seasonal variations. More advanced methods include spatial-spectral 
fusion (e.g., using UAV imagery to improve satellite data resolution) 
and spatial–temporal fusion (e.g., combining UAV and satellite data to 
derive biophysical parameters). Some studies also explore feature-level 
fusion, such as integrating UAV and satellite data from different angles. 
For example, satellite data could be integrated by drone data, which 
offers higher spatial and temporal resolution for to address gaps in data 
caused by cloud cover and canopy closure (Zhou et al., 2025), providing 
a comprehensive and dynamic solution for precise operations at reso-
lutions around 10 × 10 m pixels, such as section-controlled spraying and 
pneumatic fertilizer spreaders. Additionally, statistical modelling tech-
niques, such as Bayesian Theory for Spectral Information Completion 
could be used to fill in missing spectral data in multispectral satellite 
images using hyperspectral UAV data, resulting in continuous spectral 
reflectance at high temporal frequency (Gevaert et al., 2015).

A final remark concerns the integration of other sources of infor-
mation such as soil information and other environmental variables. In 
fact, optical sensors alone are often not sufficient to provide a full 
assessment of crop N status at field level. While soil and weather con-
ditions undoubtedly influence crop growth and management decisions, 
their impact on the relationship between NDRE and nitrogen uptake is 
more nuanced. For instance, soil properties may affect this relationship 
in early growth stages due different optical properties in the back-
ground. However, weather conditions, when data collection follows best 
practices (e.g., no clouds, proper atmospheric and radiometric correc-
tion, and extensive model calibration), have a limited direct influence. 
Instead, crop- and cropping system-related factors, such as variety, seed 
density, and average leaf angle, play a more critical role in shaping 
NDRE responses. To address these issues, sensor information needs to be 
linked to soil information and environmental parameters through 
modeling or in-season data to understand if the crop is limited by 
nutrient availability (evaluation of soil mineral N) or by other factors 
such as drought (Argento et al., 2022; Crema et al., 2020; Kersebaum 
et al., 2005; Mittermayer et al., 2021; Zhang et al., 2020). In a recent 
study Guerrero et al. (2021) highlight the importance of data fusion for 
optimizing nitrogen fertilization in precision agriculture. By using 
combining soil data (e.g., pH, organic carbon, moisture content) 
collected through a high-resolution vis-NIR spectrophotometer with 
crop data such as NDVI and historical yield, the researchers created 
management zone maps to guide variable-rate nitrogen fertilization 
(VRNF). Integrating these aspects into precision agriculture strategies 
ensures a more robust interpretation of NDRE-based nitrogen 
assessments.
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5. Conclusion and outlook

This case study shows that the five optical sensor platforms examined 
provide different information but appeared suitable for monitoring N 
status. However, selecting the appropriate sensor and platform depends 
on factors such as data availability, cost-efficiency, and ease of use. 
Users should consider the specific needs and limitations of each tech-
nology to make informed decisions for crop monitoring and nutrient 
management. Although all five sensor platforms can effectively monitor 
N status, they each have limitations. Satellite platforms are cost-effective 
and simple but face challenges with workflows and cloud cover, 
particularly for time-sensitive tasks. UASs offer high resolution and 
control but requires significant labor and expertise. Tractor-mounted 
sensors are automated and less labor-intensive but have moderate res-
olution and higher costs. Handheld platforms are best suited for small 
fields or research. The study found that resampling UAS-based maps to a 
10-m resolution provided a good balance between spatial detail and 
machinery working width. The data used in this study were collected out 
of two sites in one year and therefore need replication to broaden the 
applicability of results for different pedo-climatic and seasonal condi-
tions. However, other studies support these findings for winter wheat, 
suggesting that the use of these sensors across different climates, soils 
and seasons is reliable and not a significant concern. While the approach 
used in this study can be transferred to other crops, the results may not 
be directly comparable as different crops have unique growth charac-
teristics, nutrient requirements, and responses to environmental condi-
tions, which can influence the relationship between spectral indices and 
N uptake.

Sensor-based N status determination can enhance N use efficiency by 
addressing in-field variability of crop growth and supporting precision 
fertilization, provided there is accurate calibration for the specific 
climate and crop variety. At present, the use of all five optical sensor 
platforms is still increasing. Their values are well-correlated, indicating 
that they can all be used for monitoring N status. However, the signifi-
cant variability in NDRE measurements across platforms underscores 
the importance of selecting the right device for effective nutrient man-
agement and calls for further research to investigate the sources of this 
variability to ensure more consistent and reliable data for N fertilization 
decision-making. The calibration of these sensors and the algorithms 
needed to determine optimal amounts of N fertilizer as well as the 
practical applicability on farms remain the main challenges for the 
future.
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