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Abstract

The Japanese beetle (Popillia japonica) is an invasive scarab beetle originating from Japan. In the European Union, it is listed
as a priority quarantine pest. Currently, it is mainly controlled using synthetic insecticides. Here, we tested an environmentally
friendly control alternative. We investigated whether Japanese beetle adults can be used as vectors to autodisseminate lethal
doses of the European native entomopathogenic fungus Metarhizium brunneum ART 212 within adult populations. Addition-
ally, we tested whether infested females could carry conidia into the soil environment during oviposition, increasing neonate
larval mortality. We showed that inoculated adults can indeed transmit the fungal conidia horizontally for up to two days,
significantly reducing the survival of both donor and recipient beetles in same-sex and opposite-sex couples. Furthermore,
horizontal transmission among adults was verified under semi-field conditions. Another set of laboratory tests showed that
beetles carried the inoculum to their oviposition sites, where larval survival was reduced at high concentrations (> 1.11 x 10°
conidia/g substrate). However, the release of inoculated beetles in semi-field cages resulted in soil fungal concentrations
more than ten times lower, failing to provide larval control. Thus, carriage of M. brunneum ART 212 into the soil by female
vectors does not seem to provide control of larvae outside the laboratory setup. However, our results suggest that lethal
conidial doses can be autodisseminated among the more susceptible adults. This may be the basis for an environmentally
friendly control strategy against invasive Japanese beetle adults, applicable in both agricultural and non-agricultural areas.
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Key message Introduction

The Japanese beetle (Popillia japonica Newman (Coleop-
e Autodissemination of a fungal inoculum was tested to  tera: Scarabaeidae)) is a significant plant pest originating in

biologically control the Japanese beetle . Northern Japan (Fleming 1972; Potter & Held 2002). Fol-
e Larval control after transmission of conidia to the soil ~ lowing its accidental introduction to New Jersey (USA) in
was achieved under laboratory conditions. the early twentieth century, the scarab beetle started to estab-
e Adults horizontally transmitted the conidia, causing mor-  lish itself outside its native range (Fleming 1972). Since
tality among donors and recipients. then, it has invaded vast areas of North America (Kistner-
e This is the basis for a control strategy against adults in ~ Thomas 2019). The Japanese beetle can cause damage to
agricultural and non-agricultural areas. over 400 plant species including ornamental, horticultural

and agricultural plants such as grapevine, stone fruit and
soy (Tayeh et al. 2023). Due to the potential economic, envi-
ronmental and social impact on European agriculture and

54 Magdalena Wey eco.systems,. the Japanese beetle.ls ranked as a pr10r1ty. quar-
magdalena.wey @agroscope.admin.ch antine pest in the European Union (European Commission

1 2019). In mainland Europe, it was first reported in North-
Research Group Extension Arable Crops, Agroscope, ern Italy in 2014 (Pavesi 2014). Since then, P. japonica has
Reckenholzstrasse 191, 8046 Zurich, Switzerland . . . .

, established stable populations in Italy and southern Switzer-
Institute of Integrative Biology, ETH Zurich, land (EPPO 2023; Poggi et al. 2022). From there, the pest

Universititsstr. 2, 8092 Zurich, Switzerland
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is able to further expand its range as it encounters suitable
environmental conditions in Central Europe (Borner et al.
2022). Usually, the beetle has a one-year life cycle, with
third instar larvae overwintering in the soil and adults feed-
ing, mating and ovipositing from around June to September
(Fleming 1972).

Currently, pest management of Japanese beetle adults
and larvae mainly relies on the application of synthetic
insecticides (Potter & Held 2002; Santoiemma et al. 2021;
Shanovich et al. 2019). However, this strategy is associated
with environmental pollution, declines in biodiversity and
reduced ecosystem functioning (Chagnon et al. 2015; Ste-
hle & Schulz 2015; Thompson et al. 2020; Woodcock et al.
2016). Research on non-chemical alternatives should thus be
a priority, especially in Europe, as the European Union aims
to find strategies to reduce the use of synthetic pesticides
(European Parliament 2009).

Promising alternatives to synthetic pesticides are biocon-
trol agents such as nematodes or entomopathogenic micro-
organisms (Inglis et al. 2009; Paoli et al. 2017; Ravensberg
2013). Among the latter, entomopathogenic fungi (EPFs)
possess the unique ability to infect insects by penetrating
their cuticle (Roberts & Hajek 1992). After germination,
they combine enzymatic and physical mechanisms to pen-
etrate the different cuticular layers (Mannino et al. 2019).
Once the fungus has reached the hemolymph, it continues its
growth by forming yeast-like cell types, called hyphal bodies
or blastospores. These can multiply rapidly by division or
budding, colonize the entire host body and, finally, kill the
insect by, e.g., toxicosis (Inglis et al. 2009; Pedrini 2018).

Different EPFs (Metarhizium spp. and Beauveria spp.)
have already been tested to control the larval stage of P.
Jjaponica (Behle et al. 2015; Fleming 1976; Graf et al. 2023;
Potter & Held 2002; Shanovich et al. 2019). Yet, study
results on field efficacy of M. brunneum (Petch) applied
against third instar larvae are contradictory (Behle et al.
2015; Graf et al. 2023). On the one hand, Behle et al. (2015)
and Ramoutar et al. (2010) found variable, but generally
positive control effects of M. brunneum Ma 43 (BIPESCOS5/
F52) in small-scale field experiments. On the other hand,
more recent studies conducted in Northern Italy state a low
susceptibility of third instar larvae to M. brunneum Ma 43
and M. brunneum ART 212 (Ma 714, ARSEF 7524; Graf
et al. 2023). Probably, third instar larvae are protected by
their cuticular defense mechanism in combination with an
efficient immune response (Graf et al. 2023).

In contrast to the contradictory findings on fungal biocon-
trol of larvae, studies agree that the adult stage is susceptible
to several commercially available strains of EPFs, including
the European native strain M. brunneum ART 212 (Behle
& Goett 2016; Giroux et al. 2015; Graf et al. 2023; Lacey
et al. 1994). Yet, to date, no effective biocontrol strategy
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against adult Japanese beetles using any EPFs is available
for producers.

Recently, first leaf spraying tests with EPFs have been
carried out in Italy to fight adult Japanese beetles (Graf et al.
2023). Even though recent formulation technologies can par-
tially protect EPFs from environmental inactivation (Que-
sada-Moraga et al. 2023), foliar spray applications still face
a number of environmental challenges (Braga et al. 2001;
Fernandez-Bravo et al. 2017; Jaronski 2010). Therefore, it
is suggested to investigate alternative spore dissemination
strategies, such as autodissemination (also called “attract-
and-infest”) with protected spore containers (Benvenuti et al.
2019; Graf et al. 2023; Klein & Lacey 1999).

Autodissemination is a pest management concept that
uses inoculated insects as vectors. These insects carry lethal
concentrations of an inoculum to their conspecifics via, e.g.,
mating, oviposition or aggregation (Gaugler et al. 2012).
Currently, autodissemination is widely investigated as an
opportunity to transfer chemical growth inhibitors to ovipo-
sition sites of mosquitoes (Gaugler et al. 2012; Thammavong
et al. 2022; Unlu et al. 2017; Wang et al. 2014). However,
the concept has also shown promising results in dissemi-
nating EPFs in several pest insect populations, e.g., Ips
typographus (L.), Ceratitis capitata (Wiedemann), Blatella
germanica (L.), Plutella xylostella (L.), Pachnoda inter-
rupta (Olivier), Delia radicum (L.) or Drosophila suzukii
(Mazumura) (Dowd & Vega 2003; Furlong & Pell 2001;
Getahun et al. 2016; Kreutz et al. 2004; Meadow et al. 2000;
Quesada-Moraga et al. 2004, 2008; Yousef et al. 2018).

For the control of Japanese beetles, Klein and Lacey
(1999) designed a first prototype of an autodissemination
trap. Such traps need to attract the insect, inoculate it and
enable the dissemination of the inoculum to the target habitat
in order to ensure successful control (Gaugler et al. 2012).
As inoculum, Klein and Lacey (1999) placed barley kernels
colonized by the EPF M. anisopliae (Metschnikoff) into the
trap. They demonstrated the presence of the fungal inoculum
on adult beetles directly after passing through the trap. Addi-
tionally, they confirmed an earlier observed increased mor-
tality after fungal treatment (Lacey et al. 1995). However, to
determine the potential of autodissemination to control a pest
insect population, it is fundamental to know whether EPFs
are efficiently transmitted from inoculated to non-inoculated
beetles (Furlong & Pell 2001). This was partly studied by
Benvenuti et al. (2019) who found that beetles contaminated
with M. brunneum Ma 43 transmit conidia to their coupling
partners under laboratory conditions.

Thus, horizontal transmission of an EPF among Japa-
nese beetle adults has only been observed among opposite-
sex couples in the laboratory. Moreover, the time span for
which fungus-inoculated donor beetles remain infective,
i.e., can transfer lethal conidial doses to recipient beetles,
is unknown. Furthermore, we lack information on whether
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inoculated adults can be used as vectors to transport the
inoculum to their oviposition sites. If so, it is unknown
whether the subsequent presence of the fungal inoculum in
the soil leads to an infestation of neonate larvae.

To address these gaps, we first investigated the mortality
response of adult Japanese beetles to different doses of M.
brunneum ART 212. In the same set of laboratory experi-
ments, we studied mortality rates after horizontal transmis-
sion of conidia from donor to recipient beetles in response to
the time span between donor beetle inoculation and contact
with recipients. Finally, we verified horizontal transmission
among adults in a semi-field study.

In another set of laboratory experiments, we first studied
the early larval survival in substrates containing different
concentrations of M. brunneum ART 212. Next, we deter-
mined the conidial dose that can be carried to the oviposition
substrate by inoculated female vectors and assessed early
larval survival in this vector-inoculated substrate. In the
formerly mentioned semi-field study, we then investigated
whether female vectors could carry conidia into the soil dur-
ing oviposition. Finally, we assessed larval survival at these
vector-inoculated oviposition sites.

Material and methods
Organisms
Japanese beetles

For laboratory experiments, third instar larvae of P. japonica
were dug out of the soil at field sites in the infested zone
in Piedmont, Italy. For experiments with adults, these lar-
vae were fed with carrots weekly until they developed into
adults. For more details, see Supplementals 1.1.1. Adults
were sexed according to differences in their fore tibia
(Fleming 1972). For mating, couples were formed and kept
together for five days in round plastic cups containing black-
berry leaves as a food source and a moist filter paper.

M. brunneum ART 212

In Switzerland, M. brunneum ART 212 (Ma 714, ARSEF
7524) is a commercially available strain originally isolated
from Agriotes sp. L. (Coleoptera: Elateridae) at Agroscope
(Switzerland). Infectivity was ensured by passaging the fun-
gal inoculum through adult Japanese beetles and subsequent
spore isolation from mycosed cadavers on selective medium
plates (SM, Sabouraud 2% glucose agar (SDA) supplemented
with cycloheximide (0.05 g/1), streptomycin sulfate (0.6 g/1),
tetracycline (0.05 g/l) and dodine (50 mg/1); Strasser et al.
1996) as previously described (Graf et al. 2023). After

incubation for 14—16 days at 22 °C and 70% RH in darkness,
these F2 generation plates were stored at 5 °C.

To prepare conidial suspensions, F3 generation SM plates
of M. brunneum ART 212 were freshly prepared from F2
plates. After incubation of 14-16 days (dark, 22 °C, 70%
RH), conidia were washed off from plates using 0.01%
Tween 80.

Conidia were counted with a hemocytometer, and the
concentration of the suspension was set to 10’ +0.1 conidia/
ml by diluting with 0.01% Tween 80. The suspension was
then further diluted to achieve the desired concentration.

Germination rates of the F3 conidia were determined by
adjusting the suspension to 1x 10° conidia/ml after count-
ing with a hemocytometer and applying three 50-pl drops
on complete medium plates (CM: 10 g glucose, 0.36 g
KH,PO,, 1.78 g Na,HPO,, 1 g KClI, 0.6 g MgSO, 7H,0,
0.6 g NH,NO;, 5 g yeast extract, 20 g agar per 1 L distilled
water; Riba & Ravelojoana 1984). After a 24-h incubation at
22 °C and 70% RH (darkness), the percentage of germinated
conidia per drop was determined at 400 X magnification.
Germination was validated based on the length of conidial
germ tubes (Reinbacher et al. 2021a). Germination rates in
all suspensions used were above 90%.

To prepare conidia-overgrown wheat bran, liquid medium
cultures containing blastospores were produced. Wheat bran
was inoculated with these cultures in 9-cm-diameter Petri
dishes and incubated for two weeks (22 °C, 70% RH), in
order to grow a conidia layer in the plates used to inoculate
beetles. For more details on the liquid medium cultures, see
Supplementals 1.1.2. Control plates were prepared using
20 ml of sterile water instead of the liquid medium culture.

To estimate Metarhizium spp. colony-forming units
(CFUs) per g substrate or soil sample, subsamples were
transferred to 200-ml Erlenmeyer flasks and suspended
in distilled water containing 1.8 g/L tetra-sodiumpyroph-
osphate (Na,P,0) to prevent clumping as in Mayerhofer
et al. (2017). Flasks were shaken as described in Kessler
et al. (2003), and 100 pl of the supernatant was plated on
SM. After incubation for two weeks (22 °C, 70% RH, dark),
Metarhizium spp. colonies were counted on each plate and
CFUs/g dry weight were calculated. To do so, the water
content of each sample was measured gravimetrically.

To determine number of Metarhizium CFUs on beetles,
beetles were transferred to Eppendorf tubes containing
1 ml of 0.1% Tween 80 directly after inoculation. To not
miss already adhering conidia, Tween 80 was more con-
centrated than when preparing conidial suspensions for dip
inoculation. The tubes were vortexed for 1 min to wash off
conidia, and 100 pl of the supernatant was plated on SM
plates. Plates were incubated (22 °C, 70% RH, dark) for 2
weeks. The number of colony-forming units (CFUs) counted
on these plates was used as an estimate for the number of
conidia washed off the beetles’ surface.
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Laboratory and semi-field assays

All laboratory assays were conducted under quarantine
conditions in a climate-controlled room (22 °C, 60% RH,
day—night cycle 16:8 h).

Response of Japanese beetle adults to different doses of M.
brunneum ART 212

To determine the effect of different doses of M. brunneum
ART 212 on adult survival, a series of five suspensions with
concentrations of 103 to 107 conidia/ml was prepared as
described (2.1.2). A solution of 0.01% Tween 80 served as
the control. Into each of the six suspensions, five male and
five female adults were dipped twice for two seconds. The
conidial suspension was thoroughly mixed before each dip.
After dip inoculation, beetles were individually transferred
to round plastic cups (4.5 cm diameter X 6 cm height) with
a moist filter paper and a blackberry leaf as food source.
Mortality was monitored over the next four weeks.

To determine the actual number of CFUs ending up on
the beetles' surface when dipping in the suspensions, three
additionally dipped adults per concentration were transferred
to Eppendorf tubes containing 1 ml of 0.1% Tween 80. The
number of CFUs was determined as described in 2.1.2.
Three independent experiments were performed.

Horizontal transmission of M. brunneum ART 212
among Japanese beetle adults

To study the horizontal transmission of M. brunneum ART
212, 48 square boxes (13 10.5x 6.5 cm) each containing

either one non-inoculated female or male recipient beetle
were prepared for fungal and control treatments. In addition
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to the recipient beetle, the boxes contained a moist filter
paper and a blackberry leaf.

On coupling day 0, the pronotums of 72 donor beetles
of each sex were marked with Tipp-Ex (correction fluid,
Lyreco, Marly, France) to be able to distinguish them from
recipient beetles in same-sex couples. Thereafter, donors
were inoculated with conidia (Fig. 1a) by allowing them to
walk for 1 min on a Petri dish containing fungus-overgrown
wheat bran (2.1.2).

A first batch of 24 female and 24 male fungus-inoculated
donor beetles was transferred to the prepared boxes with
recipient beetles to form 12 couples of each sex combination
(m:f, fim, f:f, m:m; Fig. 1b, coupling day 0). The remaining
48 inoculated donor beetles were transferred to round plas-
tic cups (4.5 cm diameter X 6 cm height) with a moist filter
paper and a blackberry leaf as a food source and stored for
coupling on day 1 and day 2. On days 1 and 2 after inocula-
tion of the donors (Fig. 1b, coupling days 1 and 2), the cou-
pling was repeated exactly as on coupling day 0, using the
inoculated donors that had been stored since day 0.

On each coupling day, eight donor and recipient beetles
were used to determine the number of conidia on beetles'
surfaces after coupling for 1 h (Fig. 1cl) as described in
2.1.2. The 40 remaining recipient beetles and 40 donor bee-
tles were removed from the coupling boxes after 1 h, iso-
lated singly in plastic cups with filter papers and blackberry
leaves, and mortality was observed over the next four weeks
(Fig. 1c2). All steps (Fig. 1a, b, c1, c2) were performed with
control beetles, too. The experiment was performed three
times over time.

R

\

\

Fig. 1 Schematic representation of the experimental procedure to
determine how long conidia of Metarhizium brunneum ART 212 can
be transmitted horizontally among adult Japanese beetles, providing a
control effect. Donor beetles (D) were inoculated with conidia a and
coupled b with recipient beetles (R) on either the same day, one day
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after inoculation or two days after inoculation. The amount of conidia
was determined on one set of donors and recipients ¢;. Mortality of
another set of donors and recipients was observed over four weeks c,.
Affinity Designer was used to create the schematic representation
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Semi-field cage experiment: occurrence of horizontal
transmission

Thirty pyramidal semi-field cages (250 cm? floor
area X 50 cm height) were placed on a lawn next to an irri-
gated football field in Genestrerio (Ticino, Switzerland,
45°51"28.2" N 8°58'10.8"E) in the first week of July 2022.
The occurrence of horizontal transmission was tested in
ten of these cages (Fig. 3, Treatment 50%). The remain-
ing twenty cages were used to test the transfer of fungal
inoculum into the soil and the following survival of larvae
(Fig. 3, Treatment 0% and 100%). Treatments were ran-
domly assigned to cages to avoid position effects.

Twenty-five males and 25 females, collected in a vineyard
in Genestrerio, were assigned to each of the ten semi-field
cages designated to test horizontal transmission. Only the
females were fungus-inoculated as described in 2.2.2 before
all 50 beetles were set free inside the cages.

A shading net (Accura, Germany) was installed on top of
the cages to prevent extreme temperatures inside. After one
week, five males were collected from each of the ten cages,
to check whether conidia had been horizontally transmitted
from females to males. These males were transferred to cups
halfway filled with moist peat to determine mycosis in the
laboratory.

Survival of neonate P. japonica larvae at different doses
of M. brunneum ART 212 in the substrate

Ten square oviposition boxes (13X 10.5X 6.5 cm) were
filled with 100 g of oviposition substrate, consisting of a 2:1
mixture of peat and field soil. The components were sieved
separately using a 2-mm sieve and dried at 100 °C for 24 h.
After drying, components were thoroughly mixed. Two boxes
each were inoculated with M. brunneum ART 212 suspen-
sions to achieve the following five concentrations: 0 (control),
1.11x10% 1.11x 10%, 1.11x 10* and 1.11 x 10° conidia/g sub-
strate. The maximum concentration was based on the recom-
mended field application rate (10'* conidia/ha), approximated
for small-scale use by Reinbacher et al. (2021b). Gravimetric
water content (GWC) in the boxes was set to 60%.

After inoculating the oviposition substrate, three to four
mated females were transferred into each square box. One
day later, blackberry leaves were provided to the females
as feed.

Five days after starting oviposition, the eggs in the oviposi-
tion boxes were counted, and from boxes of each conidial con-
centration, portions of three eggs were transferred into ten round
plastic cups (4.5 cm diameter X 6 cm height). Cups contained
20 g of substrate that was previously inoculated with conidial
suspension to achieve the same conidial concentrations and
GWCs in the substrate as in the oviposition boxes from which

the eggs were collected. The eggs were placed into holes pre-
pared with the tip of a knitting needle (adapted from George
et al. (2007)). Fewer than ten cups were prepared in cases where
fewer than 30 eggs were available. Germinated grass seeds (Fes-
tuca rubra L., Lolium perenne L.) were provided in the cups
as feed for hatching larvae. Cups were randomly placed into
boxes to avoid box effects. Moisture content of the substrate
was monitored in three additional cups, also set to 60% GWC
and integrated into the setup, but not containing eggs. If these
“moisture control” cups indicated desiccation, water was added
to all cups of the experiment. 24 days after transferring the eggs,
hatched first instar larvae were counted in each cup.

After counting the larvae, substrate subsamples (5-6 g)
were taken from each cup to check for the abundance of
viable conidia or their absence (control), respectively. These
subsamples were stored at 5 °C room temperature until they
were suspended in 20 ml distilled water containing 1.8 g/L
Na,P,0,. They were further processed to determine CFUs/g
dry substrate as described in 2.1.2. In total, four replicate
experiments were performed over time.

Transfer of fungal inoculum into the substrate by female P.
japonica vectors and subsequent survival of larvae in this
substrate

To determine the amount of conidia that fungus-inoculated
females transport to artificial oviposition sites (cups) and
the survival of first and second instar larvae in these cups,
mated female Japanese beetles were inoculated as described
in 2.2.2.

On day 0 (Fig. 2, day Oa), the initial number of M. brun-
neum ART 212 conidia on five females per treatment (fun-
gus/control) was measured as described (2.1.2). Another 20
either fungus-inoculated or control females were individu-
ally transferred to round plastic cups (4.5 cm diameter X 6 cm
height), halfway filled with oviposition substrate (Fig. 2, day
0b). GWC of the substrate had been set to 60%, and a sample
had been taken to validate the absence of Metarhizium spp.
CFUs. After one day, blackberry leaves were provided to
the females. On day 5, germinated grass seeds (F. rubra, L.
perenne) were provided to all cups as food for the neonate
larvae and, where needed, blackberry leaves for the females
were renewed (Fig. 2, day 5).

After 29 days (Fig. 2, day 29), hatched first instar larvae
(L1) were counted in ten randomly chosen cups of the
fungal and control treatment. After counting the larvae,
Metarhizium spp. CFUs per g substrate were determined in
three experimental repetitions. On day 41 (Fig. 2, day 41),
number of second instar larvae (L2) and Metarhizium spp.
CFUs per g substrate were determined in the remaining ten
cups. The numbers of L1 and L2 larvae were determined
in two experimental repetitions.
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Fig.2 Schematic representation of the experimental procedure to
determine the amount of Metarhizium brunneum ART 212 that ovi-
positing fungus-inoculated females carry into the substrate and the
subsequent survival of larvae in this substrate. Females were inocu-
lated with conidia on day 0, and the number of conidia was deter-
mined on five beetles per treatment (day Oa). The remaining 20 inocu-
lated females were transferred to cups (day Ob). On day 5, germinated

T 1 P
Days after inoculation
of females

grass seeds were provided to the cups. On day 29, the number of
first instar larvae (L1) and Metarhizium spp. colony-forming units
(CFUs) were determined in ten cups. On day 41, the number of sec-
ond instar larvae (L2) and Metarhizium spp. CFUs were determined
in the remaining ten cups. Affinity Designer was used to create the
schematic representation

Treatment: Experiments conducted in cages

[]0%

: Transfer of EPF into the soil / Larval survival

[ 50% : Horizontal transmission / Transfer of EPF into the soil / Larval survival

[ 100% : Transfer of EPF into the soil / Larval survival

Fig.3 Schematic representation showing 30 semi-field cages with
three randomly assigned treatments. All 30 cages (Treatment 0%,
50%, 100%) were used to study the transfer of the entomopathogenic
fungus (EPF) Metarhizium brunneum ART 212 into the soil by Japa-

Semi-field cage experiment: transfer of fungal inoculum
into the soil by adult vectors and subsequent survival
of larvae

To investigate the transfer of fungal inoculum into the soil
and the subsequent survival of larvae, thirty pyramidal semi-
field cages were set up as described in 2.2.3 (Fig. 3). Before
starting the experiment, three soil samples, each consisting
of two pooled soil plugs (6 cm diameter X 10 cm depth),
were taken per cage. Additionally, the lawn in the cages
was watered with 3 L of water from a nearby water source
to provide optimum conditions for egg deposition. 50 bee-
tles, collected in a vineyard in Genestrerio, were assigned to
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nese beetle vectors and the subsequent survival of larvae in the soil.
Additionally, ten of the cages (Treatment 50%) were used to verify
horizontal transmission of the EPF among adults

each semi-field cage. In ten cages, 100% of the beetles were
inoculated with M. brunneum ART 212 (Fig. 3, Treatment
100%) as described (2.2.2). In another ten cages, only 50%
of the beetles were inoculated (see 2.2.3, Fig. 3, Treatment
50%). The remaining ten cages were used as a control (bee-
tles without fungus inoculation; Fig. 3, Treatment 0%) to
account for the fungus' natural soil cycle.

To determine the number of conidia on the beetles' sur-
face directly after inoculation, conidia were washed off two
additional beetles per treatment (2.1.2). Another two beetles
per cage were inoculated and directly transferred to cups
(4.5 cm diameter X 6 cm height) with moist peat to observe
survival in the laboratory over five weeks.
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Until mid-September, the lawn with the cages was irri-
gated three times a week. Weekly, fresh blackberry branches
were put into the cages as feed. Four weeks after starting the
experiment, three pooled soil samples were taken per cage.

In October, cages were removed, and the topsoil beneath
the cages was examined for Japanese beetle larvae. In addi-
tion, another three pooled soil samples were taken per cage.
All soil samples were stored in plastic bags at 5 °C room
temperature until processing. From each sample, 20-24 g soil
were suspended in 100 ml distilled water containing 1.8 g/L
Na,P,0,. Samples were further processed as described
(2.1.2). Median CFUs/g soil dry weight was calculated for
each cage based on these three pooled soil samples.

Genetic identification of M. brunneum ART 212

We selected fungal isolates from mycosed beetles of each
laboratory experiment and of all mycosed recipient beetles
from the semi-field cages to genetically confirm their iden-
tity as M. brunneum ART 212. For more details, see Sup-
plementals 1.2. Identity of all fungal isolates from laboratory
experiments was confirmed as M. brunneum ART 212. None
of the control beetles showed fungal outgrowth.

Statistics

All analyses were performed using R (version 4.1.2).
P-values were considered significant at P <0.05. Whenever
needed, data were transformed to meet the model assump-
tions (details in Sup. 1.3). Based on our experimental design,
we corrected for the variability from the independent experi-
mental repetitions by including them as random effect in
mixed models. Emmeans (package emmeans, version 1.10.0)
was used for post hoc pairwise comparisons. For details on
the statistical analyses performed, see Supplementals 1.3
and Sup. Table 1.

Beetle survival was analyzed with mixed-effects Cox’s
proportional hazards models, followed by pairwise com-
parisons (package survival, version 3.5-5; package coxme,
version 2.2—18.1). Median lethal time (LT50) was calculated
using survminer (version 0.4.9). The proportional hazards
assumption was validated based on Schoenfeld residuals,
and if violated (coupling day 2), an accelerated failure time
model with Weibull distribution was applied. Effects of
couple type (same sex and opposite sex) and coupling day
on number of conidia on beetles' surfaces were analyzed
using linear mixed-effects models. Data were cube-root-
transformed to meet the model assumptions.

Larval count data from the dose response experiment
were analyzed using a Poisson mixed-effects regression
model (package Ime4, version 1.1-33). In the experiment
where the substrate was inoculated by female vectors, over-
dispersion was present in the count data for the number of

L1 and L2 larvae. Therefore, negative binomial regression
(package glmmTMB, version 1.1.7) was used. To investigate
differences in CFUs found per gram soil dry weight, linear
mixed-effects models were fit. Data were log-transformed to
meet the model assumptions.

For the semi-field experiment, numbers of larvae/m? in
the differently treated semi-field cages were compared with
an analysis of variance (ANOVA) and Tukey HSD post
hoc testing. Data were square-root-transformed to meet
the model assumptions. To investigate differences in CFUs
found per gram soil dry weight, a linear model was fit. Data
were log-transformed to meet the model assumptions.

Results

Response of Japanese beetle adults to different
doses of M. brunneum ART 212

The time until death of Japanese beetle adults after dip
inoculation in conidial suspensions of M. brunneum ART
212 was dose dependent. The higher the concentration,
the shorter the time until 50% of the beetles died (LT50).
More than 50% of the beetles dipped in suspensions con-
taining fewer than 10° conidia/ml survived the observation
period, but those dipped in suspension containing 10°, 10°
or 107 conidia/ml showed a LT50 of 23.5, 20.5 and 13 days,
respectively.

Significantly reduced survival times were observed
after dipping in suspensions with concentrations above 10*
conidia/ml (Fig. 4). To determine the number of conidia
on beetles’ surfaces needed to achieve significant control
effects, conidia were washed off beetles’ surfaces. With an
increasing concentration of the spore suspensions, there was
a corresponding increase in the number of conidia found on
the beetles’ surfaces. Dipping beetles into suspensions with
10% or 10* spores/ml resulted in < 50 CFUs on their surfaces.
The same procedure carried out with spore suspensions of
103, 10° or 107 spores/ml increased the number of CFUs
on the beetles' surface to 6.3+5.1x10%, 3.7 +3.2%x10% and
3.0+ 1.7 x 10* Metarhizium CFUs per beetle.

Horizontal transmission of M. brunneum ART 212
among Japanese beetle adults in the laboratory

Fungus-inoculated Japanese beetle donors and recipients
of all coupling days (Fig. 5a coupling day 0O; Fig. 5b cou-
pling day 1; Fig. 5c coupling day 2) died significantly
faster than the control groups (pairwise comparison,
Sup. Table 2). Within the first seven days after coupling,
92.5-100% of all fungus-inoculated donor beetles died.
Death of their coupling partners (recipients) occurred
significantly slower (Fig. 5). The earlier recipients were
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Fig.4 Survival of Japanese beetle adults over time after dip inocu-
lation in suspensions containing different concentrations of Metarhi-
zium brunneum ART 212 conidia dissolved in 0.01% Tween. Survival
was recorded over 30 days. The presented results derive from pooled
data of three independent experiments with 10 beetles per concentra-
tion and experiment. Curves indicate the survival of beetles after dip
inoculation. Curves with the same letter do not significantly differ.
P-values were considered to be significant at P <0.05

coupled with donor beetles, the earlier they died. In total,
70-95% of the recipients from coupling day O died within
the first fourteen days after coupling. About the same
degree of mortality was reached one week later for recipi-
ents from coupling day 1 and two weeks later for those
from coupling day 2.

On each coupling day, fungus-inoculated donor beetles
successfully transferred conidia to their coupling partners.
This transfer was measured by washing conidia off the
surfaces of beetles. The couple type (same sex and oppo-
site sex) did not have a significant impact on the number
of CFUs transferred to recipients (p =0.08). However,

the later the beetles were coupled, the fewer CFUs were
found on both donors’ and recipients’ surfaces (Table 1).
But, regardless of the coupling day, significantly more
Metarhizium spp. CFUs were found on donor beetles in
comparison to recipients (emmeans pairwise comparison,
p <0.001). On donor and recipient beetles of the control
groups, no Metarhizium spp. CFUs were found.

Semi-field cage experiment: occurrence
of horizontal transmission

Occurrence of horizontal transmission was tested in ten
semi-field cages. In these ten cages, where only female
donors were inoculated with M. brunneum ART 212, a
mean of 26% of the male recipient beetles mycosed (min.
0% to max. 80% of males per cage sporulating with M.
brunneum ART 212). Fungal isolates were genetically
confirmed as M. brunneum ART 212.

Survival of neonate P. japonica larvae at different
doses of M. brunneum ART 212 in the substrate

The number of living first instar larvae of P. japonica found
in cups clearly depended on the dose of M. brunneum ART
212 conidia in the substrate (Fig. 6). The number of liv-
ing larvae in cups containing the highest concentration of
conidia (1.11x 10° conidia/g substrate) was significantly
lower than in the control cups (z= —3.509, p=0.0041).

The abundance of Metarhizium spp. CFUs in substrate
samples taken from cups after evaluation of the larval sur-
vival was consistent with the number of conidia that had
been applied to the cups in the beginning of the experiment
(Sup. Figure 1).

100% 100% 100%
1
c
75% l ¢ 75% 75%
s gontrol Bonor I l I
2 = Control Recipient S 509 S 50%
g 50% Donor g 50% c 5 °%
n = Recipient (%] %]
25% 25% 25%
S —_» —
0% 0% 0%
0 7 14 21 28 35 0 7 14 21 28 35 0 7 14 21 28 35

Days after coupling

a coupling day 0 b coupling day 1

Fig.5 Survival of Japanese beetle donors and recipients coupled to
test horizontal transmission of Metarhizium brunneum ART 212. All
donor beetles were inoculated with conidia of M. brunneum ART 212
on coupling day 0. One set of donor beetles was coupled for one hour
with recipient beetles on coupling day O a, while two other sets of
inoculated donor beetles were coupled for one hour on day one (b,
coupling day 1) or on day two (¢, coupling day 2) after inoculation.
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Days after coupling

Days after coupling

¢ coupling day 2

The survival curves derive from pooled data of three independent
experiments with 40 beetles per treatment, coupling day and experi-
ment. Shadows indicate the 95% confidence intervals. Different let-
ters to the right of the survival curves indicate significant differences
between beetle groups among pooled data. P-values were considered
to be significant at P <0.05
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Table 1 Colony-forming units (CFUs) of Metarhizium spp. washed
off from Japanese beetle donors and recipients right after coupling
for one hour on coupling day 0, coupling day 1 or coupling day 2 of
a horizontal transmission experiment. All donor beetles were inocu-
lated with conidia on coupling day 0. One set of donor beetles was
coupled for one hour with recipient beetles on coupling day 0, while
two other sets of inoculated donor beetles were coupled for one hour
on day one (coupling day 1) or two (coupling day 2) after inocula-
tion with the fungus. The table shows pooled data of three individual
experiments, with eight donor and eight recipient beetles per coupling
day and experiment. Different letters indicate statistically significant
differences between CFUs washed off from either donors or recipi-
ents on different coupling days. Differences were determined with
pairwise comparison (package emmeans) after running a linear mixed
model for donors and recipients individually. P-values were consid-
ered to be significant at P <0.05

Coupling day CFUs washed off CFUs washed off
from donor beetles from recipient bee-
(mean +SD) tles (mean + SD)

Coupling day 0 10.7+8.1x10° a 8.0+£8.5x10* a

Coupling day 1 19+17x10° b 14+21x10* b

Coupling day 2 0.88+1.2x10° 39+38x10° b

Transfer of fungal inoculum into the substrate
by female P. japonica vectors and subsequent
survival of larvae in this substrate

At counting time point L1, the number of living larvae
did not significantly differ between the control and fungus
treatment (Fig. 7, counting timepoint L1). Mean numbers
of 3.25+4.12 larvae (control) and 2.9 +3.63 larvae (M.
brunneum ART 212) were found in the cups (pooled data).
However, at the second evaluation (counting timepoint L2),
significantly more larvae (mean =1.55 +3.32) were found in
the control cups compared to cups with fungus-inoculated
females (pooled data: mean=0.1+0.31, z-value=2.766,
p-value =0.00568).

Females carried a mean of 1.55+ 1.06 x 10° CFUs/g
dry substrate (=3.1x 10" CFUs per cup) into the cups. The
abundance of Metarhizium spp. CFUs in the substrate did not
differ based on counting time point (L1, L2; t-ratio=—-0.262,
p=0.7945). In control cups, no Metarhizium spp. CFUs
were detected.

Metarhizium spp. CFUs determined on the surface of
freshly inoculated P. japonica females ranged from 1 x 10°
to 2.28 x 107 per female. This was thus comparable to the
number of CFUs that they carried into the cups (one female

per cup).

N
o

w
o

Number of L1
found in cups

Control

W= O

Number of cups
S 3

1.11*10° 1.11*10° 1.11*10* 1.11*10°
Conidia per g substrate

Fig.6 Number of cups (3.5 cm diameter X 6 cm height) containing 0,
1, 2 or 3 living first instar (L1) Japanese beetle larvae that developed
from three eggs. The cups contained 20 g of oviposition substrate
(2:1 mixture of peat and field soil) that was treated with conidial sus-
pensions to achieve different doses of Metarhizium brunneum ART
212 conidia per g substrate and a gravimetric water content of 60%.
The graph shows pooled data from four individual experimental rep-
etitions

Semi-field cage experiment: transfer of fungal
inoculum into the soil by adult vectors
and subsequent survival of larvae

Metarhizium spp. were naturally occurring in low numbers
in soils of semi-field cages before the fungal treatment in
July 2022 (mean = 5.2 x 10?> CFUs/g soil).

Fungal inoculation of Japanese beetle adults signifi-
cantly increased the soil abundance of Metarhizium spp.
CFUs in the semi-field cages (Fig. 8a, 100 vs C t=5.303,
p<0.0001; 50 vs C t=4.767, p <0.0001). The increase
did not significantly differ between cages with 50% and
100% inoculated beetles (t=0.537, p=0.8536) or between
the two sampling time points after treatment (t= — 0.208,
p=0.8364). In October, a mean of 0.96+1.19 x 10*
CFUs/g soil (Treatment 50) and 7.0 +8.01 x 10°> CFUs/g
soil (Treatment 100) were detected in the soil.

Despite the significant increase in numbers of CFUs
found in the soil, larval density in cages was not influenced
by the treatment (Fig. 8b, F=0.89, p=0.423).

Fungus-inoculated adults that were taken back to the
laboratory to determine survival time died within seven
days, while control beetles gradually died within the
observation period of 35 days (Sup. Table 3). Directly
after inoculation, 8.8 X 10°~6 x 103 Metarhizium spp.
CFUs (mean 2.1 x 10° CFUs) were determined on fungus-
inoculated beetles (n=10).

Discussion
The Japanese beetle is a highly polyphagous pest insect

threatening crop and non-crop hosts in regions where it is
not native. Eradication as well as containment measures
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Fig.7 Number of living Japanese beetle larvae that were found
29 days (counting timepoint L.1) and 41 days (counting timepoint
L2) after the addition of ovipositing Japanese beetle females to cups.
Females placed in cups to lay eggs had either been treated with
conidia of Metarhizium brunneum ART 212 or not (control) and were
used as vectors to transfer M. brunneum ART 212 into the substrate
of the cups (20 g, 2:1 mixture of peat and field soil). Different let-
ters above the boxplots indicate statistically significant differences in
the number of larvae found per treatment at each counting time point.
The graph shows pooled data from two independent experiments with
10 cups per treatment, counting time point and experiment

against this invasive pest rely mainly on the use of syn-
thetic insecticides. Here, we investigated an environmen-
tally friendly alternative to pesticide use. In this autodis-
semination approach, we tested the use of adult Japanese
beetles as vectors to spread the European native EPF M.
brunneum ART 212 in adult populations and to oviposition
sites. While it only provided control of neonate larvae in

the laboratory setup, we found significant control effects
after horizontal transmission of the inoculum in adult pop-
ulations under both laboratory and semi-field conditions.

Potential to control adults

Our laboratory experiments with adult P. japonica have
clearly shown that conidia are readily transferred between
beetles, leading to high mortality rates among both donors
and recipients. These mortality rates can be attributed to
the high susceptibility of adults against M. brunneum ART
212, as stated by Graf et al. (2023), and confirmed in our
dose response experiment. Here, we found that already
beetles carrying a mean of 6.3 +5.1 x 10? conidia on their
surface die significantly faster than the control.

Japanese beetles that had passed an autodissemina-
tion device in a previous study carried an average of
11.3+1.3x 10" M. anisopliae conidia per beetle (Klein &
Lacey 1999). Our data demonstrate that the presence of even
lower amounts of M. brunneum ART 212 conidia on donors
(e.g., coupling day 0=10.7 + 8.1 x 10°) might be sufficient to
transmit lethal doses to recipients for up to two days.

However, with more time having passed since inocu-
lation, fewer conidia were available on donors' surfaces
for transmission, which might be a result of spore adhe-
sion (Vega et al. 2012) or post-contact responses such as
grooming (Zhukovskaya et al. 2013). As a consequence,
fewer conidia were transmitted to recipients, what led
to comparably lower but still significant mortality rates
among them. This aligns perfectly with the dose-dependent

Treatment ¢ 500
£ 0 (control) e .
S 300001 * 50 5 a
n e 100 a 400
o . Q a
9] . g
%20000- . . @ 300
2 o 5 2
O . & 200
S 10000+ ° . o N
S s .. @
§ PR 4 . e £ 100
8 & . : ot ° oo o ° '.- Q
0+ o Seotn &t 0 @ (@)
July 2022 August 2022 October 2022 0
a Before Treatment 4 weeks after treatment b 0 (control) 50 100
Treatment

Fig.8 a Colony-forming units (CFUs) of Metarhizium spp. per gram
dry weight (dw), showing median values based on three soil samples
for each semi-field cage (250 cm? floor areax 50 cm height, ten cages
per treatment) in Genestrerio, Switzerland, and b number of Japanese
beetle larvae found per m? in these semi-field cages in October. In
ten cages each, either 100%, 50% or 0% (control) of the adult beetles
were inoculated with conidia of Metarhizium brunneum ART 212 and
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were used as vectors to carry the inoculum into the soil. Soil sam-
ples were taken in July before treatment, four weeks after treatment
(August) and in October of the same year. Larval density was deter-
mined in October. In a and b, values represent n= 10 semi-field cages
for each treatment and sampling date. Different letters above the box-
plots in b indicate statistically significant differences in number of
larvae found per treatment in October
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mortality effects that we determined in adults. It is further
supported by the mortality effects observed in other insects
after exposure to different doses of EPFs (Dogan et al.
2017; Shrestha et al. 2015).

Unlike previous research that only studied horizontal
transmission in opposite-sex couples of Japanese beetles
(Benvenuti et al. 2019), we also verified EPF transmis-
sion from inoculated to non-inoculated adults in same-sex
couples. We assume that transmission of conidia within
couples of the same sex is a result of the aggregation
behavior of adult Japanese beetles (Fleming 1972; Potter
& Held 2002). This behavior has been observed in other
insects, too, and seems to generally enhance the occur-
rence of horizontal transmission in insect species (e.g., I.
typographus or overwintering sap beetles (Dowd & Vega
2003; Kreutz et al. 2004)).

We were able to reproduce the successful laboratory
results on horizontal transmission of EPFs among adults
under semi-field conditions. After the release of inoculated
donor females into field cages, we confirmed mycosis in
26% of the male recipients in these cages. To the best of
our knowledge, this is the first study to report successful
horizontal transmission of an EPF between adult P. japonica
in a semi-field setup. These promising findings align with
the positive results of others, indicating great potential to
disseminate lethal doses of EPFs in adult pest insect pop-
ulations (e.g., C. capitata, B. germanica, P. xylostella, P.
interrupta, D. radicum, D. suzukii (Furlong & Pell 2001;
Getahun et al. 2016; Meadow et al. 2000; Quesada-Moraga
et al. 2004, 2008; Yousef et al. 2018)).

Limitations to control early instar larvae
of Japanese beetles

Until today, only a few have tried to control early larval
instars of the Japanese beetle (e.g., George et al. 2007; Power
et al. 2009; Régniere et al. 1981). Some have even focused
on controlling them by applying EPFs with preventive state-
of-the-art application techniques (Behle et al. 2015; Graf
et al. 2023). Nevertheless, autodissemination of EPFs to
Japanese beetle oviposition sites has not been investigated
before. However, studies with, e.g., Oryctes rhinoceros
(L.) or Rhynchophorus ferrugineus (Olivier) suggested that
adult insects can effectively disseminate EPFs to breeding
habitats, thereby increasing larval mortality (Matveev et al.
2023; Moslim et al. 2011).

In our laboratory experiments with controlled moisture
conditions, female vectors were indeed able to carry conidia
into the substrate (1.55 + 1.06 x 10° CFUs/ g substrate). In this
substrate, significant control effects were observed at the L2
stage. After direct substrate inoculation (1.11x 10° conidia
per g substrate), control effects were even significant to the
1st larval instar. The faster effect after direct inoculation

might result from the presence of a nonionic surfactant in the
conidial suspensions. This surfactant could have enhanced
the insecticidal activity of the EPF by interacting with the
hydrophobic insect cuticle (de Santos et al. 2012).

When upscaling the autodissemination experiments with
female P. japonica to the semi-field level, we were able
to significantly increase Metarhizium spp. abundance in
the soil. The number of Metarhizium spp. CFUs found in
soil samples beneath field cages reached levels around 10*
CFUs/g soil which were comparable to those achieved by
Graf et al. (2023) using a state-of-the-art application method
with fungus colonized barley kernels (FCBKSs). In their field
study in Italy, they applied FCBKs with M. brunneum Ma 43
(BIPESCOS5/F52) against P. japonica larvae preventively in
May. Given the marginal control effects they observed, Graf
et al. (2023) supposed that positive results could only be
achieved in moist soils. Such intermediate soil moisture has
been found to be favorable for EPF infections of P. japonica
larvae (Krueger et al. 1991).

Similarly, despite the increase in Metarhizium spp. abun-
dance, we could not determine any significant reduction of larval
density in the soils of our semi-field cages, even though the lawn
was irrigated regularly to ensure favorable soil moisture con-
ditions. However, the conidial doses transported into the soils
of the semi-field cages by female P. japonica were more than
tenfold lower than those which achieved a significant control
effect in our laboratory studies. The failure of our autodissemi-
nation experiment under semi-field conditions is therefore likely
a matter of spore concentration. Additionally, we suppose that
the concentration needed for successful control under semi-field
and field conditions might even be higher than in the labora-
tory. Here, the complex interactions with abiotic factors (Jaron-
ski 2007) and adverse effects of the soil microflora may further
reduce efficacy of EPFs (Douglas Inglis et al. 1998).

In summary, we were not able to reproduce the encourag-
ing findings from our laboratory experiments under semi-
field conditions. It seems that ovipositing female vectors are
not able to autodisseminate an adequate dose of conidia to
their oviposition sites to provide control of neonate larvae.
We therefore doubt that this approach makes sense for the
control of P. japonica larvae in the soil, even more so since
other biocontrol agents, such as entomopathogenic nema-
todes, have shown promising results for the control of larvae
(Paoli et al. 2017; Torrini et al. 2020).

Future recommendations

Based on the results presented in this study, we argue that
autodissemination can be a valuable concept to spread lethal
doses of the European native M. brunneum ART 212 in adult
populations of the invasive Japanese beetle. While it seems
inefficient for providing control of neonate larvae outside
the laboratory setup, it is a promising strategy in biological
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control of the more susceptible adults. Inoculated donor bee-
tles successfully transferred conidia to recipients for up to
two days in both same-sex and opposite-sex couples, result-
ing in significantly increased mortality. By decimating the
adults, we might control the stage that is mainly responsible
for the spatial spread of the population. Thus, this could slow
down further natural spread of the invasive insect.

As a next step, field trials studying horizontal transmis-
sion of EPFs in Japanese beetle populations are necessary
to prove that the concept of autodissemination is applicable
under realistic conditions and at a larger spatial scale. In addi-
tion, an autodissemination device should be designed which
guarantees a continuous supply of freshly inoculated adults
during the flight period of the pest. Nevertheless, the ongo-
ing invasion process and the current lack of efficient control
measures against adult Japanese beetles in agricultural and
especially in non-agricultural areas underline the importance
of our study and the need for further research into this versa-
tile and environmentally friendly biocontrol concept.
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