

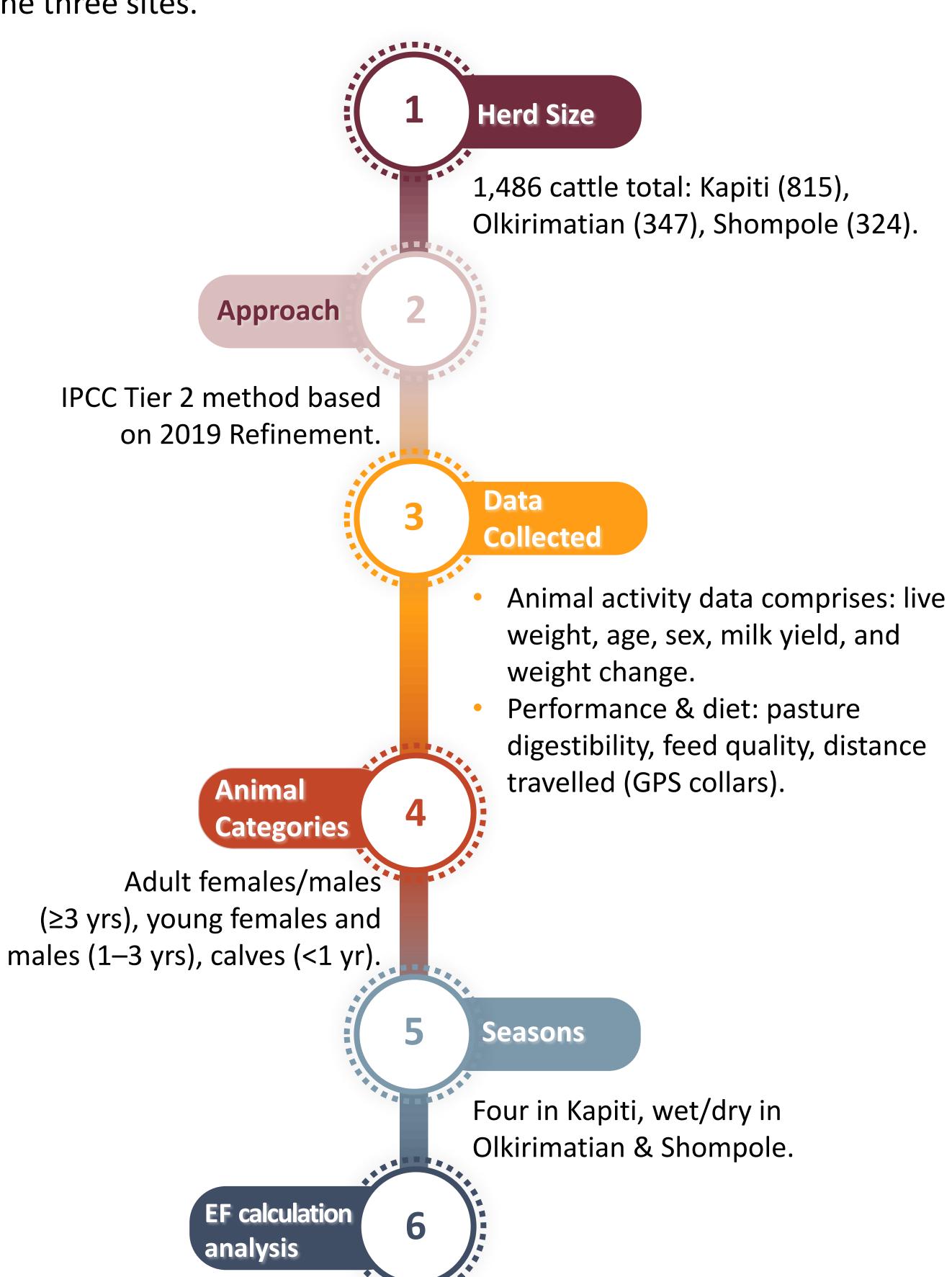
Enteric Methane Emission Factors for Cattle in Pastoral Systems: A Case Study in Kenya

Gurmu, E. B.^{1,2}, Kiprotich, L.¹, Kagai, J.G*.¹, Solomon, A.³, Leitner, S.¹, Marquardt, S.¹, Merbold, L.⁴, Ndungu, P.W.^{1,5}, and Arndt, C.¹

¹International Livestock Research Institute (ILRI), Nairobi, Kenya ² Mekelle University, College of Veterinary Sciences, Ethiopia ³ Jigjiga University, Ethiopia ⁴ Integrative Agroecology Group, Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland ⁵ Food and Agricultural Organization of the United Nations, Rome, Italy

Introduction

- Livestock production in Kenya contributes about 60 % to national GHG emissions, primarily CH₄ from enteric fermentation.
- Accurate estimation of CH₄ emissions is crucial for environmental management and national policy development as well as international reporting under UNFCCC.


Objective:

To develop precise, system-specific methane emission factors (EFs) for rangeland cattle using the IPCC Tier 2 methodology.

Materials & Methods

- Study conducted in Kapiti research station, Olkirimatian, and Shompole group ranches, representing South Central rangelands in Kenya.
- Animal activity data were collected.
- Animal data were distinguished by animal category.
- Data collection covered four seasons in Kapiti and one wet and one dry season in Olkirimatian and Shompole.
- Tier 2 EF_S were calculated for each season and averaged by weight to get the annual Efs.
- Analysis of variance (ANOVA) was used to compare EF among the three sites.

Calculated per season

to get annual EF.

and averaged by weight

Results & Discussion

Table 1. Tier 2 Emission factors (mean \pm SE, kg CH₄ /head/year) for different categories of cattle in the three study locations.

Cattle category/location	Emission factors (kg CH ₄ /head/year)			
	Kapiti	Olkirimatian	Shompole	IPCC 2019 Tier 1
Adult females	90.4° ± 1.4	66.3 ^b ± 1.5	54.5° ± 1.2	74
Lactating	101.0° ± 1.4	66.5 ^b ± 1.5	$63.0^{b} \pm 3.1$	
Non-lactating	68.5° ± 1.4	53.4 ^b ± 5.3	51.1 ^b ± 1.1	
Adult males	82.9° ± 1.6	70.8 ^b ± 2.7	75.4 ^{ab} ± 3.0	79
Young females	54.9° ± 0.8	48.5 ^{ab} ± 2.2	41.1 ^b ± 1.1	46
Young males	56.3° ± 0.9	43.0 ^b ± 1.5	36.4 ^b ± 1.5	46
Calves	39.5° ± 0.6	25.5 ^b ± 1.0	22.0 ^b ± 0.5	31

NB: Rows with different superscripts differ significantly.

- Kapiti had the highest enteric methane emissions, influenced by greater live weight and milk yield.
- Considerable differences between Tier 2 findings and IPCC Tier 1 defaults -> Tier 1 leads to under-or over-estimation of emissions.
- Rangeland systems show large within-country variability.

Conclusion & Implications

- Use of generic, regional EF for Africa masks essential differences across systems and breeds.
- Locally tailored emission factors are critical for effective climate policy and mitigation in Kenyan livestock systems
- National inventories must use system- and breed-specific EFs for accuracy.

Funders:

