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Bacteriophages (phages) play a crucial role in shaping bacterial communities.
Documenting the relationship between phage and bacterial diversity in natural
systems is fundamental to understand eco-evolutionary dynamics that shape
community composition, such as host specificity, emergence of phage resis-
tance and phage-driven microbial diversification. However, our current
understanding of this relationship is still limited, particularly in animal-
associated microbiomes. Here, we analyze paired bacterial and viral metage-
nomics data from the gut microbiota of 49 individual honeybees and recon-
struct the phage-bacteria interaction network by leveraging CRISPR spacer
matches and genome homology. The resulting interaction network displays a
highly modular structure with nested phage-bacteria interactions within each
module. Viral and bacterial alpha and beta diversity are correlated, particularly
at the bacterial strain level and when considering the interaction network.
Overall, our results suggest that the most relevant approach to study phage-
bacteria diversity patterns should rely on strain-level resolution and the
explicit use of the interaction network. This may explain why previous studies
have obtained mixed results when testing for phage-bacteria diversity corre-
lations. Finally, we call for further studies building up on these correlation
patterns to probe the underlying mechanisms by considering both bottom-up
and top-down regulatory mechanisms in microbiome assembly.

Bacteriophages (or phages) are ubiquitous and highly diverse bacterial
viruses. They play crucial roles in shaping bacterial communities, both
at short (ecological) and long (evolutionary) time scales'™. At the
evolutionary scale, phages can exert strong selective pressure on their
hosts, driving bacterial evolution and diversification®™. At the ecolo-
gical scale, phages can modulate the biomass of bacterial populations
through selective predation* ™. For example, it is estimated that 40%
of the bacterial population is killed through phage predation every day
in the ocean®. Moreover, since phages are dependent on their bacterial
hosts for replication, theory predicts that phage diversity should be
controlled by the diversity of the bacterial population, an example of
bottom-up effect'®’, However, empirical evidence supporting this
theory is mixed. While some recent studies report a strong correlation
between viral and bacterial diversity®?, others find only a weak or no

association”” >, Similarly, several studies highlight discrepancies in
viral and bacterial composition across sampling sites, often observing
higher viral than bacterial turnover?**2-%°,

We hypothesize that these discrepancies originate from three
limitations. First, while most studies have characterized bacteria
communities at the species level (e.g., using amplicon sequencing
data), we hypothesize that bacterial strain level is a more adequate
resolution to study bacterial-phage dynamics. This is because of the
high specificity of phages, which can cause viral communities to clo-
sely mirror the strain, but not necessarily the species-level composi-
tion of their hosts®

Second, many ecological surveys have not considered the struc-
ture of the phage-bacteria interaction networks (PBIN), which map
infection relationships between phages and their bacterial hosts (i.e.,
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which phage infects which host). Interaction networks are powerful
tools for analyzing complex ecological systems and have been widely
used in other domains of ecology, such as food webs, plant-pollinator
systems, and microbial communities**. Analyzing the topology of
these networks can reveal non-random structures such as modules,
i.e., clusters of interacting species that are more connected to each
other than to the rest of the network. These modules often represent
groups with shared ecological or evolutionary characteristics, thereby
simplifying community complexity and enabling a better under-
standing of local dynamics and ecological patterns®’. Both theore-
tical and experimental studies show that PBIN are often modular, i.e.,
interactions occur within specific groups of phages and bacteria, with
little overlap among groups>***. Therefore, associations between
phage and bacterial diversity are expected to be stronger within
modules rather than between modules, but this has not been explored
so far.

Third, while a few studies have compared the viral and bacterial
metagenomes of environmental samples, they usually come from
highly complex microbial communities where most phage-host inter-
actions remain unidentified, or classified at broad phylogenetic levels,
making it difficult to reconstruct ecosystem-wide PBINs'**7242,

In this study, we aimed to address these knowledge gaps by
investigating the relationship between phage and bacterial diversity at
different taxonomic levels and with explicit consideration of the PBIN
structure. The western honeybee, Apis mellifera, represents an exciting
model to fill these gaps for three main reasons. First, honeybees pos-
sess specialized gut microbial communities that are important for host
health****, Second, the honeybee gut microbiota is relatively simple, as
it is dominated by only eight highly prevalent bacterial genera, each
comprising several species with many strains per species. Some of
these strains tend to segregate into individual bees, while others seem
to coexist**¢. Third, gut microbiota of honeybees harbor diverse
phages that target all prevalent bacterial genera®>*’~*°, However, the
diversity of these phages has so far been analyzed only using pooled
bee gut samples, limiting our understanding of individual-level varia-
tion. To address this, the next crucial step is to investigate the asso-
ciations between viral and bacterial diversity within the honeybee gut.
Sequencing the entire gut of individual bees provides a comprehensive
view of their microbiome, addressing the limitations of fecal sampling,
which may capture only a partial snapshot of microbial diversity. This
approach enables to overcome common challenges in microbiome
studies, notably those encountered when studying complex mamma-
lian gut communities.

Here, we used paired shotgun metagenomics to sequence both
the viral and bacterial fractions of the gut microbiota of 49 individual
honeybees of A. mellifera. We then inferred an ecosystem-wide inter-
action network linking the core bacterial members of the honeybee gut
microbiota to their viruses. Our analysis revealed that the honeybee
phage-bacteria interaction network (PBIN) is highly modular with a
nested host range within modules. Viral and bacterial diversity within
modules significantly correlated both within and across samples.
Crucially, these correlations were the strongest at the bacterial strain-
level composition within individual bees. These findings underscore
the importance of strain-level interactions in shaping microbial com-
munity dynamics.

Results

Paired shotgun metagenomics recovers a high quantity of viral
and bacterial genomes from the gut of individual honeybees
We sampled a total of 49 adult worker bees from two hives of A.
mellifera at the University of Lausanne (Switzerland) (Supplementary
Data 1). The hindgut of each honeybee was individually homogenized,
and virus-like particles (VLPs) were separated from bacterial and host
cells through a series of centrifugations and filtrations. The recovered
DNA was subjected to shotgun metagenomic sequencing, yielding an

average of 69.40 (+16.88) and 9.22 (+ 3.34) million reads per sample
for the bacterial and viral fractions, respectively (Supplementary
Data 2 and Supplementary Fig. 1). Read mapping corroborated the
enrichment of bacterial and honeybee reads in the bacterial fraction,
while the viral fraction was dominated by sequences matching viral
genomes obtained from the honeybee gut in previous studies Fig. 1A,
B, see “Methods”).

From the bacterial metagenomes, we reconstructed a total of 478
bacterial metagenome-assembled genomes (bMAGs), including 330
high-quality (completeness >90%, contamination <5%) and 148
medium-quality genomes (completeness > 75%, contamination < 10%).
This dataset was further supplemented with 220 reference bacterial
genomes isolated from various bee species (Data S3 and S9). These
bMAGs and isolate genomes were clustered at 95% average nucleotide
identity (ANI) into species-level bacterial Operational Taxonomic Units
(bOTUs). To determine the absence/presence of these bOTU across
our samples, we mapped the bacterial metagenomic reads against a
database containing one representative genome per bOTU. On aver-
age, 80.8% (+ 8.9 SD) of the reads (after filtering out honeybee reads)
mapped against the bacterial database, suggesting that the assembled
MAGs captured most of the diversity present in the bacterial fraction.
We detected 53 bOTU across the 49 individual honeybees. Of these, 36
belonged to the most prevalent genera of the honeybee gut micro-
biota (Gilliamella, Lactobacillus, Bombilactobacillus, Bifidobacterium,
Snodgrassella, Commensalibacter, Frischella, and Bartonella) and con-
tained 85% of the medium- to high-quality bMAGs (Supplementary
Data 3 and Supplementary Fig. 2). Of these, 23 were composed of both
bMAGs and isolate genomes, eight were composed of only bMAGs,
and five were composed of only isolate genomes (Fig. 1C and Sup-
plementary Data 3). Therefore, our dataset captured the majority of
diversity observed in the isolate genomes, while also identifying the
presence of previously undescribed species (Supplementary Data 3).

To assess viral diversity, we first predicted viral contigs from both
the bacterial and viral metagenomes using a combination of different
tools (see “Methods”). This resulted in the detection of 10,021 viral
metagenome-assembled genomes (VMAGs) (Supplementary Data 4).
The bacterial and viral fractions contained a similar number of vMAGs
classified as temperate phages, with 1685 and 1682 vVMAGs, respec-
tively (Supplementary Data 4). In contrast, the viral fraction harbored
more VMAGs classified as virulent phages (4103) compared to the
bacterial fraction (2551; Supplementary Data 4). Notably, the viral
metagenomes were significantly enriched in VLPs, while the bacterial
metagenomes were enriched in prophages (Fig. 1C, D). These obser-
vations corroborate the successful enrichment of viral sequences in
the viral fraction, specifically capturing VLPs rather than viral
sequences integrated into bacterial host genomes.

We clustered the vMAGs at 95% ANI and 85% alignment fraction®
(“Methods”) and obtained 1'069 viral OTUs (vOTUs) having at least one
VMAG of medium-quality or higher according to CheckV (Supple-
mentary Fig. 3). As for the bacterial fraction, to determine the absence/
presence of these vOTU across our samples, we mapped the viral
metagenomic reads against a database containing one representative
genome per vOTU (see “Methods”). This resulted on average in 87.7%
(£8.4 SD) mapped reads per sample with 937 vOTU detected across
the 49 individual bee samples, showing that we captured the vast
majority of the diversity present in the viral metagenomes.

In summary, these results show that it is possible to comprehen-
sively assess the diversity of virus-like particles and gut bacteria from
individual bee guts using shotgun metagenomics.

Phage-bacteria interactions are conserved, highly modular and
nested within modules

To establish a phage-bacteria interaction network (PBIN) for the bee
gut microbiota, we inferred which phages interact with which bacteria
using CRISPR spacer matches and genome homology (Supplementary
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Fig. 1| Reconstruction of bacterial and viral genomes using a paired metage-
nomics approach on 49 individual honeybee gut microbiomes. Source data are
provided as a Source Data file. A Overview of the bioinformatics pipeline used to
analyze the paired metagenomes. B The percentage of reads mapped to the gen-
omes of organisms expected in the bacterial (left) and viral (right) metagenomes
using Kraken2. C Genome sizes of the recovered bMAGs and isolate genomes of
different bacterial species belonging to the core genera of the honeybee gut
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microbiota (rows). D, E Boxplots comparing the number of prophages (D) and
putative VLPs (E) recovered in the viral and bacterial metagenomes (n =49). Box-
plots indicate the median (centre line), the 25th and 75th percentiles (bounds of the
box), and whiskers extending to 1.5 x the interquartile range. All individual data
points, including values outside the whiskers, are shown. Two-sided paired Wil-
coxon signed-rank test p-values are reported on the plot.

Data 5; see “Methods”). Through these two approaches, we linked
75.2% of the vMAGs to at least one bacterial genome Fig. 2B, Supple-
mentary Data 6 and Supplementary Fig. 4D), thereby assigning hosts to
most identified VMAGs. Among the 937 medium- to high-quality vOTU
detected in the 49 individual bees, 616 (66%) were predicted to infect
core honeybee bacteria. An additional 97 vOTUs (10%) were assigned
to non-core bacterial hosts, while 224 (24%) could not be assigned a
host based on our database. vOTUs lacking host predictions or asso-
ciated with non-core bacteria were excluded from downstream ana-
lyses to focus on phage-host interactions within the core gut
community. Notably, Snodgrassella, Frischella, nor Bombilactobacillus
do not harbor CRISPR systems in their genomes. As a result, interac-
tions involving these three genera were inferred solely through gen-
ome homology with prophages integrated in the bacterial genomes,
which might have limited power to detect all interactions. Further-
more, to ensure that CRISPR arrays were not mistakenly assigned to
the wrong bMAG, which would result in wrong bacteria-phage mat-
ches, we compared the number of spacers recovered in the bMAGs
with the ones recovered from isolate genomes. Genomes from dif-
ferent genera had a significantly different number of spacers (Kruskal-
Wallis, p<0.001; Supplementary Fig. 4B). However, no significant
differences were found between bMAGs and isolate genomes of the
same genus (Supplementary Fig. 4C), suggesting accurate CRISPR
array binning and hence phage-bacteria matching,.

Based on the CRISPR spacers and genome homology matches
between bacterial genomes (bMAGS and isolates) and vOTUs, we then
established the PBIN (Fig. 2B). Using a modularity optimization algo-
rithm, we found that the PBIN was highly modular (Q =0.71, where Q
ranges from O to 1, with higher values indicating greater modularity)
and identified nine interaction modules (IMs; see “Methods”).

All IMs corresponded to monophyletic groups of bacteria, mostly
coinciding with the core genera of the bee gut microbiota (Fig. 2A),
suggesting that the modularity in the honeybee PBIN is explained by

bacterial phylogenetic relationships. Only 23 vOTUs exhibited genome
homology with bacteria from more than one genus (Supplementary
Data 6). Of these, 16 vOTUs were associated with Frischella and Gil-
liamella, consistent with their clustering within the same IM (Fig. 2B).
The remaining 7 vOTUs showed genome homology with Frischella,
Gilliamella, and Snodgrassella, which is biologically plausible given the
close phylogenetic relationship among these genera (Fig. 2A). Overall,
this finding suggests that phages with broad cross-genus host ranges
are relatively rare in the honeybee gut virome. A similar observation
was made for the phages. vOTUs from the same IM clustered together
based on the fraction of shared proteins as inferred by vConTACT v2.0
(Fig. 2C and Supplementary Fig. 11; see “Methods”).

Previous studies have shown that bacteria-phage interaction
networks typically exhibit a nested structure, where some phages
interact with a broad range of bacteria, while others are more specific
to only a subset of the bacteria infected by the generalist phages. To
test for nestedness within the IMs of the bee gut microbiota, we
compared the observed nestedness metric value for each IM
(NODF*?) with the nestedness metric values of a null-model matrix
(i.e., randomized matrix, see Methods), revealing that seven (Gillia-
mella Frischella 1, Snodgrassella 3, Bartonella 5, Bartonella 6, Bifido-
bacterium 7, Lactobacillus 8, and Bombilactobacillus 9) of the nine
IMs were significantly nested (Fig. 2D). The Snodgrassella 3 and
Commensalibacter 4 IMs had the fewest phage-bacteria pairs, which
may explain why they did not exhibit statistically significant nest-
edness. To ensure our results were not artefacts of the bMAGs, we
also reconstructed the PBIN using only genomes from isolate bac-
teria, which resulted in the same modular-nested structure (Supple-
mentary Fig. 5).

Collectively, these findings highlight that the interaction network
between phages and bacteria in the bee gut is modular and nested
within modules and that the modularity is driven by congruent genetic
units at the level of both the bacterial hosts and their infecting phages.
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Viral composition mirrors bacterial strain-level composition
across individual bees

If the identified phage-bacteria interaction modules are ecologically
relevant, we expect to observe strong correlations between the
bacterial and viral community structures within individual bees.

First, we noted that total DNA yield in the viral fraction correlated
with the total number of 16S rRNA gene copies detected in the
bacterial fraction using qPCR (Pearson’s R=0.47, p<0.001; Sup-
plementary Fig. 6A), suggesting that viral and bacterial biomass are
linked across bees.
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Next, we documented the composition of the viral and bacterial
communities across bees (beta-diversity). We found that the bacterial
communities were quite similar across individual bees, both at the genus
and the species (i.e., bOTU) level, resulting in low beta-diversity values
Fig. 3A, C; mean genus-level Jaccard distance = 0.11 + 0.15; mean bOTU-
level Jaccard distance =0.29 + 0.16). In contrast, at the strain level we
found high variability: the fraction of single nucleotide variants (SNVs)
per bOTU ranged from 0-7%, while the total fraction of SNVs across the
49 bees was considerably higher, ranging from 1-23% (Fig. 3B). Corre-
spondingly, beta-diversity values based on the presence/absence of
genomes with >99.9% ANI across individual bees were much higher
(mean strain-level Jaccard distance = 0.81+ 0.09) than for the genus or
species level (Fig. 3C; “Methods”). This indicates that individual bees
harbor only a subset of the strains found across bees.

Phages of the major IMs were found in almost all bee samples,
notably phages of the IMs Bifidobacterium 7, Lactobacillus 8, and Gil-
liamella Frischella 1 were consistently present (Supplementary
Fig. 6B). In contrast, at the vOTU-level the viral communities of indi-
vidual bees were highly variable (mean vOTU-level Jaccard distance =
0.91+0.04; Fig. 3D), mirroring the variability found at the bacterial
strain level. Within a given IM, the host range of vOTUs was positively

correlated with their prevalence across bees (Supplementary Fig. 6C).
This pattern suggests that nestedness within IM could reflect broader
distribution patterns, where generalist phages (with more hosts) are
more widespread across bees, while specialists tend to have a more
limited and nested distribution.

To test if the viral and bacterial community compositions are
linked, we used Mantel tests using Jaccard distances. Dissimilarities in
composition between bacteria and phages in individual bees showed a
significant correlation, with the highest correlation observed at the
strain level of bacterial composition, the lowest at the genus level, and
an intermediate correlation at the species level (Fig. 3E, F, Supple-
mentary Fig. 7A and Supplementary Data 10). Critically, we found that
these correlations hold when comparing viruses and phages belonging
to the same IM, but not different IM (Fig. 3G, Supplementary Fig. 7B
and Supplementary Data 7).

Collectively, these results suggest that the bee virome is highly
variable among individual bees, with this variation best explained by
strain level differences in bacterial composition. Moreover, our results
show that the similarity between bacterial strain composition and viral
composition is driven by the modular-nested structure of the PBIN,
suggesting that they present ecologically relevant units.

Nature Communications | (2025)16:9738


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-64706-2

A) Interaction | @ Bartonella 5 ®Bifidobacterium 7 @Gilliamella_Frischella 1 = Snodgrassella 3 B)

module | ®Bartonella 6 ®Bombil. bacillus 9  Lactobacillus 8
T T " p—
20 . 40 P=0.6, p=5.6e-0
S
» R 30
3 3
= g
5 £20
= £
510 g
5 = 510
s
L]
0
0.000 0.005 0.010 0.015
0 Bacterial within-module diversity

C)
pPF0.39, p =10.0062
415
H .
= oo .
2 ° ’ * o 0
o . o o
§1G .| ~ .//’
; [ 4A o [
£ 5
5 e e L
. . o .
o |eo
.
0.004 0.006 0.008 0.010

Bacterial within-module diversity

Fig. 4 | Viral and bacterial alpha diversity correlates at different scales. Source
data are provided as a Source Data file. A Correlation between bacterial within-
module diversity (phylogenetic diversity x average nucleotide diversity) and
within-module viral richness (vOTUs counts). The color-coded dots represent
interaction modules (IMs) where both bacteria and phages were identified in a
minimum of 15 bees. Dots represent mean values across bees, while standard
deviation is represented by the error bars. Pearson’s correlation coefficient (R) and
associated two-sided correlation test p-value are displayed in the plot.
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x average nucleotide diversity) and viral richness for (B) Gilliamella Frischella 1 and
(C) Bifidobacterium 7 IMs. Spearman’s coefficient (rho) and associated two-sided
correlation test p-value are displayed in the plot. D Boxplot of Spearman’s rho
coefficients comparing bacterial average nucleotide diversity and viral richness
correlations when bacteria and phages belong to the same (n=7) or different
(n=42) interaction modules. The dashed line represents the rho when ignoring the
PBIN structure. Boxplots indicate the median (centre line), the 25th and 75th per-
centiles (bounds of the box), and whiskers extending to 1.5 x the interquartile
range. All individual data points, including values outside the whiskers, are shown.

Diversity begets diversity in phage-host interactions

To test if the PBIN is also key to detect correlations between alpha-
diversity (e.g., richness) of phages and bacteria, we carried out corre-
lation analysis both between and within modules. For the between-
module analysis, we developed a metric for each interaction module
(IM) that integrates bacterial species diversity, measured as phyloge-
netic diversity (PD), with average nucleotide diversity at the strain
level. We refer to this combined measure as bacterial within-module
diversity (see “Methods”). This metric reflects the idea that overall
strain diversity is shaped both by the number and phylogenetic
divergence of species (captured by PD) and by the genetic variability
among strains within each species. By multiplying PD by the average
nucleotide diversity of the species in an interaction module (IM), we
obtain a composite measure that approximates the total bacterial
genetic diversity within that IM in a sample. Viral within-module
diversity was expressed in terms of the number of vOTUs per IM per
bee (richness). We found a strong correlation between the two mea-
sures (Pearson’s R = 0.94, p-value = 0.001; Fig. 4A), i.e., on average, IMs
that held more bacterial diversity per bee also encompassed a larger
diversity of phages per bee. This correlation could not be attributed to
differences in sequencing depth among the samples, as we detected
no significant increase in the number of bOTUs and vOTUs in function
of sequencing depth (Supplementary Fig. 8A, B).

For the within-module analysis, we observed that bees with higher
bacterial within-module diversity for a given IM also harbored a greater
number of predating phages. This correlation was statistically sig-
nificant in 4 (Gilliamella Frischella 1, Bartonella S, Bifidobacterium_7,
and Lactobacillus 8) out of 7 IMs (Fig. 4B, C and Supplementary Fig. 9)
where both phages and bacteria were detected in at least 15 samples
(Gilliamella Frischella_1, Snodgrassella 3, Bartonella 5, Bartonella 6,
Bifidobacterium_7, and Lactobacillus 8, Bombilactobacillus 9).

To determine the bacterial genetic resolution at which phage-
bacteria diversity correlations are best detected, we performed mul-
tiple linear regressions at different bacterial genetic resolutions. We
found that average nucleotide diversity consistently exhibited a sig-
nificant positive slope, whereas the slope for species diversity was not
significant (Table 1). This was robust to variation in sequencing depth
(Supplementary Fig. 10). These findings suggest that strain-level
diversity is a stronger predictor of viral richness across bees than
species diversity.

Finally, the relationship between average nucleotide diversity and
viral richness was best explained by the structure of the PBIN. Corre-
lations between average nucleotide diversity and viral richness were
significantly stronger when phages and bacteria came from the same
IM than when considering those from different IMs or when con-
sidering the communities of individual bees as a whole (Fig. 4D and
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Table 1| Correlation between bacterial species diversity or average nucleotide diversity and viral richness

M Species diversity (PD) Strain level diversity
(Average Nucleotide Diversity)
Slope SE z P Slope SE z P
Gilliamella_Frischella 1 2.4271 13.5275 0.1794 0.8576 2124.753 892.6581 2.3803 0.0173
Bartonella_5 18.9329 12.6802 1.4931 0.13541 203.7033 82.1222 2.4805 0.01312
Bifidobacterium_7 14.8004 18.4318 0.803 0.42198 482.9583 191.702 2.5193 0.01176
Lactobacillus 8 18.686 13.841 1.35 0177 919.3219 221.5126 41502 3.3e-05

Results of the linear model show a statistically significant positive effect of average nucleotide diversity, but not species diversity, on viral richness (vOTUs count). Each row reports the effect size of
the two-diversity metrics on viral richness (slope), standard error (SE), as well as the Wald z-statistic for its effect size and the corresponding two-sided p-value.

Supplementary Data 8). These results highlight the importance of
considering the structure of the PBIN to uncover patterns of ecological
diversity.

Discussion

Here, we hypothesized that correlations between phage and bacterial
composition and diversity will be revealed when explicitly considering
the PBIN structure along with the use of adequate bacterial genetic
resolution. Using paired viral and bacterial shotgun metagenomics of
49 gut samples from individual honeybees, we confirm these predic-
tions and highlight the importance of host range and strain level
interactions in shaping microbial community structure. These findings
provide insights into the dynamics governing bacterial and viral
diversity in animal-associated microbial ecosystems.

To identify bacterial hosts for most recovered vMAGs and build
the PBIN, our study leveraged the historical genomic imprints of past
infections using CRISPR spacer-to-protospacer matches and genome
homology. The PBIN modularity was strongly explained by the genetic
makeup of bacteria and phages. In other terms, genetically similar
phages tended to interact with several genetically similar host species,
most often from the same bacterial genus. Indeed, the Commensali-
bacter 4, Bifidobacterium_7, Lactobacillus_8, and Bombilactobacillus 9
IMs encompassed all bacterial species from their respective genera.
These findings are supported by studies where phages of Staphylo-
coccus and Agrobacterium have been shown to possess broad and
modular host ranges, which are best explained by the phylogenetic
relationships among the bacteria®***. Fundamental differences in
membrane receptors, transcription-translation machinery, and gen-
eral metabolism between bacteria are likely explanations for why these
interaction modules are phylogenetically restricted’. However, genus
boundaries did not always define distinct interaction modules (IMs) in
our study: bacteria from two related genera, Frischella and Gilliamella,
belonged to the same IM, while those of the genera Bartonella and
Snodgrassella were associated with two distinct IMs (Fig. 2). Which
factors determine such differences in host range remains to be
understood. However, it is notable that Frischella and Gilliamella are
metabolically similar and colonize the same niche in the bee gut***>*¢,
which may explain their shared phage interactions. Conversely, the
genera Bartonella and Snodgrassella were each divided into two dis-
tinct IMs exhibiting high phylogenetic divergence (Fig. 2A), suggesting
that substantial genetic differences within a genus can lead to the
formation of separate IMs. Future studies on the strains associated
with these IMs will be valuable for elucidating the eco-evolutionary
factors that drive IM affiliation, such as differences in spatial localiza-
tion within the honeybee gut or variations in membrane receptors.

Within modules, phage-bacteria interactions consistently exhib-
ited a nested structure in the bee gut microbiota. This pattern appears
to be a conserved feature of PBINs across ecosystems. It has been
observed in experiments with both E. coli and Vibrio, along with their
corresponding phages, as well as in an ecological survey of Sulfolobus
islandicus and Pseudomona aeruginosa and their phages®?**°78,

Nestedness can arise because of the coevolution between bacteria and
their predatory phages**° and it has been linked to the maintenance of
diversity in environments with multiple bacterial strains and phages
coexisting®. Moreover, we found a positive correlation between phage
host range and prevalence across bees, with generalist phages
(infecting more bacterial strains) being more prevalent than specialist
phages. This aligns with observations from ecological networks in
other systems® >, Whether the observed nestedness is primarily dri-
ven by neutral ecological patterns, by evolutionary coevolutionary
dynamics, or by an interplay of both remains an open question. Given
the experimental tractability of the bee system, future longitudinal
and manipulative studies could help to start disentangling these
contributions.

Intuitively, the high specificity of phage-bacteria interactions
should result in strong correlations between viral and bacterial com-
munity compositions (as reflected by beta-diversity) as well as between
viral and bacterial alpha-diversity”". However, empirical evidence of
these patterns is so far mixed. Viral beta-diversity often exceeds bac-
terial beta-diversity across ecosystems, and correlations between the
two vary in strength and significance??**26-2* Likewise, some of the
same studies report correlations between viral and bacterial alpha-
diversity at the ecosystem level'?', while others find weak or no sig-
nificant relationship™>.

We observed high viral beta-diversity among individual bee guts,
in striking contrast to the well-documented relative stability and con-
servation of the honeybee bacterial community at the genus and
species level®***¢, Conversely, overall levels of bacterial strain and
viral beta-diversity were similar, and beta-diversity values strongly
correlated across pairs of samples at the strain level. Several experi-
mental studies, including one from the bee gut, have shown that
phages can infect several bacterial species, but that they often target
only a subset of strains within a species®***“. We propose that the
stronger strain-level correlation reflects how viral populations interact
with specific sets of strains across species, rather than with distinct
species. In turn, this shows how ecological patterns can be used to infer
the relevant taxonomic resolution at which phage-bacteria interac-
tions occur in natural communities.

Our results also show that interaction modules with more
genetically diverse strains support a more diverse viral community.
Similarly, variation in viral diversity across bees was strongly corre-
lated with variation in strain-level diversity of the bacteria. Notably, this
alpha-diversity correlation weakened when the PBIN structure was
ignored, underscoring the importance of host range in shaping phage-
bacteria dynamics.

Both beta- and alpha-diversity correlations tended to be weaker
for IMs composed of bacterial species lacking CRISPR-Cas systems
(Snodgrassella 2, Snodgrassella 3, Bombilactobacillus 9, and Barto-
nella_6; Supplementary Fig. 7b and Supplementary Fig. 9). This pattern
may reflect an inability to capture the full diversity of their associated
phages, as we were unable to use CRISPR spacer matches to link
phages to their bacterial hosts.
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Based on these findings, we suggest that PBIN reconstruction and
integration in the diversity analysis, along with measuring diversity at
the strain-level, will be key for future studies to unravel universal
diversity patterns in phage-bacteria interactions across the ecosystem.
While not explicitly tested for, our findings also suggest that the type
of phages recovered from bacterial metagenomes and VLP metagen-
omes are largely different, calling for more studies applying paired
bacterial and VLP metagenomic approaches. Moreover, our study was
limited to two hives from the same apiary in Lausanne (Switzerland).
Future research should expand sampling to more hives across diverse
geographic locations, both to validate our findings and to explore
additional factors that may influence the topology of the PBIN and the
diversity correlations, such as spatial proximity between bacterial
strains and phages.

Documenting correlations in diversity between phage and bac-
teria across systems is the first step to establish broad and consistent
ecological patterns in nature. In turn, these patterns provide the
foundation for investigating the eco-evolutionary dynamics of phage-
host interactions and their impact on ecosystems and host health.
However, correlations can emerge from multiple mechanisms, and the
next step will be to decipher whether the reported correlations emerge
because of the bottom-up effect (bacteria diversity driving phage
diversity), the top-down effect (phage diversity driving bacteria
diversity), or a mix of both.

If bacterial diversity drives phage diversity, it remains to be
determined what influences different strains to co-exist or segregate
into individual hosts. In the case of the bee gut microbiota, differences
in strain-level diversity may be due to variation in diet and hence the
physicochemical gut environment, e.g., between forager and nurse
bees®. Another important process may be priority effects, where the
order and timing of bacterial colonization in newly emerged bees,
rather than niche or fitness differences - create individualized strain
profiles**’. Alternatively, phages may exert top-down control by
preventing competitive exclusion among bacteria through mechan-
isms like kill-the-winner, which balance competition and promote
coexistence of several strains in the same gut'®°°%%, Similarly, phages
have been shown to have a strong impact on the assembly of microbial
communities on particulate organic matter in the sea®. Thus, phage
predation in the early stages of bee gut colonization may significantly
influence which strains establish within a given bee. Top-down and
bottom-up mechanisms are not mutually exclusive and may jointly
maintain diversity within microbial communities. However, there is a
notable lack of studies that experimentally manipulate both top-down
(i.e., phage predation) and bottom-up (e.g., nutrient availability) to
quantify their individual and combined effects on community
diversity'*’®”". Understanding the relative contribution of these two
effects is essential to critically evaluate the role of phages in shaping
host-associated microbiomes and our study highlights possible eco-
logical drivers (strain-specificity and structure of interactions) that
should be tested in future experiments. We suggest that this experi-
mental work will be essential to disentangle who drives whom. Due to
its experimental tractability, the bee microbiota offers not only a sui-
table model to test these alternative scenarios, but also to assess how
phages impact the bacterial community composition in the gut of
these important pollinator species and hence provide insights into bee
health.

Methods

Sampling & DNA extraction

We collected 49 adult female worker bees of A. mellifera from 2 hives in
Lausanne (Switzerland) in spring 2021 (Supplementary Data 1). The
bees were anesthetized using CO, and put on ice. Then, they were
individually dissected to extract the entire hindgut (pylorus, ileum,
rectum). Each hindgut was placed in a tube containing beads
(0.75-1mm glass beads; Carl Roth) and sterile SM buffer (200 mM

NaCl, 10 mM MgS04, 50 mM Tris-HCI, pH 7.5, 0.01% gelatin). Samples
were homogenized at 6 m/s for 40 sec in a Fast-Prep24 5G homo-
genizer (MP Biomedicals). Following centrifugation (177000 xg for
3 min at 4 °C), the pellet was stored at — 20 °C for later DNA extraction
of the bacterial fraction. The supernatant was recovered and sequen-
tially filtered through a 0.45 pm cellulose acetate filter and a 0.22 pm
centrifuge tube filter (Corning Costar Spin-x). Then, the filtrate was
treated with DNase I and RNase A (Sigma-Aldrich) for 1 h30 min at37 °C
to degrade free nucleic acids not protected by capsids. The nucleases
were inhibited using a lysis buffer (EDTA 0.5 mM, Tris 1M and ddH20)
and incubation at 65°C for 10 min. Next, VLPs were lysed by one
incubation with 75 pL SDS 10% and 12.5 pL proteinase K (20 mg/mL).

The pellets from the bacterial fraction were thawed at room
temperature. Then, bacterial cells were resuspended in 1X PBS, 2X
CTAB, 2 pL 8-mercaptoethanol, and 20 pL proteinase K (20 mg/mL).
Next, 0.1 mm Zirkonia/Silica beads were added to the solution and cells
were lysed at 6 m/s for 40 sec in a Fast-Prep24 5 G homogenizer (MP
Biomedicals) followed by incubation at 56 °C for 1 h.

Both DNA from the bacterial and phage fractions was extracted
with a phenol/chloroform/isoamyl alcohol protocol (Sigma-Aldrich),
followed by precipitation with 70% ETOH and linear polyacrylamide
(Sigma-Aldrich) overnight, as well as washings with EtOH. The DNA was
finally eluted in nuclease-free water and submitted to a further clean-
up using DNA-specific magnetic beads (clean NGS).

The total 16S rRNA gene copy number for the bacterial fraction
was assessed using qPCR with a set of universal 16 primers (F:
AGGATTAGATACCCTGGTAGTCC; R: YCGTACTCCCCAGGCGG) gen-
erated in KeSnerova et al., 2017.

Shotgun metagenomics sequencing

Libraries were prepared with the Illumina Nextera Flex library kit
(Illumina) with unique dual indices (UDI) and sequenced on an Illumina
NovaSeq 6000 instrument (PE150) at the Genomic Technologies
Facility (GTF) of the University of Lausanne. The quality of the reads
was assessed with FastQC (v0.11.4, Babraham Institute) and subse-
quently trimmed and filtered to remove low quality sequences and
short reads using the tool Trimmomatic v0.35"” with settings PE
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 LEADING:28 TRAILING:28
MINLEN:40. Following low-quality reads removal, reads mapping to
the A. mellifera and the human genome were removed using bbsplit
v38.187.

Bacterial and viral fraction enrichment validation

To initially assess the enrichment of viral sequences in viral versus
bacterial metagenomes, raw shotgun reads from both fractions were
mapped against a custom Kraken2 database. This database included
bacterial and viral RefSeq genomes libraries, phage genomes from
Bonilla-Rosso et al. (2020), and the Apis mellifera Amel_HAv3.1 refer-
ence genome’*”, The relative abundances of these genomes were
determined based on the proportion of reads mapped to each group.

Bacterial Isolate Genomes Recovery, Sequencing and Assembly
A total of 220 bacterial isolate genomes were used in this study. Of
these, 211 genomes were retrieved from an in-house database con-
sisting of previously published genomes from various sources (Sup-
plementary Data 9). Their taxonomic classification follows Baud et al.
(2023), based on the same genome sequences.

The remaining 9 genomes were newly assembled or reassembled
for this study. Specifically, isolates ESL0198, ESL0200, and ESLO170
had previously available Illumina-assembled genomes on NCBI (Sup-
plementary Data 9); we improved these assemblies by incorporating
additional Nanopore long-read data. The other six isolates - ESLO819,
ESL0820, ESL0822, ESL0824, ESL0827 and ESL0825 - were cultured
from A. mellifera gut homogenates on De Man, Rogosa and Sharpe
(MRS) agar supplemented with 2% (w/v) fructose and 0.2% (w/v) L-
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cysteine-HCI at 37 °C in anaerobic conditions. Their genome assem-
blies were generated de novo for this study.

All nine genomes were sequenced using a combination of lllumina
MiSeq 100 bp paired-end (PE) reads and Oxford Nanopore MinlON
MKIC long-reads. Illumina libraries were prepared using Nextera XT
DNA library preparation at the Genomic Technologies Facility (GTF) of
the University of Lausanne. Nanopore sequencing was conducted at
the Institute for Infectious Diseases (Bern, Switzerland).

Nanopore reads were filtered for quality and length using Filtlong
v0.2.1 (github repo: https://github.com/rrwick/Filtlong) with para-
meters --min_length 1000 --min_mean_q 10 -length_weight 10 --tar-
get bases 400000000. Illumina reads were trimmed and quality-
filtered using Trimmomatic v0.35 with settings PE ILLUMINA-
CLIP:NexteraPE-PE.fa:2:30:10 LEADING:28 TRAILING:28 MINLEN:40.

Long-read assemblies were generated using Flye v2.9.1°. These
assemblies were first polished by two rounds of mapping the Nano-
pore reads back to the assembly graph using GraphMap v0.5.2”, fol-
lowed of error correction with Racon v1.5.07%. Nanopre reads polishing
was repeated for 2 iterations. Subsequently, three rounds of polishing
with Illumina reads were performed using Bowtie2 v2.4.2° for map-
ping and Pilon v1.22%° for error correction.

The final assemblies of these nine genomes (covering multiple
Bifidobacterium strains) are available on the NCBI genome portal under
the following BioSamples (Supplementary Data 9): SAMN49894004,
SAMN49894003, SAMN49894002, SAMN49894001, SAMN498
94000, SAMN49893999, SAMN49893998, SAMN49893997, SAMN4
9893996.

Bacterial fraction assembly, binning and de-replication

Shotgun reads from the bacterial fraction were assembled using
MetaSpades v3.15%. Then, contigs <1kb were removed and the
remaining contigs were binned independently for each sample into
bacterial MAGs (bMAGs) using metabat2 v2.15*2. The quality of the
bMAGs was estimated using CheckM v1.0.13%* and bMAGs with >75%
completeness and <10% contamination were retained for subsequent
analysis. The bMAGs and 220 bacterial genomes (Supplementary Data 3,
9) obtained from isolates from the gut of A. mellifera and other bee
species®® were clustered at 95% average nucleotide identity (ANI) into
bacterial OTUs (bOTUs) using dRep v3.4.0%. The best genome for each
bOTU according to dRep was designated as representative bMAGs.
bMAGs were classified as the same species as the isolate genomes within
the same bOTU, based on the taxonomical classification from Baud et al.
(2023) (Supplementary Data 3, 9). If no isolate genome clustered with
the bMAG, taxonomical classification was performed using GTDB-Tk
v2.1.1% with the associated database release r207.

Viral contigs identification and de-replication

Shotgun reads from the viral fraction were assembled using MetaS-
pades and MetaViralSpades v3.15%.. The contigs resulting from both
assemblers where combined, and viral contigs were predicted using
VIBRANT v1.2.1%¢, Virsorter2 v2.2.3%, and viralVerify v1.1%. For each
tool, contigs were assigned a confidence score from 1 to 3, where 3
denotes maximum confidence of the contig’s viral origin. For contigs
predicted by virsorter2, if its score were < 0.5, the contigs would get a
score of 1; if its score were between 0.5 and 0.8, the contig would get a
score of 2; otherwise, the contig would get a score of 3. For the contigs
predicted by VIBRANT, if it were classified as “low quality draft”, the
contigs would get a score 1; if it was classified as “medium quality
draft”, the contigs would get a score of 2; otherwise, it would get a
score of 3. For the contigs predicted by viralVerify, if its score were <5,
the contigs would get a score of 1; if its score were between 5 and 10,
the contig would get a score of 2; otherwise, the contig would get a
score of 3. When a contig was not identified by a tool, it would get a
score of O for that tool. Finally, the contigs’ scores were averaged, and
the result was rounded to the closest integer to get a final score.

For each sample, contigs with a score >1 (identified at least with
low confidence by all 3 tools) were retained. vMAGs of size <10 kb or
kmer frequency >1.1 (contamination) were removed. The remaining
VMAGs were quality checked using CheckV v1.0.1%°. vYMAGs classified as
low-quality or higher were retained. In addition, vMAGs with contigs
identified as ‘lysogenic’ by VIBRANT or as ‘proviruses’ by CheckV were
classified as temperate, while the rest were classified as putative lytic.

FastANI v1.33°° was used for all-vs-all VMAGs ANI and alignment
fraction (AF) comparisons. Finally, vVMAGs were clustered into viral
OTUs (vOTUs) at 85% AF and 95% ANI*' using dRep v3.4.0%. Two
rounds of clustering were conducted: (1) average linkage clustering to
create a database of phage contigs for read mapping, and (2) single
linkage clustering to define the final set of vOTUs. For each vOTU, the
longest VMAG with the highest CheckV quality score was chosen as the
representative sequence. Only vOTUs containing at least one VMAG of
quality medium or higher were retained for subsequent analyses.

CRISPR-Cas analysis, spacer extraction, protospacer-to-spacer
matching and genome homology inference

CRISPR-Cas loci were identified, and cas genes were subtyped from all
bMAGs and isolate genomes using CRISPRCasFinder v4.2.20”" and
DefenseFinder v1.1.1%, respectively. Only spacers from arrays with
evidence level 4 according to CRISPRCasFinder were extracted for
subsequent analysis. Moreover, to reduce arrays binned in the wrong
bMAGs, spacers identified in bMAGs where <10% of the bMAGs of the
same bOTU contained a CRISPR-Cas locus were discarded. The
recovered spacers were added to the CrisprOpenDB spacer database
to increase the number of spacers available for protospacer-to-spacer
matching. Alignments of spacers against medium- to complete-quality
VMAGs were performed using blastn “blastn-short”. Only matches with
full query alignment and a maximum of 2 mismatches were considered
as spacer-to-protospacer matches. Genome homology between
VMAGs and bMAGs was inferred using FastANI v1.33°°. Only matches
with >90% ANI and >50% AF were considered. Moreover, matches
with >80% alignment fraction and >90% ANI were considered inte-
grated prophages, and the vMAGs were classified as lysogenic (as in
Johansen et al.”®).

Phage-bacteria interaction network analysis

A binary bipartite interaction network of medium- to high-quality
vOTUs, as well as bMAGs and genomes from isolates of honeybee-
associated genera was built in function of the historical interaction
inferred through protospacer-to-spacer matching and genome
homology inference. In addition, an analogous network was built in the
same fashion but using only genomes from isolates.

Interaction modules (IMs) within the bipartite network were
searched through the Label Propagation and Bipartite Recursively
Induced Modules (LP-BRIM) algorithm’* using the Ipbrim v1 R package.
This algorithm searches for the configuration of a bipartite network
that maximizes its modularity (0 <Q<1, where a value of 1 denotes
fully modular). Bacterial genomes were assigned to the modules to
which most of the members of the same bOTU were assigned, and so
were also the corresponding bOTUs. Genomes assigned to the bOTU
Gilliamella sp. cl-30 1 were initially placed in an IM by themselves by
the Ipbrim algorithm. However, given that this bOTU comprised highly
similar genomes (median ANI=99.9%) and shared vOTUs with other
Gilliamella bOTUs, we manually reassigned this bOTU to the Gillia-
mella Frischella 1 IM. Similarly, genomes assigned to the bOTU Bifi-
dobacterium coryneforme cl.—40_1 were initially placed in a separate IM.
However, while one vOTU (vOTU_863) was assigned to this IM, all other
vOTUs predicted to infect Bifidobacterium coryneforme cl.-40_1 were
associated with the Bifidobacterium_7 IM. Consequently, we manually
reassigned this bOTU to the Bifidobacterium_7 IM.

The nestedness of each module with more than one bacterial
genome was measured using the “Nestedness metric based on Overlap
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and Decreasing Fill” (NODF) metric®’. All results were statistically tes-
ted against 1000 probabilistic degree null model networks that were
generated as in Flores et al. (2013). These null model networks had the
same number of rows and columns as the original module, as well as
the same overall and marginal connections on average.

Bacterial phylogeny

Gene calling for all bMAGs and isolate genomes was performed using
Prodigal v2.6.3%. Then, OrthoFinder v2.2.7°° -M msa option was used to
compute a trimmed multiple sequence alignment (MSA) of 101 shared
orthogroups protein sequences. Finally, a phylogeny of all bLMAGs and
isolated genomes was inferred from the trimmed MSA using IQtree
v2.3.6 (Minh et al.””; -m LG + F + 1+ G4 -bb 1000).

Viral protein sharedness network

Gene calling for all vYMAGs was performed using Prodigal v2.6.3%.
Medium- to high-quality vOTU were clustered according to their pro-
teomes using vConTACT v2.0%. The resulting network was plotted
using a custom R script.

To assess whether vOTU from the same IM tended to share similar
genomic attributes, a previously described algorithm was used***.
Briefly, for each node in the vConTACT network, a local neighborhood
was defined. This neighborhood included all nodes that can be reached
directly or indirectly through paths that fall within the first percentile
of all pairwise path lengths between the focal node and all other nodes.
Finally, the IM affiliations of all the nodes in the local neighborhood
were compared to those of the focal node.

Community profiling and SNV calling

Reads from the bacterial and viral fractions were mapped against a
combined representative bOTUs database and a combined repre-
sentative vOTUs database, respectively. The mapping was performed
using Bowtie2 v2.5.1° in sensitive mode. Community profiling and
read-mapping-based SNV calling were conducted using inStrain
v2.5.1'° in database mode. Only bOTUs with median sequencing cov-
erage >5x and breadth (proportion of bases covered by at least one
read) > 0.5 were considered for subsequent analyses. Similarly, only
vOTUs with breadth > 0.7 were retained. Relative abundances were
determined in function of the genome average coverage. For each
sample, read-mapping-based nucleotide diversity for each position
covered by at least 5 reads was calculated by inStrain'® as follows:

m=1- (f)’ +£1)’ +£© + f(©°) M

where f(4), f(T), f(G) and f(C) denote the frequency of the four bases at
the given position. Overall nucleotide diversity for each bOTUs was
calculated by averaging the nucleotide diversity across the genome in
each sample.

For each IM, Phylogenetic Diversity (PD) in a sample was calcu-
lated as the sum of the total phylogenetic branch length of all the
bOTU present in that sample. This calculation was performed using the
pd() function of the picante v1.8.2 R package. In each sample, bacterial
within-module diversity for each IM was calculated as the average
nucleotide diversity of all the bOTU in the given sample, multiplied by
the PD. This measure was devised as a diversity measure that considers
both species- and strain-level diversity.

Community dissimilarity analysis

Jaccard dissimilarity matrices based on the presence/absence of gen-
era, bOTUs, or vOTUs in each sample were computed using the vegan
v2.6-4 R package. Only viral and bacterial genomes assigned to the
core honeybee genera were considered for this computation. More-
over, inStrain'® was used to calculate bacterial strain-level distances

among samples. Briefly, the inStrain compare command was utilized to
determine the population Average Nucleotide Identity (popANI; Olm
et al., 2021) for each bOTU across samples. POpANI serves as a metric
for ANI that considers both major and minor alleles within the same
genome across the samples. Consequently, when comparing two
samples, a higher popANI for a given bOTU indicates a greater simi-
larity in the set of bacterial strains represented by that bOTU in these
two samples. To quantify the differences in strain-level composition
for a given bOTU between pairs of samples, a threshold of 99.9%
popANI was used to determine the sharedness or not of the set of
strains between two samples. Strain-level Jaccard distance between
two samples was calculated as the fraction of bOTU not shared at the
strain level between two samples. This resulted in a global distance that
reflects strain-level dissimilarity across samples. Mantel tests between
dissimilarity matrices were performed with the mantel() function of
the vegan R package with 10,000 permutations. To ensure that the
observed correlation between bacterial and viral dissimilarity matrices
at the 99.9% popANI threshold reflected a broader trend, we repeated
the analysis using a range of thresholds (96-99.99%) for defining
strain-level similarity (Supplementary Fig. 7a).

To test the effect of the PBIN structure on community assembly,
bacterial strain level and vOTU Jaccard dissimilarity matrix were
computed by considering only phages and bacteria that belonged to a
given IM. Then, the correlation between dissimilarity metrics were
tested as through a Mantel test mentioned above. P-values were fdr
adjusted for multiple testing. Only IMs where phages and bacteria were
identified in at least 15 bees were considered for these analyses.

Diversity correlations

Correlations between the various measurements of bOTU diversity
and viral richness were tested with the cor.test() function of the stats R
package or the stat_cor() function of the ggpubr v0.6.0 R package.
Only IMs where phages and bacteria were identified in at least 15 bees
were considered for these analyses.

To assess whether species PD or average nucleotide diversity
explained viral richness variation across bees, the slope of the effect of
PD and average nucleotide diversity on viral richness was inferred
through a multiple robust linear model using the rim(viral richness ~
PD + average nucleotide div) function of the MASS v7.3-60 R package.
Significance of the slope with robust standard errors to account for
heteroskedasticity of the data was tested using the coeftest() function
of the Imtest v0.9 4 R package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw metagenomic data has been deposited to the NCBI Sequence Read
Archive (SRA) under the Project ID PRJNA1232403. Newly sequenced
bacterial genomes have been deposited to the NCBI genome portal
under the Project ID PRJNA1232403 as the following BioSamples:
SAMN49894004, SAMN49894003, SAMN49894002, SAMN49894001,
SAMN49894000, SAMN49893999, SAMN49893998, SAMN49893997,
SAMN49893996. The collection of bacterial metagenome-assembled
genomes (bMAGs), isolate genomes, viral MAGs (VMAGs), as well as
scripts, intermediate data files, and tables used to generate the figures
in this manuscript are available in the Zenodo repository https://doi.
org/10.5281/zenodo.16744037.

Code availability

Code and details of parameters and software used are available at
https://github.com/MalickNdiye/PHOSTER archived at https://doi.org/
10.5281/zenodo.17087213'",
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