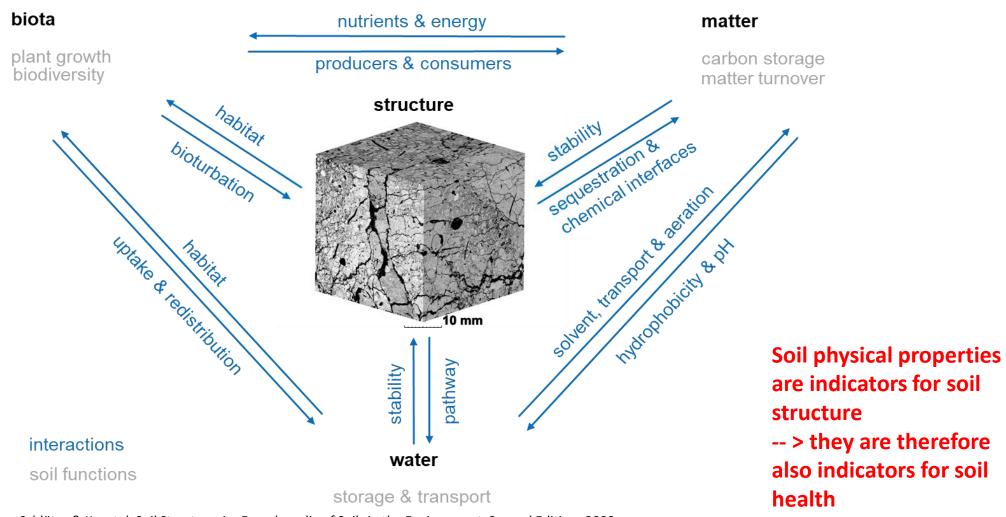


The need for and challenges in standardizing soil physical analysis


John Koestel

Agroscope, SWITZERLAND johannes.koestel@agroscope.admin.ch

Soil physical properties are indicaotrs for soil structure

Schlüter & Koestel, Soil Structure, in: Encyclopedia of Soils in the Environment, Second Edition, 2023

Texture

Bulk density

Total porosity / solid phase density

Water retention curve

Saturated hydraulic conductivity

Hydraulic conductivity curve

Solute/colloid transport and diffusion properties

Gas conductivity

Gas diffusivity

Shrinkage curve

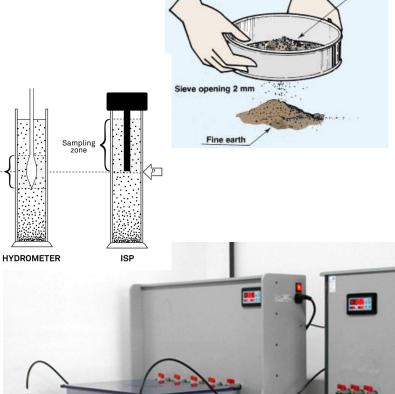
Uni-axial compressibility

Shear strength

Penetration resistance

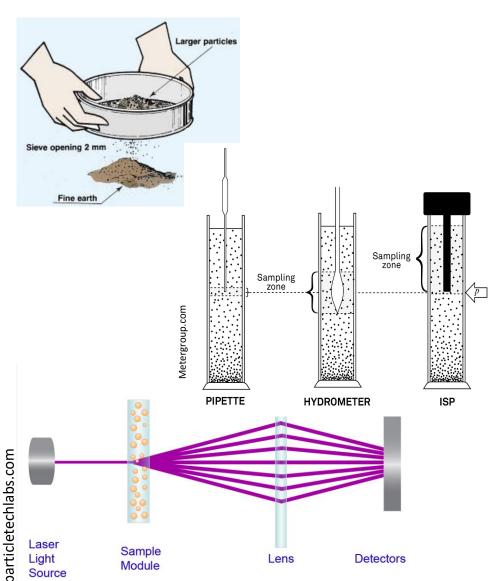
Aggregate size distribution

X-ray tomography


Thermal properties

Sampling

ecoTech.de



johannes.koestel@agroscope.admin.ch

Texture						
Bulk density						
Total porosity / solid phase density						
Water retention curve						
Saturated hydraulic conductivity						
Hydraulic conductivity curve						
Solute/colloid transport and diffusion proper	ties					
Gas conductivity						
Gas diffusivity						
Shrinkage curve						
Uni-axial compressibility						
Shear strength						
Penetration resistance						
Aggregate size distribution						
X-ray tomography						
Thermal properties						

«established» methods
wo stablish a du parath a da but paux parath a da availabl
«established» methods, but new methods availabl
new method becoming established
method not fully established for diverse reasons
status unclear to the presenter

Texture

Standard so far: sieving and pipette method

New methods: suspension pressure method (e.g. PARIO)

laser diffraction

Advantage of the new methods is that they yield a continuous particle size distribution

Results of new methods have been reported to differ from standard methods (e.g. Messing et al., 2024, Variability and compatibility in determining soil particle size distribution by sieving, sedimentation and laser diffraction methods, Soil and Tillage Research, Volume 238, 2024, 105987.)

Pitfalls:

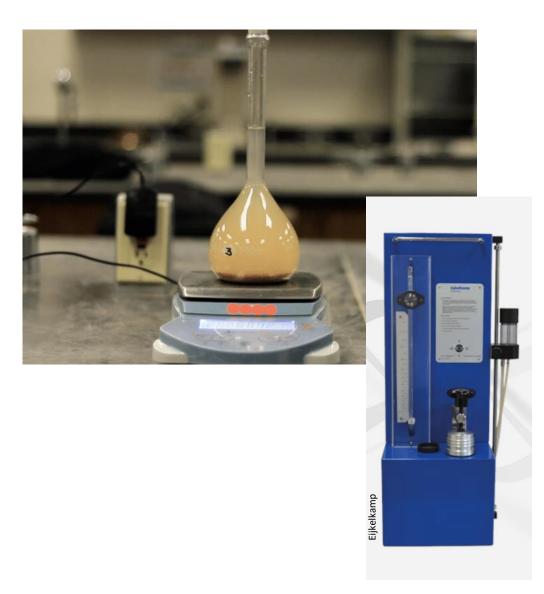
- sample pre-treatment is fundamental (removing SOM, dispersing clay aggregates)

(e.g. Jensen et al., 2017. Soil texture analysis revisited: Removal of organic matter matters more than ever. PLoS ONE 12(5): e0178039)

Bulk density

Standard: undisturbed samples are taken in sampling

rings with defined volume;


soil is trimmed, then dried at 105 °C

Pitfalls:

- bulk density depends on the soil wetness at sampling time due to swelling and shrinking (the drier the soil at sampling, the larger bulk density)
- bulk density depends on consolidation level of soil: soil compaction when sampling due to friction at cylinder walls
- there is a scale effect: very small soil samples have larger bulk densities
- how to deal with gravel? Needs to be reported, but is not always

•••

Total porosity

Standard: measure the solid phase density using

pycnometry; together with bulk

density derive porosity

Alternative: derive porosity directly on oven-dried

undisturbed soil using gas pycnometry

Pitfalls:


- if bulk density is used, errors from its measurement will be propagated

- water pycnometry is cumbersome

- air pycnometry is reported to be biased; use of He instead of air may be a way out

(in research studies, solid phase density is often not measured but appraised by assuming specific mineral and organic phase densities)

Water retention curve

Standard: sandbed / suction plates combined

with pressure plates

New method: evaporation method (e.g. HYPROP) and

dewpoint method (e.g. WP4)

New method have advantage of also providing unsaturated hydraulic conductivity, more data points in the dry range and decisive shortening of measurement time

Pitfalls (sandbed/suction and pressure plates):

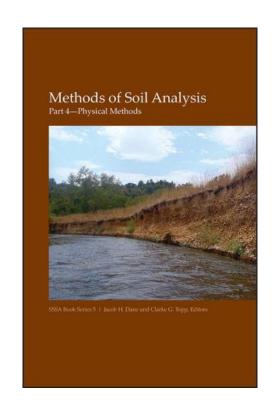
- sample saturation method important
- hydraulic contact needs to be established
- different approaches exist for preparing the sample for the wilting point measurement
- measurement takes months

• • •

Let's stop at this point and move on to ...

Guidelines for standard measurements of soil physical properties

National reference methods — are still in use and excacerbate comparability


it appears that labs are reluctant to adapt new SOPs fear of loosing comparability of time series? fear of a lot of extra work? financial limitations?

National guidelines with international relevance

-

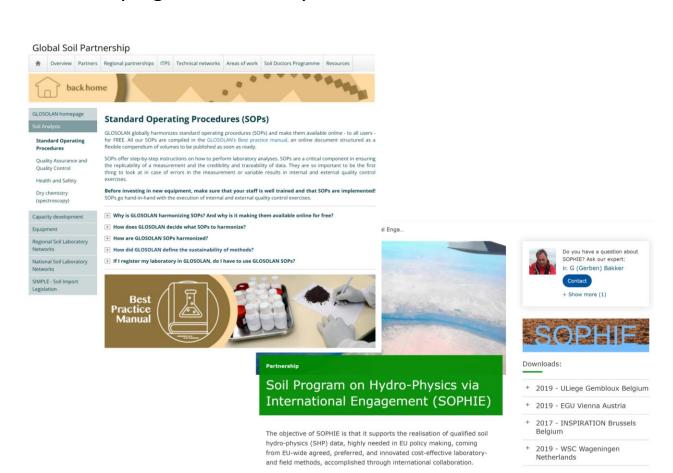
e.g. Methods of Soil Analysis

Standard procedures are described but allow different approaches and contain a lot of room for interpretations

What written SOPs are there at the moment?

Contacting a few European soil physics research labs revealed

that surprisingly often the exact SOPs for soil physical measurements only exists in the mind of the lab technician...


-- > defining global SOPs for soil physical measurments is definitely a good and timely endeavour.

However, there are some SOPs existing, e.g.

Stolte, J. (ed.), 1997. Manual for soil physical measurements; version 3. Wageningen, DLO-Staring Centre. Technisch Document/Technical Document 37. 77 pp.

Sommer, M. 2024. SOPs for Agroscope Soil Physics Lab. Unpublished.

What about commercial labs?

Are there ring tests?

Ring tests for soil physical measurements have only been conducted occasionally.

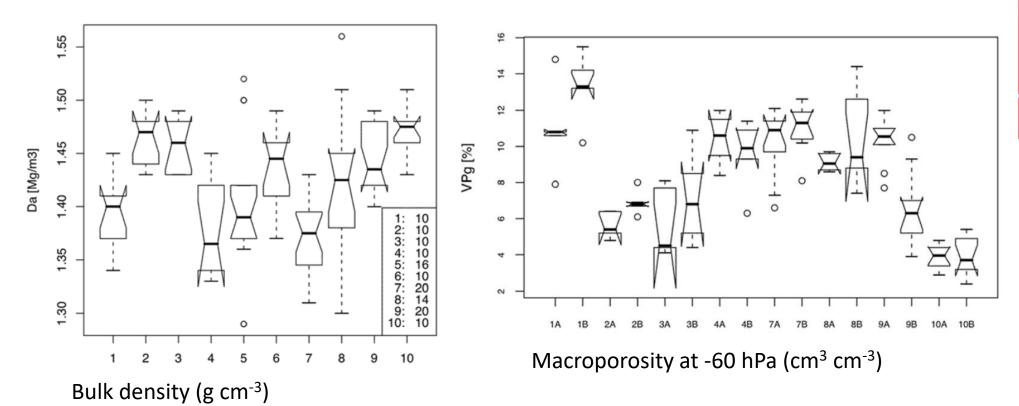
One difficulty is the lack of suitable standard samples for which the correct result is known.

Often, the best option is to sample a specific site at one point of time in a randomized pattern and distribute the samples to the participating labs.

European ring test for forest soils on water retention

25 labs, 5 undisturbed soil samples per lab, bulk density and water retention curve

saturated water content (cm³ cm⁻³)

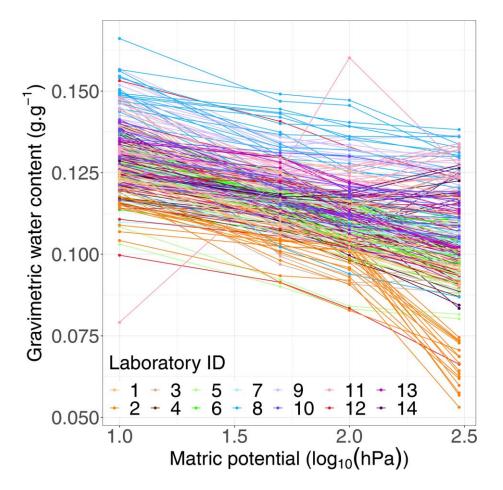


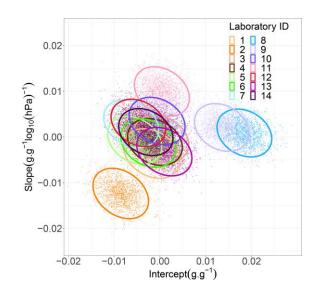
Cools et al., 2010

Parameter	CV(%)	% Between lab va	ariance % W	% Within lab variance	
VWC0	6.4	77		23	
VWC-1	7.5	78		22	
VWC-5	9.5	73		27	
VWC-10	8.2	59		41	
VWC-33	8.7	80		20	
VWC-100	10.0	83		17	
VWC-250	19.1	90		10	
VWC-1500	42.3	98		2	
dryBD	4.5	36		64	

Swiss ring test on bulk density and soil water retention

10 labs, 10 undisturbed soil samples per lab, impact of sampling approach, sample preparation and impact of lab investigated





Buchter et al., 2015

Authors conclude: Large inter-lab variation is not due to sampling technique, sample size or sample preparation but it is due to different implementations of the measurement method!

14 labs, 6 artificial, soil-like porous materials (porous glass beads and cement) per lab, water retention curve between -100 and -330 hPa, each sample was measured three times

SOIL, 9, 365–379, 2023 https://doi.org/10.5194/soil-9-365-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison

njamin Guillaume. Hannac Aroul Boukblda', Gerben Bakker', Andrzej Bieganowski', ses Brostaux', Min Cornelie', Wollgang Durner', Christian Hartmann', Bo V. Iversen', eu Javaux', Joachim Ingwersen', Krzystof Lamorski', Axel Lamparter', Andris Makol'o, Jaria Mingus Gornoi', Ingmar Messing', Attila Nemer', Alexandre Dunes-Bordecharl, tine van der Ploeg', Tobias Karl David Weber'', Lutz Weihermüller'i, Joost Weilens', and

¹Uliège – Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Passage des Déportés 2 5030 Gembloux, Belgium

Instrumentation, Moyens Analytiques, observatoire en Géophysique et Océanographie (UAR IMAC Institut de Recherche pour le Développement (IRD), 13002 Marseille, France ³Wageningen University and Research, Wageningen, Netherlands ⁴Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland

"Technische Universität Bramschweig, Bentamen

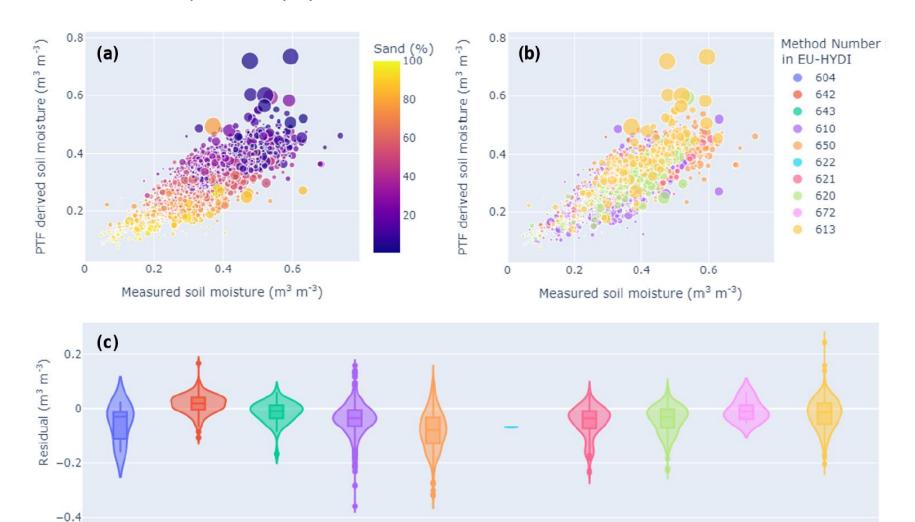
"Technische Universität Bramschweig, Bramschweig, Germany
"Department of Agroceologs, Aarlust University, Aarlus, Denmark
"UCLOuvais, Earlth and Life Institue, Louvain I-a-Neure, Belgium
"Federal Institute for Geosciences and Natural Resources, Hanover, Germany
ment of Soil Physics and Waler Management, Institute for Soil Sciences, Cetter for Agric

¹¹ Swedish University of Agricultural Sciences, Uppsala, Sweden ¹²Norwegian Institute of Bioeconomy Research, As, Norway ¹³Institute of Soil Science and Land Evaluation, University of Hohenheim, Hohenheim, Germany ¹⁴Agrosphere Institute IBG-3, Forschungszentrum Jülich GmbH, Jülich, Germany

Correspondence: Benjamin Guillaume (benjamin.guillaume@uliege.l

Abstract. The soil water attention curve (SWRC) is a key soil property required for predicting basic hydrological processes. The SWRC is often obtained in the laboratory with non-harmonized methods. Moreover, procedures associated with each method are not standardized. This can induce a lack of reproducibility between laboratories using different methods and procedures or using the same methods with different procedures. The goal of this study was to estimate the inter- and intralaboratory variability of the measurement of the wet part (from 10 to 3001Pa) of the SWRC. An interlaboratory comparison was carried out between 14 laboratories, using artificially constructed, promos reference samples that were transferred between laboratories according

Guillaume et al., 2023


Authors conclude that differences were **not** due to transportation or measurement repetition

but was due to different packing and measurement implementations at the individual labs

All samples should have identical water retention properties

Extra: Meta-analyses of EU-HYDI database

Data from 29 European soil physics research labs

Water content at h = -100 hPaEach color represent a different sample size or measurement method

https://doi.org/10.5194/hess-28-3391-2024 © Author(s) 2024. This work is distributed under

Hydro-pedotransfer functions: a roadmap for future development

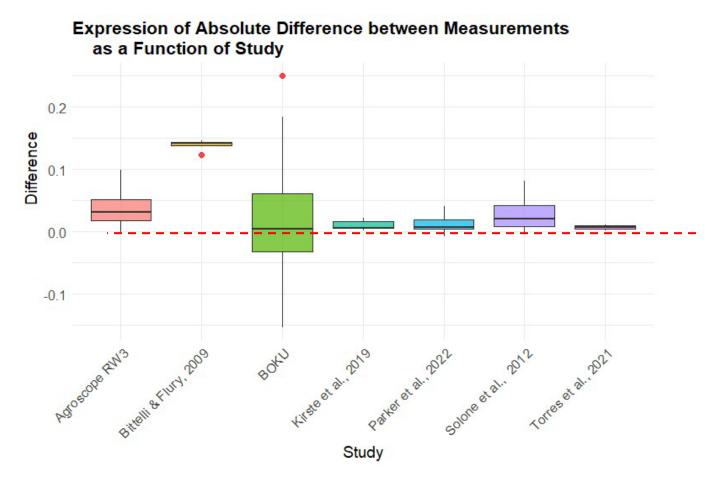
sulty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Nor ision of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, As, Norway

Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium TERRA, Gembloux Agro-Bio Tech, ULæge, Læge, Belgium Dair of Soil Physics, University of Bayreuth, Bayreuth, Germany

nterdisciplinary Environmental Research Centre, Technische Universität Bergakademie Freiberg, Freiberg, German ENA/University of São Paulo, Piracicaba-SP, Brazil

l Quality and Soil Use, Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland

I Zuche, Jamesh, Switzerland
K. Chem for Evology & Hyborhogy (IKC23D, Maciens Building, Wallingford, OX10 SBB, UK
Koot of Life and Emrinmental Source, the University of Spikes, Spikes, American
Life and Emrinmental Source, the University of Spikes, Spikes, American
Life and Emrinmental Source, and Commental Commental Commental
Life and Commental Commental
Life and Commental Source, Spikes and Spikes and Spikes and Spikes
Life and Quantitative Water Management Group, Days. In strumental Science,
Spikes and Spikes and Spikes and Spikes and Spikes and Spikes
Life and Spikes and Spikes and Spikes and Spikes and Spikes and Spikes
Life and Spikes and Spikes and Spikes and Spikes and Spikes and Spikes
Life and Spikes and Spikes and Spikes and Spikes and Spikes and Spikes
Life and Spikes a


Correspondence: Tobias Karl David Weber (tobias weber@uni-kassel.de

Published by Conernicus Publications on behalf of the European Geosciences Unio

Weber et al., 2023

Extra: Meta-study on comparison of pressure plate and dewpoint methods

Data from 5 peer-reviewed publications and 2 labs

Difference in gravimetric water content (g g⁻¹) at permanent wilting point (pf 4.2) between pressure plate and dewpoint (WP4) measurements

Università degli Studi "Mediterranea" di Reggio Calabria Dipartimento di Agraria

Corso di Laurea Magistrale in"Scienze e Tecnologie Agrarie"

DETERMINATION OF WATER CONTENT
AT PERMANENT WILTING POINT
IN A LARGE SET OF SOILS:
ANALYTICAL COMPARISON AND STATISTICAL
ANALYSIS OF TWO LABORATORY METHODS

Relatore: Prof. Antonio GELSOMINO Correlatore: Dott. Johannes KÖSTEL

Tesi di Laurea di Lorenzo CERISCIOLI

ANNO ACCADEMICO 2023/2024

Ceriscioli 2024

Conclusion

If soil physical data is used as soil health indicator, bias in its measurements needs to be reduced or at least known.

Sources of bias and noise in soil physical lab measurements:

- size of the soil sample (scale effect)
- soil sampling technique
- point of time of sampling / soil wetness
- soil sample preparation
- transport
- storage
- measurement technique
- implementation of measurement
- measurement device
- errors when applying equations

..

A large portion of bias and noise could be reduced by establishing more detailed SOPs

Reasonable next steps

(broadly following what is already stated by GLOSOLAN or SOPHIE)

- Summon a critical mass of soil physics labs to support the development of more detailed SOPs
 - organise a stockstake among these labs of used method and implementations
 - make use of already existing initiatives like e.g. SOPHIE (Soil Program on Hydro-Physics via International Engagement)
 - identify critical procedures during measurement implementation
 - quantify systematic bias between different measurement methods / devices
 - develop refined SOPs which are acceptable for a critical mass of laboratories
 - make reference to SOPs mandatory for peer-reviewed publications
 - organize more ring tests
- Keep in mind that meta-data is required to correctly interpret the data

 (land use, land management, day of measurement, soil moisture at day of measurement, sample size, ...)

How can this be funded?

Thankyou

johannes.koestel@agroscope.admin.ch

