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A B S T R A C T

Potato (Solanum tuberosum L.) ranks as the fourth most important food crop after rice, wheat, and maize. In the 
literature, models have been developed to predict potato yield evolution due to climate change, projecting a 
decrease in production across various regions. This study was conducted on field data collected over 31 years in 
five contrasting sites in the Western Alps, Switzerland. Results show that 24 % of yield variation can be explained 
by the genotype, and 50 % by the environment. Among the studied meteorological conditions influencing the 
yield, 1) “total precipitation from tuber initiation to tuber harvest”, 2) “sum of solar irradiation from planting to 
maturity”, 3) “average temperature from planting to maturity” and, 4) “sum of daily maximal temperature from 
planting to maturity”, were the most important variables. The third variable exhibits a positive linear rela
tionship with yield up to an average temperature of 16.5 ◦C during the growth season. Beyond this threshold, the 
relationship becomes negative and results in yield loss. Using this unprecedented dataset, we estimated potential 
yield losses in the Western Alps of Switzerland by the end of the century under three different Representative 
Concentration Pathway (RCP) scenarios (i.e. 2.6, 4.5, 8.5). In the short term, by 2035, yield losses are projected 
to range from 3.2 % to 15.0 % regardless of the scenarios. By 2060, RCP 4.5 and RCP 8.5 predict the highest 
losses, reaching 22.7–50.3 % compared to the 1990–2020 average yield. The most significant loss was predicted 
under the RCP 8.5 long-term scenario, by 2085, with yield losses ranging from 24.2 % to 84.6 %. These losses are 
attributed to an estimated precipitation decrease of 42 % compared to the average of the past 30 years and a 
+7.2 ◦C increase in average temperature during the potato growth season. Except in the case of RCP 2.6, which 
estimates low yield losses compared to 1990–2020, this study anticipates significant yield losses by the end of the 
century in Switzerland. To mitigate these losses due to climate change, potential adaptation strategies include the 
adoption of drought or heat-stress-resistant genotypes, enhancements in irrigation systems, adjustments of 
planting schedules, and relocating planting sites to higher elevations. In addition, the G x E interaction effect 
should be considered in breeding strategies, to cope with climate change impacts on potato yield and to grow 
genotypes better adapted to their environment.

1. Introduction

Potato (Solanum tuberosum L.) is the fourth most important food crop 
after rice, wheat and maize with 376 million tonnes of potatoes 

produced in 2021 (FAO, 2022) and potato demand will increase as the 
world’s population grows (Tian et al., 2021). The growing season for 
potato can range from three to five months in temperate climates and 
during this period, 350–500 mm of rain is required to obtain a 
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respectable yield (Khurana, 2003; Tang et al., 2018; Xie et al., 2012). 
Precipitation plays a crucial role during the tuber bulking and ripening 
stages, as it supports tuber growth (Djaman et al., 2021). Additionally, 
the amount of rainfall between planting and tuber initiation determines 
the number of tubers per stem. Higher precipitation during the period 
leads to an increase in tuber numbers (Ewing and Struik, 1992), and 
determines sink strength. Air temperature between 16 ◦C and 30 ◦C, 
corresponding to about 2000 degree-days over the growing period, is 
necessary to avoid photosynthesis inhibition and heat-stress (Levy and 
Veilleux, 2007; Struik, 2007; Timlin et al., 2006; Wang et al., 2015). 
However dry matter partitioning to tubers decreases above 19 ◦C 
average temperature (Marinus and Bodlaender, 1975; Kooman et al., 
1996; Struik, 2007), which can impact the yield. The optimal soil tem
perature depends on the tuber development stages, i.e. tuber induction is 
optimal at 15 ◦C, initiation at 22 ◦C, and setting at 15 ◦C (Struik, 2007). 
Optimal growth, in terms of tuber bulking rate and final yield, is ach
ieved with photoperiods of around 11–13 h (i.e., approximately 2700 MJ 
m⁻² of total radiation over the growing period) (Zhao et al., 2016). 
However, potato growth can still occur with a minimum daily photo
period of approximately four to six hours (Zhao et al., 2016). 
Conversely, potatoes can also be grown above the polar circle under very 
long days (Merzlaya et al., 2008), highlighting the crop’s flexibility in 
adapting to extended daylight conditions. The expression of the genetic 
yield potential in terms of potato growth and development varies ac
cording to several environmental variables including the 
above-mentioned factors (Sood et al., 2022). Final yield also fluctuates 
over the years according to biotic stresses (Dupuis et al., 2019) or to 
agronomic practices such as tillage (Abrougui et al., 2019; Ochuodho 
et al., 2014) or soil nutrition (Prasad et al., 2015). The effect of all these 
factors: yield potential related to the genetic factors, agricultural prac
tices or environment is linked and can be expressed as the Genotype x 
Environment x Management interaction (G x E x M). Climatic variables 
fluctuate across years and locations, inducing variations in the impor
tance of the “environment” factor on potato yield. Consequently, the G x 
E x M interaction is and will continue to be a key factor to study and 
follow, especially with the challenges posed by both climate change and 
the rising global population (Cooper et al., 2021).

The last Intergovernmental Panel on Climate Change (IPCC) report 
underlines that the earth is warming and this warming is even greater at 
land level than at ocean level (CH2018, 2018) which alters important 
parameters for crop growth and development such as temperature and 
precipitation. The global average air temperature in Switzerland has 
risen by 2 ◦C since the industrial era (1871–1900) (OFEV et al., 2020; 
CH2018, 2018). By 2085, predictions during the summer period (i.e. 
potato growth) foresee an increase of 1.5 ◦C [from +0.7 ◦C to +2.3 ◦C] 
according to RCP 2.6, and of 5.35 ◦C [from +3.5 ◦C to +7.2 ◦C] ac
cording to RCP 8.5. In addition, a modification in rainfall is also ex
pected, of -6.5 % [from +5.9 % to − 18.9 %] according to RCP 2.6 and of 
− 26.4 % [from − 10.0 % to − 42.8 %] according to RCP 8.5 (OFEV et al., 
2020; CH2018, 2018). Changes in atmospheric carbon dioxide from 
400 ppm according to RCP 2.6 up to more than 1000 ppm for the RCP 
8.5 (IPCC, 2021) are also predicted. Atmospheric carbon dioxide in
creases have been shown to mitigate yield losses caused by climate 
change particularly for legumes and root crops (Ainsworth and Long, 
2005; Finnan et al., 2002). For a given planting date, rising temperatures 
shorten the potato growth period, which decreases the final yield 
(Muthoni and Kabira, 2015). In some regions the potential duration of 
the growing season may be increased since higher temperatures allow 
earlier planting due to longer periods without frost, as is already seen 
and practised in some regions of China (Tang et al., 2022). In addition, 
under drought conditions, potato tubers also experience a reduction in 
net starch content. Nevertheless, a drought period can result in greater 
water loss compared to the limitations in starch biosynthesis, potentially 
increasing the proportion of starch content in tubers relative to their 
overall fresh weight (Bach et al., 2013). Starch content is a parameter of 
high importance as it defines the quality of potatoes at harvest. 

Considering the increasing threat of climate change, a better under
standing of the relation between climatic variables and yield or starch 
content according to different phenological stages is needed to establish 
models able to accurately predict yield stability.

Over the years, models have been developed for potato yield pre
diction, such as SUBSTOR-potato and LINTUL-potato models, which are 
the most common potato models (Franke et al., 2013; Haverkort et al., 
2013; Raymundo et al., 2014). Those models estimate yield variation 
according to climate data (e.g. atmospheric CO2, air temperature or 
precipitation), potato growth (e.g. leaf, root or tuber growth), crop 
management, soil conditions (Haverkort and Top, 2011) or satellite 
data, for example, to calculate vegetation health indices (Akhand et al., 
2016; Hara et al., 2021). According to most RCP scenarios from the 
IPCC, yield is expected to (i) decrease in almost all regions in the world 
(Raymundo et al., 2017a), (ii) stagnate in some parts of the word, e.g. 
Estonia, with the optimistic climate scenario (Saue and Kadaja, 2011) or 
(iii) increase in the coolest areas of the world (i.e. Canada) (Ochuodho 
et al., 2014; Supit et al., 2012). The present study has the advantage of 
being based on field data acquired in the same region. We worked on a 
large dataset containing potato yield (t ha− 1) and starch content (per
centage) data obtained from variety trials managed under contrasting 
environmental conditions over a period of 31 years and five locations 
located in the Western Alps, Switzerland. These trials were managed 
according to the best recommended management practices in 
Switzerland, thus offering a dataset which allows identification of the 
effect of G x E interaction on yield and starch content without the noise 
introduced by management practices (M), which were homogeneous 
over the 31 years of study.

The effect of G x E on yield and starch content was first analysed by a 
Random Forest, a machine learning method used for classification or 
regression by using multitudes of decision trees. It allowed the selection 
of the most important variables explaining potato yield variations 
(Genuer et al., 2015; Jeong et al., 2016). Second, threshold models, 
graphical observations and a 2nd derivative estimation method were 
implemented to establish the type of relation between climatic variables 
and potato yield or starch content (Fong et al., 2017). Then, according to 
the identified relations between variables, different models were 
implemented to estimate the yield and starch content. Combined, these 
methods allowed us to implement accurate predictions of yield variation 
under different climate change scenarios, in short, medium and long 
term.

2. Material and methods

2.1. Field trials and dataset

Potato variety trials have been conducted by Agroscope since 1990, 
in five experimental sites located at different altitudes in Switzerland, 
namely: “La Fretaz” (CH-1453; 1200 m above sea level (asl)), “Les 
Mottes” (CH-1530; 455 m asl), “Grangeneuve” (CH-1725; 680 m asl), 
“Goumoëns” (CH-1376; 609 m asl), and “Changins” (CH-1260; 420 m 
asl). A total of 662 genotypes have been tested over the 31 years of trials 
(1990–2021) in the different locations (Supplementary material 1). All 
genotypes tested were genotype registered in the official European va
riety catalogue. Potatoes were planted from March to June and har
vested from August to September, depending on the year and location. 
The soils were fertilized following the usual agricultural practices. 
Before potato emergence, an herbicide was applied according to the best 
management recommendations each year. Haulm destruction was 
implemented with a combination of chemicals (various products) and 
mechanical methods (the EnviMaxX machine from Rema environmental 
machinery B. V., the Netherlands). Potatoes were treated to prevent late 
blight (Phytophthora infestans) approximately once a week from emer
gence to haulm killing, using various fungicides. At harvest, yield (t 
ha− 1) was measured for each site, location, genotype and year, and the 
starch content measured using the densimetric method and the 
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conversion table of Von Scheele et al. (1937), allowing the acquisition of 
3723 records. For the 31 years of trials, dates of the main physiological 
stages of the crop (i.e., planting, emergence, tuber initiation, and 
maturity) and dates of crop management operations (e.g. haulm killing 
and harvest) were recorded. Plant maturity refers to the physiological 
maturity as shown by the foliage color change from green to yellow and 
was considered when 80 % of plants for a given genotypes were turning 
yellow. Haulm killing was implemented when all genotype reached 
maturity. Based on these dates the following fifteen periods were 
defined: planting to emergence, planting to tuber initiation, planting to haulm 
killing, planting to harvest, emergence to tuber initiation, emergence to haulm 
killing, emergence to harvest, tuber initiation to haulm killing, tuber initiation 
to harvest, haulm killing to harvest, planting to maturity, emergence to 
maturity, tuber initiation to maturity, maturity to haulm killing and maturity 
to harvest (Visse-Mansiaux et al., 2022).

The following weather data were collected: minimal temperature 
(◦C), average temperature (◦C), maximal temperature (◦C), soil tem
perature at 10 cm (◦C), precipitation (mm), solar irradiation (MJ.m− 2) 
and relative humidity (%); either from Agrometeo (https://www.agro 
meteo.ch/, accessed 2021) or from MeteoSwiss (Federal Office of 
Meteorology and Climatology MeteoSwiss, Switzerland) for the 31 years 
of trials. The method to calculate the explanatory variables consisted of 
summing or averaging the weather data for each above-mentioned 
period. In addition, in the “Changins” site, plots were irrigated for a 
few growing seasons between 1990 and 2008, and then every year since 
2009 except 2021 due to extreme precipitation. The other sites were not 
irrigated. Irrigation data were handled by adding the irrigation amounts 
per day to the daily precipitation data. More details on the method are 
available in the study of Visse-Mansiaux et al. (2022).

2.2. Statistical analysis

The R software version 4.2 (R Core Team, 2021) was used for data 
preparation and statistical analysis.

2.3. Factorial analysis

To identify the part of variation explained by factors genotype, year 
and site, and their effects on yield and starch content, an Analysis of 
Variance (ANOVA) was implemented using the “stats” package in R. In 
this study, the 31 years of trials were used, as well as the five above- 
mentioned locations and the 662 genotypes (Supplementary material 
1). We considered as a statistical experimental unit the combination of 
each genotype, site and year. The ratio of the sum of squares for the 
considered effect of the total sum of squares was used to calculate the 
percentage of variability explained by each factor. In Swiss conventional 
variety testing trials, genotype was usually tested over two years. To 
check that there is no bias due to the low number of years per genotype, 
the same analyses were conducted on three control genotypes (Agria, 
Lady-Claire and Bintje) which were included in the trials for at least 20 
years.

2.4. Variable selection

Each random forest was built using the “VSURF” package in R with 
yield or starch content as variables to be explained and all climatic 
variables as explanative variables. The analysis was run with the 
following parameters: (i) ntree = 2000; (ii) nfor.thresh = 50; (iii) nmin 
= 1; (iv) nfor.interp = 25; (v) nsd = 1; (vi) nfor.pred = 25; (vii) nmj = 1; 
(viii) Rfimplem = “randomForest”; (ix) clusterType = “PSOCK”. The 
VSURF package uses an approach based on performance and a stepwise 
selection procedure, which implements backward elimination then 
forward selection based on importance measures (relative importance =
RI) and error rate for variable selection. More details on the method are 
available in the study of Genuer et al. (2015). It is implemented in three 
steps: (i) a thresholding step which estimates the variable importance 

associated with each climatic variables (i.e. explanatory variables); (ii) 
interpretation step and (iii) prediction step leading to the most impor
tant variables (Genuer et al., 2015).

2.5. Type of relation between selected variables and explanatory variables

To identify the type of relations (i.e. linear or non-linear) between 
selected variables and yield or starch content, three methods were 
implemented: method 1) graphical observation of selected variables and 
explanatory variables using “Loess” tool from “ggplot” package in R. 
This allows a subjective assessment of the type of relation and potential 
threshold by observing the shape of the curve. Method 2) threshold 
regression model using segmented types with “Chngpt” package (Fong 
et al., 2017), which allows a threshold estimation along with its confi
dence interval using maximum likelihood optimisation. Method 3) 
threshold was estimated based on the maximum value of the second 
derivative of the squared-function within ranged of observed value. It 
allows a mathematical estimation of the threshold to estimate the type of 
relation. Based on the outputs of the different methods, we assessed the 
type of relation, and the respective effect between the selected variable 
and the variable to explain.

The dataset was split in a training dataset (2/3 of the dataset) and 
validation dataset (1/3 of the dataset). The dataset was split in such a 
way that each genotype was present in both sub-data sets. For both yield 
and starch content parameters, models were implemented by including 
the variables selected by the Random Forest analysis with or without the 
genotype effect. Then, stepwise regression was used for each model to 
keep only significant variables (p-value < 0.05) and two-way in
teractions in order to correlate meteorological data. Then, the different 
models were compared using cross-validation and by comparing their 
coefficient of determination (R2), the root of the mean of the squared 
errors (RMSE) and the mean absolute error (MAE). The relative root 
mean square, i.e., the ratio between the RMSE and the mean value of the 
yield (RMSE%) were calculated for the different models. This ratio 
provides a normalized measure of the prediction error, where a lower 
value indicates better predictive accuracy relative to the average value 
of the observed data.

2.6. Model prediction

To assess the effect of climate change in the future on potato yield 
and starch content, models with the highest R2, the lowest MAE and 
RMSE for each variable to be explained (yield or starch content) were 
run on datasets using weather data obtained from a report on climate 
scenarios for Switzerland. Those reports were published by the Zurich 
National Centre for Climate Services, which adapt IPCC’s scenarios for 
different regions in Switzerland. Scenarios were selected for the Western 
Alps region corresponding to: Representative Concentration Pathway 
2.6 (RCP 2.6), Representative Concentration Pathway 4.5 (RCP 4.5) and 
Representative Concentration Pathway 8.5 (RCP 8.5) (CH2018 report, 
2018). Each scenario includes a lower, medium and upper estimate 
value of the increase in global temperature and changes in precipitation 
by 2035, 2065 and 2085. Estimated predictions calculated in the 
above-mentioned report were used to estimate new predicted values for 
each variable included in models used in the present study. The sum of 
solar irradiation was integrated as the average value between 1990 and 
2021 in this study. The predicted value was then compared to the 
average yield or starch content from 1990 to 2021 to estimate evolution 
in regards to climate change.

3. Results

3.1. Factors influencing yield and starch content in potato

Following the ANOVA, the year and genotype effects explained 
respectively, 25.47 % (p < 0.05) and 24.16 % (p < 0.05) of the yield 
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variability, while the interaction of these two factors explained 15.02 % 
of the variability (p < 0.05) (Fig. 1.A). The average potato yield over the 
31 years of trials (1990–2021) was 43.10 t ha− 1 and ranged from 31.60 t 
ha− 1 on average in 1995 to 57.70 t ha− 1 on average in 2011. Among the 
662 genotypes studied, yield ranged from 23.50 t ha− 1 (G97TT013004 
[N = 3]; N = number of records in the dataset) to 74.40 t ha− 1 (Georgina 
[N = 3]).

The yield variation due to the year for the three most tested geno
types, i.e. Agria, Bintje, and Lady-Claire is presented in Fig. 2.A. Over the 
31 years, the yield of Agria ranged from 20.30 t ha− 1 to 77.30 t ha− 1 

with an average of 48.80 t ha− 1 [N = 117], the yield of Bintje ranged 
from 22.90 t ha− 1 to 71.70 t ha− 1 with an average of 46.40 t ha− 1 

[N = 158], and the yield of Lady-Claire ranged from 8.90 t ha− 1 to 
64.70 t ha− 1 with an average of 37.30 t ha− 1 [N = 88] (Fig. 2.A). Among 
growing sites, yield varied from 41.10 t ha− 1 (Grangeneuve [N = 330]) 
to 48.80 t ha− 1 (Goumoëns [N = 219]), which represents 3.96 % of 
yield variability (p < 0.05) (Fig. 1.A). Agria was tested in four sites and 
the yield varied from 42.90 t ha− 1 (La Fretaz [N = 25]) to 56.00 t ha− 1 

(Goumoëns [N = 11]). Bintje was tested in the five sites and the yield 
ranged from 42.50 t ha− 1 (Grangeneuve [N = 9]) to 53.10 t ha− 1 

(Goumoëns [N = 9]). Finally, Lady-Claire was tested in four sites and 
the yield ranged from 33.60 t ha− 1 (La Fretaz [N = 23]) to 41.10 t ha− 1 

(Goumoëns [N = 14]) (Fig. 2.B). The effect of the interaction between 
the growing site and year of trial is high as it explained 21.15 % of yield 
variability (p < 0.05) (Fig. 1.A). As an example, in 2017 the average 
yield at “Changins” (420 m asl) was 50.00 t ha− 1 and 50.60 t ha− 1 at “La 
Fretaz”, the site at high altitude (1200 m asl), while in 2021 the average 
yield at “Changins” was 50.00 t ha− 1 and 34.50 t ha− 1 at “La Fretaz”.

The genotype effect was the most important one to explain the potato 
starch content variability (74.54 %, p < 0.05), while the year and the 
growing site effects explained respectively 4.24 % and 0.34 % of the 
starch content variability (p < 0.05) (Fig. 1.B). The two-way in
teractions between year, site, and genotypes accounted for 2.99 % (ge
notypes * site), 6.39 % (genotypes * year), and 8.93 % (genotypes * site) 
of the starch content variability (p < 0.05) (Fig. 1.B). Potato starch 
content ranged from 14.19 % in 2013 to 16.91 % in 1992, with an 
average of 15.52 % over the 31 years of trials. Among the 662 genotypes 
studied, starch content varied on average from 10.37 % (Carrera 
[N = 3]) to 23.30 % (Assia [N = 3]). The starch content of the three 
most tested genotypes, i.e. Agria, Bintje, and Lady-Claire, ranged 
respectively from 12.20 % to 19.30 %, 12.10 % to 19.00 %, and 
13.80 % to 23.00 % during the 31 years of trials (Fig. 2.C). Based on the 
growing site, the average starch content varied from 15.40 % (Grange
neuve [N = 330]) to 15.94 % (Les Mottes [N = 116]). On average, ac
cording to the site, the starch content ranged respectively from 14.50 % 
to 16.48 %, from 15.06 % to 15.99 %, and from 16.28 % to 19.67 %, for 

the genotypes Agria, Bintje and Lady-Claire (Fig. 2.D).

3.2. Main variables influencing yield and starch content

Among the 240 climatic variables, the random forest analysis effec
tively identified the key variables influencing yield and starch content 
variation. This process involved several selection steps and utilized the 
respective importance (RI) criterion to determine the most significant. 
Four variables were selected to explain yield variation: 1) sum of solar 
irradiation from planting to plant maturity (RI = 2155); 2) total pre
cipitation from tuber initiation to harvest (RI = 1323); 3) sum of daily 
maximum temperatures from planting to plant maturity (RI = 586) and 
4) average temperature from planting to plant maturity (RI = 575). The 
relationships between these variables and the yield are presented in 
Fig. 3. Three variables were selected to explain starch content vari
ability: 1) average maximal temperature from plant maturity to haulm 
killing (RI = 0.63); 2) total precipitation from planting to haulm killing 
(RI = 0.23) and 3) sum of daily minimum temperatures at soil level from 
maturity to harvest (RI = 0.17). The relationships between these vari
ables and the starch content are presented in Fig. 4. The variables were 
selected based on their RI and the correlation with other previously 
selected climatic variables. Variables were added only if the error 
decrease was larger than a specific threshold (set at default value) 
(Genuer et al., 2015)

3.3. Different types of models implemented to identify the relationship 
between climatic variables and yield or starch content

The first method (Fig. 3) allows graphical identification of the type of 
relationship between a selected climatic variable and the yield. Based on 
this first method, the shape of the curves indicates that the variables 
“total precipitation from tuber initiation to tuber harvest” and “sum of 
solar irradiation from planting to maturity” are linearly correlated with 
the yield (Fig. 3. A & D). In contrast, according to the shape of the 
curves, the variables “average temperature from planting to maturity” 
and “sum of daily maximum temperatures from planting to maturity” 
have a non-linear relation with the yield, with a threshold around 16.50 
◦C and a slope change around 2000 ◦C, respectively (Fig. 3. B and C). 
The second method, using a threshold analysis (Table 1), allows one to 
determine if there is a change point in the curve slope.

The outputs of the model indicate that there is a linear relationship 
between the variables “total precipitation from tuber initiation to tuber 
harvest” and the yield and, because this method determined the 
threshold value for three other variables, this means that there are non- 
linear relations between these three variables and the yield. Based on the 
confidence interval (CI) provided with the threshold value, it can be seen 

Fig. 1. Pie-chart representation of A: yield; B: starch content variation (percentage) explained by factors genotype, year, site, and their interactions (*: p < 0.01).
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Fig. 2. Evolution of yield (t ha− 1) and starch content (percentage) for three potato genotypes (Agria, Bintje, Lady-Claire) from 1990–2021 (A, C) and growing sites 
(B, D) with their standard errors. The factor “year”, explains 19.11 %, 31.5 % and 7.9 % (based on ANOVA) of yield variance (A) of Agria, Bintje and Lady-Claire, 
respectively, and 13.1 %, 13.1 %, and 27.5 % of starch content variance (C) of Agria, Bintje and Lady-Claire, respectively. The factor “site”, explains 8.5 %, 3.8 % and 
4.3 % of yield variance (B) of Agria, Bintje and Lady-Claire, respectively, and 12.0 %, 0.2 %, and 27.6 % of starch content variance (D) of Agria, Bintje and Lady- 
Claire, respectively.

Fig. 3. Graphical representation of climatic variables selected by Random Forest for yield variation explanation. A. Total precipitation from tuber initiation to tuber 
harvest (mm). B. Average temperature from planting to maturity (◦C). C. Sum of daily maximum temperatures from planting to maturity (◦C). D. Sum of solar 
irradiation from planting to maturity (MJ m− 2).
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that the threshold obtained is precise for the variable “average tem
perature from planting to maturity” with a threshold at 16.76 ◦C and a 
[CI] at [16.76–16.83] (Table 1), but not for the variables “sum of daily 
maximum temperatures from planting to maturity” and “sum of solar 
irradiation from planting to maturity” with values and [CI] of 
1892.20 ◦C [1745.40–2665.30] and 1885.95 MJ m− 2 

[1793.32–2488.58], respectively. The third method, using the deriva
tive methods, allows a mathematical estimation of a threshold within 
the observed values by obtaining the highest value of the squared- 
transformed variable. If the highest value is the highest observed 
value in the dataset it means that there is no threshold, which was the 
case for “total precipitation from tuber initiation to tuber harvest”, “sum 
of solar irradiation from planting to maturity” and “sum of daily 
maximum temperature from planting to maturity” (Table 2). Based on 
the three methods, it is considered that the relationship between each of 
three variables: “total precipitation from tuber initiation to tuber har
vest”, “sum of solar irradiation from planting to maturity”, and “sum of 
daily maximum temperatures from planting to maturity” and the yield 
are linear (Table 3). This was concluded as the first method showed 
linear curves for two of the three the variables, and the second and third 
methods estimated no change points, large confidence intervals or no 
thresholds with squared-transformed variables for the three variables. 
Furthermore, it is estimated that each additional millilitre of water, each 
MJ m− 2 of solar irradiation and each additional degree brought to the 

field, results in a yield increase of 0.03 t ha− 1; 0.038 t ha− 1 and 0.035 t 
ha− 1, respectively (within the observed values for each of the climatic 
variables) (Table 1). In addition, based on method 3 results, there is a 
threshold of 16.61 ◦C for the variable “average temperature from 
planting to maturity”. This is similar to the thresholds from methods 1 
and 2 and it can thus be accepted that this variable has a non-linear 
relationship with yield (Table 3). The threshold of this non-linear rela
tionship is approximately 16.50 ◦C with two parts: 1) a positive linear 
relationship below 16.50 ◦C in which each degree gained results in an 
average yield increase of 2.58 t ha− 1; and 2) a negative linear rela
tionship above 16.50 ◦C in which each degree causes an average 
decrease in yield of 6.39 t ha− 1 (Table 3).

The types of relationships of variables with starch content were also 
identified. Based on the graphical analysis (method 1), the variable 
“total precipitation from planting to haulm killing” is linearly correlated 
with the starch content (Fig. 4.A). On the other hand, according to the 
shape of the curve, the variable: “average maximum temperature from 
maturity to haulm killing” is not linearly correlated with the starch 

Fig. 4. Graphical representation of climatic variables selected by Random Forest for starch content variation explanation. A. sum of precipitation (mm) from planting 
to haulm killing; B. average maximum temperatures (◦C) from maturity to haulm killing; C. sum of minimum temperatures (◦C) at soil level from maturity to harvest.

Table 1 
Summary of variables selected by RandomForest and threshold regression model output using segmented-type. Type of relationship: Non-linear, change point (p 
value <thinsp;0.05); Linear, no change point (p value > 0.05). Threshold / CI: Threshold position / Confidence Interval. Yield equation1: 
Yield1= intercept + estimate*variable. Yield estimation according to model output before the threshold. Yield equation2: Yield2= Yield1+estimate*variable. Yield 
estimation according to model output after the threshold. X = variable until threshold. Z = variable after threshold. ε: residual error (Chngpt package (Fong et al., 
2017)).

Variables Relationship Threshold / 
CI

Yield equation1 Yield equation2

Total precipitation from tuber initiation to tuber harvest (mm) Linear ​ y1 = 329.92 + 0.287 *x + ε ​
Average temperature from planting to maturity (◦C) Non-linear 16.76 ◦C / 

[16.76–16.83]
y1 = 50.73 + 25.80 *x + ε y2 = y1–63.86 *y + ε

Sum of daily maximum temperature from planting to maturity (◦C) Non-linear 1892.20 ◦C / 
[1745.40–2665.30]

y1 = − 246.70 + 0.35 *x + ε y2 = y1 + 0.082 *y + ε

Sum of solar irradiation from planting to maturity (MJ m¡2) Non-linear 1885.95 MJ m− 2 / 
[1793.32–2488.58]

y1 = − 295.27 + 0.38 *x + ε y2 = y1 + 0.09 *y + ε

Table 2 
Estimated threshold value for variables selected for yield prediction using the 
derivative method.

Variables Threshold

Total precipitation from tuber initiation to tuber harvest 
(mm)

557.49 mm

Average temperature from planting to maturity (◦C) 16.61 ◦C
Sum of daily maximum temperature from planting to 

maturity (◦C)
3032.20 ◦C

Sum of solar irradiation from planting to maturity (MJ m¡2) 2627.00 MJ 
m− 2

Table 3 
Summary of the relationship types between yield and climatic variable ac
cording to methods described in Fig. 3, Tables 1 and 2.

Variables Relationship

Method 
1

Method 2 Method 3

Total precipitation from tuber 
initiation to tuber harvest 
(mm)

Linear Linear Linear

Average temperature from 
planting to maturity (◦C)

Non- 
linear

Threshold at 
16.76 ◦C

Threshold at 
16.61 ◦C

Sum of daily maximum 
temperature from planting 
to maturity (◦C)

Non- 
linear

Threshold at 
1892.20 ◦C

Linear

Sum of solar irradiation from 
planting to maturity (MJ 
m¡2)

Linear Threshold at 
1885.95 MJ m− 2

Linear
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content, as two optimal values at 19 ◦C and 27 ◦C were observed (Fig. 4. 
B). Finally, the variable “sum of minimum temperature at soil level from 
maturity to harvest” has a non-linear relationship with the yield with a 
threshold at 250 ◦C (Fig. 4.C). The second method indicates that there is 
a linear relationship between the variables “total precipitation from 
planting to haulm killing” and the starch content, and a non-linear 
relationship between the two other variables (Table 4). Based on the 
confidence interval (CI) provided with the threshold value, it can be 
observed that the threshold obtained is imprecise for “sum of minimum 
temperatures at soil level from maturity to harvest” with a threshold 
value and [CI] of 130.50 ◦C [130.50–181.50], and even less precise for 
“average maximum temperature from maturity to haulm killing” with a 
threshold value and [CI] of 20.00 ◦C [14.30–23.93]. Method 3 provides 
a threshold value for each of the three variables at the highest observed 
values (Table 5), which means that no threshold is detected by this 
method. Based on results from the three methods, the three variables 
had a linear relationship with the starch content (Table 6). The second 
and third methods do not estimate any change point, show large con
fidence intervals or no thresholds with squared transformed variable for 
the variables: “average maximum temperature from maturity to haulm 
killing” and “sum of minimum temperatures at soil level from maturity 
to harvest”. The last variables, “sum of precipitation from planting to 
haulm killing” has a linear relationship with starch content according to 
the three methods.

3.4. Yield prediction

Using the three or four above-mentioned climatic variables, models 
were developed using Random Forest, threshold model and stepwise 
regression output of the 31 years trial dataset. Subsequently prediction 
models for potato yield and starch content in the Western Alps, 
Switzerland, were established based on the Zurich Institute’s adaptation 
of IPCC’s climate scenarios for Switzerland (CH2018, 2018). To do so, 
our models were run on meteorological data prediction of climatic 
scenarios (i.e. average temperature, precipitation and sum of tempera
tures) for RCP 2.6, RCP 4.5 and RCP 8.5, and each of their respective 
upper, medium and lower estimations. However, since solar irradiance 
variations only occur at two scales: over the millennia at Earth scale 
(Vieira et al., 2011) and over the years within an 11-year cycle with an 
amplitude of less than 0.10 % (Solomon et al., 2007), it was considered 
for the prediction models that “sum of solar irradiation from planting to 
maturity” was equal to the average value of 1990–2020 (i.e.; 2125 MJ 
m− 2). In addition, different linear models were established, with or 
without interaction and genotype effect (Table 7). The first model in
cludes selected climatic variables, the second includes selected climatic 
variables and the variety effect as a factor, and the third model includes 
climatic variables, the genotype effect as a factor and the interaction 
between the genotype effect and climatic variables. Models with the 
lowest prediction rate were used for yield and starch content prediction. 
The model selected in this study to explain yield variation includes the 
genotype factor and the four climatic variables: (i) sum of solar irradi
ation from planting to maturity, (ii) sum of precipitation from tuber 
initiation to harvest, (iii) average temperature from planting to maturity 
as a polynomial variable, and (iv) sum of maximum temperatures from 

planting to maturity, or only the four climatic variables. The model 
selected in this study to explain starch content variation includes the 
genotype factor and the three climatic variables: (i) sum of precipitation 
from planting to haulm killing; (ii) average maximum temperature from 
maturity to haulm killing and (iii) sum of minimum temperatures at soil 
level from maturity to harvest, or only the three climatic variables. The 
above-mentioned selected model for yield, explained 46 % (R2) of yield 
variability with an RMSE of 8.15 t ha− 1 and an MAE of 6.47 t ha− 1 on 
the validation dataset (Table 7. A). The selected starch model explained 
63 % (R2) of starch content variability with an RMSE of 1.52 % and an 
MAE of 1.18 % on the validation dataset (Table 7. B).

According to the National Centre for Climate Services of Zurich, 
there could be a significant increase in average temperature and a 
decrease in total precipitation in Switzerland in the coming years. The 
yield prediction model has been used to estimate yield loss in the short, 
medium, and long-term. The short-term scenarios predict only slight 
changes (Fig. 5), with yield losses of approximately 3.20–15.00 %, 
3.30–14.40 % and 3.00–16.30 % according to RCP 2.6, RCP 4.5 and RCP 
8.5, respectively, in short-term compared to the average yield from 1990 
to 2020. In the medium term, differences between the three scenarios 
are observed. The RCP 2.6 predicts a yield loss from 2.70 % to 17.50 %, 
while the RCP 4.5 predicts a yield loss from 5.30 % to 22.70 % and the 
RCP 8.5 from 8.20 % to 50.30 %. Medium and long-term predictions are 
similar for the RCP 2.6. However, in the long-term the RCP 4.5 and RCP 
8.5 predict yield losses as high as 37.30 % and 84.60 %, respectively 
(Fig. 5). Among those scenarios, we observed that a significant increase 
in temperature coupled with a decrease in precipitation lead to the 
highest yield loss. Starch model prediction (Fig. 6) showed slight 
changes depending on the scenario and the period predicted: short, 

Table 4 
Summary of variables selected by RandomForest and threshold regression model output using segmented-type Relationship: Non-linear, change point (p value < 0.05); 
Linear, no change point (p.value > 0.05). Threshold / CI: Threshold position / Confidence Interval. Starch content equation before threshold: 
Yield1= intercept + estimate*variable: Yield estimation according to model output before the threshold. Starch content equation after threshold: 
Yield2

= Yield1
+ estimate*variable: Yield estimation according to model output after the threshold. X = variable until threshold. Z = variable after threshold. ε: re

sidual error. Chngpt package (Fong et al., 2017).

Variables Relationship Threshold / CI Yield equation1 Yield equation2

Sum of precipitation from planting to haulm killing (mm) Linear ​ y1 = 18.09–0.006 *x + ε ​
Average maximum temperature from maturity to haulm killing (◦C) Non-linear 20.00 / [14.30 – 23.93] y1 = 13.65 + 0.13 *x + ε y2 = y1–0.06 *y + ε
Sum of minimal temperature at soil level from maturity to harvest (◦C) Non-linear 130.50 / [130.50 – 181.50] y1 = 13.06 + 0.027 *x + ε y2 = y1–0.0026 *y + ε

Table 5 
Estimated threshold value for variables selected for starch content prediction 
using the derivative method.

Variables Threshold

Sum of precipitation from planting to haulm killing (mm) >516.26 mm
Average maximum temperature from maturity to haulm killing 

(◦C)
>34.15 ◦C

Sum of minimal temperature at soil level from maturity to 
harvest (◦C)

>857.30 ◦C

Table 6 
Summary of the decision of the relationship between starch content and climatic 
variables according to methods described in Fig. 4, Tables 4 and 5.

Variables Relationship

Method 1 Method 2 Method 
3

Sum of precipitation from planting 
to haulm killing (mm)

Linear Linear Linear

Average maximum temperature 
from maturity to haulm killing 
(◦C)

Non- 
Linear

Threshold at 
20.0 ◦C

Linear

Sum of minimal temperature at soil 
level from maturity to harvest (◦C)

Linear Threshold at 
130.5 ◦C

Linear
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medium or long-term. In all tested cases the observed variation in starch 
content ranged from − 3 % to +3 %.

4. Discussion

4.1. Effect of the environment on potato yield

The environment, including year-to-year weather variations, and 
growing region variations explain 50 % of potato yield variability based 
on data collected from 1990 to 2021 in Western Alps (Switzerland) 
(Fig. 1.A). Contrasting years in terms of yield were observed over the 30 
years of data in this study, with average yields ranging from 31.6 t ha-1 

to 57.8 t ha-1 (data not shown). This is in line with studies conducted 
across various locations and altitudes in East Africa reporting an envi
ronmental effect of 54 % (Mulema et al., 2008), with a yield variation 
ranging from 21.7 t ha-1 to 38.9 t ha-1 (Kwambai et al., 2024; Mulema 
et al., 2008). However, the proportion of yield variation explained by 
the environment in our study is lower than in some other studies. For 
instance, Flis et al. (2014) report a yield variability caused by the 
environment of 72 % in a study conducted in three countries (i.e. 

Hungary, Spain and Poland) over two years and 21 genotypes. Mijic 
et al. (2019) report that the environment explains 78.9 % of yield 
variability with a yield ranging from 26.1 t ha-1 to 44.6 t ha-1 in their 
study conducted in Croatia between 2001 and 2012, across 52 geno
types, three sites and 12 years.

These differences in yield variability due to the environment among 
studies may stem from higher year-to-year weather variations during 
growing periods, or more heterogeneous growing sites, especially when 
data were collected across different countries, due for example to the 
effect of soil type on plant growth (Quan and Liang, 2017). It has been 
shown that year-to-year yield variability varied across world regions, 
especially for crops cultivated worldwide such as potatoes and wheat 
(Ben-Ari and Makowski, 2014). This variability is due to differences in 
yield potential across growing regions, year-to-year weather fluctua
tions that increase with climate change and also the stagnation of yields 
in some high average yield regions in recent years, which limits yield 
variability (Schauberger et al., 2018). In contrast, in our study, data 
were collected in one country, which could explain the low effect of the 
growing site on potato yield, around 4 % (Fig. 1.A), despite differences 
in average yield according to growing site. It ranged from 41.1 t ha-1 for 

Table 7 
Model output. (A) Yield models, (B) Starch models; R2: Coefficient of determination; RMSE: root of the mean squared errors; MAE: mean absolute error; RMSE % : ratio 
between the RMSE and the mean value of the yield, on training and validation datasets. (i) models that include the three or four selected climatic variables, according 
to the variables to be explained; (ii) models that include the three or four selected climatic variables and the genotype effect as factor; (iii) models that include the three 
or four selected climatic variables, the genotype effect as factor and the interaction between genotype effect and climatic variables.

(A) Yield models R2 RMSE MAE Prediction error rate
Train Validation Train Validation Train Validation

(i) Climatic variables 0.30 0.31 8.53 9.17 6.47 7.27 0.21
(ii) Climatic variables + genotype 0.50 0.46 7.24 8.15 5.72 6.47 0.19
(iii) Climatic variables + genotype + (climatic variable*genotype) 0.54 0.41 6.89 8.58 5.41 6.67 0.20

(B) Starch models R2 RMSE MAE Prediction error rate
Train Validation Train Validation Train Validation

(i) Climatic variables 0.04 0.06 2.39 2.42 1.93 1.95 0.15
(ii) Climatic variables + genotype 0.81 0.63 1.05 1.52 0.82 1.18 0.10
(iii) Climatic variables + genotype + (climatic variable*genotype) 0.90 0.00 0.77 19.72 0.46 3.82 1.24

Fig. 5. Estimated yield loss, in short (2035), medium (2060) and long-term (2085) under three climate scenarios (RCP2.6; RCP4.5; RCP8.5), and their respective 
lower, medium and upper estimates.
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“Grangeneuve” [N = 330] to 48.8 t ha-1 for “Goumoëns” [N = 219], 
with smaller differences between other sites with more trials such as 
“Changins” and “La Fretaz”. This suggests a high homogeneity in the 
Western Alps climate in Switzerland over past 30 years. However, we 
can expect changes in the coming years with increasing climate vari
ability through the year, as already observed in many crop trends 
throughout Europe (Hawkins et al., 2013, 2013; Moore and Lobell, 
2015). In addition, in our study, no significant difference in yield was 
observed between the two sites with the most contrast in elevation, i.e. 
the site “Changins” at 420 m asl (average yield of 43.70 t ha-1 

[N = 2190]) and the site “La Fretaz” at 1200 m asl (average yield of 
40.60 t ha-1 [N = 867]). These results were surprising as a lower average 
temperature was observed in the site at high elevation compared to the 
site at low elevation. An average temperature between planting and 
harvest over 30 years of 13.40 ◦C was recorded at the site “La Fretaz” 
and 16.90 ◦C at “Changins”, giving a difference of 3.50 ◦C. In addition, 
the length of the growing period from planting to harvest was shorter at 
the site at high elevation (i.e. 140 days in the site “Changins” compared 
to 125 days at the site “La Fretaz”). These differences were, however not 
statistically different.

This is in contradiction with literature describing the effect of 
elevation on plant growth. For example, in rice, lower yields were 
observed at higher altitudes due to lower temperatures and insufficient 
irrigation facilities (Guo et al., 2018), both of which were differences 
observed between our two sites. Additionally, for potato, it has been 
calculated that with every 1000 m asl increase in elevation, the duration 
of the growing period of potato is delayed by about one month (Ahmadi 
et al., 2019). This delay reported in the literature is linked to a reduction 
in physiological aging at lower temperatures observed at altitude, pro
longing the length of the growing period. As we did not observe a lower 
yield in the site at elevation, despite a reduced growing period and a 
lower average temperature, the homogeneity observed in yield between 
those sites could be due to a beneficial effect of lower temperatures on 
yield by avoiding heat-stress periods. Indeed, there were 279 days with 
temperatures above 30 ◦C in the site at high altitude between 1990 and 
2021, and 332 days at the site at low altitude (data not shown), giving an 

average 2–3 more days of heat-stress at the site at low altitude versus the 
site at high altitude. This can compensate for the loss in yield normally 
observed at lower temperatures (Minda et al., 2018). Also, altitude effect 
could be more pronounced at higher altitudes; Kwambai et al. (2024)
showed differences in average yield and yield variability among geno
types between sites at 1837 m asl and 2915 m asl, caused by favourable 
weather at lower altitudes.

4.2. Effect of meteorological variables on potato yield

From this dataset, we chose and implemented a linear model that 
estimates potato yield variability caused by weather variation. Our 
model explained 30 % of yield variability (Table 7), which is in line with 
other studies estimating that climate variation explains a third of global 
crop yield variability (Ray et al., 2015). The linear relationship between 
the crop development and variables such as the sum of temperatures, 
growing degree days (Reaumur, 1735), solar radiation and biomass 
production has already been described by authors (Monteith, 1972). 
Consequently, it is important to quantify the effect of each variable on 
potato yield to better predict potential losses due to climate change.

In this study, rainfall had a greater effect on potato yield in the period 
from tuber initiation to harvest than in the other defined periods. This 
can be explain by the fact that drought preceding tuber initiation has 
been reported to inhibit the tuber formation, thus reducing the number 
of tubers per plant but not necessarily the final yield (Deblonde and 
Ledent, 2001). Furthermore, we found that within a precipitation range 
of 100 mm to 500 mm during the season, each decrease of 1 mm in 
rainfall or irrigation led to a yield decrease of 0.03 t ha-1 (Fig. 3.A). The 
importance of precipitation for potato yield has been reported in the 
literature (Boguszewska-Mankowska et al., 2022). Fleisher et al. (2017)
used models such as SUBSTOR or LINTUL (Ritchie et al., 1995; Spitters, 
1990) on a dataset covering four potato production regions worldwide 
over 30 years. The authors estimated that each 10 % decrease in pre
cipitation resulted in an average yield loss of 2 %. In our study, results 
are similar as a 10 % precipitation decrease led to losses of 1.2 t ha-1, 
which is equivalent to a 2.8 % yield loss for an average yield of 43.1 t 

Fig. 6. Estimated starch change, in short (2035), medium (2060) and long-term (2085) under three climate scenarios (RCP2.6; RCP4.5; RCP8.5), and their respective 
lower, medium and upper estimates.

M. Gouerou et al.                                                                                                                                                                                                                               Field Crops Research 330 (2025) 109951 

9 



ha-1 over the 30 years in our study. However, the average estimations in 
yield loss according to variation in precipitation and temperature from 
our study or the literature do not seem to reflect losses during years with 
extreme drought. Obidiegwu et al. (2015) report similar results in their 
study conducted in Poland and Russia, with a 30 % yield decrease 
observed between an irrigated condition and a drought condition, with 
around 150 mm less total water in the drought condition compared to 
the irrigated condition, corresponding to a yield loss of 4 t ha-1 per 10 % 
decrease in precipitation. These results suggest a higher loss in yield in 
case of severe drought.

Our study also quantified the effect of temperature on potato yield, a 
major component of plant growth (Struik, 2007). The threshold above 
which temperature has a negative effect on final yield has been esti
mated at 16.5 ◦C. Each degree above this threshold led to a loss of 6.4 t. 
ha-1, which corresponds to a decrease of 14.8 % in yield per degree 
Celsius. This can be explained by the fact that the optimal temperature 
for potato growth has been reported to be around 14 ◦C–16 ◦C, in field 
experiments conducted in Florida (USA) in the seventies (Ingram and 
McCloud, 1984). Our results are also in line with Fleisher et al. (2017)
who studied the effect of climate change on potato yield in seven sites. In 
their study the average baseline temperature varied from 13.81 ◦C to 
16.45 ◦C according to the site. They applied different scenarios of 
climate change, from − 3 ◦C (best scenario) to +9 ◦C (worst scenario) of 
variation in temperature (i.e. − 3, +0, +3, +6 and +9 ◦C) compared to 
the baseline temperatures to predict the change in yield. Results showed 
that each increase in temperature of one degree will cause a yield loss of 
4.6 % over all tested scenarios. The temperature range studied in Fle
isher et al. (2017), varies from 10.81 ◦C (13.81 ◦C minus the − 3 ◦C 
scenario) to 25.45 ◦C (16.45 ◦C plus the +9 ◦C scenario), a broader 
range than in our study, which is from 16.50 ◦C to 22.80 ◦C. This could 
explain the differences in yield loss estimation per degree Celsius in
crease observed between our study compared to that of Fleisher et al. 
(2017). The negative effect of climatic variables selected in our model on 
potato yield, highlights the negative impact of climate change on potato 
grown in Switzerland, as predicted for almost all region worldwide 
(Raymundo et al., 2017b). This negative effect will be particularly sig
nificant for the variables “total precipitation from tuber initiation to 
tuber harvest” and “average temperature from planting to maturity” as 
those variables are more subject to climate change than the other two 
(CH2018, 2018). In our study we did not quantify the effect of atmos
pheric-CO2 changes on potato yield, estimated to be positive to potato 
(Kimball, 2016), because changes in our dataset were too small to be 
considered. Climate change will continue to reinforce the negative effect 
of those meteorological variables on potato yield with changes in in
tensity and homogeneity in weather (IPCC, 2021).

4.3. Effect of the genotype on potato yield

After the environment, the genotype (i.e. variety) is the second most 
important factor influencing potato yield and explains 24 % of potato 
yield variability in our study (Fig. 1. A). Results obtained are in line with 
the literature, as it is reported that the yield of a genotype is determined 
by the genetic yield potential (Sood et al., 2022). However, the per
centage of yield variability explained by the genotype in our study is 
different to that in other studies. Flis et al. (2014) reported that the 
genotype explains 8 % of yield variability among 22 genotypes studied, 
while Mijic et al. (2019) reported an effect of 9.30 % on 105 genotypes 
studied; and Mulema et al. (2008) reported a yield variability of 11 % on 
12 genotypes studied. Finally, a study in Kenya, including 50 contrasting 
genotypes estimated that genotype explains 71.20 % of total tuber yield 
variation (Kwambai et al., 2024). Few parameters explain variation in 
genotype as a proportion of total tuber yield variation. For example (i) 
differences in climate, soil type, water availability and nutrient levels 
influence the share of yield variation due to genotype or environmental 
factors; (ii) G x E, with some genotypes that perform well in one envi
ronment but less in another one, for example Zarzyńska et al. (2023)

showed that Polish genotypes yield higher compared to foreign geno
types in two different Polish sites; or (iii) the number of genotypes 
tested, with more than 600 genotypes tested in our study, while other 
study tested between 12 and 105 genotypes (Flis et al., 2014; Kwambai 
et al., 2024; Mijic et al., 2019; Mulema et al., 2008). The importance of 
the genotype factor on potato yield observed in our study is also 
explained by the focus on increasing the yield through genotype selec
tion in past potato breeding strategies. Indeed, in the 1990s the yield in a 
Swiss variety trial was 40.4 t ha-1 on average, while it was 43.6 t ha-1 in 
2000s and 44.8 t ha-1 in the 2010s (data not shown). However, these 
strategies are changing and recent studies report that during the last 
decade the yield increase observed was mainly due to improvements in 
agronomic practices (39 %) and to the choice of genotypes more 
adapted to their environment (48 %), rather than to the genetic yield 
potential increase (13 %) (Rizzo et al., 2022), also observed in our study 
by the decrease in the decade-on-decade growth rate. Furthermore, 
because an increase in the genetic yield potential of a crop generally 
leads to a decrease in nutritional quality (Davis et al., 2004) and stability 
(Paget et al., 2015), it would be more relevant to focus on finding ge
notypes adapted to a specific climate than to search for genotypes with 
the highest possible yield. Besides, crop yield stability is an important 
factor to consider in the context of climate change, as it contributes to 
food security by avoiding famine in less developed countries (Thiele 
et al., 2010). Consequently, the effect of the environment and the G x E 
interaction effect on potato yield should receive greater consideration in 
the future since it captures almost all of the yield variation, around 85 % 
in our study (Fig. 1.A).

4.4. Effect of the environment and genotype on potato starch content

Potato starch content (in percentage of fresh weight), was primarily 
explained by genotype in our study as it explained 75 % of potato starch 
variability (Fig. 1. B). As the potato culinary type (i.e. potatoes for 
French fries, chips, or stew) is driven by starch content (Komiyama et al., 
2002), our results suggest that even after a drought season, the potato 
quality in terms of culinary type will remain unchanged, which is of 
great interest for industry. It is in line with the literature as Singh et al. 
(2016) reported that the potato quality (i.e. dry matter, starch content, 
color and specific gravity in their study) is mainly driven by the geno
type effect and not much by the environment. However, it is important 
to consider that drought stress may affect other quality parameters in 
potato, which should also be considered, such as skin quality (Jiang 
et al., 2022), sugar content (Eldredge et al., 1996), physiological dis
orders or diseases (e.g. scab, growth crack, hollow heart) (Musse et al., 
2021), as well as dormancy duration during storage (Visse-Mansiaux 
et al., 2022).

The effect of climatic variables on potato starch content was less 
pronounced than the effect on yield. The three selected climatic vari
ables with the greatest influence on the potato starch content through 
the random forest analysis were: 1) “average maximum temperature 
from maturity to haulm killing”, 2) “sum of minimum temperatures at 
soil level from maturity to harvest” and 3) “total precipitation from 
planting to haulm killing” (Fig. 4). Those variables explain only a small 
part of starch content variation (4–6 %) (Fig. 1.B). Among these three 
climatic variables, the negative effect of “total precipitation from 
planting to haulm killing” on potato starch content may be explained by 
a higher water loss in tubers than starch biosynthesis limitation (Bach 
et al., 2013). In contrast, the effect of the two other variables on starch 
content, i.e. “average maximum temperature from maturity to haulm 
killing” and “sum of minimum temperatures at soil level from maturity 
to harvest” could be due to changes in starch biosynthesis after maturity. 
However, small changes in potato starch content (in percentage of fresh 
weight) may lead to changes in starch composition and quality (Haase 
and Plate, 1996). In addition, It has been reported that the reduction in 
mealiness and textural quality of processed potatoes in French fries 
caused by drought stress might be due to a reduction in starch content 
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(Searle et al., 2005).
Finally, it is possible that climatic variables had a higher impact on 

the starch quality than quantity in our study. Bach et al. (2013) showed 
that starch quality, measured by its digestibly, is more sensitive to 
environmental changes than total starch content. It would be of interest 
in future studies to evaluate the quality of starch in variety trials in 
addition to starch quantity to access the effect of climate change on both 
quality and quantity of starch in potato.

4.5. Evolution of potato yield under the different climate change scenarios

Short-term climatic scenarios for Switzerland (i.e. by 2035) predict 
an increase in temperature of +0.7 ◦C to +2.3 ◦C during summer. Mid- 
century forecasts (i.e. by 2050–2060) estimate a temperature increase 
during summer ranging from +1.4 ◦C to +3.0 ◦C according to the RCP 
4.5 scenario and from +2.2 ◦C to +4.4 ◦C under the RCP 8.5 scenario. 
Finally, forecasts for the end of the century (i.e. by 2080) predict sum
mer temperature changes ranging from +1.6 ◦C to +3.8 ◦C for RCP 4.5 
and from +3.5 ◦C to 7.2 ◦C for RCP 8.5. Precipitation will also be subject 
to changes in the coming years. In the best-case predicted scenario, 
precipitation will gradually increase up to +6 % by 2085. However, in 
most RCP scenarios a decrease in precipitation is expected, from − 0.6 % 
to − 16 % for RCP 2.3, down to − 28 % for RCP 4.5 and − 42.8 % for RCP 
8.5, which corresponds to 20 mm (-0.6 %) to 140 mm (-42.8 %) of 
water, compared to the 1990– 2021 average Swiss precipitation.

The model built in the present study, considering climatic variables 
and genotype effect predicts that, according to the above-mentioned 
climatic changes predicted by the different RCP scenarios, the average 
potato yield will decrease compared to the average yield observed from 
1990 to 2020 (Fig. 5). A decrease in yield from 3 % to 16 % is predicted 
by 2035, regardless of the RCP scenario in Switzerland. By 2050–2060, 
yield losses are predicted from 5.4 % to 22.7 % for RCP 4.5 and from 
8.2 % to 50.3 % for RCP 8.5. Finally, by the end of the century we 
predicted yield losses from 6 % to 37 % under RCP 4.5 scenario and from 
24 % to 84 % under RCP 8.5 scenario. Our results are in line with other 
studies which estimate yield losses from 10 % to 25 % by 2040, 10–25 % 
by 2040–2069 and up to 50 % in some part of the Mediterranean rim 
compared to the average yields from 1961 to 1990 in Western Europe 
(Hijmans, 2003). In another study conducted by Raymundo et al. 
(2018), the authors used the SUBSTOR-Potato model to estimate 
worldwide potato yield changes by including the increase in atmo
spheric CO2 concentration and pre-planting rainfall in addition to 
climate data during the growth period. The results of this research are 
more optimistic as the authors estimate yield changes of − 2 % (+1.60 % 
to − 6.80 %) for RCP 4.5, − 6.0 % (from − 0.80 % to − 10.20 %) for RCP 
8.5 by 2040– 2070, yield changes of − 2 % (+2.40 % to − 6.80 %) for 
RCP 4.5 and − 26.0 % (-20.60 % to − 30.60 %) for RCP 8.5 by 
2071–2100, compared to the average yield during the period from 1979 
to 2009. Interestingly, they estimate that in Western Europe, yield could 
increase from 5 % to 25 % for RCP 8.5 in 2070 compared to the average 
yields from 1979 to 2009. However, these optimistic results probably 
came from the increase in atmospheric CO2 concentration considered in 
their study which increased the yield by 22–33 % in the “FACE (Free-Air 
Carbon dioxide Enrichment)” experiment (Kimball, 2016).

However, it is important to consider that the rising CO2 atmospheric 
concentration is not necessarily beneficial and may present disadvan
tages for example, (i) higher atmospheric CO2 leads to higher yields only 
in highly fertilize soil (Ainsworth and Long, 2005), (ii) an increase in 
CO2 causes an increase in O3, a gaseous toxin that cause damage to plant 
and decreases yield by 12 % (Feng et al., 2008) and (iii) CO2 concen
tration also enables growth of competitors (Poorter and Navas, 2003). 
Consequently, our predictions could be less pessimistic by considering 
the atmospheric CO2 concentration, and pre-planting rainfall effects in 
our model as in the study of Raymundo et al. (2018). However, in the 
future it is important to limit the increase of CO2 in the atmosphere since 
it presents several above-mentioned disadvantages.

4.6. Perspectives for the future

It is necessary to implement solutions to avoid potato yield losses due 
to climate change predicted in our study and other studies in the short, 
medium, or long term. Hijmans (2003) reported that implementing 
different agronomic practices could limit yield losses to 10– 15 % 
instead of 25 % by 2040. Those agronomic practices could be: advancing 
the planting date to avoid some late heat-waves (Tang et al., 2018), 
better use of water resources using efficient irrigation as Partial 
Root-zone Drying (PRD) (Brocic et al., 2009), or using water conserva
tion practices (Ochuodho et al., 2014). Research to develop agronomic 
genotypes more resistant to environmental stresses, particularly to 
heat-waves and agricultural drought is also necessary and will be 
important to cope with yield losses due to climate change (Sprenger 
et al., 2018, 2015). Finally, it would be of interest to change the 
geographical location of growing sites. For instance, sites with high 
elevation could be used as the temperatures are lower at high altitude 
(Ahmadi et al., 2019; Visse-Mansiaux et al., 2022). However, each of 
these agronomic practices has to remain practical and applicable by 
growers (Hopkins et al., 2007). Another solution to avoid high yield 
losses due to stresses caused by extremely hot and dry seasons, which 
will be more frequent due to climate change, could be to add a “resis
tance to abiotic stress” criteria in variety trials to promote genotypes 
resistant to drought.

To conclude, our results revealed that climate change will have a 
negative impact on potato crops, with a higher impact on yield than on 
starch content. Solutions need to be implemented to cope with a higher 
occurrence of extreme weather events, such as 1) consideration of the 
GxE interaction to select potato genotypes better adapted to their 
environment, 2) adapting the growing period to avoid periods of stress 
and 3) development of genotypes tolerant to extreme conditions.
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