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x Laboratoire Central de Surveillance de la Qualité de l’air (LCSQA), Verneuil-en-Halatte F-60550, France
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ac Department of Physics, Università degli Studi di Milano, Milan 20133, Italy
ad Department of Applied Physics, Universidad de Granada, Av. de la Fuente Nueva, 18071 Granada, Spain
ae School of Earth and Atmospheric Sciences, Queensland University of Technology, Gardens Point, Brisbane, Queensland 4000, Australia
af Laboratory for Heritage Science, HUN-REN Institute for Nuclear Research, Debrecen, Hungary
ag Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Finland
ah TNO, Department of Air Quality & Emission Research, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
ai College of Environmental Sciences and Engineering, Peking University, Beijing, China

A R T I C L E  I N F O

Handling Editor: Dr. Hanna Boogaard

Keywords:
Brake wear
Non-exhaust emissions
Atmospheric Cu
Copper
CAMx
Random forest

A B S T R A C T

In today’s rapidly evolving society, the sources of atmospheric particulate matter (PM) emissions are shifting 
significantly. Stringent regulations on vehicle tailpipe emissions, in combination with a lack of control of non- 
exhaust vehicular emissions, have led to an increase in the relative contribution of non-exhaust PM in Europe. 
This study analyzes the spatial distribution, temporal trends, and impacts of brake wear PM pollution across 
Europe by modeling copper (Cu) concentrations at a high spatial resolution of ~250 m which is a key tracer of 
brake-wear emissions. We integrated coarse-resolution brake-wear Cu from CAMx chemical transport model and 
high-resolution land use data into a random forest (RF) model to predict Cu concentrations at ~250 m over 
whole of continental Europe. The RF model was trained using an unprecedented dataset of over 50,000 daily Cu 
measurements from 152 sites. It corrected CAMx underestimation and downscaled Cu to a higher spatial reso-
lution. In validation, the model showed robust spatial and temporal prediction with good Pearson’s correlation 
coefficients of 0.6 and 0.7, respectively. We generated 10 years (2010–2019) of daily Cu concentrations over 
Europe, revealing spatial patterns aligned with urbanization and road networks, with peaks in cities and lower 
values in rural areas. Temporal trends reveal that Cu concentrations generally peak on weekdays and in winter. 
Despite a decline in PM across Europe over decades, Cu concentrations showed no decrease in many cities from 
2010 to 2019. Cu levels are strongly correlated with population density with more than 12 million Europeans 
exposed to levels exceeding 40 ng/m3, equivalent to around 1 μg/m3 of total PM10 from brake wear. Our findings 
highlight the need for expanded metal measurement for non-exhaust tracers for a better understanding of the 
health relevance of PM composition including Cu, and more effective regulations of non-exhaust PM emissions as 
included in EURO 7 vehicles.

1. Introduction

Air pollution poses a threat to human health and climate. The 
expansion of the mobility sector, driven by rapid economic growth and 
urban development, has resulted in a notable increase in vehicular 
emissions. Motor vehicles contribute to air pollution through exhaust as 
well as non-exhaust emissions. Exhaust emissions stem from fuel com-
bustion, while non-exhaust emissions arise from brake wear, tire wear, 
road surface wear, resuspended particles from road dust, and volatile 
organic compounds (VOCs) from fuel evaporation and vehicle mainte-
nance (Harrison et al., 2021; Johansson et al., 2009). Over the past few 
decades, regulations have significantly reduced exhaust emissions. 
However, non-exhaust emissions remain largely unregulated, causing 
their relative contribution to total vehicular pollution to grow (Gon and 
Der, 2013; Harrison et al., 2021; Salma and Maenhaut, 2006; Thorpe 
and Harrison, 2008). Additionally, non-exhaust emissions are also 
increasing because of the continuous rise in the number of vehicles. 
Electric vehicles (EVs), while reducing gaseous and particulate matter 
(PM) exhaust emissions, do not address overall on-road vehicular 
pollution since non-exhaust PM emissions are proportional to vehicle 
weight, and EVs tend to be heavier than vehicles with internal com-
bustion engines by around 20–25% (Timmers and Achten, 2016; Woo 
et al., 2022). As a result, PM emissions from EVs and modern combustion 
vehicles are now nearly comparable (Timmers and Achten, 2016). Ma-
terial abrasion in non-exhaust processes mainly produces larger parti-
cles, which can be adequately expressed and assessed by their mass 
concentration. Understanding the sources, contributions, trends, and 
health impact of non-exhaust pollution is essential to inform effective 
regulatory measures for reducing these emissions, as for the first-time 
regulation of PM10 emissions from brakes is included in the EURO 7 
emission standard by European Union (EU) (Council of the EU, 2024). In 
previous regulations on brake wear, the EU implemented stringent 
measures to eliminate asbestos-containing materials decades ago, lead-
ing to the widespread use of asbestos-free brake linings across Europe 
(European Union, 1999). Abrasions from brake pads release non-exhaust 

particles rich in potentially toxic metals such as Fe, Cu, Sb, Ba, Sn, and 
Mn, with sizes ranging from ~100 nm to ~10 µm, although the preva-
lent mass contribution falls in the range of 2.5–10 µm (Thorpe and 
Harrison, 2008). Although Cu is majorly emitted by transportation, in-
dustrial and energy sectors, 70–90% of Cu near traffic sources and city 
centers come from brake wear emissions, suggesting, Cu can serve as a 
reliable tracer for non-exhaust emissions (Charron et al., 2019; Denier 
van der Gon et al., 2007; Johansson et al., 2009; Salma and Maenhaut, 
2006; Thorpe and Harrison, 2008). In addition, Cu, known for its high 
intrinsic oxidative potential has been linked to adverse health outcomes 
due to its ability to generate reactive oxygen species, which can promote 
immune disorders, metabolic diseases, and genetic damage (Fussell 
et al., 2022; Rodopoulou et al., 2022; Schiavo et al., 2023). Epidemio-
logical studies have shown a 6.3% increase in the inflammatory blood 
markers high-sensitivity C-reactive protein (hsCRP) with 5 ոg/m3 in-
crease in PM2.5 copper using European cohorts (Hampel et al., 2015). 
However, epidemiological studies on non-exhaust PM pollution are 
limited due to the lack of exposure data (Beelen et al., 2015; Chen et al., 
2021; Fussell et al., 2022).

Non-exhaust PM tends to exhibit considerable spatial variability due 
to their coarse mode size, with elevated concentrations often observed 
near high-traffic intersections and residential areas. This underscores 
the need for detailed, high spatial resolution Cu concentration data to 
inform exposure assessments. While metal measurements at specific 
sites provide valuable information, they are insufficient for exposure 
assessment, due to limited spatial coverage. Chemical transport models 
(CTMs) can produce spatially and temporally continuous maps of pol-
lutants, but the high spatial resolution required for accurate exposure 
estimates is computationally challenging. In addition, inventories 
dedicated to brake wear emissions are rare. Land use regression models, 
which are typically used for high-resolution air pollution modeling, 
require high-density observation data for accurate predictions. Recently, 
the use of machine learning models has been instrumental in improving 
the predictions of different chemical transport models, including 
LOTOS-EUROS (Xu et al., 2021), GEOS-Chem (Ivatt and Evans, 2020), 
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Copernicus Atmosphere Monitoring Service (CAMS) (Bertrand et al., 
2023), WRF-Chem (Han et al., 2023), CMAQ (Sayeed et al., 2022), 
CHIMERE (Chelhaoui et al., 2024) and CAMx (Hosseinpour et al., 2024), 
and downscaling (Jianyao et al., 2025). Hybrid methods have emerged, 
integrating CTMs’ ability to simulate atmospheric dynamics with land 
use data for enhanced spatial resolution too (de Hoogh et al., 2018). 
These hybrid models can correct biases and downscale pure CTM out-
puts, thus bridging the gap in fine-resolution non-exhaust emission 
modeling.

This study presents the first hybrid model for predicting daily mean 
Cu concentrations from brake wear for the European domain, at a ~ 250 
× 250 m resolution over the years 2010–2019. We have integrated a 
unique brake wear emission inventory in a CTM to generate ~12 km ×
12 km resolution maps of Cu concentrations. These maps were then 
downscaled using a random forest model incorporating fine-resolution 
land use information. The model was trained on an unprecedented 
observational data set of over 50,000 daily Cu concentrations from 152 
European sites. The model outputs enable analysis of both spatial and 
temporal trends in brake wear emissions, and they are suitable for 
exposure assessment needed to support epidemiological and health 
impact studies.

2. Methodology

2.1. CAMx model for Cu modelling at a coarser spatial resolution

We used the Comprehensive Air Quality Model with extensions 
(CAMx) version 6.5 to simulate hourly fine and coarse mode Cu con-
centrations. The simulation used inert aerosol treatment (with the 
aerosol option “INERT”) where it accounts for transport, dispersion, and 
deposition processes while excluding chemical reactions (ENVIRON, 
2018). The simulation domain covers Europe with 200 longitudinal and 
280 latitudinal grid points, at a spatial resolution of 0.25◦ × 0.125◦ and 
14 vertical layers extending to 100 hPa, which includes elevations 
ranging from ~20 to 7000 m above sea level. CAMx was run offline, 
using the Weather Research and Forecasting (WRF) meteorology and 
emissions based on CAMS-REG-v4.2 (Kuenen et al., 2022) prepared by 
the Netherlands Organisation for Applied Scientific Research (TNO) as 
inputs. Meteorological parameters were simulated for the specified 
domain and resolution with a three-day spin-up, using ERA5 data for 
initial and boundary conditions. The similar model setup is validated 
with ground-based observations for meteorological parameters like 
temperature, wind speed, and wind direction and chemical parameters 
like organic aerosol (OA) in the previous studies from our group and 
show good model performance (Jiang et al., 2019a,b). The multi-year 
emission inventory for vehicular wear Cu used in this setup was 
generated, combining emissions from the COPERT model (EMISIA, 
2020) for vehicle emissions with a spatial distribution using the same 
methodologies as for the CAMS-REG emission inventories (Kuenen et al., 
2022). The brake wear emission inventory includes emissions from 
motorcycles, passenger cars, light-duty vehicles, and heavy-duty vehi-
cles. It considers emissions in different traffic patterns like driving in 
urban areas, on highways, and on rural roads (Denier van der Gon et al., 
2018). The chemical composition of brake wear is based on elemental 
composition analysis of braking materials (Hulskotte et al., 2014). The 
CAMx simulations spanned a decade (2010–2019), providing hourly Cu 
concentration estimates across Europe to capture long-term trends.

2.2. Random forest model for improved prediction and spatial 
downscaling

Random forest (RF) is a machine learning algorithm that employs an 
ensemble of decision trees to model complex, non-linear relationships 
between predictors and target variables (Hu et al., 2017; Breiman, 2001; 
Chen et al., 2019). We applied RF to downscale CAMx outputs to ~ 250 
m spatial resolution and to improve the prediction accuracy as well. To 

do this, we modelled the logarithmic ratio of ground-based Cu obser-
vations to CAMx-simulated Cu as the target variable, thus correcting 
CAMx biases due to emission uncertainties, potentially missing sources 
like resuspended particles, and coarser resolution. Using CAMx con-
centration as input to RF model instead of ratio led the model to create a 
sharp distinction between low and high CAMx values, producing two 
separate distributions of predictions. Within each range, the model 
exhibited an almost flat response relative to the observations, resulting 
in unsatisfactory performance and limited predictive power, in contrast, 
the ratio captures variability better as discussed in the result section. The 
logarithmic transformation of observed to CAMx ratio allows covering 
the large dynamic range in this ratio and ensures stable model perfor-
mance (consistent precision and accuracy) across the full range of cop-
per concentrations. Although Cu is also emitted from sources such as 
manufacturing and extractive industries (including Cu smelters) and 
railway and tram transportation, brake wear emissions are the dominant 
contributor. Emission from the road transport sector accounts for 
~70–90 % of total Cu in European countries (CITEPA, 2018; 
EEA-Report, 2024). While the observed Cu includes contributions from 
all sources, we assume that the modeled Cu primarily represents brake 
wear emissions. Here, the key modeling component, CAMx simulations, 
aligns with this assumption by specifically simulating Cu concentrations 
from brake wear. The RF predictors included land use variables and 
major meteorological parameters. The use of high-resolution land use 
data (at scales ranging from 25 m to 1 km) enables the RF model to 
produce bias-corrected daily Cu concentration maps across Europe at a 
fine spatial scale. The model operates at a daily temporal resolution, 
allowing us to distinguish the effects of land use, activity, and meteo-
rological variations more effectively, resulting in a more robust pre-
dictive capability in both space and time.

We used meteorological parameters from WRF simulation as pre-
dictors to the RF model including ambient temperature (at 2 m height), 
relative humidity, planetary boundary layer height (PBLH), wind speed 
(at 10 m height), and atmospheric surface pressure. Land use predictors 
were sourced from multiple databases, as summarized in Table S1. They 
include the fraction of different land use types (e.g., agricultural, in-
dustrial, natural green, barren land), road network lengths, percentage 
of buildup area represented by impervious surface density (IMD), and 
elevation. In addition, we have also used Cu concentration in topsoil, 
population density, day of the week, and month of the year as predictor 
variables. The data on Cu concentration in topsoil were sourced from the 
European Soil Data Centre (ESDAC) for the European Union (Panagos 
et al., 2022), and for Switzerland, it was obtained from the Swiss Centre 
of Excellence for Agricultural Research Agroscope (Reusser, 2023). 
These predictors are correlated with Cu as well as with one another. For 
a detailed overview of these correlations, please refer to the correlation 
clusters heatmap in Fig. S12. We applied bilinear interpolation to 
resample all required CAMx and WRF variables to a finer spatial reso-
lution of ~ 250 m. Similarly, all required land-use variables were 
regridded to this ~250 m resolution from initial resolutions varying 
from 25 m to 1000 m. Subsequently, the Point location data for training 
and validation were extracted from the interpolated datasets.

To train our model, we used the most comprehensive ground-based 
dataset of Cu concentrations in PM10 fraction in Europe, comprising 
152 monitoring stations and totaling more than 50,000 daily data points 
(Fig. 1). Table S2 summarizes monitoring locations with metal mea-
surement methodology for each location. In brief, the most used mea-
surement techniques are Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS), X-ray fluorescence (XRF) spectrometry, and 
particle-induced X-ray emission (PIXE) spectrometry. ICP-MS is based 
on the digestion and analysis of a sample whereas PIXE and XRF 
(including the Xact instrument) are both non-destructive, X-ray-based 
nuclear techniques. Multiple aerosol studies have demonstrated strong 
agreement between PIXE and XRF for elemental concentrations, 
including Cu. For instance, Gini et al. (2021) conducted an inter- 
laboratory comparison of PM10 samples analyzed by both PIXE and 
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XRF and found excellent consistency for Cu among other elements, with 
differences typically below 10 %. Similarly, Chiari et al. (2018) and 
Lucarelli et al. (2011) support the reliability and interchangeability of 
PIXE and XRF in aerosol applications. While ICP-MS is fundamentally 
different compared to PIXE and XRF, studies have shown very good 
agreement for trace metals like Cu. A study by Saitoh et al. (2002)
comparing ICP-MS and PIXE measurements on PM10 samples reported 
correlation coefficients (R2) above 0.9 for most metals, including Cu. 
These validate the cross-comparability of the methods for this specific 
analyte and we consider the Cu data from PIXE, XRF, and ICP-MS in this 
study to be directly comparable and compatible with our modelling 
framework. The average error in determining Cu concentration is 
~10%, which is far lower than the uncertainties of our model 
(~30–50%) and more than 95% of the data are 5 times higher than 
detection limits. Therefore, we have not considered the measurement 
errors in the modelling framework.

Table S2 also details the number of observations and corresponding 
mean concentrations for each site. Given the heterogeneity of PM 
chemical composition measurements across Europe, data were gathered 
through scientific collaborations, regional air quality networks, and 
government agencies to ensure the most comprehensive and accurate 
dataset. This database is part of a larger initiative to develop a global 
dataset on PM chemical composition (El Haddad et al., 2024).

We conducted a hyperparameter search to obtain an optimized 
model using cross-validation to determine the optimal combination of 
the hyperparameters of RandomForestRegressor from the scikit-learn 
library of Python (Pedregosa et al., 2011). This included optimization 
for the number of trees in the RF ensemble, the maximum number of 
features to consider when looking for the best split, the minimum 
number of samples required to split a node, and the maximum depth of 
the tree. To evaluate the prediction quality on the held-out splits, we 
used the squared error criterion. The optimal hyperparameters obtained 
from tuning for the final model were determined as follows: the “n_es-
timators” was 300, the “maximum_features” was 0.5, the “mini-
mum_samples_split” was 2, and the maximum_depth was 25. We 
thoroughly validated the model using different approaches to develop a 
spatially and temporally robust model. Spatial robustness was assessed 
by performing validations on unseen locations, where 10 % of the lo-
cations were held out for validation in iteration, and performed 10 it-
erations to ensure a comprehensive evaluation for all locations. 

Temporal consistency was checked through a leave-one-year-out vali-
dation. To ascertain the impact of CAMx, we trained and validated 
another RF model, without anchoring it to the CAMx Cu results. In 
addition to the training and validation statistics, we conducted an in- 
depth analysis of the predicted Cu maps to identify and rectify any un-
usual patterns like the impact of road variable in different buffer sizes. 
We used CAMx, WRF, and LU dataset rescaled to uniform 250 m reso-
lution as input for the RF model while facilitating predictions across the 
entire domain. This approach ensures consistency during the model 
development and prediction.

2.3 Assumptions and limitations

In this study, we assume that total Cu concentrations reflect brake 
wear emissions. Copper is widely recognized as a reliable tracer for 
vehicular brake wear, as supported by numerous modelling and obser-
vational studies (Charron et al., 2019; Denier van der Gon et al., 2007; 
Johansson et al., 2009; Salma and Maenhaut, 2006; Thorpe and Harri-
son, 2008). For example, over 90 % of Cu in Stockholm air has been 
attributed to traffic emissions, mainly from brake wear (Johansson et al., 
2009); similar contributions have been reported in Birmingham (97 %; 
Birmili et al., 2006), Budapest (69 %; Salma and Maenhaut, 2006), and 
São Leopoldo and Canoas, Brazil (81 %; Alves et al., 2020). Our analysis 
supports these findings. Observed Cu concentrations correlate well with 
total road length within a 1000 m buffer (Pearson’s r = 0.49; Fig. S1a), a 
relationship comparable to that between observed and CAMx-simulated 
Cu (Pearson’s r = 0.45; Fig. S1b), which is based on brake wear emission 
inventories. Additionally, observed Cu levels exhibit a strong correlation 
with CAMx-simulated nitrogen oxides (NOx) (r = 0.55; Fig. S2a), a 
well-established tracer for exhaust traffic pollutant. CAMx-predictions 
of Cu and NOx themselves are highly correlated (r = 0.89), reinforcing 
their shared traffic-related origin. While the other sources of Cu such as 
metal smelting exist, these are typically spatially localized and not 
dominant in traffic-heavy environments. To our knowledge, the moni-
toring sites included in our analysis are not located near major industrial 
Cu sources. As shall be discussed below, the RF bias correction and 
downscaling largely follow road density and urban land use, with 
negligible influence from industrial area coverage. This supports the 
interpretation that RF-CAMx Cu predictions primarily represent 
traffic-related brake wear emissions.

Another limitation of our approach is that atmospheric dispersion is 
not explicitly simulated at the high resolution (~250 m) of the down-
scaled outputs. Instead, concentrations in adjacent high-resolution grid 
cells are estimated independently. That is, while CAMx simulates 
transport, dispersion and deposition at a coarse resolution of ~12 km, 
high resolution land-use variables combined with coarse resolution 
meteorology are used to bias-correct and downscale CAMx outputs to 
~250 m resolution. Despite this, we do not observe significant discon-
tinuities in the predicted Cu concentration fields (see Figures 2b and 3a). 
Methods that account for spatial autocorrelation, such as kriging, do 
exist, but they require a much denser observational network than is 
currently available to be effective (Chen et al., 2019; Wong et al., 2021).

As noted above, analytical uncertainties in Cu measurements are 
relatively minor compared to other sources of error. However, temporal 
coverage varied across sites, with some offering few months of data and 
others spanning multiple years. However, our analysis shows that 
increasing the number of sites in the training set improves model per-
formance more than extending the time series. Therefore, we prioritized 
the inclusion of more sites, even when their time series were relatively 
short. The data used were not collected through a unified campaign 
designed for the purpose of the study but stemmed from independent 
efforts across Europe over the past decade. This approach enabled us to 
build on the most comprehensive aerosol elemental composition dataset 
to date, while also underscoring the need for more coordinated, long- 
term, multi-site measurements across the continent. On the modelling 
side, uncertainties arise from the representation of meteorological 

Fig. 1. Spatial distribution of CAMx simulated multi-year (2010–2019) mean 
Cu concentration across Europe and mean observed Cu concentration from 
ground-based monitoring sites represented by the markers scattered over the 
map. The color of the markers represents the mean concentration at the 
monitoring location and the size of the markers represents the number of data 
points available at locations.
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conditions, transport, and deposition processes. These are influenced by 
assumptions in model parameterizations and the coarse spatial resolu-
tion, both of which can limit the accuracy in simulating pollutant 
dispersion. Additionally, uncertainties in emission inventories propor-
tionally affect CAMx outputs; these biases are systematically corrected 
using the RF model, as presented in Fig. 3b and discussed in the Results 
and discussion section.

3. Results and discussion

3.1. CAMx predictions

Fig. 1 displays the CAMx-simulated mean Cu concentrations across 
Europe, averaged over the period from 2010 to 2019. The spatial dis-
tribution reveals high concentrations in urban areas and cities, with 
lower levels in sparsely populated and rural regions. Notably, elevated 
concentrations are present in Southern England, the Benelux region, and 
the Po Valley, which align with the NOx distribution patterns, typically 

driven by vehicular emissions (Ciarelli et al., 2021; Duncan et al., 2016; 
Schaap et al., 2013). In Fig. 1 observational data is overlaid, showing 
coverage across most of Western and Central Europe, with significant 
gaps in Eastern Europe and the Balkans, emphasizing the necessity for 
additional monitoring initiatives in Eastern Europe. The initial com-
parisons indicate that CAMx exhibits an average negative bias of a factor 
of around 7 when compared to observations.

Fig. 2 shows a density scatter plot comparing CAMx predictions with 
observations. This illustrates that the CAMx bias varies across the con-
centration range, from an average underestimation of less than a factor 
of 2 at lower concentrations to an underestimation of more than a factor 
of 10 at higher concentrations. This results in a moderate Pearson cor-
relation coefficient of r = 0.43. As mentioned in Section 2.3, this un-
derestimation may result from several factors: (1) uncertainties in the 
brake wear emission inventory; (2) the coarse resolution of CAMx, 
which limits its ability to capture highly localized concentrations; (3) 
unaccounted sources of Cu, such as industrial emissions, railways, and 
resuspended particles; and (4) uncertainties in meteorological inputs 

Fig. 2. (a) Scatter plot between CAMx simulated Cu (ng/m3) and observed Cu concentration (ng/m3) from 152 locations over Europe (b) Scatter plot between RF- 
CAMx predicted Cu and observed Cu concentrations (ng/m3), where color represents data density. (c) SHAP value analysis of feature importance in the RF model for 
Cu predictions, highlighting the 25 most important features. Each point represents a SHAP value, which quantifies the contribution of a specific feature to an in-
dividual prediction. A higher absolute SHAP value indicates a stronger influence on the model’s output. The color gradient represents the feature magnitude, with 
higher values shown in red and lower values in blue. Features with a wider spread of SHAP values exhibit greater variability in their influence. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
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from the WRF model, which together with CAMx parameterization 
schemes can introduce errors in simulating the transport, dispersion, 
and deposition of Cu. The spatial variation in CAMx bias, suggests that 
CAMx outputs or emission inventories cannot be accurately corrected 
with a single scaler. The bias magnitude correlates with local features, 
such as urban fraction, IMD, and road variables, while showing low 
correlations with other anthropogenic emission indicators, confirming 
that traffic emissions remain the most important source of Cu in most of 
Europe. To address this, we have incorporated land-use variables into a 
random forest framework to correct CAMx biases, accounting for the 
fine-scale variability of these emission indicators.

3.2. RF model performance

We validated the RF model following different approaches. First, we 
followed the conventional validation approach, utilizing 80 % of the 
total dataset for training and 20 % for validation (Grange et al., 2018; 
Wu et al., 2023), which resulted in a high Pearson’s correlation of 0.75 
(Fig. S3(a)). In another approach, we validated the trained model on 
locations not included in the training by setting aside about 10 % of the 
monitoring stations each time, ensuring that all stations were eventually 
treated as unseen. This was done to ensure the spatial robustness of the 
model. Fig. 2(b) illustrates a density scatter plot comparing RF-CAMx 
predicted Cu for unseen sites with observed values, demonstrating an 
increase in Pearson’s correlation coefficient from 0.43 with CAMx to 
0.58 with RF-CAMx. In contrast to the CAMx validation results (Fig. 2
(a)), the RF predictions align closely with the 1:1 line across all con-
centrations, indicating that the prediction is consistent across all con-
centration ranges. We utilized the resulting model to make daily Cu 
predictions over the period of 2010–2019. We also conducted a leave- 

one-year-out validation process by excluding one year for validation 
purposes and trained the model with the remaining dataset. This 
resulted in a Pearson’s correlation coefficient of 0.69 (Fig. S3(b)), which 
highlights the model’s ability to effectively predict multiyear Cu con-
centrations. In the leave-one-year-out validation, the model demon-
strates a mean Pearson’s r of 0.71 with a standard deviation of 0.09, and 
a mean RMSE of 18.2 ng/m3 with a standard deviation of 4.9 ng/m3, this 
small variation indicates the model’s robust and consistent temporal 
performance (Fig. S4). Fig. S7(a) compares the performance of the RF 
model presented here (RF-CAMx) with the RF model that is not anchored 
to CAMx (RF). The non-anchored model demonstrated a good Pearson’s 
correlation of 0.61 and a low root mean squared error (RMSE) of 20.22 
ng/m3 in the validation phase. However, it globally shows over-
predictions and inconsistencies across all concentration ranges (Fig. S7
(b)), which shows that anchoring the model to CAMx enhances robust-
ness, as it retains the physical model’s broader spatial structures while 
correcting for local biases. A list of detailed validation matrices is given 
in Table S3 for all used RF based models and validation methodologies.

3.3. Importance of predictor variables

The relative importance of each predictor in the RF was identified 
through feature importance and SHapley Additive exPlanations (SHAP) 
analysis (Figs. 2(c) and S5). Both methods highlight that impervious 
surface density (IMD), population density, road class 3, Cu concentra-
tions in topsoil (see Table S1), and PBLH, significantly influence pre-
dictions. SHAP values illustrate how each input variable contributes to 
individual predictions (Lundberg and Lee, 2017), and the corresponding 
plot shown in Fig. 2(c) reports the top 25 most influential variables. 
Among these, IMD, road class 3 within a 2000 m buffer, and population 
density are the three most critical features. Higher IMD which corre-
sponds to more buildup values is associated with bigger predicted log 
ratio of observed and CAMx Cu which corresponds to higher predicted 
Cu concentrations. Similarly, a higher density of road class 3 positively 
impacts predictions, while a lower density for the same negatively af-
fects copper concentrations. This supports that Cu is primarily associ-
ated with vehicular non-exhaust emissions, as areas with extensive roads 
and concrete surfaces typically experience elevated Cu concentrations. 
Conversely, elevation shows an inverse relationship, with lower eleva-
tions associated with higher Cu concentrations. Population density ap-
pears to act as a balancing factor, potentially correcting any 
overestimations of Cu concentrations driven by IMD or road networks. 
The positive impact of population density at lower values indicates that 
pollution sources in these areas are influenced more by infrastructure or 
localized factors rather than by population density alone.

3.4. Spatial distributions of Cu over Europe

We predicted spatially downscaled and corrected maps of daily mean 
atmospheric Cu concentration over Europe for a 10-years period 
(2010–2019) using the trained RF model. The predicted Cu maps are at a 
fine spatial resolution of 0.0025◦ × 0.005◦ (~250 m) over Europe, and 
the annual mean for the year 2019 is shown in Fig. 3(a). The predicted 
Cu map of each day consists of approximately 70 million grid data points 
for Cu over the land area of Europe (excluding the ocean), which 
amounts to 250 billion prediction points over 10 years which makes it 
computationally expensive. The spatial distribution of Cu concentra-
tions from RF-CAMx closely resembles that from the CAMx simulation 
across Europe but with significantly higher concentration levels at most 
of the locations. Figs. 3(b) and S6 show the ratio between Random 
Forest–corrected CAMx (RF-CAMx) and the original CAMx predictions, 
presented as a probability density function and a spatial map, respec-
tively. The ratio centers around 2, indicating that CAMx underestimates 
Cu concentrations mostly a factor of two. This underestimation is likely 
influenced by uncertainties in emission inventories, especially for brake 
wear, where emission factors vary with driving conditions and are hard 

Fig. 3. (a) Annual mean surface Cu concentration over Europe for the year 
2019 at spatial resolution of 0.0025◦ × 0.005◦ (~250 m) from RF-CAMx model, 
(b) Histogram showing distribution of ratio of RF-CAMx Cu and CAMx Cu over 
Europe for year 2019.
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to quantify. While this level of bias is reasonable given these un-
certainties, the wide range in ratios from <1 to >10 highlights sub-
stantial spatial variability. Higher correction factors are seen in urban 
and roadside areas, while rural regions require less adjustment, sup-
porting the initial assumption that Cu is largely traffic-related. This 
spatial spread also reflects a key limitation of coarse-resolution chemical 
transport models like CAMx, which cannot resolve fine-scale heteroge-
neity in emissions. The Random Forest model overcomes this by using 
high-resolution land use data to both downscale and bias-correct CAMx 
outputs. Fig. 4 presents the annual mean Cu concentrations from both 
the CAMx and RF-CAMx models for two regional domains: one around 
central Europe (4 to 14◦E, 43 to 48◦N) and another around the Benelux 
region (− 2 to 10◦E, 48 to 53◦N). Both models are comparable in iden-
tifying the spatial distributions and hotspots. However, the RF model 
resolves local spatial features more effectively due to its finer resolution. 
We observe comparatively lower Cu concentrations in the eastern part of 
Europe, which is typically a hotspot for organic pollutants. During the 
modelling process, we have limited the number of ground based Cu 
observations from the eastern region. We expect that incorporating more 
data from this region in future analyses will result in further improve-
ments in the model’s performance for sites in the eastern region.

The results in Figs. 3 and 4 illustrate spatial distributions of Cu at 
both the European and regional scales. It shows that Po Valley, North-
western Europe (including the Benelux region and western Germany), 
and major cities such as London, Paris, and Madrid are the key hotspots 
for Cu. Cu levels are generally higher in urban areas, with rural regions 
exhibiting lower concentrations. Notably, elevated Cu concentrations 
are observed in proximity to road networks, particularly in areas con-
necting major cities. For example, the elevated concentrations are 
observed along the major road from Lyon to Marseille and the transport 
network between Milan and Rimini through Bologna in Italy, as well as 
the road network linking Warsaw to Bydgoszcz and the Gdańsk coast in 
Poland, are particularly notable. The Po Valley is a significant hotspot 
where both background and urban Cu concentrations are elevated. The 
region is characterized by a valley-like geography that limits atmo-
spheric ventilation, combined with substantial emission sources, leading 
to a widespread distribution of Cu. These conditions make the RF-CAMx 
model particularly relevant for accurately representing concentration 
distribution in this region. The high-resolution map in the Benelux 

region further demonstrates that Cu concentrations closely follow road 
networks and correlate with urban density.

To explore the distribution at the local scale, we analyzed Cu con-
centrations, focusing on major cities such as Paris, Brussels, London, and 
Warsaw. The results are presented in Fig. 5(a–d), which covers a 1◦ × 1◦

area to include the urban landscape and surrounding regions. Fig. 5(a–d) 
reveals significant fluctuations in Cu concentrations within these cities, 
with concentrations tending to be highest in built-up areas and along 
major roads. Fig. 5(e) illustrates Cu concentrations in a 0.12◦ × 0.12◦

area for ten European cities (Milan, Paris, Warsaw, Ljubljana, Bern, 
Madrid, Berlin, Rome, Brussels, and London). Here, the selected area for 
each city is slightly smaller than one CAMx grid cell. The analysis is 
based on yearly average concentrations. The plot shows mean, median, 
and interquartile range (IQR) of annual mean Cu within the selected city 
domain to describe Cu distribution. Notably, the mean Cu concentration 
is often higher than the median, indicating a right-skewed distribution 
due to a few elevated concentration values. The IQR reveals a consid-
erable variability around the median in most cities, sometimes 
exceeding half the mean concentration. Among the cities, London, 
Madrid, and Paris have higher concentrations and IQRs, while Warsaw, 
Ljubljana, and Bern have lower levels. Within high-concentration cities, 
differences are evident: for instance, London has a median Cu concen-
tration that is 7 ng/m3 higher than Milan’s, while the mean concen-
tration is 14 ng/m3 greater. This indicates that London has a larger 
number of high-concentration areas. Madrid has a higher IQR than 
Milan but lower mean and median concentrations. Overall, the distri-
bution of median concentrations across cities demonstrates that intra- 
cities variations are equally important as those between cities as 
shown in the last box and whisker plot of the Fig. 5(e).

3.5. Temporal trends in Cu

We used high-resolution daily mean Cu concentrations to project 
trends on weekly, monthly, and annual scales for the ten selected cities. 
The mean Cu concentration shows a 25 % decrease on Saturdays and a 
37 % decrease on Sundays (Fig. 6a). This decline occurs due to reduced 
traffic levels during the weekend, leading to lower Cu levels (Mues et al., 
2014). Similar weekly cycles have been observed for CO and NOx at 
urban and traffic sites across Europe (Masiol et al., 2017).

Fig. 4. (a) Coarse resolution from CAMx and (b) downscaled Cu from RF-CAMx over central Europe including Po valley and south Europe, Switzerland, eastern 
France, etc. (c) Coarse resolution from CAMx and (d) downscaled Cu from RF-CAMx part of northwest Europe Benelux region and west Europe.
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Fig. 5. Fine-scale map zoomed to local scale, capturing local distribution of Cu for cities (a) London, (b) Paris, (c) Brussel and (d) Warsaw, here blank area shows 
masking of waterbodies, (e) Spatial distribution of Cu concentration in 0.12◦ × 0.12◦ degree domain around the center of the city. Here the box represents the 25 %– 
75 % interquartile range (IQR), the line inside indicates the median, and the black dots represent the mean for each city. Whiskers extend to 1.5 times the IQR beyond 
the first and third quartiles. For some cities, whiskers are not visible because the most extreme non-outlier values are very close to the quartiles, and all more distant 
values lie outside the whisker range.

A. Upadhyay et al.                                                                                                                                                                                                                             Environment International 202 (2025) 109615 

8 



The monthly averages indicate that there are higher Cu concentra-
tions during the winter months, with a 30 % decrease observed in the 
summer (Fig. 6b). This variation is primarily driven by seasonal changes 
in meteorological conditions. Winter months typically feature stable 
weather and lower PBLH, which favor pollutant accumulation, while 
summer conditions are more unstable, promoting transport and 
dispersion. Similar seasonal patterns have been observed for CO, NO, 

NO2, NOx, PM10, and PM2.5 concentration in the Po Valley (Bigi et al., 
2012; Masiol et al., 2017) and for CO and NOx across Europe (Lacima 
et al., 2023). However, a similar monthly cycle is not consistently 
observed in regions with weaker meteorological patterns, such as the 
Mediterranean. As shown in Fig. S9, the monthly Cu concentration trend 
is inconsistent in 7 out of 12 Mediterranean cities, where the influence of 
the meteorological cycle is less pronounced compared to other parts of 

Fig. 6. Temporal trend of atmospheric Cu showing (a) Weekly cycle, (b) Monthly cycle, and (c) Annual trend in Cu concentration for the European 10 cities selected 
in Fig. 5(e).
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Europe.
The annual variation in Cu concentrations shows no significant 

increasing or decreasing trend when averaged across the ten cities 
(Fig. 6c). However, distinct trends can be seen in individual cities 
(Fig. S3b). Brussels, Warsaw, Ljubljana, London, and Paris have expe-
rienced an increase in concentration trends, while Milan and Rome show 
decreasing concentrations. By contrast, Bern, Madrid, and Berlin exhibit 
no significant trends. Overall, while exhaust emissions of PM and NOx 
have fallen by 50 % and 40 %, respectively, over the past two decades 
(2000–2018) across Europe, brake wear emissions have remained 
largely unchanged (Denier van der Gon et al., 2018; Monforti Ferrario 
et al., 2022).

3.6. Population exposure to Cu

Our results indicate that Cu concentrations are higher in densely 
populated areas, with half of the population exposed to levels exceeding 
8 ng/m3. Approximately 12 million persons are exposed to Cu concen-
trations greater than 40 ng/m3 (see Figs. 7(a) and S10), while 56 million 
individuals across Europe are exposed to more than 20 ng/m3 of Cu. The 
population-weighted concentrations (methodology in Section S1.1) by 
country shown in Fig. 7(b) indicate that Italy, Belgium, the Netherlands, 
and the United Kingdom experience higher average exposures than 
other countries.

Currently, no standard limit for Cu has been set by environmental 
regulatory agencies. However, based on studies of brake-wear PM10 
chemical composition, Cu concentration of 40 ng/m3 corresponds to 
about 900 ng/m3 of PM10 brake wear which contains approximately 
800 ng/m3 of Fe (~90 %) (Daellenbach et al., 2020). Fe is also reported 
to exert high oxidative stress through reactive oxygen species (ROS) and 
deteriorate pulmonary response (Galli et al., 2024). For context, the 
World Health Organization’s proposed guidelines for PM10 are set at an 
annual average of 15 µg/m3. This highlights that brake wear emissions 
continue to be a significant source of PM10 and particularly of 
redox-active metals, especially in urban areas, able to induce oxidative 
stress.

4. Conclusions

The CAMx modeling coupled with TNO’s non-exhaust emission in-
ventory for Cu largely captured the spatial distribution of vehicular non- 
exhaust Cu, emphasizing urban areas as pollution hotspots across 
Europe. The integrated CAMx-RF model maps the non-linear relation-
ships with site-specific factors such as land use, road networks, popu-
lation density, and topsoil Cu, thereby enhancing prediction accuracy 
compared to CAMx and enabling high-resolution downscaling to 
approximately 250 m. This integrated approach is expected to accu-
rately model other pollutants using chemical transport model simula-
tions with suitable land-use proxies.

High-resolution daily predictions offer a detailed understanding of 
the spatial and temporal trends of Cu. The distribution pattern identifies 
cities, urban environments, and areas along road networks as the pri-
mary Cu hotspots, in line with anticipated patterns for vehicle-derived 
particulate matter. This finding emphasizes the need for focused atten-
tion on this toxic, unregulated pollutant from a public health standpoint 
in the identified hotspot regions. The temporal trends of Cu levels, such 
as those observed on a monthly basis, are largely driven by meteoro-
logical cycles. In contrast, the weekly and annual trends are primarily 
driven by emission variations. These daily predictions provide invalu-
able insight into the impact of emissions and meteorology on Cu dis-
tribution, which is crucial for effective air quality management and 
long-term planning at both urban and regional levels. These distribu-
tion trends allow agencies to assess the effectiveness of their plans, 
verify policies, and identify periods of high pollution for issuing health 
advisories. The introduction of the EURO 7 regulations includes limits 
on non-exhaust emissions, such as PM10 from brake wear in light-duty 
vehicles (LDVs). The modelling approach used in this study, when 
applied with revised emission estimates based on EURO 7 will be crucial 
in assessing the spatial effectiveness of these regulations on non-exhaust 
emissions.

The high-resolution daily Cu maps produced by this approach pro-
vide valuable insights at regional, national, and local scales particularly 
useful for epidemiological studies on the chronic and acute health effects 
of brake wear PM composition. The heterogeneous distribution of Cu at 
a fine resolution at the local scales underscores the need for more precise 
measurement campaigns to account for intra-city variations. It also 
highlights the need to place greater emphasis on mobile measurements 
to gain a deeper understanding of the spatial distribution of non-exhaust 
pollution. Furthermore, there is a need for additional measurements in 
Eastern Europe, where data is relatively sparse.

Aerosols from non-exhaust sources consist of various particles like 
Zn, Fe, and Sb, while Cu is also emitted by other sources like railways, 
industries, and dust resuspension which should also be further investi-
gated. Therefore, additional studies focusing on the detailed and 
comprehensive source apportionment of urban aerosols remain essen-
tial. This will notably enable the inclusion of additional non-exhaust 
tracers in the modeling, thus accounting for the accurate share of Cu 
from non-exhaust that potentially leads to reduced uncertainties in 
predictions. To improve predictions, enhance health impact assessment, 
and support regulatory purposes, a continuous improvement in the 
emission inventory for non-exhaust sources is required, including better 
accounting of sources such as EVs and the development of emission 
inventories for heavy metals. Overall, this study provides valuable in-
sights for regulating vehicle emissions, public issuing health advisories 
on toxic pollutants, gathering exposure data for epidemiological studies, 
and providing information for both short- and long-term air pollution 
mitigation planning.

Fig. 7. (a) Total exposed population to the given bin of Cu concentration over Europe, (b) Population weighted Cu concentration for each country over Europe.
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