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the specific use by a pollinator. Investigating whether 
detailed and temporally-resolved floral resource maps 
predict pollination success of broad bean better than 
land cover maps.
Methods We mapped plant species used as pollen 
source by bumblebees in 24 agricultural landscapes 
and developed an index of floral resource availability 
for different times of the flowering season. To meas-
ure pollination success, patches of broad bean (Vicia 
faba), a plant typically pollinated by bumblebees, 
were exposed in the center of selected landscapes.
Results Higher floral resource availability before 
bean flowering led to enhanced seed set. Floral 
resource availability synchronous to broad bean flow-
ering had no effect. Seed set was somewhat better 
explained by land cover maps than by floral resource 
availability, increasing with urban area and declining 
with the cover of arable land.
Conclusions The timing of alternative floral 
resource availability is important for crop pollina-
tion. The higher explanation of pollination success 
by land cover maps than by floral resource availabil-
ity indicates that additional factors such as habitat 
disturbance and nesting sites play a role in pollina-
tion. Enhancing non-crop woody plants in agricul-
tural landscapes as pollen sources may ensure higher 
levels of crop pollination by wild pollinators such as 
bumblebees.

Abstract 
Context Flowering plants can enhance wild insect 
populations and their pollination services to crops in 
agricultural landscapes, especially when they flower 
before the focal crop. However, characterizing the 
temporal availability of specific floral resources is a 
challenge.
Objectives Developing an index for the availability 
of floral resources at the landscape scale according to 
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Introduction

Pollination by insects is crucial to reproduction for 
many plants. Animal pollination benefits 88% of wild 
flowering plants (Ollerton et  al. 2011) and 35% of 
global crop production (Klein et al. 2007). The world-
wide economic value of crop pollination in 2015 was 
estimated as 153 billion € (Gallai et  al. 2009). Dur-
ing the last few decades, the dependency of global 
agriculture on pollinators has increased (Aizen et al. 
2019). Wild insects greatly contribute to pollination 
in addition to managed bees (Garibaldi et  al. 2013; 
Mallinger and Gratton 2015). Apart from wild bees, 
also flies, wasps, beetles and butterflies are frequently 
involved in crop pollination (Rader et al. 2016). Glob-
ally, roughly half of the economic value of crop pol-
lination has been attributed to wild pollinators (Kleijn 
et al. 2015).

Agricultural intensification has led to declines in 
pollinator populations (IPBES 2016). Aside from 
pesticides and diseases, the scarcity of floral and nest-
ing resources in agricultural landscapes are major 
causes of the decline in bee populations (IPBES 
2016). Thus, the addition of flowering crop or non-
crop plants to agricultural landscapes can enhance 
wild pollinators and their pollination of agricultural 
crops (Blaauw and Isaacs 2014; Venturini et al. 2017; 
Sutter et al. 2017, 2018; Ganser et al. 2018; Nichol-
son et al. 2019). The abundance and diversity of floral 
resources may lead to better crop pollination by sup-
porting a higher diversity of bee pollinators (Potts 
et al. 2003; Fründ et al. 2010; Garibaldi et al. 2013; 
Blaauw and Isaacs 2014). In addition, the timing of 
the flowering of these alternative floral resources rela-
tive to the flowering period of crops may also be an 
important factor in their effect on crop pollination 
(Grab et al. 2017; Kremen et al. 2019). Availability of 
early flowering plants is expected to enhance pollina-
tor populations and thus to benefit pollination of later 
flowering crops. For example, mass flowering oilseed 
rape (Brassica napus) facilitated later colony devel-
opment of Bombus terrestris (Westphal et  al. 2003, 
2009) as well as later abundance of Osmia bicornis 
(Holzschuh et al. 2013). Mass flowering oilseed rape 

also enhanced bumblebee densities in later flowering 
sunflower crops (Riedinger et  al. 2014) and pollina-
tion of wild shrubs in adjacent hedgerows (Kovács-
Hostyánszki et  al. 2013). Furthermore, mass-flower-
ing apple trees successively led to higher pollination 
and yield of strawberries, most likely due to the 
increased abundance and diversity of bees present in 
the landscapes (Grab et  al. 2017). Similarly, mass-
flowering oilseed rape also led to higher yield in the 
later-flowering strawberry crop, given low propor-
tions of semi-natural grassland in the surrounding 
landscape (Herbertsson et al. 2017). In contrast, plant 
species that produce high amounts of pollen and/or 
nectar synchronously with the focal crop may reduce 
crop pollination by competition (Lander et  al. 2011; 
Bartomeus and Winfree 2011). For example, synchro-
nous mass flowering oilseed rape reduced pollination 
of Primula veris in nearby calcareous grasslands due 
to shared bumblebee pollinators (Holzschuh et  al. 
2011) as well as reducing pollination of nearby wild 
shrubs (Kovács-Hostyánszki et  al. 2013). Likewise, 
synchronous mass-flowering apple trees reduced pol-
linator activity and yield in strawberries (Grab et al. 
2017). Visitation rate of pollinators for wild flowers 
and oilseed rape decreased when flower strips flow-
ered synchronously in late June-late August (Häussler 
et al. 2017).

To account for the effects of alternative floral 
resources, it is necessary to characterize the avail-
ability of resources at different times of the season. 
However, this requires the mapping of the avail-
able floral resources across land cover types at the 
landscape level, which is a major challenge, and in 
the context of crop pollination such data has rarely 
been recorded. So far, studies of pollinators in agri-
cultural landscapes distinguish only a small num-
ber of land cover types with different suitability 
for pollinators (Forman 1995; Fahrig 2013). Other 
studies included foraging distances to explain rela-
tive abundance of pollinators in nesting habitats 
(Lonsdorf et  al. 2009) or combined foraging dis-
tances and resource quality to explain distribu-
tion of foraging bees (Olsson et al. 2015). Further, 
land cover classes and floral resources were used 
to explain colony growth and queen production of 
Bombus vosnesenskii (Crone and Williams 2016). 
Only recently, the temporal dynamics of focal and 
alternative floral resources were taken into account 
to explain crop visitation rates of wild pollinators 
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(Häussler et al. 2017) or to explain the effects of a 
preceding versus a synchronous single mass flow-
ering resource on crop pollination success (Grab 
et al. 2017).

In the present study, we combine a new method 
to quantify floral resource availability with a crop 
pollination experiment using broad bean (Vicia 
faba L.). The work was conducted in 24 land-
scapes selected along a gradient in the availabil-
ity of preceding and synchronous alternative floral 
resources. We quantified floral resource availabil-
ity at the species level across all major land cover 
types in the landscapes in combination with spe-
cific floral resource use information of crop pol-
linators. The broad bean is an insect-pollinated 
crop mostly pollinated by bumblebees (Kendall 
and Smith 1975; Stoddard and Bond 1987; Gar-
ratt et  al. 2014). We inferred detailed information 
on floral resources from pollen types used by Bom-
bus terrestris, one of the dominant bumblebee spe-
cies, in different periods of the year and used an 
index to describe the availability of preceding and 
synchronous floral resources (Eckerter et al. 2020). 
In addition, we explored whether such temporally-
resolved floral resource maps predict pollination 
better than land cover maps built on landscape 
characteristics such as the proportion of crops, 
forest, other semi-natural habitats or urban area. 
These floral resource maps are based on detailed, 
pollinator-specific and spatio-temporal informa-
tion on floral resources that directly and evidently 
regulate pollinator populations (e.g. Roulston and 
Goodell 2011). We hypothesize that such floral 
resource maps predict the crop pollination perfor-
mance of those pollinators better than land cover 
maps, which can only indirectly account for such 
information (Forman 1995; Roulston and Goodell 
2011; Fahrig 2013; Eckerter et  al. 2020; Ammann 
et al. 2022).

We tested the following hypotheses:

 I. High availability of floral resources preceding 
crop flowering enhances pollination success.

 II. High availability of alternative floral resources 
synchronous to crop flowering reduces pollina-
tion success.

 III. Detailed floral resource maps predict crop pol-
lination better than land cover maps.

Methods

Study design experimental set up

The study was conducted around the city of Landau 
in the Upper Rhine Valley, Rhineland-Palatinate, 
Germany. Broad bean (Vicia faba L. Var. Sutton 
Dwarf; Kings Seeds, Essex, UK) phytometers were 
exposed in the center of 24 study landscapes of 500 m 
radius (Online Resource, Fig. A.1). Landscapes were 
selected along gradients of dominant preceding (i.e. 
Prunus type, Acer, Aesculus, Fragaria and Brassi-
caceae) and synchronous (i.e. Tilia, Rubus and Aspar-
agus) pollen resources used by bumblebees during 
the foraging season in the same region (Bertrand et al. 
2019). While the broad bean is self-fertile, pollination 
from bees improves seed set (Aouar-sadli et al. 2008; 
Bartomeus et al. 2014; Nayak et al. 2015; Marzinzig 
et al. 2018), and bumblebees are among the main and 
most effective pollinators of this plant (Garratt et al. 
2014; Bartomeus et al. 2014; Marzinzig et al. 2018).

For floral resource maps, we distinguished plant 
species flowering (1) preceding and (2) synchronous 
to broad beans. We considered 32 key pollen types 
that included all woody plants found to be used by 
Bombus terrestris, plus herbaceous plants represent-
ing more than 5% of pollen grains collected by the 
bumblebee at any point in time (i.e. either preced-
ing or synchronous to broad bean flowering; data 
from Bertrand et  al. 2019; Online Resource, Table 
A.1). We mapped the cover  (m2) of all 69 plant spe-
cies offering these 32 key pollen types in our study 
region between late May and November 2017 (Online 
Resource, A.1). Annuals (Papaver rhoeas, Phacelia 
tanacetifolia and Trifolium spec.) were mapped dur-
ing their flowering period (late-May until mid-July) 
in all landscapes. The pollen collected from all of the 
mapped plant species accounted for 84% of the pol-
len diet of Bombus terrestris across the season (Ber-
trand et al. 2019). The unmapped plant species, which 
made up the 39 remaining pollen types identified as 
part of bumblebees’ diets in Bertrand et  al. (2019) 
but were not included in this study, were mostly her-
baceous plants with relatively low floral abundances 
(Online Resource, Table A.2). For land cover maps, 
all arable land, permanent crops, forest, other woody 
semi-natural habitat, herbaceous semi-natural habi-
tat and urban areas were mapped in all landscapes 
according to field inspection and aerial photographs. 
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Landscapes consisted mainly of crops (average: 70%, 
range: 29–97%) and herbaceous semi-natural habitat 
(average: 11%, range: 1–51%). Main crops were cere-
als, maize and sugar beet.

Bumblebees forage mostly within a radius of 
500 m around their colony, although longer foraging 
flights are possible (Osborne et al. 1999; Kreyer et al. 
2004; Wolf and Moritz 2008). In order to keep land-
scape gradients as independent as possible from each 
other, landscape centers were separated from each 
other by at least 800 m (average: 10,391 m, standard 
error: 252 m). All landscape centers were located in 
grassy field margins. Twenty pots with one plant of 
broad bean Vicia faba L. var. Sutton Dwarf each were 
exposed in each landscape center (Online Resource, 
Fig. A.2). The plants were grown in greenhouses and 
net cages with no pollinator access before or after 
field exposure. When sowing the beans, we applied 
1000 g of NPK 6-17-27 fertilizer per  m3 of soil. The 
pots with full flowering plants (BBCH65; Lancashire 
et al. 1991) were watered regularly and placed in two 
rows with a distance of 0.3 m between pots and 0.5 m 
between rows. The segments of plants that only flow-
ered during field exposure were marked with cable 
ties and later evaluation of pollination success was 
restricted to flowers of these segments. Two inde-
pendent sets of plants were exposed in the field, one 
from 25th May to 9th June and the other from 13th to 
28th June 2017. Both exposure periods occurred after 
the flowering of the major early pollen sources in the 
study region such as Acer, Aesculus, Brassicaceae 
(mainly oilseed rape), Crataegus, Fragaria, Prunus 
and Salix but simultaneous to major late-flowering 
pollen resources such as Papaver, Phacelia, Rubus 
and Tilia in order to reflect the typical flowering time 
of Vicia faba in the study region. To verify the gen-
eral role of insect pollination on seed set of the used 
variety, we placed one additional plant per landscape 
center into a gauze cage (“Aerarium Size L”, Aerar-
ium Nets GmbH, Switzerland, 155 meshes per  cm2) 
next to the other sentinels. To obtain an overview 
of flower visitors, we employed camcorders (Sony 
HDR-CX115E) once during the morning (in between 
8.45 and 11.30 am) and once during the afternoon 
(in between 3.30 and 5.30 pm), for 1:50 h each and a 
total of 3:40 h of video observation in each landscape. 
After returning all plants to the greenhouse, they were 
watered every two days until early August, when pods 
were fully ripe (BBCH89; Lancashire et  al. 1991). 

Two weeks later, the dried pods were harvested. Pods 
and seeds were counted in the lab.

Data analysis

To test our hypotheses, we used the number of seeds 
per pod as an indicator of pollination success as open 
pollination led to higher seed set in other studies 
(Free 1966; Ishag 1973; Suso et al. 1996; Aouar-sadli 
et al. 2008; Nayak et al. 2015).

The cover of different land use types and the dis-
tribution of plant species providing pollen resources 
were digitized as vector layers and analyzed with the 
geographic information system QGIS V. 3.6 (QGIS 
Development Team 2018; Online Resource, Table 
A.2).

The availability of different floral resources in each 
landscape during a time period was combined into a 
floral resource availability index (fai) that weighed 
the relative cover of each flowering plant species in 
a landscape (crp,l) by its quantitative utilization by 
workers of B. terrestris in our study region (vrp,t; 
Eq.  1; see below for details; Bertrand et  al. 2019). 
These indices were calculated for each landscape 
l for three time periods t: (1) preceding broad bean 
exposure (i.e. start of flowering season in mid-March 
until late May), (2) synchronous to broad bean expo-
sure (i.e. late May to late June) and (3) pooled across 
the whole study period. To account for the range in 
preference of different pollen sources to B. terrestris, 
we used pollen volume collected by multiple colonies 
across multiple landscapes in our study region (Ber-
trand et al. 2019) as a proxy of preference. The total 
cover of plants providing each pollen type across all 
landscapes was, thus, weighted proportionally to the 
total pollen volume of each time period. This ensured 
that the contribution of each plant type to the pollen 
availability index was proportional to the preference 
of this plant type for bumblebees (e.g. a plant type 
accounting for 20% of pollen use by Bombus counts 
ten times more than a plant type accounting for 2% of 
pollen use).

In this equation, n represents the number of land-
scapes, P is the number of key pollen types flower-
ing in the respective time period, crp,l is the cover of 

(1)fail,t = n ⋅

P
∑

p=1

crp,l ⋅ vrp,t



1577Landsc Ecol (2022) 37:1573–1586 

1 3
Vol.: (0123456789)

plants providing pollen type p in the respective land-
scape l divided by their total cover across all land-
scapes and vrp,t is the volume of pollen type p in the 
diet of Bombus terrestris divided by the volume of 
all pollen recorded in their diet during the respective 
time period t. This index returns a positive decimal 
value, whereby a value of 1 corresponds to the aver-
age pollen availability across all landscapes at the 
respective time. Values below 1 indicate below-aver-
age pollen availability, whereas values higher than 1 
reveal an above-average pollen availability. For more 
details on the index see Online Resource, A.2. When-
ever we use the term “floral resources” in the remain-
der of this paper, we are referring to the resource 
availability index fai.

For the land cover maps approach, landscape con-
text was expressed as the proportion of arable land, 
permanent crops, forest, other woody semi-natural 
habitat, herbaceous semi-natural habitat and urban 
areas in the landscape. Euclidean distances from the 
broad bean sentinels in the landscape centers to the 
nearest forest or urban land use were also calculated.

To test and compare predictability of seed set by 
the two mapping approaches, a model containing all 
explanatory variables was set up for each approach. 
To facilitate interpretation of parameter estimates, 
input variables were standardized by dividing by 
two standard deviations using the standardize func-
tion from the arm package (Gelman 2008). Mod-
els of each mapping approach were compared based 
on Akaikes second-order information criterion for 
small sample sizes (AICc; Akaike 1987; Burnham 
et  al. 2011; Hurvich and Tsai 1989; Symonds and 
Moussalli 2011) using the dredge function from 
the MuMin package (Barton 2020) and a cutoff rule 
(Δi < 2) (Burnham and Anderson 2002; Symonds and 
Moussalli 2011). For comparison of seed set predict-
ability of both mapping approaches, R2

mult and R2
adj 

values for the most parsimonious models were com-
pared. Effects of landscape context on seed set were 
assessed using models from the subset of models 
best explaining seed set (i.e. all models with (Δi < 2). 
Contributions of landscape context to floral resource 
availability were assessed with linear regression 
models. Linear models were plotted using the pack-
age ggplot2 (Wickham 2016). In order to determine 
whether land cover maps would be more effective 
when using finer categories (i.e. division of crops into 
the classes of arable land and permanent crops as well 

as semi-natural habitat into the classes forest, other 
woody and herbaceous semi-natural habitats), their 
performance in predicting seed set and contributions 
of landscape context to floral resource availability 
were compared using linear regression. All statistical 
analyses were conducted using R 4.0 (R Core Team 
2020). Diagnostic plots (residuals vs. fitted values 
and normal Q–Q plots) were visually checked. We 
further assessed correlations among explanatory vari-
ables and created a correlation plot using the corrplot 
package in R (Wei and Simko 2017).

Results

The pollen use by Bombus terrestris during the vari-
ous time periods is shown in Online Resource, Table 
A.1. From 55,099 broad bean flowers, we harvested 
1,328 pods (mean per landscape = 55.3 ± 14.3) 
with at least one developed seed and 3,269 
(mean = 136.2 ± 37.2) developed seeds in total. The 
mean number of developed seeds per pod per land-
scape ranged from 2 to 2.8 (mean = 2.5 ± 0.2). The 
caged plants developed no seeds. The video obser-
vations recorded the bumblebee species B. terrestris 
agg. (B. terrestris, B. lucorum, B. cryptarum and B. 
magnus, n = 25), B. hortorum (n = 11) and B. lapi-
darius (n = 1) as well as the honeybee Apis mellifera 
(n = 34) as pollinators of the sentinel plants.

Floral resource maps

As expected, broad bean seed set increased in land-
scapes with high preceding floral resource availability 
 (t1,22 = 2.19, R2

mult = 0.18, p = 0.039, Fig. 1a). In con-
trast, synchronous floral resources had no significant 
influence on seed set  (t1,22 = −  0.26, R2

mult < 0.01, 
p = 0.797, Fig. 1b). Floral resources pooled across the 
whole season had no significant influence on seed set 
of broad beans  (t1,22 = 0.74, R2

mult = 0.02, p = 0.466).

Land cover maps

In the best models based on land cover, seed set 
increased with urban area in the landscape  (t1,21 
= 2.89, R2

adj = 0.26, p < 0.01; Fig.  1c). In alterna-
tive models containing the proportion of arable land 
(Δi ≥ 1.7), seed set decreased with increasing pro-
portion of arable land  (t1,20 = 2.25, R2

adj = 0.27, 
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p = 0.036, Fig. 1d). Correlations of seed set and other 
landscape variables contained in these models were 
non-significant (p > 0.05; Table 1).

Seed set was somewhat better predicted using 
land cover maps (R2

adj = 0.26) compared to 

floral resource maps (R2
mult = 0.18) according to the 

respective most parsimonious model of each map-
ping approach (Δi = 1.7; Table 1).

Fig. 1  Relationships between seed set and floral resource 
availability a preceding broad bean (Vicia faba L.) flowering, 
b synchronous to broad bean flowering as well as relationships 

with proportions of c urban area and d arable land. Predicted 
linear relationships and 95% confidence intervals are shown for 
statistically significant results (a, c and d)
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Contribution of land cover to floral resource 
availability

Floral resources preceding crop flowering were nega-
tively correlated with the proportion of arable land in 
the landscape  (t1,22 = − 3.55, R2

mult = 0.364, p < 0.01). 
They increased with the proportion of permanent 
crops  (t1,22 = 2.20,  R2 = 0.181, p = 0.038) and woody 
semi-natural habitat other than forest  (t1,22 = 2.11, 
R2

mult = 0.168, p = 0.047).
Synchronous floral resources were negatively cor-

related with the proportion of arable land  (t1,22 = 
−  2.88, R2

mult = 0.274, p < 0.01) and distance to for-
est  (t1,22 = −  3.08, R2

mult = 0.301, p = 0.006). They 
increased with the proportion of forest  (t1,22 = 3.12, 
R2

mult = 0.307, p = 0.005). For complete correlations 
among variables see Online Resource Table A.3 and 
Fig. A.3. For a complete list of regression models 
between seed set and landscape context see Online 
Resource Table A.4. When using land cover maps, 
the division of broad habitat categories (crop and 
semi-natural habitat) into the finer categories of ara-
ble land and permanent crops as well as forest, other 
woody and herbaceous semi-natural habitat improved 
predictability of seed set (R2

mult = 0.140 compared to 
R2

mult = 0.179 for broad and fine resolution, respec-
tively; Online Resource Table A.5).

Wild plants contributed more to floral resource 
availability preceding and synchronous to broad bean 
flowering (72% and 95%, respectively) than cultivated 
plants. Regarding their vegetation type (i.e. either 
herbaceous or woody), woody plant types contributed 
more to floral resource availability (preceding: 94%, 
synchronous: 76%) than herbaceous plants.

Discussion

Temporal floral resource maps

As predicted, pollination success of broad bean 
increased with the availability of preceding floral 
resources in the landscapes. This confirms our first 
hypothesis that increasing pollinator populations 
early in the year lead to higher pollinator visita-
tion of subsequently flowering crops. These findings 
are similar to Grab et  al. (2017), who observed that 
preceding mass-flowering apple enhanced succes-
sive strawberry pollination. Our results show that the 

timing of alternative floral resources is also crucial 
in more diverse landscapes, where a high number of 
plant species provide alternative resources to key pol-
linators. By accounting for the varied pollen usage of 
Bombus terrestris in our study region (Bertrand et al. 
2019), we could show that the presence of fruit trees 
(Prunus spec.), maple (Acer spec.) and willow (Salix 
spec.) contribute to this higher flower availability for 
B. terrestris in the early season. The combined contri-
bution of these three groups of trees to floral resource 
availability for Bombus terrestris preceding broad 
bean flowering was 75%.

In contrast, the availability of synchronous alter-
native resources during broad bean flowering had 
neither a positive nor a negative effect on pollina-
tion success. This contrasts with the decline of early-
flowering strawberry pollination with increasing 
synchronous mass-flowering apple observed by Grab 
et  al. (2017). This difference could be explained by 
contrasting attractiveness of the focal crop versus the 
alternative resources to pollinators between the two 
studies. According to Abrol (1990, 1992), strawberry 
plants have a comparatively low attractivity for pol-
linators in contrast to mass-flowering apple based 
on higher total daily energy reward per apple flower 
compared to that of strawberry. Additionally, flower 
density is higher in apple orchards than in strawberry 
fields. Therefore, it is not surprising that apple attracts 
pollinators away from strawberry crops during simul-
taneous flowering. Conversely, broad bean is highly 
attractive, especially in terms of nectar, which could 
explain why its visitation did not significantly decline 
with increasing availability of synchronous alterna-
tive flowers such as Papaver, Phacelia and Rubus. 
Negative effects of synchronous flowering resources 
on yield due to competition in the late season might 
also be mitigated by positive carry-over effects of 
flowering resources from the preceding year. For 
example, late flowering resources in the landscapes 
not only led to an increased production of queens and 
males of bumblebees during the same year, but also 
to a higher density and species richness of bumble-
bee foragers in the following years (Rundlöf et  al. 
2014; Kallioniemi et al. 2017; Häussler et al. 2017). 
Thus, even if late alternative resources attract polli-
nators away from the focal crop, they may facilitate 
higher overall pollinator populations over time, which 
could lead to a net neutral effect on crop pollination. 
In addition, attractive synchronous flowering plants 
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may have led to pollinator attraction from the wider 
landscape into the area where the broad beans were 
placed and, therefore, facilitated pollination (Moran-
din and Kremen 2013). This effect might have been 
higher for the smaller number of floral resources pro-
vided by phytometer plants compared to that provided 
by mass-flowering cultures. Hence, positive and neg-
ative effects of late floral resources may level each 
other out, which could explain why neither a positive 
nor a negative effect of synchronous floral resources 
on pollination was observed in our study. Of course, 
the dominance of either the negative effect via com-
petition for pollinators or the positive effect of pol-
linator enhancement may also depend on the design 
and location of the study. We hypothesize that posi-
tive carry-over effects are more likely in landscapes in 
which other resources for pollinators such as nesting 
sites are not limited. In contrast, competition for pol-
linators is more likely in highly simplified landscapes, 
in which there are generally fewer pollinators and the 
alternative floral resources are highly attractive rela-
tive to the crop.

The video observations showed more individuals 
of A. mellifera collecting pollen on Vicia faba than 
of B.  terrestris. Yet, in contrast to the bumblebees, 
honeybees showed a much calmer foraging behav-
ior. Bombus terrestris has the ability to buzz pol-
linate, which enhances self-pollination by releasing 
pollen from the stigmas during the pollination pro-
cess (“Tripping”; e.g. Pazy 1984). Bombus terrestris 
therefore contributes more to insect induced self-pol-
lination than A. mellifera (De Luca & Vallejo-Marin 
2013), even when flower visits are somewhat less fre-
quent. We thus assume that B. terrestris is the main 
responsible for the seed set during our study.

Land cover maps

Seed set increased with the proportion of urban area 
and decreased with arable land area recorded land 
cover maps. Indeed, pollinators can benefit from 
urban sprawl in city margins due to higher amounts of 
floral or nesting resources or benefits by intermediate 
levels of disturbance (Wenzel et  al. 2020). Further-
more, urbanization leads to an increase of pollinator 
diversity compared to intensified agricultural areas, 
although diversity decreases in urban areas com-
pared to natural or semi-natural areas (Wenzel et al. 
2020). Colonies of Bombus terrestris were found to 

have developed more in suburban than agricultural 
areas due to a higher diversity and density of floral 
resources provided by gardens compared to farm-
land (Goulson et  al. 2002). However, in our study, 
urban area was not significantly associated with 
flower availability (preceding, synchronous and total: 
r = 0.13, 0.08, 0.11, respectively). Nevertheless, polli-
nators may have benefited from other factors provided 
by urban areas such as nesting sites or reduced dis-
turbance (i.e. offering shelter during adverse weather 
conditions or reduced application of agrochemicals), 
which were not documented in our study. Moreover, 
urban areas could have had higher densities of domes-
tic honey bees, which might have enhanced field bean 
seed set. The observed negative effects of intensive 
agriculture on pollinators are consistent with litera-
ture (Goulson et al. 2015; Kovács-Hostyánszki et al. 
2017; Pfister et al. 2018). The lack of a better predic-
tive power of our maps based on the detailed floral 
resource availability suggests that floral resources 
alone are not the dominant factor limiting broad bean 
pollination in our study region. Other factors such as 
the availability of nesting habitat, disturbance of agri-
cultural soils or pesticide applications may have been 
relevant. The effect of floral resource availability can-
not clearly be distinguished from the effects of land-
scape composition because the statistical strength of 
the predictors was similar and the availability of pre-
ceding floral resources declined with the proportion 
of arable land (r = − 0.60) but not with the proportion 
of urban areas (r = 0.13).

Semi-natural habitat can positively affect wild 
bees and their performance in agricultural landscapes 
(Rollin et al. 2013, 2015; Crone and Williams 2016). 
Loss of semi-natural habitats or increasing distance 
between these habitats can have direct negative con-
sequences on pollinators (Ricketts et  al. 2008; Win-
free et al. 2011) and, thus, on crop pollination as well 
(Kremen et  al. 2004; Greenleaf and Kremen 2006; 
Klein et al. 2012). In our study, although pooled flo-
ral resources increased with proportion of herbaceous 
(r = 0.45) and woody semi-natural habitat other than 
forest (r = 0.42) in the landscapes, semi-natural habi-
tats did not explain seed set. Additionally, Westphal 
et  al. (2003) found densities of Bombus terrestris to 
be explained by the amount of mass-flowering oilseed 
rape rather than by semi-natural habitat. However, 
this crop is comparatively rare in the region where 
our study was conducted. There, woody semi-natural 
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habitat included patches offering high amounts of flo-
ral resources, especially hedgerows and semi-natural 
orchards. Herbaceous semi-natural habitat, in con-
trast, contained wide areas of grassland under various 
management schemes with a rather low flower availa-
bility to bumblebees. Nevertheless, herbaceous semi-
natural habitats could have provided nesting sites to 
bumblebees in the form of vole burrows, which were 
recently suggested to increase bee populations and 
crop visitation (Nicholson et al. 2019). In order to be 
beneficial for pollinators, semi-natural habitat may 
need to offer a minimum number of floral resources 
(Rollin et  al. 2013, 2019). The dominance of pollen 
collected from woody plants in the diet of Bombus 
terrestris seen in our study aligns with earlier stud-
ies highlighting the importance of early-flowering 
trees and shrubs for bumblebees (e.g. Kämper et  al. 
2016). We observed higher floral availability synchro-
nous to broad bean flowering and pooled across the 
whole season with increased amount and proximity 
to forest. This is partially explained by availability 
of wild-growing Rubus, contributing 31.7% to syn-
chronous and 19% to pooled pollen use (Table A.1), 
which increased with forest (r = 0.65) and its proxim-
ity (r = 0.51) to the landscape centers. Pollination and 
bee abundance are shown to benefit from proximity 
to forest patches that also offer mating and nesting 
sites as well as nesting material (Bailey et  al. 2014, 
and references therein). Proximity to other fields of 
Vicia faba in the surrounding landscape may increase 
cross-fertilization of plants thus leading to higher 
seed set. Considering the mean foraging range of B. 
terrestris, which mostly lies below 500  m (Osborne 
et  al. 1999; Wolf and Moritz 2008), we inspected 
the 1,000 m radius around our landscape centers for 
close-by fields of V. faba. We recorded one single 
field of V. faba 880  m from one of our study sites. 
Seed set in that site was below average across all 
landscapes, with plants in 19 out of the 24 landscapes 
developing a higher seed set. We, therefore, assume 
that surrounding fields of V. faba did not critically 
lead to a higher cross-fertilization in our sentinels.

Comparison of mapping approaches

In our study, seed set was somewhat better predicted 
by land cover maps than by floral resource maps, 
although the latter are based on detailed information 
that more directly and evidently relates to pollinator 

populations (Roulston and Goodell 2011). Similarly, 
land cover maps explained abundance of aphid preda-
tors and related aphid pest control on broad bean 
better than temporal floral resource maps in Switzer-
land (Ammann et al. 2022). This may be due to other 
above-mentioned parameters that were not assessed 
in this study (e.g. availability of nesting habitat) but 
which were likely important for pollinator activity. In 
addition, the floral resources were closely related to 
the land cover types used in this study. The predictive 
power of land cover maps improved when using finer 
habitat categories. Hence, connecting resources to 
finer habitat categories might help to further improve 
the prediction of pollinators with land cover maps and 
their use in conservation planning. Woody non-crop 
plants in the agricultural landscape such as hedge-
rows, woodlots and tree rows have been found to pro-
vide the highest densities of floral resources to bum-
blebees (Eckerter et al. 2020). In this study, exposed 
colonies of B. terrestris showed increased weight 
gain, queen production and survival with proxim-
ity to forest, although species-specific floral resource 
availability did not show significant effects on colo-
nies. Beneficial effects of woody structures next to 
resource availability such as protection from adverse 
weather conditions or nectar provision may also play 
a role in directing pollinator activities in agricultural 
landscapes. As woody structures are also key for the 
conservation of farmland birds and predatory arthro-
pods (e.g. Mestre et  al. 2018), adding woody struc-
tures to agricultural landscapes would likely benefit 
overall biodiversity and other ecosystem services in 
addition to pollinators (e.g. Holland et  al. 2017; 
Schirmel et  al. 2017; Bartual et  al. 2019). To trans-
fer our findings to the crop level and relate them to 
food stability and production of agricultural systems 
further studies are needed. Such studies could address 
other responses of Vicia faba to pollinators (e.g. seed 
size) in relation with the spatio-temporal availability 
of floral resources in the surrounding landscape or 
consider crops other than Vicia faba.

Conclusions and implications

Our study underlines the key role of early flowering 
resources for crop pollination in agricultural land-
scapes. However, the detailed examination of pollen 
types and their spatial and temporal availability in 
the landscapes did not allow for a clearer explanation 
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of pollination success than simple landscape met-
rics such as the proportion of arable land. Further 
research may help to disentangle the effects that are 
combined in these simplified predictors. As most of 
the early-flowering resources were provided by wild 
trees and shrubs, flower-rich woody structures such 
as hedgerows and forest edges should be conserved in 
agricultural landscapes to ensure high levels of crop 
pollination by wild pollinators such as bumblebees.
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