

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

# Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol

#### Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

ICFD 2022, Cork, 3-5th May

www.agroscope.ch I good food, healthy environment

# Dietary protein quality evaluation by FAO



#### **Ileal digestibility**

- 1. Further determine true ileal digestibility of protein and amino acids in a wider range of foods and determine the ileal digestible tryptophan content of human milk.
- 2. Develop non-invasive accurate methods to determine or predict true ileal dietary protein and amino acid digestibility in humans based on identified biomarkers.
- 3. Validate the use of animal model data (including providing more robust inter-species prediction equations for true ileal amino acid digestibility) to quantify ileal digestibility in humans, including relating digestibility to functional outcomes.
- 4. Determine more fully the role of the small intestinal and colonic microflora on ileal amino acid digestibility values.
- 5. Develop new bioavailability assays such as the reactive lysine assay, for other amino acids.
- 6. Develop and validate *in vitro* methods for predicting amino acid digestibility and bioavailability in humans.

DIAAS % = 100 x *lowest value* [*"Digestible IAA reference ratio"* for a given amino acid scoring pattern].

Note that the main difference between DIAAS and PDCAAS is that true ileal amino acid digestibility for the dietary indispensable amino acids is used rather than a single faecal crude protein digestibility value.

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

## Validation of *in vitro* results with *in vivo* data



 $\rightarrow$  in vitro protein hydrolysis proved to be a good approximation to the in vivo situation

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

## Determination of *in vitro* digestibility



Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

## Size exclusion chromatography (SEC)



- → Size distribution in samples- heavier molecules elute first, lighter molecules elute later  $\rightarrow$  Cut-off set up at 40min ≈ 1000 Da- peptides between 8 to 10 aa
- Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raguel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

### Precipitacion with 80 % MeOH



#### → Precipitation separates efficiently bioavailabe from non-bioavailable components

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

### The different analytical endpoints



Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

# Digestible indispensable amino acid score (DIAAS)



#### mg amino acid per g reference protein (DIAA<sub>reference</sub>)

Recommended amino acid scoring patterns for infants, children and older children, adolescents and adults

| Age Group                                   | His                                      | lle | Leu | Lys | SAA | AAA | Thr | Trp | Val |
|---------------------------------------------|------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                                             | scoring pattern mg/g protein requirement |     |     |     |     |     |     |     |     |
| Infant (birth to 6 months) <sup>1</sup>     | 21                                       | 55  | 96  | 69  | 33  | 94  | 44  | 17  | 55  |
| Child (6 months to 3 year) <sup>2</sup>     | 20                                       | 32  | 66  | 57  | 27  | 52  | 31  | 8.5 | 43  |
| Older child, adolescent, adult <sup>3</sup> | 16                                       | 30  | 61  | 48  | 23  | 41  | 25  | 6.6 | 40  |

<sup>1</sup> Infant is based on the gross amino acid content of human milk from Table 4.

<sup>2</sup> Child group is from the 6 month (0.5 y) values from Table 3.

<sup>3</sup> Older child, adolescent, adult group is from the 3-10 y values from Table 3.

FAO: Dietary protein quality evaluation in human nutrition (ISBN 978-92-5-107417-6)

DIAA**R**: Digestible indispenable amino acid **ratio** DIAA**S**: Digestible indispenable amino acid **score** = lowest DIAAR

$$\longrightarrow DIAAR = \frac{DIAA_{measured}}{DIAA_{reference}} \times 100$$

#### In vitro and in vivo digestibility comparison



- $\rightarrow$  in vitro values seem to be slightly higher than in vivo
- $\rightarrow$  In general, the three methods give similiar results for 7 tested substrates (PROTEOS)
- $\rightarrow$  Average bias 1.2 %

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

## In vitro DIAAR and in vivo DIAAR comparison



 $\rightarrow$  In general, the three methods give similiar results for 7 tested substrates (PROTEOS)

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

### In vitro DIAAR and in vivo DIAAR correlation



 $\rightarrow$  Very good correlation between the two methods (correlation slope= 0.96)

 $\rightarrow$  Average bias between *in vitro* and *in vivo*: 0.1 %

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

# Ringtrial on the use of INFOGEST protocol to determine *in vitro* digestibility in dairy products





#### Goals:

- Test the robustness, repeatability and reproducibility of the protocol
- Improve and clarify the protocol draft
- $\rightarrow$  32 labs 18 different countries | 4 continents
- $\rightarrow$  Tasks: assay enzyme activities, digest 5 substrates and 1 protein-free cookie in triplicates, calculate digestibility for TN and OPA, SDS-PAGE, and send 1 set of digesta for TAA analysis
- $\rightarrow$  Received so far: 20 different labs (results and samples)

## Ringtrial: total digestibility



→ In general, the three methods give similiar results for the tested dairy products at the intra-laboratory and at the inter-laboratory level

#### **Calculation of** *in vitro* **DIAAR** and comparability to *in vivo* data



Results from 1 lab, 3 replicates



Results from 1 lab, comparison with literature

- $\rightarrow$  Calculation of *in vitro* DIAAR/DIAAS values based on TAA analysis
- $\rightarrow$  Comparasion between *in vivo* data for skim milk powder (SMP)

# Conclusions

- $\rightarrow$  *in vitro* method provides a good estimation of the *in vivo* situation for total digestibility, digestibility of individual amino acids and DIAAR.
- → Comparison between *in vivo and in vitro* approaches was so far tested with seven different protein sources. In the future the method has to be validated with more protein sources.
- $\rightarrow$  The first results of the ringtrial show comparable results between labs.
- → Reproducibility of the method can be optimized by clarifying and improving the draft protocol.

Standardization of *in vitro* digestibility and DIAAS method based on the static INFOGEST protocol Raquel Sousa, Isidra Recio, Paul Moughan, Suzanne Hodgkinson, Reto Portmann, and Lotti Egger

# Ringtrial: A BIG thank to all the participants

**Spain:** Isidra Recio, Marta Santos Hernández, Felipe González, Patricia Ruas-Madiedo, Lorena Ruiz, Raquel Olias, Cristina Delgado-Andrade, Ruben Lopez Nicolas Poland: Adam Macierzanka, Patrycja Szumała Australia: Addepalli Rama **UK:** Ana Isabel Mulet-Cabero, Natalia Perez-Moral, Molly Muleya Ireland: André Brodkorb, Conor Fitzpatrick, Francesca Bot, James A. O'Mahony Norway: Anne Rieder, Irene Comi Israel: Carmit Shani Levi Portugal: Catarina Goncales, Isabel Rodriguez Amado, Clarisse Nobre, Ana C. Pinheiro, Elena Arranz, Miguel Ângelo Faria, M. Madalena C. Sobral, Luis Miguel Jiménez-Munoz, Ricardo Assunção France: Olivia Ménard, Myriam Grundy **Chile:** Igor Pacheco Cruz, Ailynne Sepúlveda-González Hungary: László Abrankó, Judit Tormási **Denmark:** Milena Corredig, Luis Jimenez, Vibeke Orlien, Ourani Gouseti, Iben Lykke Petersen Finland: Natalia Rosa-Sibakov **Netherland:** Natalie Hotrum, Kerensa Broersen, Soenita Goerdayal **Italy:** Pasquale Ferranti **Turkey:** Yunus Emre Tuncil, Sebnem Simsek, Sedef Nehir El, Sibel Karakaya Switzerland: Abbühl Lychou, Brügger Cédric, Dominique Heimo, Reto Portmann, Raguel Sousa, Lotti Egger





#### Thank you for your attention

#### Raquel Sousa, Reto Portmann, Isidra Recio and Lotti Egger

charlotte.egger@agroscope.admin.ch anaraquel.marquesdesousa@agroscope.admin.ch reto.portmann@agroscope.admin.ch

Agroscope good food, healthy environment www.agroscope.admin.ch























