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Abstract 

Background: Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective 
pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model 
suggests that such diversity is maintained because the effective immune system of a bacterial species is the one 
distributed across all strains present in the community. However, only few studies have analyzed the distribution of 
bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex 
environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communi-
ties, which are dominated by a few bacterial taxa and occur in relatively stable environments.

Results: We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains 
contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting 
rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the 
metagenomes providing evidence that the identified defense repertoires are functional and under selection. While 
these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the 
phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against 
all phages, and that the innate immune mechanisms may have complementary roles.

Conclusions: Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process 
and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to 
understand ecological and molecular processes underlying phage-defense system relationships. These findings can 
have implications for the design of robust synthetic communities used in biotechnology and the food industry.
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Background
Bacteria have evolved diverse defense systems to cope 
with the parasitic lifestyle of phages [19, 45]. These sys-
tems can be divided into the innate and the adaptive 
“prokaryotic immune system” [18]. Classical examples 
of innate immunity are restriction-modification [80] or 
abortive infection systems [39]. However, many addi-
tional innate immune mechanisms have recently been 
discovered highlighting the strong selective pressure 
imposed by phages on microbial communities [19, 38]. 
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The only ‘adaptive’ immune system known so far is the 
CRISPR-Cas system (Clustered Regularly Interspaced 
Short Palindromic Repeat-CRISPR Associated). It is 
based on the incorporation of short DNA sequences of 
phages or other genetic elements (so-called spacers) 
into dedicated CRISPR arrays encoded in the bacterial 
genome. Upon a phage encounter, the transcribed spac-
ers bind to the phage DNA and target it for degradation 
via the Cas proteins [37].

Phage defense systems are prevalent across bacteria 
and most bacteria harbor several systems in their genome 
[19, 52]. However, their distribution varies across bac-
teria. For example, CRISPR-Cas systems are found in 
40% of all known bacterial species [14], while Viperins 
are restricted to a few taxonomic groups [5]. Moreover, 
phage defense systems are often strain-specific [78], i.e., 
closely related bacteria can harbor completely different 
arsenals of defense systems. Various factors have been 
discussed to influence the distribution of defense systems 
across bacteria [60]. Notably, the presence of CRISPR-
Cas has been associated with environmental factors such 
as temperature, oxygen levels or phage abundance [10, 
50, 82]. Also, genetic incompatibilities of defense systems 
with other cellular functions, including other defense sys-
tems, have been reported [4, 7].

Innate immune systems often cluster in genomic 
islands and are associated with mobile genetic elements 
[41, 46, 48] suggesting an important role of horizontal 
gene transfer (HGT) for defense system evolution. The 
ecological relevance of such genomic plasticity was dem-
onstrated by a recent study which showed that nearly 
clonal isolates of Vibrio spp. are resistant to diverse 
phages due to the presence of distinctive defense islands 
acquired via HGT [33].

Based on the observation that phage defense mecha-
nisms show a high extent of genetic turnover, the pan-
immunity hypothesis has been proposed, which states 
that the effective immune system of a bacterial species 
is not the one encoded in a single genome, but in the 
pan-genome of the entire population [6]. In other words, 
while a single strain cannot carry all possible defense sys-
tems, the presence of nearly clonal strains with different 
defense systems increases the available arsenal of defen-
sive mechanisms via HGT and thus increases the resist-
ance of the entire population (pan-immunity).

Comparative genomics of closely related isolates com-
bined with shotgun metagenomics provide excellent 
opportunities to assess the diversity of phage defense 
systems in natural bacterial communities and can help 
to advance our understanding of their evolutionary 
ecology [69]. Two recent shotgun metagenomic stud-
ies have looked at CRISPR spacer diversity in microbial 

communities, one focusing on environmental samples 
from the Earth Microbiome Project [50] and another one 
focusing on diverse samples from the human microbi-
ome [53]. Meaden et al. identified a positive association 
between CRISPR spacer and the abundance of the cor-
responding phage target sequences (protospacer), sug-
gesting that there is a direct link between phage pressure 
and the maintenance of corresponding spacer sequences. 
Münch et  al. identified differences in the prevalence of 
CRISPR spacers between different human body sites sug-
gesting the existence of niche-specific phage populations. 
However, none of the two studies looked at the diversity 
of innate immune systems. Moreover, in both studies 
highly diverse communities from heterogeneous environ-
ments were compared providing limited insights into the 
intraspecific variation of phage defense systems and their 
evolutionary turnover in bacterial populations.

Here, we focused on cheese-associated bacterial com-
munities. These communities harbor only a few bacterial 
species, have been propagated in relatively stable envi-
ronments (i.e., cheese or milk) over generations, and are 
known to be exposed to diverse phages [8, 40, 44, 51]. 
This makes them tractable systems to study the evolu-
tion of phage defense systems in microbial communities 
at the strain-level [25, 75]. Indeed, our previous study of a 
single Swiss cheese starter culture has shown that exten-
sive intraspecific CRISPR spacer diversity exists in these 
otherwise nearly clonal populations of bacteria [74].

Here, we expanded this analysis to all publicly available 
genomic datasets from cheese-associated communities 
(excluding cheese rind) comprising 26 bacterial species, 
2778 genomes, and 188 metagenomes. We determined 
the distribution of both innate and adaptive immune sys-
tems across these datasets and quantified the diversity, 
abundance, turnover rate, and viral targets of all CRISPR 
spacers. We find that (i) cheese-associated bacteria con-
tain an unprecedented high degree of diversity in phage 
resistance mechanisms across nearly identical strains, (ii) 
there is a strong correlation between CRISPR spacer and 
phage abundance, and (iii) CRISPR spacers only provide 
immunity to a subset of the phages identified in cheese. 
These results indicate highly dynamic bacteria-phage 
interactions driving genomic plasticity in cheese-asso-
ciated environments and are compatible with the pan-
immunity model of the evolutionary ecology of defense 
systems in microbial communities.

Materials and methods
Metagenomes
In order to analyze species and CRISPR diversity 
in cheese related samples we gathered 188 shotgun 
metagenomic samples and 240 16S rRNA amplicon 
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sequencing samples from overall 18 studies from NCBI 
(see Suppl. Tables 1 and 2) [1, 11, 15–17, 21, 24, 26, 35, 43, 
47, 59, 67, 74, 76, 81]. We included mesophilic (cooked at 
lower temperatures) and thermophilic (cooked at higher 
temperatures) cheese starter cultures as well as samples 
from ripened cheese as based on the FoodMicrobionet 
database (8.2020), a database containing information 
about species found in food-associated microbial com-
munities [56]. We excluded cheese rind samples from this 
analysis, because they consist of highly variable microbial 
communities with a more complex ecology [86].

Metagenomic species profiling
To determine the species composition of the metagen-
omic samples, we used MetaPhlAn (v3.0.7-1) [70]. For 
the 16S rRNA gene amplicon sequencing datasets we 
used the extensive FoodMicrobionet (8.2020) collection 
and analysis pipeline (see script section) [56, 58]. While 
16S rRNA community analysis samples were only used 
for species profiling, the metagenomic samples were also 
used for spacer and protospacer analysis (see further 
down). Overall, 185 species were identified. We selected 
the dominant species which were present in > 2% of sam-
ples and had a median overall abundance > 0.1%. From 
those species we randomly selected one genome and cre-
ated a species tree with BCGtree (v1.1.0) [3].

Genomes analysis
All genomes (or max. 500 newest genomes if more were 
available) for the 185 identified species were downloaded 
from NCBI RefSeq (17.05.2021). For the 26 dominant spe-

cies, we additionally integrated all available genomes from 
the in-house cheese database of Agroscope called “Dialact”. 
The Dialact database includes 536 genomes from 9 spe-
cies isolated from a wide range of samples obtained from 
Swiss cheese and Swiss cheese starter cultures (Suppl. 
Fig. 1B). Due to limited metadata information associated 
with many of the genomes obtained from NCBI, we can-
not exclude that some of the strains included in our analy-
sis may have not been isolated from cheese.

Detection of CRISPR and defense mechanisms
The genome assemblies were annotated with CRISPR-
CasFinder (v4.2.20-1) [14]. The raw JSON outputs were 
parsed and quality filtered with custom Python and R 

script (see script section). Only spacers with a high evi-
dence level (> 4) and shorter than 50bp were retained. 
CRISPR-Cas subtypes were assigned with CRISPR-
CasTyper (v1.4.4) [68]. Further, the remaining defense 
mechanisms were annotated with defense mechanisms 
specific HMM files. For the R-M we used previously 
described HMMs [54]. The search was done with hmm-
search (v3.1b2) [62].

Pairwise strains comparison
Average nucleotide identity (ANI) was calculated with 
fastANI (v1.3) [34] and percentage of shared spacers were 
computed for each pair of strains within an organism. 
The proportion of shared spacers was calculated as being 
the proportion of identical spacer clusters between two 
strains, divided by all spacers.

Additionally, the number of common spacers, the 
nucleotide diversity and the turnover rate were computed 
for all strain pairs as well as for each array. The nucleo-
tide diversity was computed as bidirectional fragment 
mapping * fragment length (1kb)/ANI and the turnover 
rate as nucleotide diversity / unique spacers, unique spac-
ers meaning the number of spacers not shared between 
the two strains. Further, the CRISPR acquisition rate in 
microbial communities per generation (i.e., CRISPR 
turnover rate) was calculated as following (turnover rate* 
cell density of  107 cells)/mutation rate. When accounting 
for a mutation rate of 8.9 × 10−11 per bp per genera-
tion [85] and a cell density of  107 cells within a commu-
nity, we were able to calculate a CRISPR acquisition rate 
in microbial communities per generation (i.e., CRISPR 
turnover rate, Fig. 2B) with the following formula:

Detection of CRISPR arrays in metagenomes
In order to identify CRISPR in the metagenomic samples, 
the raw metagenomic reads were processed using CRASS 
(v0.3.12) [72] with default parameters. CRISPR spac-
ers, repeats and flanking sequences were then extracted. 
Each spacer was automatically annotated with coverage 
information as well as the spacer count per million reads 
for the whole sample. Spacers with a coverage of 1 were 
removed as well as spurious spacers of length smaller 
than 15 bp

.

Sequences clustering
Repeats, often referred to as consensus repeats or direct 
repeats, are not necessarily identical within an array [68] 
as well as spacers, which do not need a perfect match 

novels pacers pergeneration within a community =

number differing SNVs
number of differing spacers

core genome mutatation rate
×community Size
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with their target sequence to be cleaved [71]. Thus, repeat 
and spacer sequences were clustered using CD-HIT-EST 
(v4.8.1) [42] using a 100% and an 80% identity threshold 
[53]. Eighty percent identity clusters were added in the 
database separately for genomic repeats, genomic spac-
ers, metagenomic repeats, and metagenomic spacers. 
Venn diagram representations (Fig.  3) have been done 
with BioVenn [32] and adapted within inkscape, while 
strictly keeping the calculated surfaces.

Quantification of spacers and repeats in metagenomes
The observed number of spacers and repeats was cal-
culated by dividing the absolute number of spacers and 
repeats by the total number of reads and later by the 
total number of bacterial species (richness). Here we also 
included the data previously described for the human 
microbiome [53].

Mapping spacer sequences to reads
In order to quantify the proportion of spacers and 
protospacers in the metagenomes, we created for every 
spacer a repeat-spacer-repeat sequence and mapped 
all metagenomic samples individually against this ref-
erence. Reads mapping only to the ~ 40 bp spacer area 
were assigned to protospacers, whereas reads mapping to 
the repeat and spacer area were assigned to the CRISPR 
array. The sum of these counts was normalized by the 
reads count for each sample.

Spacers target mapping in viral and bacterial databases
BLASTn (megablast) was performed using an e-value 
cutoff of 0.01, word-size of 4, keeping only 1 query-sub-
ject alignment per pair (max_hsps = 1) and 1 aligned 
sequence (max_target_seqs = 1) (v2.5.0+). Three data-
bases were used, IMG/VR (v.3.0) [66], nt (non-redun-
dant nucleotide), and the PLSDB plasmid database 
(v2020_11_19) [27]. To rule out putative prophage and 
annotate gene targets, we further blasted to the nr (non-
redundant protein) and screened for phage genes and 
annotated with eggnog [31]. Further CRISPR mappings 
were ruled out by scanning the 2 kb up and downstream 
of the target site for CRISPR repeat annotation in the cor-
responding genbank files. The assignment to vOTUs was 
made on the basis of the IMG/VR (v.3.0) [66] mapping.

Statistics, scripts and data
All statistics were done within R [64] and ggplot2 [84]. 
All code for the bioinformatics is available here (https://
github.com/ThibaultSchowing/CRISPRscope) and 
the figures here (https://github.com/Freevini/CRIS-
PRscope). The data is deposited on zenodo (10.5281/
zenodo.6444686).

Results and discussion
Strain‑specific immune gene arsenals 
across cheese‑associated bacteria
In order to obtain an overview of the diversity of phage 
defense systems in cheese-associated bacteria, we first 
determined which taxonomic groups are prevalent across 
cheese-associated communities by profiling 480 commu-
nity samples from 18 different studies (Suppl. Table  1). 
These included mesophilic (cooked at lower tempera-
tures) and thermophilic (cooked at higher temperatures) 
cheese starter cultures as well as samples from ripened 
cheese selected from the FoodMicrobionet database 
[56]. We excluded cheese rind samples from our analysis, 
because they consist of highly variable microbial com-
munities with a more complex ecology [86]. Overall, we 
included 322 16S rRNA gene amplicon sequencing and 
158 shotgun metagenomics datasets (Fig. 1A, B). A total 
of 196 species were identified of which 26 were present 
in > 2% of all samples with a median abundance of > 0.1% 
(Fig.  1B and Suppl. Fig.  1). The large majority of these 
species were from the order Lactobacillales with Lacto-
coccus lactis dominating mesophilic and Streptococcus 
thermophilus dominating thermophilic cheese samples 
(Suppl. Fig.  2). These two species make up on average 
72% (sd = 25%) of the community (Suppl. Fig. 1A), The 
non-Lactobacillales species were present in less than 
10% of the samples and are likely minor members, espe-
cially in non-pasteuerized cheese communities (Suppl. 
Fig. 1A).

We next retrieved 2778 genomes of the 26 predomi-
nant species from NCBI and the in house genomic data-
base of Agroscope (Suppl. Fig.  1). While the genomic 
data from our in-house database exclusively originates 
from strains isolated from cheese, the metadata associ-
ated with genomes obtained from NCBI was limited so 
that we cannot exclude that some strains included in 
our analysis may have been isolated from other envi-
ronments than cheese. The genomes were screened for 
the presence of homologs of 25 different phage defense 
systems using a hmm-search approach. In total, 17,565 
innate immune systems and 1’972 CRISPR-Cas sys-
tems were identified. Restriction/modification (RM) 
systems (Fig. 1C–E), GTPases, deaminases, and retrons 
were common innate immune systems across almost all 
species. On the contrary, only a few species harbored 
homologs of e.g. Abi systems (Suppl. Fig.  3). All spe-
cies contained CRISPR-Cas systems with the exception 
of Brevibacterium aurantiacum, Brevibacterium linens, 
Companilactobacillus versmoldensis, Lactococcus lac-
tis, and Leuconostoc mesenteroides (Fig.  1C). None of 
the defense systems were found to be specific to a given 
species. Moreover, species did not cluster by defense 



Page 5 of 13Somerville et al. Microbiome          (2022) 10:137  

systems composition (Fig.  1F) suggesting overlapping 
defense strategies across species. On average we found 
7.5 (sd = 1.4, Fig. 1D) defense systems per genome with 
all species harboring more defense systems than previ-
ously described for bacteria of other environments [78]. 
Considering that the number of defense systems reflects 
the extent of phage pressure in a given environment, this 
supports the idea that phages are prevalent in cheese-
associated communities [78].

Notably, only 49% (sd = 19%) of the defense systems 
detected within a species were shared among all strains of 
that species (core), 35% (sd = 14%) were shared between 
10 and 90% of the strains (accessory), and 25% (sd=13%) 
were present in less than 10% of the strains (cloud) 
(Fig.  1D, E). Similarly, while CRISPR-Cas systems were 
detected in almost all species, only 49% (sd = 40%) of 
the strains of these species encoded CRISPR-Cas systems 

in their genome (Fig.  1E). The number of shared innate 
immune systems decreased with increasing genomic 
divergence as measured by pairwise average nucleotide 
identity (ANI) (Fig. 1G, Suppl. Fig. 4).

No correlation was found between the presence of differ-
ent innate immune systems across the analyzed genomes 
(Suppl. Fig. 5). However, we did find that species without 
CRISPR-Cas systems harbored significantly more innate 
defense mechanisms than species with CRISPR-Cas 
(unpaired Wilcoxon test, p value < 0.001, Suppl. Fig.  6). 
Interestingly, this pattern was reversed when compar-
ing strains of the same species (Wilcoxon test, p value < 
0.001, Suppl. Fig. 6); i.e., strains without CRISPR tended to 
have fewer innate defense mechanisms than strains with 
CRISPR. As phage defense systems are costly to maintain, 
the loss of such genes could be the result of extensive pas-
saging of certain strains in phage-deprived environments, 

Fig. 1 Diversity of phage defense systems in the genomes of cheese-associated bacterial species. A Core genome phylogeny of the 26 
predominant species found in the cheese-associated communities and their corresponding color key used in B. B Species-level composition of 
cheese-associated communities (starter and non-starter) grouped by studies. Sample type and community profiling method (16S rRNA gene 
amplicon or shotgun metagenomics sequencing) is indicated. C Heatmap illustrating the fraction of genomes per species containing different 
innate and adaptive immunity mechanisms. The color scheme is indicated below D and E. D The absolute count and E relative fraction of core (> 
90% of strains), accessory (90%< of strains > 10%), and cloud (< 10% of strains) defense systems. F Principal component analysis of all strains based 
on the abundance/presence of different defense systems (colored according to legend in A). G The number of different defense systems vs. average 
nucleotide identity between two genomes of the same species. Including only the most dominant species comparisons. The statistics of the 
regression lines are illustrated in Suppl. Fig. 4 and the colors corresponds to the legend in A 
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especially as many of the sequenced genomes come from 
laboratory strains.

Rapid turnover of CRISPR spacers in nearly identical strains 
of cheese‑associated bacteria
To assess if the high diversity of the innate immune sys-
tem is paralleled by a similarly high extent of diversity 
in adaptive immunity, we identified all CRISPR spac-
ers across all 2’778 genomes of the 26 predominant 
cheese-associated bacterial species. We detected a total 
of 1’972 CRISPR arrays containing 16,506 unique spac-
ers (Suppl. Fig.  7). The number of spacers per array 
(median = 25.83, sd = 19.29) varied within and across 
species (Suppl. Fig.  7) and also between the different 
CRISPR-Cas subtypes detected in the analyzed datasets 
(Suppl. Fig. 8).

As expected, no spacers were shared between 
genomes belonging to different species or between 
arrays from different CRISPR-Cas subtypes. How-
ever, also within species (ANI > 95%), only 41% of all 
genome pairs shared spacers. Moreover, the fraction 
of shared spacers between two genomes was relatively 
small (median = 9.2%, sd = 33.8%). Even nearly identi-
cal strains with an ANI > 99.5% shared on median as 
little as 55% of their spacers (sd = 27%). The proportion 
of shared spacers decreased with genomic distance (as 
measured by decreasing pairwise ANI) (slope = 41.3, 
R2 = 0.48, Fig.  2A) in all species (Suppl. Fig.  9). This 
is in line with the observed decrease in shared innate 
immune systems with increasing genetic distance 
between strains. Although there seems to be a signa-
ture of vertical evolution over very short evolutionary 

timescales, the results overall suggest that most spacers 
are not maintained for very long but are continuously 
gained and lost. The only exception concerns a subset 
of divergent L. casei genomes (ANI ~ 98%, Fig.  2A), 
which contained plasmids carrying a CRISPR array 
sharing > 25% of the spacers.

To obtain an estimate of the CRISPR spacer turno-
ver rate, we calculated how many novel CRISPR spacers 
would be acquired in each new generation in a commu-
nity of defined size. We divided the number of unique 
spacers per genome by the number of nucleotide dif-
ferences for each genome pair with an ANI > 99%. We 
found that one unique CRISPR spacer corresponds on 
average to 1355 core genome single nucleotide variants 
(SNVs) (sd = 2492). When accounting for a core genome 
mutation rate of 8.9 × 10−11 mutation per base-pair per 
generation [85] and a cell density of  107 cells per commu-
nity, we calculated that the CRISPR turnover rate corre-
sponds to a median of 2.8 CRISPR spacers per generation 
(Fig.  2B). This suggests that the acquisition of novel 
CRISPR spacers is extremely rapid and that at every bac-
terial generation several novel spacers can be incorpo-
rated. However, as we only considered fixed mutations, 
we may underestimate the time of divergence between 
these genomes which would result in a lower turnover 
rate. Indeed, previous estimates of CRISPR acquisition 
rates based on experimental data were ~ 1 magnitude 
lower (< 0.1 spacer/generation in [74] or ~ 0.5 spacer/
generation in [55]).

Interestingly, we observed marked differences in spacer 
turnover rates between different CRISPR-Cas subtypes 
but not between different species. More specifically, the 

Fig. 2 High turnover of CRISPR spacers in cheese-associated bacterial genomes. A Pairwise comparison of the average nucleotide identity (ANI) 
and the fraction of shared spacers between genomes of the same species (n = 160,556 comparisons). B Density plots of the number of novel 
CRISPR spacers acquired per generation in a microbial community of  107 cells subdivided into the six different CRISPR-cas subtypes. The dashed line 
indicates the median spacer turn-over rate
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spacer turnover rates of arrays belonging to CRISPR-Cas 
subtypes I-E, I-G, and III-A were generally lower than the 
median turnover rate (2.8 spacers per generation). On the 
contrary, spacers turnover rate of the CRISPR-Cas sub-
type II-C was generally higher than the median turno-
ver rate. Finally, the turnover rates of arrays belonging 
to CRISPR-Cas subtypes I-C and II-A showed a bimodal 
distribution with some arrays having high and others 
low rates of spacer turnover (Fig. 2B). Variation in spacer 
turnover rate has been previously observed and was sug-
gested to reflect differences in phage pressure acting 
on the different strains [2]. Our data suggest that it also 
depends, at least partially, on intrinsic properties of the 
CRISPR-Cas subtype within the species (Suppl. Fig. 10).

Extensive CRISPR spacer diversity in metagenomic 
datasets of cheese‑associated communities
The high turnover rates of CRISPR spacers estimated 
from the isolate genomes suggests the presence of high 
levels of CRISPR spacer diversity within and across 
cheese-associated communities. Based on the identi-
fication of flanking CRISPR repeats we extracted 8226 
non-redundant full-length spacer sequences from the 
Illumina reads of the 158 shotgun metagenomic samples 
presented in Fig.  1B. On average 5.24 (sd = 6.23) spac-
ers per million reads were identified per sample (Fig. 3A). 
There was no difference in CRISPR spacer diversity 
between mesophilic (cheese that is made at ~ 30 °C) and 
thermophilic (cheese that is made at > 45 °C) commu-
nities. This was surprising, as mesophilic cheese com-
munities are dominated by the non-CRISPR containing 

species L. lactis and Leuc. mesenteroides, and suggests 
that subdominant community members harbor a high 
number of CRISPR spacers.

We compared our dataset to a previously published 
analysis of CRISPR spacer diversity in human microbi-
omes [53] and found that the diversity of CRISPR spacers 
in cheese-associated communities and the human micro-
biomes is not significantly different from each other 
(Fig. 3A). However, when accounting for the higher spe-
cies diversity in the human microbiome (i.e., by normal-
izing to the richness of each community), we found that 
thermophilic communities harbor more CRISPR spac-
ers per species than human microbiomes (Fig. 3B). This 
is in line with previous studies, which had shown that 
high CRISPR-Cas diversity is associated with anaerobic 
growth, high temperatures and non-host environments 
[10, 50, 82], all of which are characteristics of cheese 
environments.

Surprisingly, only a small fraction of the spacers iden-
tified across the metagenomic datasets (17.6%) matched 
to spacers detected in the 2778 isolate genomes of the 
predominant cheese-associated species (Fig.  3C). When 
also considering genomes of subdominant species, this 
number increased only little to 1’584 (19.3%) match-
ing CRISPR spacers. As no other species were detected 
in the analyzed metagenomes (Fig.  1A, B), we conclude 
that the large majority (80.7%) of the metagenomic 
CRISPR spacers corresponds to within-species diversity 
not covered by the currently available isolate genomes. 
Further, we found little overlap in CRISPR spacer diver-
sity between metagenomes. Only very few spacers (8%) 
were shared among more than two metagenomes (Suppl. 

Fig. 3 Metagenomic CRISPR diversity. A, B Number of CRISPR spacers present in the different metagenomic samples normalized by A the 
sequencing depth and B the sequencing depth and the species richness. (*** illustrates Wilcoxon p values < 0.001). The human microbiome data 
is from [53]. C The number of spacers detected in the isolated genomes of predominant and subdominant cheese community species and in the 
shotgun metagenomic samples. Intersections of circles shows the number of shared CRISPR spacers (intersection(1) = metagenomic and dominant 
species, intersection(2) = metagenomic and subdominant species, intersection(3) = only metagenomic). D The cumulative plot (rarefaction curve) 
of the CRISPR spacers detected in the metagenomic samples
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Fig.  11). Moreover, a rarefaction curve analysis showed 
that with the addition of each metagenomic sample, new 
spacers are being discovered (Fig.  3D). Together, this 
indicates that the CRISPR spacer diversity within and 
between cheese-associated communities is extensive and 
that we have only detected a fraction of this diversity in 
our study.

CRISPR spacer abundances correlates with target 
abundance
If the spacers have any ecological relevance [12, 29], 
one would expect to find a positive correlation between 
the abundances of phages and their matching spacer 
sequences. To quantify both spacer and target (i.e., phage) 
abundance directly from the metagenomic samples we 
mapped the metagenomic reads of the 158 datasets to all 
dereplicated repeat-spacer-repeat sequences identified in 
the 2778 isolate genomes. As spacers are usually shorter 
than Illumina reads, reads containing spacer and repeat 
sequence were considered to come from a CRISPR array 
(hereafter referred to as spacer reads). In contrast, reads 
mapping to only spacer sequences were considered to 
come from a target (e.g., a phage, hereafter referred to as 
protospacer reads) (Suppl. Fig. 12).

In each metagenome, we identified between 41 and 
1961 repeat-spacer-repeat sequences, which recruited 
at least one spacer or protospacer read. In many cases, 
only protospacers (41.3%) or spacer (33.6%) reads were 
identified. For the remaining 25.1% of cases, we found 
a positive correlation between spacer and match-
ing protospacer abundance (slope = 0.51, R2 = 0.37, 
Fig.  4A), independent of the CRISPR-Cas subtype or 
the metagenomic sample (Suppl. Figs. 12 and 13). This 
is in line with previous results obtained for the Earth 
Microbiome Project [50] and supports the idea that 
spacers targeting highly abundant phages are under 
positive selection and thus dominant in the commu-
nity [30]. Notably, in our previous study focusing on a 
single cheese starter culture, we had found the oppo-
site pattern. This may be explained by the fact that 
a single phage dominated this community, causing 
chronic infections and thereby overcoming CRISPR-
based immunity [74]. Interestingly, with increasing 
spacer abundance the ratio of protospacer to spacer 
abundance decreased (slope = − 0.48, R2 = 0.32, 
Fig.  4B), suggesting that highly abundant spacers are 
effective in decreasing protospacer abundance. A simi-
lar correlation has previously been described for the 
viral fraction outside of the cells measured by virus-
microbe-ratios (VMR) [36, 83].

Further, we wanted to see if the CRISPR spacers are 
genetically linked and verify if the entire strain or the 

individual spacers are the level of selection. Therefore we 
looked at the spacer abundances within one metagen-
omic sample. The spacer abundance within a single 
metagenome clearly has a non-normal distribution, with 
few spacers being abundant, while the majority are of low 
frequency (Suppl. Fig. 14). This indicates that individual 
spacers can sweep through the population rather than 
the entire strain being selected for.

Fig. 4 Metagenomic CRISPR spacer and protospacer abundance. A 
The protospacer and spacer abundance of all metagenomic samples 
indicated in counts per million (cpm). The dashed blue and colored 
lines indicate the linear regression across all and specific CRISPR-Cas 
subtypes, respectively. The correlation values relate to all subtypes. B 
The spacer abundance in relation to the ratio of protospacer versus 
spacer abundance
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No complete pan‑immunity by CRISPR defense
For a large number of the spacers identified in the isolate 
genomes, we did not find a corresponding protospacer 
sequence in the metagenomes. However, in 41.3% of the 
cases (see above), we identified a protospacer, suggesting 
that not for all targets present in a given sample, CRISPR 
spacers have been acquired at a detectable level. To deter-
mine the identity of sequences targeted by the CRISPR-
Cas system, we searched the 63,438 CRISPR spacers 
identified in the 2778 genomes and 158 metagenomes 
against the NCBI nucleotide database (i.e., bacteria), the 
IMG viral database (i.e., phages), and the plasmid PLSDB 
database [27]. In total, 49% of the CRISPR spacers had a 
hit (maximal 2 mismatches) in at least one of these data-
bases. The majority of spacers matched to phages (36%) 
followed by bacterial chromosomes (9%) and plasmids 
(3%) (Fig. 5A). These proportions are in a similar range to 
what has previously been reported for other bacteria [61]. 
Most of the sequences matching bacterial chromosomes 
and plasmid were found in genes belonging to the COG 
(Clusters of Orthologous Groups) category “Replication 
and repair”, which includes selfish elements such as trans-
posons (Suppl. Fig. 15). The fraction of spacers targeting 
phages varied across species. In case of S. thermophilus, 
61% of the spacers mapped to known phages, while for 
other species, e.g., L. delbrueckii or L. helveticus, only 
30% and 36%, respectively, mapped to known phages, 
probably reflecting the extent of research conducted on 
the phage diversity of different bacterial species.

To assess the range of phages targeted by a given iso-
late, we categorize the phages into discrete viral opera-
tional taxonomic units (vOTU) inferred by the viral 
IMG database [65]. Further, we limited this analysis to 
the genomes of the six bacterial species with the largest 
diversity of phages represented in the database (i.e., > 85 
described vOTU), namely phages of S. thermophilus, L. 
delbrueckii, L. helveticus, L. fermentum, L. rhamnosus, 
and P. freudenreichii. Within these species, we observed 
that each strain targets on average 9 vOTUs (sd = 8) 
(Suppl. Fig. 16), which corresponds to 2.5% (sd = 0.6%) 
of the known phage diversity of these species. This is in 
line with a recent study where they modeled that 1–10% 
of the total phage diversity is covered by the CRISPR-
Cas system of a single strain [9]. Notably, most isolate 
genomes (83%) harbored only a single spacer against a 
given vOTU (Suppl. Fig.  17) with no major differences 
between species (Suppl. Fig.  18). This observation is in 
contrast to what has been observed in laboratory stud-
ies of phage-bacteria coevolution [13, 29] or in cases of 
chronic phage infections in S. thermophilus [74], where 
multiple spacers targeting the same vOTU were often 
found to be integrated into the CRISPR array.

Our results seem to suggest that the spacer repertoire 
of a given strain is aimed at targeting a broad range of 
different phages rather than being specialized towards 
a single vOTU. To assess whether the presence of sev-
eral strains with diverse CRISPR spacers provides pan-
immunity against a broad range of phages, we conducted 

Fig. 5 Protospacer diversity. A The fraction of CRISPR spacers mapping to the Viral IMG db, the bacterial NCBI database or having no hit. Each 
species (top) and metagenomic project (bottom) are subdivided and the number of spacers therein are indicated in the brackets. B The rarefaction 
curves of vOTU for all species with more than 50 genomes and more than 85 described vOTUs. C The fraction of IMG vOTUs targeted by all 
metagenomic samples (green bar), one metagenomic sample (dark green bar) or all metagenomic samples in that project (light green bar) of S. 
thermophilus (total 623 vOTUs). The bars indicate the standard error
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a rarefaction analysis of the CRISPR-vOTU matches 
identified in the isolate genomes. For all six analyzed spe-
cies, the curve rapidly flattened with no more than 50% 
of the known vOTU having matching CRISPR spacers 
in the analyzed isolate genomes (Fig.  5B). For example 
for S. thermophilus only 39% of all phage vOTUs had 
matching spacers across the isolate genomes. This indi-
cates that no combination of isolates results in complete 
CRISPR-based immunity against all known phages of 
a given species. Analysis of the metagenomic CRISPR 
spacers mapping to S. thermophilus phages confirmed 
these results: only 37.6% of the known S. thermophilus 
phages were targeted by CRISPR spacers identified across 
the 158 metagenomic datasets (Fig.  5C). Even fewer 
phages were targeted by spacers identified in individual 
metagenomic datasets (mean = 2.5%, sd = 2.2, Fig. 5C). 
Phages not targeted by any spacer did not seem to be rare 
as the vOTU clusters were not necessarily smaller than 
the clusters of targeted vOTU (Suppl. Fig.  19). Moreo-
ver, they did not contain more anti-CRISPR genes than 
phages that had matching CRISPR spacers in the com-
munities (Suppl. Fig. 20). It is possible that these phages 
are integrated as prophages in the bacterial genomes and 
thereby avoid CRISPR-based immunity or that the bac-
teria and phages have not encountered each other due to 
spatial population structure or segregation into different 
communities that have not yet been sampled [79].

Conclusions
Previous studies have used shotgun metagenomics to 
characterize CRISPR diversity in bacteria found on the 
human body, in the ocean or the soil [50, 53]. Cheese-
associated communities are much simpler than these 
previously analyzed communities [20, 28]. They contain 
much fewer species and are propagated in relatively sta-
ble environments [57, 73]. A large amount of genomic 
data is available for cheese-associated communities as 
they are established experimental model systems to study 
bacteria-phage interactions. This allowed us to assess 
the intraspecific diversity and evolutionary dynamics of 
phage defense systems across a wide range of bacterial 
species and communities by analyzing publicly available 
genomes and metagenomic datasets. We found extensive 
diversity in innate and adaptive immune defense mech-
anisms across cheese-associated bacteria, despite the 
overall little genomic diversity present in these commu-
nities. Phages are known to be common in these environ-
ments and pose a risk for the cheese making process [40]. 
However, the extent of defense systems we have found 
seems to exceed the diversity present in previously ana-
lyzed ecosystems, which is surprising given that cheese 

communities are closed systems with little opportunities 
for migration/invasion.

Our analysis revealed that innate immune systems were 
distributed in a strain-specific manner across the ana-
lyzed genomes of cheese-associated communities. They 
are part of the accessory genome and are rapidly gained 
and lost. Likewise, CRISPR spacer repertoires varied sub-
stantially across nearly clonal isolates and the amount 
of CRISPR spacers present in the metagenomic data-
sets seemed infinite. Accordingly, our estimation of the 
CRISPR spacer turnover rates suggested rapid gain and 
loss of CRISPR spacers with important differences found 
between different CRISPR-Cas subtypes but not neces-
sarily species. The ecological relevance of the identified 
diversity is highlighted by the finding that metagenomic 
CRISPR spacers matching abundant target sequences 
(e.g., phages) were also abundant in the corresponding 
metagenomic sample which indicates specific bacteria-
phage responses in terms of their ecological dynamics.

Our observations align with the pan-immunity model 
proposed for understanding the evolutionary ecology of 
innate immune systems [6] and suggest that this model 
can be extended to CRISPR-based adaptive immunity, 
as the three key points of this model seem to be fulfilled. 
First, we show that there is standing genetic diversity in 
CRISPR spacer diversity in cheese-associated bacteria 
and communities. Second, similar as for the horizontal 
mode of transfer proposed for the innate immune sys-
tems [33], the high turnover of spacers detected in our 
study reflects that novel defensive repertoires can be rap-
idly acquired (and lost) in the population. Third, CRISPR 
spacers seem to be selected for and hence functional as 
their abundance correlates with phage abundance.

On the contrary, for about 50% of the phages that 
were isolated from cheese-associated communities, we 
could not identify any matching CRISPR spacers across 
the genomes/metagenomic datasets. This may hint at 
the combined importance of both innate and adap-
tive immune systems and could suggest that CRISPR is 
not effective against all phages. It is possible that these 
phages avoid CRISPR targeting, making them interesting 
candidates to look for novel anti-CRISPRs mechanisms. 
Alternatively, the untargeted phages could be incompat-
ible because of surface modifications, which are known 
to be crucial for phage resistance in the cheese-associated 
species Streptococcus thermophilus [49, 77]. Overall, our 
results allow us not only to understand the evolutionary 
ecology of phage-bacteria interactions but could also be 
instrumental in improving the protection of cheese starter 
culture by developing phage-based therapy [23] as a pro-
tection against pathogens [22] or invasive strains [63].
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Additional file 3: Supplementary Figure 1. A) Mean abundance and 
prevalence of the different species in the metagenomes illustrated 
in main Fig. 1A. B). The number of genomes for the different species 
downloaded from NCBI and in house cheese database. Supplementary 
Figure 2. Species environment assignment. The relative abundance of 
the dominant species in the mesophilic and thermophilic metagenomic 
samples (as indicated in Fig. 1A). Also the colors indicate the species 
assignment to either thermophilic, mesophilic or generalist species. Sup‑
plementary Figure 3. Number of ABI systems per strain across different 
species. Supplementary Figure 4. The number of different defense 
systems vs. average nucleotides between two genomes of the same 
species. Including only the most dominant species comparisons. This 
figure corresponds to Fig. 1G in the main text but includes the regression 
statistics. Supplementary Figure 5. The correlations between different 
phage defense systems. The heatmap illustrates the correlation coefficient 
(see legend to the right). Supplementary Figure 6. Number and vari-
ation of phage defense systems between A) CRISPR containing and no 
CRISPR containing species and B) within the CRISPR-containing species 
between CRISPR containing and no CRISPR containing strains. Supple‑
mentary Figure 7. Characteristics of CRISPR spacer and CRISPR repeats in 
the isolates of the different cheese-associated bacterial species illustrated 
by the following panels i) spacer GC content, ii) repeat GC content, iii) 
host GC content, iv) spacer length and v) number of spacers per strain. 
Supplementary Figure 8. The total number of CRISPR spacers per array is 
illustrated for Cas subtypes independent of species. Both the distribution 
as well as the actual number (points) are illustrated. Supplementary 
Figure 9. The ANI vs. shared CRISPR spacer plot shown for the predomi-
nant species separately. Only boxes with more than 30 comparisons are 
shown. Supplementary Figure 10. CRISPR spacer turnover rates divided 
by species and CRISPR-cas subtype. The colours represent the CRISPR-cas 
subtype. Only the most dominant species are illustrated. Supplementary 
Figure 11. The number of metagenomes that a spacer occurred in. If a 
spacer is unique for a single metagenome it is represented in the first 
column. Thereafter the columns illustrate the number of metagenomes a 
spacer is shared in. The large majority of spacers occur only in one or a few 
metagenomic samples. Supplementary Figure 12. Normalized spacer vs. 
protospacer abundances (counts per million) subdivided by the different 
metagenomic bioprojects. The blue line indicates the illustrated linear 
regression with the statistics represented at the top of the figures. Sup‑
plementary Figure 13. Normalized spacer vs. protospacer abundances 
(counts per million) subdivided by CRISPR-cas subtypes. The blue line 
indicates the illustrated linear regression with the statistics represented 
at the top of the figures. Supplementary Figure 14. The normalized 
spacer abundance (normalized by the most abundant spacer in the 
metagenome) of all metagenomic samples. Every individual metagenome 
contained between 41 and 1961 spacers.The large majority of spacers are 
of very low abundance. Apart from the accumulation of spacers at the low 
abundance spectrum there does not seem to be a large accumulation 
of spacers throughout the figure. This would have illustrated a dominant 
strain. Supplementary Figure 15. COG categories of the 859 proteins 
that were targeted by spacers (i.e. protospacers). Supplementary 
Figure 16. The number of vOTUs targeted by a given genome of the dif-
ferent species. Only depicted for the most abundant species and vOTUs. 
Supplementary Figure 17. The number of CRISPR spacers targeting the 
same vOTU in one genome. The percent is indicated above the bar. The 
large majority of spacers within a CRISPR array (~83%) target only a single 
vOTU. Supplementary Figure 18. Similar as the previous supplement 
figure, the number of CRISPR spacers targeting the same vOTU in one 
genome subdivided by the different species. The percent is indicated 
above the bar. Also here, the large majority of spacers within a CRISPR 

array target only a single vOTU. Supplementary Figure 19. The cluster 
size of the vOTUS (indicating the number of known/sequence phages for 
this vOTU) for the vOTUs which have a CRISPR match in comparison to the 
vOTUS that remained unobserved (no target identified in the genomes). 
The Wilcoxen p-value is non-significant and indicated in the figure. Sup‑
plementary Figure 20. The number and fraction of vOTUs containing 
an anti-CRISPR sequence divided by vOTUs targeted by CRISPR or not 
targeted (no hit) that contain anti-CRISPR genes.
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