
ASPEN Study Case: Real Time in Situ 
 Tomato Detection and Localization for  

Yield Estimation

Camilo Chiang1,2*, Daniel Tran1 and Cedric Camps1

1Agroscope, Institute for Plant Production Systems, Rue des Eterpys 18, 1964 Conthey, Switzerland
2Agroscope, Digital Production, Tänikon 1, 8356 Ettenhausen, Switzerland

Submission: March 13, 2024; Published: March 21, 2024
*Corresponding author: Camilo Chiang, Agroscope, Institute for Plant Production Systems, Rue de eterpys 18, 1964 Conthey, Agroscope, Digital 
Production, Tänikon 1, 8356 Ettenhausen, Switzerland

Agri Res & Tech: Open Access J 28(2): ARTOAJ.MS.ID.556406 (2024) 001

Research Article
Volume 28 Issue 2 - March   2024
DOI: 10.19080/ARTOAJ.2024.28.556406

Agri Res & Tech: Open Access J
Copyright © All rights are reserved  by Camilo Chiang

Introduction 

As we approach the estimated inflection point of the world 
population growth curve UN, increasing global food availability 
is more important than ever. Especially with the current climate 
crisis threatening our food system Owino et al. [1]. Several 
strategies have been applied throughout the food production chain 
to address this issue FAO [2]. To this end, new methods have been 
tested across the agricultural industry to speed up results and 
increase efficiency, particularly in new technologies in a so-called 
fourth agricultural revolution, even though the impact of these new 
technologies is not clear Barret & Rose [3]. The vast majority of 
these new methods require large amounts of information obtained 
directly from the field or plants, in descriptive processes called  

 
phenotyping. Phenotyping is the activity of describing, recording 
or analysing the specific characteristics of a plant and due to the 
nature of this process and the required frequency, it is a time-
consuming task Xiao et al. [4]. While the principle of phenotyping 
is not new, the quantity and quality of information that is today 
been generated has never been seen before, making imperative to 
reduce the time required for this task. Remote sensing has been 
used and its automation has already been demonstrated thanks to 
new algorithms and technologies Chawade et al. [5], even further 
opening up new opportunities for real-time data utilisation, what 
could save resources and further improve the industry as a whole 
Bronson & Knezevic [6]. 
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There are several ways to automate phenotyping, with each 
path depending on the allocated budget and working conditions. 
For example, Araus et al. [7] divide these paths according to 
the distance to the target. Satellites can be used with fast data 
acquisition per m2, but with a trade-off between resolution and 
investment costs. Other methods closer to the plants, such as 
stationary platforms, allow for higher spatial resolution data, 
but are less flexible and more expensive to implement. A proven 
solution is the use of drones, which are more flexible than fixed 
platforms, but still not as flexible as they cannot work in covered 
crops. On the other hand, handheld sensors, manned or unmanned 
ground vehicles (UGVs) are more flexible than the aforementioned 
platforms and have a higher resolution, a lower initial investment, 
but can cover smaller areas than the previously mentioned 
methods. The effectiveness of this last category has been well 
demonstrated, especially in the fruit detection and localisation 
tasks e.g. Scalisi et al. [8], but affordable open-source alternatives 
are scare. The phenotyping subtask of fruit detection in images 
was initially based on shape and colour, until the advent of neutral 
networks (NN), which were particularly advanced after 2012 e.g. 
Hinton et al. [9]. These have led to more robust results in fruit 
detection. 

Today, well-established algorithms such as RCNN Girshick et 
al. [10], Mask-RCNN He et al. [11] and YOLO Redmon et al. [10] 
are constantly used for research purposes and in production 
environments. For example, Mu et al. [12] show that when 
using RCNN, they could achieve a mean average precision at 0.5 
intersection over union (IoU) (mAP@0.5) of 87.63%, which later 
correlates with the real number of tomatoes per image at 87%. 
Other authors, Afonso et al. [13]; Seo et al. [14]; Zu et al. [15] 
showed that when using Mask-RCNN, focused on the task of 
instance segmentation, they obtain a similar or higher average 
precision than Mu et al. [12], with values of mAP up to 98%, 
88.6% and 92.84% respectively in each study. These previous 
works demonstrate the ability of the presented algorithms not 
only to detect objects, but especially to detect individual tomatoes 
in situ. A notable point of these works is that the comparability 
of their results is technically incorrect since each detection 
algorithm was trained on different image datasets. To compensate 
for this, a standardised dataset must be used and although some 
few datasets are freely available online to train machine learning 
algorithms in the task of tomato object detection, these are rarely 
used. Remarkable datasets are “laboro tomato” Laboroai [16] and 
“tomatOD” Tsironis et al. [17] due to its quality and availability.

Although the previously mentioned NN based algorithms 
have good detection rates, they are not capable of running in real 
time (more than 30 frames per second, FPS). For example, using a 
variant of R-CNN, Faster R-CNN, Seo et al. [14] achieve up to 5.5 FPS 
using a desktop computer equipped with a graphics processing 
unit (GPU) card (NVIDIA GTX 2080 ti), without mentioning the 
input size of the model. Thanks to the introduction of YOLO, Liu et 
al. [18] have shown that near real-time analysis is possible. In their 
case, the authors improved the YOLOv3 model by using a denser 

architecture and round boundary boxes that better fit the shape 
of tomatoes. These changes allowed them to achieve an F1 score, 
a weighted average of precision and recall, of 93.91% at a speed 
of 54 ms (18 FPS), compared to 91.24% at 45 ms (22 FPS) and 
92.89% at 231 ms (4.3 FPS) for the original YOLOv3 and Faster 
R-CNN, respectively. In their case, images of 416x416 pixels were 
processed on a desktop computer equipped with a GPU (NVIDIA 
GTX 1070Ti). With a faster, more robust and more recent version 
of YOLO, YOLOv5, Egi et al. [19] achieve an F1 score of 0.74 for red 
tomatoes, which correlates at 85% with a manual count. Although 
no speed was documented in their work, the various algorithms 
of YOLOv5 are capable of running in real time at resolutions 
below 1280 pixels, depending on the system used (CPU vs. GPU) 
and model implementation Jocher et al. [20]. In addition, Egi et 
al. [19] demonstrate that the use of a state-of-the-art multiple 
object tracking (MOT) algorithm allows each individual object to 
be tracked along a video sequence.

 For the tracking task, several MOT algorithms have been 
proposed, among which we highlight SORT Bewley et al. [21], 
bytetrack Zhang et al. [22] and OCSORT Cao et al. [23] as their 
code is publicly available, they have a high performance and they 
can run in real time in a common CPU unit even in the presence 
of multiple objects. Once an object has been detected, it needs to 
be located in space, which can be done in a number of ways. One 
simple way is to use RGBD cameras that contain a deep channel 
(D). This information can be used to distinguish the foreground 
from the background objects, which has been well demonstrated 
in tomatoes by Afonso et al. [13], allowing for object localization 
within frame, but missing the global position of the detected 
objects. Using an alternative methodology, Underwood et al. [24] 
show that it is possible to reconstruct a non-structural environment 
using Light Detection and Ranging (LiDAR) technology for within 
frame, together with GPS data for global localization in a post-
processing method. Thanks to their method, they were able to 
locate and estimate almond yield at tree level with an R2 of 0.71. 

The use of 3D reconstruction techniques has been less 
explored in greenhouses. Masuda et al. [25], show that tomato 
point clouds obtained from structure from motion (SfM) can be 
further analysed to obtain per plant parameters such as leaf area, 
vapour length using a 3D neutral network, Pointnet++ Qi et al. 
[26], with an R2 of 0.76 between the ground truth area and the 
corresponding number of points.

 In a more advanced analysis, Rapado et al. (2022) show 
that by using a 3D multi-object tracking algorithm, that really 
in an RGB camera and LiDAR, they achieve a maximum error of 
5.08% when localising and counting tomatoes at a speed of 10 
FPS. Similarly, other authors have documented that by the year 
2022, pipelines based on existing 3D neural networks are slower 
than 2D methods that really in additional sensors to obtain deep 
information (e.g. Afonso et al. [13], Ge et al. [27]. In addition, actual 
3D neural networks have major limitations such as maximum 
input size, large number of parameters that make them slower 
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to train, high memory consumption, and moreover, they are 
particularly limited by the lack of datasets for training reasons Qi 
et al. [28].Nevertheless, new low-cost 3D pipelines and datasets 
are constantly being released to increase the availability of this 
technology (e.g. Schunck et al. 2022, Wang et al. [29].

In order to correlate these detections with real yields, 3D 
localisation is required, and remarkably, simultaneous localisation 
and mapping (SLAM) algorithms have not been widely used in 
agricultural environments, possibly due to their lack of robustness 
Cadena et al. [30]. Previous SLAM methods are suitable for more 
structured environments, with clear corners and planes that 
allow incoming LiDAR scans to be aligned, which can be used 
for localisation (LiDAR odometry, LIO). A possible solution for 
unstructured environments is to use images for localisation 
(visual odometry, VIO), but this tends to fail in fast motion. Sensor 
fusion, a technique that fuses multiple sensors together, can 
provide more robust systems that can, for example, align incoming 
LiDAR scans when using VIO for navigation. This technology is 
better suited to environments that lack clear features, such as 
outdoor environments. Notable examples of these algorithms due 

its robustness and open source code include VINS-FUSION Qin et 
al. [31], CamVox Zhu et al. [32], R3Live Lin & Zhang [33], and FAST-
LIVO Zheng et al. [34]. 

The low use of these technologies in the agricultural sector, 
either separately or together, could be attributed to several 
reasons, including the maturity of the technologies, budgetary 
reasons, and a knowledge gap between farmers and computer 
science e.g. Kasemi et al. [35]. The Agroscope Phenotyping Tool 
(ASPEN) aims to break the digital phenotyping barrier among 
agricultural researchers, thanks to a proven and affordable 
pipeline that can work in situ and in real time for fruit detection, 
allowing non-experts to use the tool. In this paper, we demonstrate 
that this pipeline: 1) allows 3D reconstruction of a non-structured 
environment using a SLAM algorithm, and thanks to this 2) can 
localise and describe tomato fruits in a traditional greenhouse 
thanks to the addition of an object detection algorithm. Most 
importantly, in order to increase the accessibility and use of this 
pipeline, we are making the necessary hardware and software to 
reproduce it publicly available, which we hope will help to bridge 
the gap between agricultural and computer scientists.

Materials and Methods

Hardware and Software

Figure 1: Pipeline of the Agroscope Phenotyping Tool (ASPEN) for real-time in situ fruit detection. Three different sensor inputs, together 
with two different mathematical models (convolutional neural network for object detection and linear model for weight estimation), allow in 
situ real-time estimation of tomato fruit quality and quantity. Icons correspond to inputs (chip icon), process (atom icon), output (library icon) 
and models (wave icon).

An ASPEN unit was used to evaluate the ASPEN pipeline 
(Figure 1). Although it is not the aim of this paper to discuss 

the configuration or selection of the equipment used, a brief 
description is given below. For more details, the reader is 
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invited to refer to the online project repository (https://github.
com/camilochiang/aspen, Chiang et al. in preparation). The 
ASPEN pipeline considers a set of input sensors connected to 
an embedded computer using the robot operating system (ROS, 
Stanford Artificial Intelligence Laboratory et al. 2018), version 
melodic in a gnome-based version of Ubuntu 18.04.6 LTS, with the 
aim of reconstructing and locating plants, fruits or diseases in situ 
in real time, where we here focus in the fruit case. ASPEN uses a 
specific selection of sensors and electronic components that may 
already be present in an agricultural research facility. To achieve 
this goal, the system relies on two main workflows, tightly coupled 
and orchestrated by an embedded computer equipped with a GPU 
(Jetson Xavier NX 16 Gb): the camera workflow and the SLAM 
workflow.

For the camera workflow, a synchronised RGBD without 
timestamp synchronisation (Realsense, R415 - 1920x1080 
pixels at 30 FPS with synchronised depth) is processed with a 
convolutional neural network (CNN) object detection technique 
based on the RGB. Once that a model has been selected and object 
detection per frame has been performed, each object is identified 
and tracked using a multi-object tracking (MOT) algorithm were 
an unique ID is assigned. Finally, once the detected tracked 
object passes a region of interest (ROI) of the field of view and 
it is confirmed as a unique object who have not been register 
before, its localisation within the image is transferred to the 2D 
to 3D estimation node. Using the localisation given by the MOT 
algorithm for each object, the 2D to 3D estimation node uses the 
deep (D) frame information to estimate the dimensions (mm) of 
the tracked object and its localization with respect the camera 
position. For each object detection, the minimum distance to the 
camera is extracted and then the actual diameter is calculated and 
used by a dimensional model (Figure 1) to convert to weight (g).

In addition to this workflow, two other sensors, an Inertial 
Measurement Unit (IMU, BMI088 bosh) and a Light Detection 
and Ranging (LiDAR, Livox mid-70, configured into single return 
mode) unit, as well as the RGB channels of the RGBD camera, 
are used in the parallel SLAM workflow who allow to locate each 
RGBD frame within a global mapping and therefore each tracked 
object in a 3D map. These sensors were choose due its low cost 
compared with similar sensors, and in case of the LiDAR especially 
due the extreme low minimum detection range (5 cm). The aim 
of this workflow is to reconstruct the environment in which the 
tomatoes are located and to provide a relative position for each 
tomato (with respect to the initial scanning point), which will then 
allow the detected tomatoes to be correlated with the handmade 
measurements. For this task, R3Live Lin & Zhang [33] was chosen 
as the SLAM algorithm, as it attaches new incoming points from the 
LiDAR unit (10 Hz) using the IMU (200 Hz) and image information 
and does not really only use LiDAR features for this task and can 
run in real time (faster than 30 FPS). These characteristics, shared 
with other similar visual odometry algorithms (VIO), show in our 

preliminary research to work better in agricultural environments 
in collaboration with SLAM algorithms that rely only in LiDAR 
odometry (LIO) (data not shown), potentially due to the clear 
lack of features (corners, planes) in a so-called “unstructured 
environment”, which makes LIO algorithms more difficult to 
converge. To allow reproducibility, the input from all sensors are 
recorded within the ASPEN unit. A simple graphical user interface 
(GUI) is available to facilitate this task.

Experiments

To evaluate the ASPEN pipeline in the specific task of tomato 
detection and localisation, we started by training YOLOv5. Five 
different models (n, s, m, l and x) from the YOLOv5 family were 
trained at two different resolutions: 512 (batch size 20) and 1024 
(batch size 6) pixels up to 300 epochs. These models differ mainly 
in the complexity of the model architecture, with the simpler 
models aiming to operate under resource-constrained conditions, 
such as mobile phones and embedded computers. This network 
was trained using 646 images for training and 176 images for 
validation, coming from our own datasets and other open source 
datasets (laboro-tomato and tomatoD). Regardless of the origin of 
the dataset, tomatoes were re-labelled in three different categories: 
immature, turning and mature tomatoes, with approximately 
3500, 1000 and 900 instances of each category, respectively. 
After training, one of the resolutions and one of the models were 
selected for a posteriori use. For details of the dataset, the reader 
is invited to visit the online repository.

Once the model that met our requirements and had the 
best performance had been selected, two commercial-type 
greenhouses in the facilities of Agroscope (Conthey, Switzerland), 
with tomatoes of the Foundation variety grafted on DRO141, were 
scanned with an ASPEN unit on three consecutive harvest days in 
the middle of the production period of 2022. Each scan lasted a 
maximum of 12 minutes and was performed close to midday to 
ensure similar light conditions. Each greenhouse of approximately 
360 m2 contained eight rows of tomato plants, each row 25 m long. 
The six central rows were scanned sequentially, with both sides of 
each row scanned before moving on to the next row. These rows 
were also divided into 3 blocks for other experiments, with buffer 
plants at the beginning, between blocks and at the end of each 
row. The scans were recorded as bag files using ROS. The resulting 
bag files were then transferred to a desktop computer (Lenovo 
ThinkPad P15, Intel core i9, GPU NVIDIA Quadro RTX 5000 Max-Q, 
16VGb) for reproductive and posterior analysis. The analysis 
was automated with the aim of detecting tomatoes per block. To 
do this, the videos were first reviewed and pre-registered with 
timestamps of the transition between blocks.

To validate our results, after each scan we harvest all the 
tomatoes ready for marketing. Harvesting was done per bunch, 
usually from 4 to 5 tomatoes, which occasionally led to the 
harvesting of turning tomatoes. Harvesting took place either on 
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the same day or the following day after each scan. To increase the 
spatial resolution of the validation data, each row was harvested 
side-by-side and each row was further divided into three different 
blocks, resulting in 216 validation points. This was incorporated 
into the analysis using a distance filter with the D-frame of the 
RGBD camera, ignoring any objects detected more than 50 cm from 
the ASPEN unit, as these correspond to elements in the background 
or on the other side of the row. For each harvest, the total weight 

was measured, including the weight of the pedicel. Differently, the 
number of fruits was counted per block only, regardless of the 
side of the row, giving 108 validation points. To build the size-to-
weight model shown in Figure 2, after each scan, 100 tomatoes 
were harvested from the non-scanned rows belonging to the three 
categories mentioned above. These tomatoes were measured and 
weighted, and the model used later for yield estimation is shown 
in Figure 3. 

Figure 2: A) Mean average precision at the intersection over union 0.5 (mAP@0.5) of the different trained YOLOv5 models at two different 
resolutions (512 and 1024 pixels), and B) Precision-recall curves for the selected model (YOLOv5n).
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Figure 3: Model used in the ASPEN pipeline to model the weight (g) of each tomato as a function of its diameter (mm). 300 data points are 
presented, coming from the 3 different harvest dates.

Figure 4: Pre results of the ASPEN pipeline A) real time tomato localization within the 3D reconstructed area using YOLOv5 plus a multi-
object tracking (MOT) algorithm. Each yellow box correspond to a detection meanwhile the blue line is the region of interest (ROI) to trigger 
the localization of the tracked objects, and B) in situ real time 3D reconstruction of a non-structural environment using R3Live. The colour 
of the markers in B represent the maturity of the detected tomatoes, where green correspond to immature, orange to turning and red to 
mature tomatoes. White points correspond to the incoming LiDAR scan and the colorized arrows correspond to the coordinate system of the 
camera, with x in red, y in green and z in blue.

To complement the validation of the ASPEN pipeline, three 
MOT algorithms were tested under similar implementation 
frameworks and parameters (Python 3.8): SORT Bewley et al. 

[21], Bytrack Zhang et al. [22], and OCSORT Cao et al. [23].The 
quality of the yield estimation results depends not only on good 
object detection, but also on correct tracking along the frames 
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until each object reaches a region of interest (ROI), where it is 
counted. Independently of the MOT algorithm used, an estimated 
position, size and weight was calculated for each tomato detected. 
An example of the detection and reconstruction process is shown 

in Figure 4. The correlation of the three different MOT algorithms 
with weight and count in relation to the real harvest is shown in 
Figure 5.

Figure 5: A) Correlation between the measured number of ripe tomatoes and B) their weights obtained using three different Multi Object 
Tracking (MOT) algorithms along three different experiments. For each MOT algorithm, 108 data points were used in A), while 216 were 
used in B). RSE is the residual standard error. In both figures, squares, circles and triangles correspond to SORT, OCSORT and bytetrack 
respectively.

Figure 6: A) Tomato diameter distribution histograms for the manual method versus B) the ASPEN pipeline method when using the OCSORT 
MOT algorithm.
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Statistics

A priori and posteriori statistical analyses were performed 
using Python 3.8 Van Rossum & Drake [36] and the Statsmodels 
package (version 0.13.5, Seabold & Perktold [37]. A quadratic 
equation was fitted to the size-weight relationship (Figure 3), as 
this statistically fit the data better than a simpler relationship 
(data not shown). To estimate the correlation between crop yields, 
either in number or weight, a linear correlation without intercept 
was fitted between the manually measured data and the estimated 
data from the ASPEN pipeline, considering each crop subsample 
as a data point (n = 108 for the number task and n = 216 for the 
weight task). To evaluate the ability of the ASPEN pipeline to predict 
future yields based on previous measurements, we correlate the 
estimated number of tomatoes in the turning category with the 
following 3 harvests for each subsample as a data point (n = 108). 
Finally, to evaluate the task of size measurement, an f test of the 
size distribution was carried out within each category (Figure 6).

Results

Object detection

Within the ASPEN pipeline, the first task in the camera 
workflow is object detection (Figure 1), which requires a 
previously trained object detection model. As shown in Figure 
2, when evaluating the task on the desktop computer using the 
family of models of the YOLOv5 algorithm (n, s, m, l and x models 
with 4, 16, 48, 109 and 207 Giga floating-point operations per 
second, GFLOPS), at a resolution of 512 pixels (px), an increase in 
the complexity of the model used allows a higher mean average 
precision at interception over union of 0.5 (mAP@0.5), which is 
particularly the case between the first two models (nano;n vs. 
small;s). Subsequently, more complex models (medium; m, large; 
l and extra-large; x) did not contribute to a higher mAP@0.5. In 
contrast to the lower resolution results, a higher resolution of 
1024 px results in higher mAP@0.5 values for simpler models. At 
512 px, the improvement in mAP values due to higher complexity 
was close to 2% between the two simpler models (n vs s), while a 
higher resolution contributed up to 5% improvement in mAP@0.5 
values between the two n models.

 Selecting the simplest model, YOLOv5n, also reduced 
the inference time from 8 ms to 25 ms compared to the more 
complicated model (x). Figure 2B shows the precision-recall curve 
of the selected model (YOLOv5s at 1024 px). The F1 values, a 
weighted average of precision and recall ranging from 0 to 1, were 
0.941, 0.777 and 0.838 for the immature, turning and mature 
categories at mAP@0.5, with an average F1 value of 0.852 across 
categories. Irrespective of the category, the main difficulty was 
with precision measurement, suggesting a high number of false 
positives. Although the mature category had a similar number of 
cases to the turning category (around 900 compared to 1000), 
it is interesting to note that the turning category is still the most 

difficult to discriminate. On the other hand, the green category has 
a higher F1 value with more than 3500 instances.

Size to weight model and localisation

The next step was to investigate weight estimation using 
manual diameter measurements. For this purpose, a linear model 
represented by a parabolic function was used, as this one fitted 
our data better than other functions (data not shown). This 
correlation, with an R2 of 0.886, holds regardless of the ripeness 
of the tomatoes (data not shown) and when considering the 
production of layers of either small or large size, as shown in 
Figure 3. The average weight of the tomato samples was 147 ± 2 g 
(standard error, SE), which corresponded to the average weight of 
the harvested tomatoes during the scanning process.

Localisation estimation

To illustrate the localisation process, an example scan is 
shown in Figure 4. Figure 4A shows the object detection where 
different tomatoes are marked in boxes. These objects were then 
tracked using one of three different multi-object tracking (MOT) 
algorithms and once they passed a region of interest (blue line in 
Figure 4, they were registered, localised and measured in 3D space 
as shown in Figure 4B using the D channel from the RGBD camera, 
the size-to-weight model (Figure 3) and 3RLive. The selection of 
the region of interest (ROI) boundary was based on previous work 
in fruit detection (e.g. Borja and Ahamed, 2021) and an observed 
better object detection even in the presence of occlusions, as the 
objects were closer to the camera.

ASPEN pipeline validation

The number of tomatoes detected and their respective 
calculated weight is shown in Figure 5, in relation to the number 
of tomatoes harvested and their weight. It can be seen that 
both MOT algorithms of the SORT family underestimated the 
number and/or the total weight of tomatoes, while the bytetrack 
algorithm strongly overestimated both parameters. In addition, 
the bytetrack algorithm produced a significantly higher residual 
standard error (RSE) for both measurements compared to the 
SORT family algorithms. No statistical difference was found 
between the SORT algorithms independent of the measured 
variable. Independently of this, OCSORT was chosen as the best 
MOT algorithm due to a lower RSE. The size distribution of a 
manual measurement compared to the automated procedure is 
shown in Figure 6 for the OCSORT MOT algorithm. The distribution 
of measurements from the automated method did not differ 
from the manual method, regardless of the tomato category. On 
average, the ASPEN measurements were slightly lower than the 
manual measurements, but similar dynamics could be observed, 
with green tomatoes having higher mean diameter values (60 
vs 56 mm) and a wider distribution, turning tomatoes having a 
lower mean value (62 vs 67 mm) and a skewer distribution, and 
ripe tomatoes also having lower mean values (64 vs 69 mm) and 
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a similar distribution compared to the manual measurements. 
When correlating the number of turning tomatoes with the actual 
harvest and the next three harvests, the highest correlation was 
found when using OCSORT. Regardless of the MOT algorithm used, 

these correlations were weaker over time and have an increasing 
RSE. The third harvest was an exception, where a slight increase in 
the average correlation was observed (Table 1).

Table 1: Correlation and mean standard error (MSE) between the estimated number of turning tomatoes and the number of tomatoes harvested in 
3 sub following harvest. 108 data points were used for each correlation.

Harvest

Method 0 1st 2nd 3rd

(+4 days) (+7 days) (+11 days)

SORT 0.93(22.8) 0.89(35.1) 0.8(45.5) 0.84(35.1)

Bytetrack 0.88(28.9) 0.84(42) 0.74(51.7) 0.78(40.6)

OCSORT 0.93(21.9) 0.9(33.2) 0.81(44) 0.86(32.9)

Discussion 
The results presented here validate the use of ASPEN for 

tomato yield estimation. Although several previous studies have 
demonstrated the capability of image analysis using machine 
learning approaches, it was not until the introduction of YOLOv5 
Jocher et al. [38] that real-time image analysis was possible. Mu 
et al. [12] showed that using R-CNN could achieve a mAP@0.5 
of 87.83% when training on a category of tomatoes, and the 
detections correlated at 87% when compared to manual counting 
on the same images. Seo et al. [14] found 88.6% of tomatoes in 
images using a faster version of R-CNN: Faster R-CNN. In their 
case, they were also able to classify into six different categories, 
which took a total of 180 ms (5.5 FPS) per image on a computer 
equipped with a GPU. After the introduction of YOLOv3, near real-
time results have already been achieved. Liu et al. [18] show that 
modifying YOLOv3 for the tomato object detection task allowed 
them to increase the F1 score from 0.91 to 0.93 with a small 
increase in inference time from 30 (33 FPS) to 54 ms (18 FPS) for 
images of 416 x 416 pixels. In their case, these changes were due 
to a denser mesh and a circular bounding box that allowed higher 
mAP@0.5. Using RC-YOLOv4, a more recent and modified version 
of YOLO, Zheng et al. [34] achieve an F1 score of 0.89 with a speed 
of 10.71 FPS on images of 416 x 416 pixels in a GPU equipped 
computer, suggesting that the improvement between YOLOv3 and 
YOLOv4 is mainly due to the gain in detection quality and not to 
the speed of the algorithm.

 More recently, and similar to our work, Egi et al. [19] 
demonstrated that a flying drone with side view, using the latest 
YOLOv5 together with DeepSORT as MOT tracker, could achieve 
an accuracy of 97% in the fruit counting task in an average of two 
tomato categories, and a 50% accuracy in the flower counting task. 
Notably, their paper does not mention the speed of the various 
steps involved. These previous works demonstrate the capacities 
of previous and current algorithms for tomato fruit detection, 
where our work aligns with these results at similar F1 scores and 
shows how these capacities have increased over time and can be 

applied to the task of tomato fruit detection. Although not perfect, 
see Figure 4 for a clear tomato occlusion, we were able to correlate 
the number of tomatoes with the actual harvest to 97% in real time 
using YOLOv5 without prior calibration of the method, and thanks 
to the speed of the algorithm we were able to further improve the 
results. A limitation of YOLOv5 is the lack of subcategories, which 
could improve the detection efficiency. Training the same dataset 
with the same model and resolution (YOLOv5s), but with only 
one category, achieved a higher F1 score of 0.95 (data not shown) 
compared to three categories (F1 value of 0.852). 

This suggests that our pipeline could be further improved by 
adding a second step classifier after the object detection algorithm, 
without losing real-time capacity. To further improve not only the 
count but also the weight correlation, it is also possible to use 
instance segmentation algorithms e.g. Zu et al. [15], Fawzia & 
Mineno [39], Minagawa & Kim [40]. This change may increase the 
accuracy of the weight model, as only the area of each tomato is 
detected, which should remove many errors in size measurement, 
especially those due to occlusion or overlap. So far, the speed 
of this task has been the limiting factor for real-time instance 
segmentation, but newer and faster algorithms may allow better 
results in our pipeline Jocher [20]. A negative effect of introducing 
an instance segmentation algorithm would be to increase the 
mathematical complexity of the size determination task, as it may 
be possible to fit a sphere into the D-frame Gené-Mola [41].

Several methods have been tested to determine the size and 
position of each fruit. Mu et al. [12] showed, similarly to our work, 
that it is possible to obtain dimensional features in tomatoes using 
an RGB camera, but due to the lack of a third dimension, their data 
was only displayed as pixels. Thanks to the addition of a deep (D) 
channel, Afonso et al. [13] were able to filter foreground objects 
from their Mask RCNN detections, while our work shows that 
we can not only filter foreground objects, but also obtain object 
characteristics in real time (Figures 4-6), which can be useful to 
study the growth dynamics of tomato fruits. In terms of speed, the 
use of the D channel to obtain sizes has been demonstrated to be 
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the fastest method available in 2022. For example, Ge et al. [42] 
using the 2D boundary box output of an object detection algorithm 
together with the corresponding depth frame took between 
0.2 and 8.4 ms compared to 151.9 to 325.2 ms when using a 3D 
clustering method. Similarly, Rapado et al. (2022) were able to 
reconstruct tomato plants using an RGB camera and LiDAR with 
multi-view perception and 3D multi-object tracking, achieving a 
counting error of less than 5.6% at a maximum speed of 10 Hz. 

While other high quality methods have been tested in 
tomato plant reconstruction e.g. Masuda [25], these can be up 
to 100 times more expensive than lower cost and resolution 
methods Wang et al. [29] and cannot run in real time. Several 
studies have been carried out using SfM to evaluate lower cost 
3D reconstructions in greenhouses, but thanks to the recent 
introduction of cheaper solid-state LiDAR technology, our pipeline 
is able to run in real time at a similar economic cost to SfM. The 
benefits of 3D reconstruction have been well demonstrated in 
tomato, e.g. Masuda [25] were able to correlate the actual leaf area 
and stem length of tomato plants with their respective number of 
points, which can be useful in the task of phenotyping. When using 
LiDAR technology, the chosen SLAM technique plays a crucial role. 
In our case, R3Live successfully reconstructed the unstructured 
environment on a desktop computer in real time (average of 24 ms 
for visual and LiDAR odometry), but it is important to mention that 
the algorithm has more than 25 parameters to be tuned and that 
under stress conditions (fast movements, camera occlusions and 
turning points) this one constantly fails to converge, weakening 
the whole pipeline. The main reason for the failure was identified 
as the lack of clear features, planes and corners, which are usually 
absent in unstructured environments, and further research is 
required e.g. Cao et al. [43]; Zheng et al. [34], especially when 
porting the pipeline to the embedded computer.

The robustness of the MOT algorithm and the selection of a 
good ROI are crucial for the object localisation task. In our case, 
with the same settings, both SORT algorithms perform better than 
Bytetrack, mainly due to a multiple ID assignment, demonstrating 
the importance of a good MOT algorithm selection for the yield 
estimation task. Although newer tracking algorithms have been 
tested in the tomato counting task e.g. Egi et al. [19], they can be 
slower than the simpler algorithms presented here, especially 
when tracking multiple objects. Regarding a good choice of ROI, 
Borja & Ahamed [44] show in pears that a ROI located in the central 
part of the image gives the best results in their case. In our case, we 
observe that a ROI located at 75% of the image field of view gives 
the best results, since objects are closer to the camera, allowing 
the detection algorithm to make better predictions and reduce 
the probability of occlusions. Regarding the SORT algorithms, 
both were able to predict the amount or weight of the crop per 
experimental unit (Figure 5), but in an underestimated way. This 
could be partly explained by technical reasons or more practical 
ones. On the technical side, the lack of detection due to occlusion 
(Figure 4) or fruit leaving the field of view before entering the ROI 

could contribute to the error. 

Meanwhile, practical reasons include the fact that tomatoes 
were harvested by bunch, which includes the occasional turning of 
tomatoes and the weight of the pedicel (with an average value of 50 
gr per bunch). Independently, the addition of the D channel proved 
to be useful in capturing the size differences between categories 
(Figure 6) and reduced the uncertainty of the weight model by 
about 1 kg for the SORT models when compared to the product of 
the uncertainty of the count model and the average tomato weight. 
Although no difference was found between the size distributions, 
the slight difference between the sizes of the categories shown in 
Figure 6 may have contributed to the uncertainty of the weight 
model, but further investigation is required as the sample sizes 
were extremely different (300 manually measured vs. 27000 
digitally measured tomatoes). Finally, our pipeline demonstrates 
the ability to additionally localise and predict future harvest based 
on the turning category, which, similar to our previous correlation 
results, has a higher correlation when using the SORT family of 
algorithms. Further research is needed to validate these claims.

To our knowledge, the results presented are the first example 
of real-time detection, characterisation and localisation of tomato 
fruit in situ and without calibration. Several experiments have 
been shown to work in post-processing with other fruits e.g., 
Underwood et al. [24], and as a result, commercial platforms 
are already available e.g., Scalisi et al. [8], Ge et al. [42]. These 
platforms can perform similar work, but they generally require a 
site/crop pre-calibration and do not have the flexibility presented 
here. The advantage of pre-calibration is that images can be 
captured at a faster rate, linked to GPS coordinates and therefore 
faster scanning speeds could be achieved, resulting in a lower 
price per m3 scanned. Although this is an excellent approach for 
commercial orchards where GPS connectivity is available and 
decisions can be made a posteriori, real-time data acquisition and 
processing allows decisions to be made in real time and in the 
field. The open source pipeline presented adds the flexibility of a 
terrestrial laser scanner that can work not only outdoors but also 
indoors. In addition, the lateral view of the crop and the higher 
image resolution may allow early disease detection when the 
ASPEN pipeline is coupled with a multispectral camera [45].

Conclusion

The present study demonstrates the capabilities of the 
ASPEN pipeline in the detection, characterisation and localisation 
of tomato fruits. Thanks to a series of sensors, we were able to 
reconstruct the scanned environment in real time, opening the 
doors to new developments and possibilities not only for the 
task of fruit detection, but also for other real time visual related 
measurements (e.g. disease and pest detection). In this study, the 
ASPEN pipeline correlated with the actual number and weight of 
harvested tomatoes at 0.97 and 0.91, respectively, and although 
the pipeline is not perfect, possibilities for improvement were 
discussed, especially with the aim of reducing the uncertainty of 
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the method. Thanks to the 3D reconstruction of the environment, 
other physiological measurements could also be automated (e.g. 
leaf area, plant volume), but further research is needed, especially 
to compare these results of an affordable 3D scanner with high 
quality scanners. We hope that the presented results will stimulate 
agricultural researchers to work with new technologies, and to 
inspire this, we make publicly available the hardware material 
and software necessary to reproduce this pipeline, which includes 
a dataset of more than 850 relabelled images and models for the 
task of tomato detection.
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