A Comparative Nutritional Life Cycle Assessment of Processed and Unprocessed Soy-Based Meat and Milk Alternatives Including Protein Quality Adjustment

Moritz Herrmann, <u>Eric Mehner</u>, Lotti Egger, Reto Portmann, Laila Hammer, Thomas Nemecek

LCAFood, Barcelona, 09.09.2024
Combined nutritional and environmental assessment of foods and diets (III)

Background

- Food system and especially animal-based products are associated to large environmental impacts
- One popular mitigation approach → replacement with alternative products
- Raises several questions:
 - Are they suitable replacements in terms of nutrient content and nutritional quality?
 - Can they fulfil the same function as the original?
 - How do they perform environmentally related to their function?
 - Is processing beneficial or not?

U

Nutritional Life Cycle Assessment

Goal

Compare the environmental impacts of soy-based alternatives to their references considering the nutritional quality and nutrient density

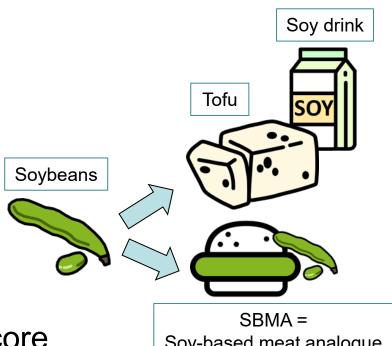
Functional unit

- g qc-protein
 - NRprot7

Scope

- Agricultural production and processing in Switzerland
 - Cradle-to-gate

Impact assessment


- SALCA v2.01¹
- CED, GW, WS, LO, AT, EF

Quality of Plant Proteins

- Often lower than that of animal proteins
- Can be improved by combining different sources
- Processing may alter digestibility
- Influence on the <u>function</u> as protein sources
- How can the protein quality be quantified?
 - DIAAS Digestible Indispensable Amino Acid Score
 - → Amino Acid content and digestibility
 - Method for in vitro analysis¹

$$DIAAS = rac{ ext{mg of limiting indispensable amino acid in the dietary protein}}{ ext{mg of the same amino acid in the reference protein (usually egg protein)}} imes 100$$

Soy-based meat analogue

Protein Quality

Table 1: The *in vitro* DIAAS values. Limiting amino acids in parentheses. The corresponding **qc-protein** is calculated by multiplying the protein content with the DIAAS.

Food item	Protein content [g/100g]	DIAAS [%]	qc-protein [g/100g]
Soybeans, cooked	16.3	51 (Trp)	8.3
Tofu, plain, fresh	14.4	84 (SAA)	12.0
SBMA, grilled	13.9	94 (SAA)	13.0
Beef, minced, grilled	32.6	124	40.6
Chicken breast, grilled	30.1	113	34.0
Soy drink, UHT	2.6	85 (SAA)	2.2
Cow milk, 3.5%, UHT	3.3	121	4.0

DIAAS = Digestible Indispensable Amino Acid Score SAA = Sulphur-containing amino acids (Methionine, Cysteine) Trp = Tryptophan

Excellent DIAAS Score (≥ 100)

Good DIAAS Score (75 - 99)

Poor DIAAS Score (< 75)

Nutrient Density

- Consider the nutrient content as an index → NRF7.2 (nutrient rich food) index
- Based on content of qualifying and disqualifying nutrients
- Related to Dietary Reference Intake (DRI) and normalised to energy content
- Adjusted to protein-rich foods (Green et al., 2023) → NRprot7 & LIM2
 - Protein
 - Dietary fibers
 - Unsaturated fatty acids
 - Calcium
 - Iron
 - Zinc
 - Vitamin B12
 - Sodium
 - Saturated fatty acids

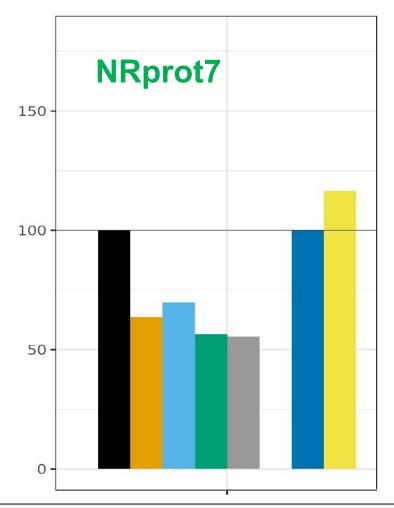
$$NRprot7 = \left(\sum_{i=1}^{i=7} \frac{nutrient_i}{DRI_i}\right) \times \frac{2000 \ kcal}{E_j}$$

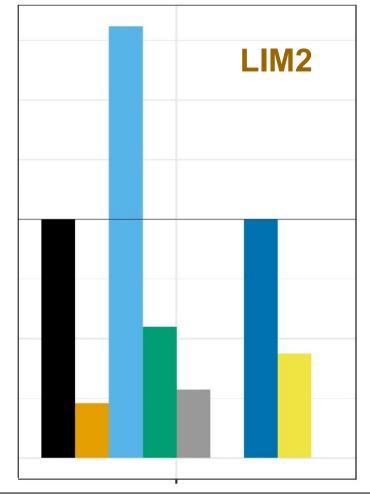
$$LIM2 = \left(\sum_{i=1}^{i=2} \frac{nutrient_i}{DRI_i}\right) \times \frac{2000 \ kcal}{E_j}$$

$$NRF7.2 = (NRprot7 - LIM2) * 100$$

where:
$$i = nutrient, j = food item$$

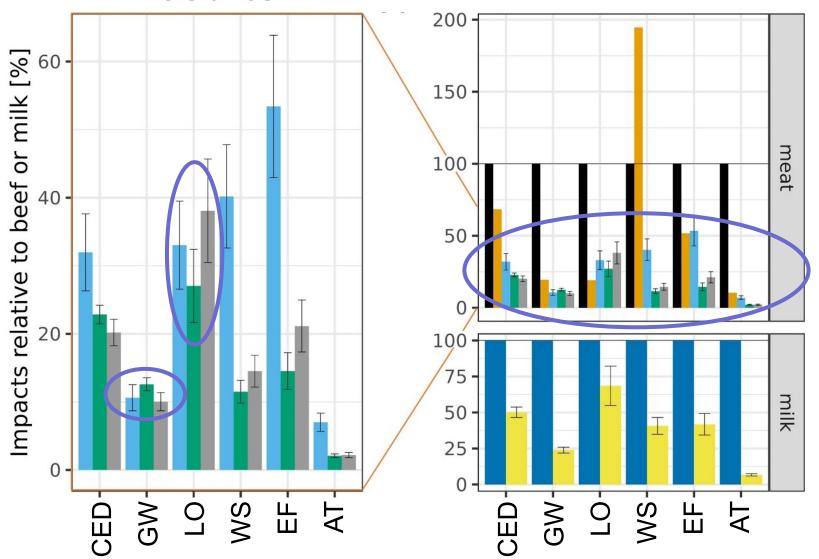
DRI = Dietary Reference Intake; E = Energy



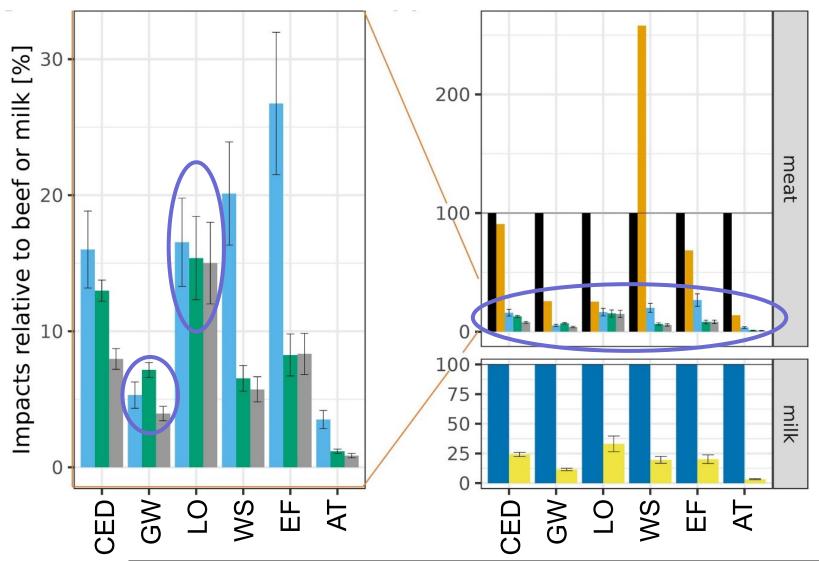

Nutrient Density - Comparison of the NRprot7 and LIM2 sub-scores relative to beef and cow milk [%]

Beef (CH), minced Chicken (CH) meat SBMA

Tofu, plain Soybeans, cooked


Cow milk (CH), UHT Soydrink, UHT

Results V



Comparison between alternative and reference products per [g qc-protein]. Range bars represent the sensitivity analysis.

- Beef (CH), minced Chicken (CH) meat **SBMA**
- Tofu, plain Soybeans, cooked Cow milk (CH), UHT Soydrink, UHT

O Results

Comparison between alternative and reference products per [NRprot7]. Range bars represent the sensitivity analysis.

- Beef (CH), minced Chicken (CH) meat **SBMA**
- Tofu, plain Soybeans, cooked Cow milk (CH), UHT Soydrink, UHT

Discussion

- Soy-based meat and milk alternatives can contribute to lowering the environmental footprint of nutrition
- High levels of disqualifying nutrients in processed soy-based alternatives require careful food (re)formulation, including micronutrient supplementation
- When nutritional functional units are used, nutritional quality adjustments are relevant

Take Home Message

- The n-LCA showed that the environmental impact of all soy-based alternatives was 4–20 times lower than that of beef or cow milk.
- The higher protein quality and quantity of the processed SBMA compared to unprocessed soy-based alternatives were not sufficient to offset its higher environmental impact in this case study.
- Fostering standardization in nutritional LCA methodologies is crucial to ensure consistent, reliable, and comparable results across studies.
- Publication of the study available at:
 Herrmann et al. (2024) doi.org/10.3389/fsufs.2024.1413802
 eric.mehner@agroscope.admin.ch

Eric Mehner – eric.mehner@agroscope.admin.ch

