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Abstract 
Monitoring mountain rangelands is crucial for ensuring the sustainability of pastoral land use. In this study, we employ 
satellite image analysis to investigate how the seasonal growth patterns in the mountain rangeland ecosystem respond to 
inter-annual variations in weather conditions along the elevation profile. Our analysis covers nine key habitats in mountain 
rangelands surrounding the Swiss National Park, southeastern Swiss Alps from 2000 to 2800 m of elevation. Using the 
Normalized Difference Vegetation Index (NDVI) to track the growth pattern from 2016 to 2023 reveals that inter-annual 
weather fluctuations affect all habitats, leading to variations of 15–20% in the growth curve, with more significant impacts 
observed in the first half of the growing season. When comparing growth among habitats, wet and mesic pastures tend to 
exhibit greater growth compared to dry habitats within the elevation range of 2000–2400 m above sea level, while all habi-
tats show a similar growth above 2400 m. Additionally, the presented statistical analysis at the landscape scale supports 
the existence of growth dynamics previously observed at the plot scale: that snow persistence influences the beginning of 
growth in pastures, but this effect is partially compensated by rapid growth following late snow melt. Conversely, in the 
second half of the season, growth is controlled by the onset of snow in autumn. These results demonstrate the potential of 
the joint application of earth observation and spatial statistics, not only to monitor the regional response to climate trends 
and variability, but also to differentiate inter-annual and inter-habitat responses of growth dynamics.
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Introduction

Mountain rangeland vegetation covers ice- and rock-free 
zones on mountain ranges near the treeline. Communities 
of well-adapted cold-climate species have evolved to cope 
with harsh climatic conditions and shallow soils with lim-
ited nutrient availability (Hoersch et al. 2002; Becker et al. 
2007). In the European Alps, these habitats have been grazed 
for millennia by domestic and wild ruminants (Schwörer 
et al. 2015). While change in land management by pastoral-
ism remains the biggest change factor in alpine flora (Mac-
Donald et al. 2000; Dirnböck et al. 2003; Cocca et al. 2012; 
Noroozi and Körner 2018), it is also significantly affected 
by variations in growth conditions (Engler et al. 2011; Du 
et al. 2022; Grabherr et al. 2010). In the alpine domain, the 
seasonal dynamics and productivity of grassland is affected 
by changes in temperature, water availability, and snow per-
sistence (Ernakovich et al. 2014; Deroche et al. 2020), with 
variable altitudinal distribution of the species (Frei et al. 

2014; Wehn et al. 2014; Inouye 2020; Crepaz et al. 2021). 
A comprehensive yet detailed monitoring of mountain grass-
land is therefore of primary importance to support pastoral 
management and investigate the phenology of these unique 
environments.

An attractive approach to monitor land surface phenology 
of alpine vegetation is satellite remote sensing, which regu-
larly captures images of remote and extensive alpine areas, 
difficult to monitor with proximal sensing or ground sur-
vey. Because of the tendency of living vegetation to reflect 
near-infrared more than red light (see e.g. Wachendorf et al. 
2018), the reflectance spectrum of vegetation can inform 
about its photosynthetic activity. In particular, the Normal-
ized Difference Vegetation Index (NDVI), obtained from 
multi-band images, and other spectral indices have been 
used to track grassland composition and state, the seasonal 
growth (Taylor et al. 1985; Raab et al. 2020) and productiv-
ity (Hanna et al. 1999; Bella et al. 2004; Zhou et al. 2014; 
Amies et al. 2021). Other studies investigate the correlation 
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between NDVI and biomass (Boschetti et al. 2007; Hogrefe 
et  al. 2017; Guerini  Filho et  al. 2020), or its nutritive 
value (Pullanagari et al. 2018; Serrano et al. 2018). Pasture 
spatiotemporal variations (Jin et al. 2014; Tang et al. 2023), 
its coverage, conversion, and degradation in time (Colpaert 
et al. 2003; Alves Aguiar et al. 2010; Wang et al. 2023) have 
also been monitored by means of spectral indices.

In mountain regions, satellite remote sensing can be 
applied to species-distribution mapping to detect pasture 
conversion (Lal et  al. 1991; Boschetti et  al. 2007) and 
monitor its management (Stumpf et al. 2020; Weber et al. 
2023). Predictive classification has been recently developed 
to detect thematic classes linked to species richness, pro-
ductivity, or topographic setting (Weber et al. 2018; Filippa 
et al. 2022; Huber et al. 2023). Modeling experiments ana-
lyze the pasture productivity and its degradation in relation 
with drought conditions (Feng et al. 2017) and to detect 
invasive species (Lass et al. 2005; Braunisch et al. 2016). 
The mentioned studies efficiently track the regional vari-
ability and change in the spatial distribution of the grassland 
environment.

With the present contribution, we advance this research 
frontier by focusing on the different local habitats compos-
ing mountain rangelands in fine-scale patterns. The so far 
untested driving research questions in this study are:

• Can differences in the growth season of fine-scale moun-
tain pasture habitats be detected by satellite remote sens-
ing?

• Which habitat types at which elevation are more sensitive 
to changes of inter-annual weather variability?

• How is the variability of growth different in the first part 
of the season from the second part?

• How are snow persistence and growth related in different 
habitats at a regional scale?

To answer these questions, we analyze the images provided 
by the satellite constellation Sentinel-2 over the rangeland 
surrounding the Swiss National Park, Grisons canton Swit-
zerland, where nine habitats including dry and wet pastures, 
resting areas, and shrubs are mapped by field observations. 
Based on the spectral index NDVI, the annual variation 
of the growing season is analysed for each habitat. NDVI 
was chosen for its simplicity of computation and longtime 
establishment with respect to more recent vegetation indi-
ces, showing an overall similar performance with both weak 
and strong points. For example, well-know disadvantages 
of NDVI are lower saturation with dense vegetation (Asrar 
et al. 1984) and higher sensitivity to atmospheric and soil 
contamination (Huete et al. 1994). On the other hand, recent 
studies show that NDVI remains effective on dry vegetation 
detection (Zhu et al. 2024) and less sensible to topographic 

influences (Matsushita et al. 2007; Ma et al. 2024) with 
respect to other VIs.

We derive statistical indicators from the obtained 
growth curves with the goal of analysing the relative 
changes in the vegetation growth along the elevation pro-
file. Moreover, we analyse the impact of snow cover on 
different seasonal growth parameters over a period of eight 
years (2016–2023). This way, we characterize and com-
pare the growth in these habitats in terms of their depend-
ence on elevation and weather variability.

Study region and data

The Region Of Interest (ROI) of the study consists of the 
rangelands in the surroundings of the Swiss National Park 
in the Grisons canton, in an area of approximately 1000 
km

2 in south-east Switzerland (Fig. 1). The region has 
been ground mapped for the mountain pasture habitats 
using the methodology by Dietl et al. (1981). The mapping 
involves the delineation of polygons of uniform vegeta-
tion larger than 400 m2 . To each polygon, the dominant 
vegetation association is attributed. In case of small-scale 
variability, two or three subdominant types are noted. The 
mountain rangelands are sparsely distributed over the ROI, 
with a total analyzed surface available after preprocess-
ing (“Data preprocessing”) of 15.88 km2 . We use here-on 
the term polygons to indicate separated areas occupied by 
a habitat, shown in Fig. 1 as patches of different colors 
according to the habitat type.

The vegetation types were aggregated to nine classes 
(Table 1) representing the most common rangeland habi-
tats in the region, originating from the combination of pas-
ture management and topographic setting. Those include 
nutrient-rich pastures (green shades in Fig. 1), covering 
a consistent portion of land along the fluvial axis of the 
valleys or close to buildings and roads, together with wet-
lands (blue color), characterized by constantly saturated 
soils. Distributed in higher elevation mainly above 2000 m 
(Table 1) are dry, acidic, and mesic nutrient-poor pastures 
(yellow-to-red colors in Fig. 1). They constitute the main 
part of the land cover, with a drier, thinner, and less fertile 
soil layer. In addition, high-elevation zones are populated 
by dwarf and tall shrubs (brown shades in Fig. 1), and by 
sporadic species-poor resting areas (purple color).

Within the habitats, temporal variations in the species 
abundance and functional properties can be due to climate 
(Schöb et al. 2008; Liu et al. 2018) or land-use changes 
(Spiegelberger et al. 2006; Mayer et al. 2009). Conversely, 
the habitat composition can be considered persistent in the 
8-year study period, which is also strongly linked to con-
stant topographical features. Moreover, previous research 
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suggests a substantial stability of these habitats to short-
term hydro-climate changes (Tang et al. 2015), with no 
dramatic shifts in the plant composition (Peng et al. 2017).

Ancillary variables

To analyse the elevation distribution of the habitats the 
digital elevation model (DEM) swissAlti3D at 2-m reso-
lution by swisstopo (https:// www. swiss topo. admin. ch/ en/ 
geoda ta/ height/ alti3d. html) was retrieved for the study 
region. Together with the Sentinel-2 images, the DEM was 
interpolated on a target grid covering the ROI with 10-m 
resolution (see Appendix A and Appendix B).

Moreover, to put in relation the annual growth curves 
with snow persistence, the daily snow depth time series 
was retrieved from the Scuol station (SCU) from the 
MeteoSwiss network (https:// www. meteo swiss. admin. 
ch/ servi ces- and- publi catio ns/ appli catio ns/ measu rement- 
values- and- measu ring- netwo rks. html# stati on= SCU), lying 
in the center of the ROI at 1304 m a.s.l. (red triangle in 
Fig. 1b). In this study, snow depth is not analyzed in func-
tion of elevation, but only considered at the regional scale 
in relation to the average start of greening (SOG) of the 
different habitats, to confirm the reliability of the modeled 
growth curves (Fig. 4). The Scuol station, with its central 
position in the ROI, was chosen as source of information 
independent from the satellite imagery for the presence 
of snow. Conversely, the start of greening (SOG), which 

Fig. 1  Map of the study area: a location in Switzerland, b map of the mountainous region of the Swiss National Park and the mapped pasture 
habitats, c inset showing one example of the local habitat distribution

Table 1  Descriptive table of the habitats listing their total analyzed 
surface and the frequency distribution of the elevation values repre-
sented by its median ( Q

0.5
 ), the 0.25 ( Q

0.25
 ), and 0.75 ( Q

0.75
 ) quantiles

The surface values refer to south-ward pixels filtered by a prescribed 
90◦–270◦ aspect range (see “Annual growth curve analysis”)

Analysed surface Elevation [m]

Habitat name [Km2] % of total Q0.25 Q0.5 Q0.75

Mesic nutrient-rich pastures 3.31 20.84 1769 2110 2283
Wet nutrient-rich pastures 0.19 1.20 1997 2150 2411
Resting areas 0.18 1.13 2053 2316 2528
Dry nutrient-poor pastures 2.57 16.18 2299 2371 2453
Acidic nutrient-poor pastures 5.69 35.83 2288 2419 2548
Mesic nutrient-poor pastures 2.25 14.17 1836 2159 2311
Wetland 0.51 3.21 2055 2163 2263
Dwarf shrubs 0.67 4.22 2197 2281 2367
Tall shrubs 0.51 3.21 2083 2186 2255

https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
https://www.swisstopo.admin.ch/en/geodata/height/alti3d.html
https://www.meteoswiss.admin.ch/services-and-publications/applications/measurement-values-and-measuring-networks.html#station=SCU
https://www.meteoswiss.admin.ch/services-and-publications/applications/measurement-values-and-measuring-networks.html#station=SCU
https://www.meteoswiss.admin.ch/services-and-publications/applications/measurement-values-and-measuring-networks.html#station=SCU
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approximately coincides with snow disappearance, is spa-
tially analysed in the study. To display the annual snow 
depth time series along with the annual growth curve, the 
relative snow depth (RDS) is computed by normalizing the 
values in the range [0, 1].

Methods

A workflow was developed to analyze the growth pattern of 
the mountain grassland habitats (for the implementation see 
the Code Availability section), composed of three main steps: 
(1) acquisition of the satellite images (“Acquisition of the satel-
lite images”), (2) data preprocessing (“Data preprocessing”), 
and (3) NDVI analysis (“Annual growth curve analysis”).

Acquisition of the satellite images

The satellite images from the collection Level-2A of the Euro-
pean Space Agency Sentinel-2 mission (https:// senti nel. esa. int/ 
web/ senti nel/ coper nicus/ senti nel-2) were used in this study. 
This data product offers multiband atmospherically-corrected 
surface reflectance images covering the visible and infrared 
spectrum at 10-m resolution. The subweekly revisit time of 
the satellite usually provides a sufficiently dense cloud-free 
image time series to monitor the seasonal change in mountain 
pastures.

All available images of the study region were acquired for 
the time span of 2016–2023 to analyze the seasonal growth 
over eight years. We used the download routine of the open-
source platform EOdal (Graf et al. 2022). EOdal retrieves the 
images by querying the Microsoft Planetary Computer Data 
Catalog (https:// plane taryc omput er. micro soft. com/ catal og) 
with the protocol STAC (https:// stacs pec. org). For the large 
area covered (1115 km2 ), the EOdal code was adapted to run 
iteratively making separate queries to the data catalog and to 
download the images in data chunks stored locally. This also 
allows distributing the download process and pausing/resum-
ing in case of server errors. In addition, preliminary data-treat-
ment operations were applied in this phase. See the complete 
data acquisition workflow in Appendix A.

Data preprocessing

In order to extract the growth pattern of the pasture habitats 
from the NDVI time series, the acquired images were pre-
processed with a novel workflow to obtain a database for pixel 
analysis. In the database, every pixel is associated to different 
attributes, including its NDVI value, habitat type, spatial grid 
coordinates, shadow mask, elevation, aspect, and time stamp 
of acquisition. The aspect as well as the shadow mask were 
computed based on the used DEM (“Ancillary variables”). 

See Appendix B for more information on the preprocessing 
workflow.

Annual growth curve analysis

The annual growth curves of the habitats were extracted 
for all available years (2016–2023) and plotted. To better 
isolate the growth pattern from disturbances and scatter 
related to the complex topography, only pixels facing south-
ward (aspect angle between 90◦ and 270◦ ) and outside the 
mountain shadow (shadow mask = 0) were considered. The 
growth curves were then generated for four classes of eleva-
tion (2000–2200, 2200–2400, 2400–2600, and 2600–2800 m 
respectively) to study the dependency of growth on the ele-
vation change.

Using NDVI pixel value/date pairs extracted from the 
acquired annual Sentinel-2 images for every habitat, NDVI 
daily medians were computed to form annual curves repre-
senting the annual growth pattern. Then, a variability enve-
lope was computed using the daily 0.25 and 0.75 quantiles 
(example in Fig. 2). This excluded outlier pixel data not fil-
tered out by preprocessing, presenting mixed cover or local 
noise (e.g., light clouds, micro-topography shadows, isolated 
trees or rocks), with spectral signature non representative of 
the surveyed habitat. The curve values were interpolated at 
every day of the year (DOY) using the piece-wise interpo-
lation Pchip (Fritsch and Butland 1984) (https:// docs. scipy. 
org/ doc/ scipy/ refer ence/ gener ated/ scipy. inter polate. pchip_ 
inter polate. html). This technique was chosen for its stabil-
ity since it preserves a smooth interpolation, but also local 
monotony among data points.

From the obtained growth curves, the following statisti-
cal indicators were computed to describe the growth sea-
son. The start of greening (SOG) was defined empirically 
as the DOY when the median growth curve goes above the 
prescribed threshold of 0.05 for more than five days, indi-
cating the beginning of vegetation growth. Similarly, the 
end of season (EOS) occurs when the curve goes below the 
same threshold for five days. This fixed-threshold approach 
was confirmed valid by visual inspection of the curves and 
preferred to dynamic techniques for the detection of SOG 
or EOS (e.g. Fisher et al. 2006; Shang et al. 2017; Li et al. 
2023). The reason for this choice is the higher robustness to 
scarce data and the consistency in the computation of the 
indicators of growth. These indicators are based on the inte-
gral of NDVI over the growth season and they are presented 
in the following.

The Area Under the Curve, commonly used in NDVI 
analysis (e.g. Weber et al. 2018; Bayle et al. 2019; Filippa 
et al. 2019; Yan et al. 2022) and considered as a proxy for 
the cumulative pattern of growth in grassland, was computed 
first for the first portion of the growth season (AUC1). This 
is delimited by the SOG and the mid-season, defined as the 

https://sentinel.esa.int/web/sentinel/copernicus/sentinel-2
https://sentinel.esa.int/web/sentinel/copernicus/sentinel-2
https://planetarycomputer.microsoft.com/catalog
https://stacspec.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
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1-st of August. The choice of this temporal marker is moti-
vated by the data being generally half-away from the reach 
of the curve plateau to the start of the senescence (declin-
ing of the curve). It is also supported by common pastoral 
practice, which locates the animals in the highest and latest 
greening areas around this date. In addition, this choice of 
date as mid-season marker allows a robust and consistent 
comparison among habitats, being independent from the 
location of the growth-curve maximum or plateau, which 
is uncertain due to data noise and shape variability. The 
same indicator was computed for the second half of season 
(AUC2), from mid-season until the EOS, and for the whole 
season (AUC), from the SOG to the EOS. AUC1 and AUC2 
are computed for the 0.25 and 0.75 quantile curves as well.

For both AUC1 and AUC2, statistical difference among 
habitats is tested separately in every elevation group using 
Tukey’s honestly significant difference (HSD) test (Tukey 
1949). The result of this test is expressed using the Compact 
Letter Display (CLD) method (Piepho 2004). These statis-
tics may be affected by the uneven distribution of the data, 
scarcer at higher elevation. To investigate the robustness of 
the results to this influence factor, the same AUC analysis 
is repeated three times using equally sized samples of 50 
pixels, which is the data amount present in the scarcest data 

class. These additional results are present in the supplemen-
tal material 2/2.

Moreover, the initial slope of the growth curve was mod-
eled using the Gompertz function similarly to Schneider 
et al. (2006), but with a formulation adapted to the present 
study (see Appendix C). In particular, the used sigmoidal 
function (orange line in Fig. 2) defined in Eq. (1), includes 
the parameter c representing the ascending slope, interpreted 
as the growth velocity. We preferred here to use a paramet-
ric model for the growth curve only in the first part of the 
season, avoiding representing the senescence period with 
a second descending sigmoidal function. For many habi-
tats, the NDVI values do not present a gradual decrease in 
autumn, with the season ending abruptly due to a major 
snow event, as visible in the graphs of Fig. 3. In these cases, 
fitting a descending sigmoidal curve was not appropriate. 
Moreover, modeling only the ascending part of the growth 
curve required a simpler equation leading to a more robust 
calibration, especially in case of single-polygon data (see 
“Comparison of seasonal indicators”).

Comparison of seasonal indicators

The seasonal indicators derived from the growth curves 
were then compared among different habitats in four equal 

Fig. 2  Sketch of the annual curve obtained from a selected sample of 
NDVI data, as a function of the day of the year (DOY), with the fol-
lowing statistical indicators: elements in black are the derived curve 
indicators, namely: the start of greening (SOG) and end of season 

(EOS) days, the growth slope derived from the fitted Gompertz model 
(orange line), the areas under the curve for the first (AUC1) and sec-
ond (AUC2) halves of season. The blue line indicates the relative 
snow depth (RSD)
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intervals of elevation in the range 2000–2800 m. Moreover, 
the correlation among the indicators and with elevation was 
investigated. The dependency of the habitat growth upon 
elevation changes was investigated further by computing 
the Pearson correlation coefficient r between all polygons 
median AUC and their median elevation (Table 2) in both 
the first and second season halves. Polygons presenting less 
than five points in the annual AUC curve were discarded 
since, after visual inspection, they were found not always 
representing a realistic growth pattern. Conversely, the 
descriptors based on the Gompertz function (growth slope 
and growth maximum) were computed on the annual pixels 
sets per habitat, leading to more stable curve shapes. The 
Student test (Student 1908) was computed to check the sig-
nificance of the estimated correlation coefficients. Following 
the common practice for this test, correlation coefficients 
with p-values lower than 0.05 were considered significant.

Results

Annual growth curves

Examples of annual growth curves extracted for every habi-
tat for 2019 and 2020 are shown in Fig. 3. The two years 
demonstrate clear differences representative of the variations 
which can be similarly found among other years (supple-
mental material 1/2). For both 2019 and 2020, the major-
ity of the habitats present annual curves with a relatively 
low NDVI variability of approximately ± 0.05 around the 
median (dashed line), as indicated by the 0.25–0.75 quantile 
envelope. Conversely, resting areas and tall shrubs (Fig. 3c, 
i) show a larger NDVI variability around ± 0.1. In case of 
resting areas, covering limited surface (Table 1), this uncer-
tainty is possibly due to data noise or snow-covered pixels 
not detected in the preprocessing. Mesic, wet pastures, and 
wetlands (Fig. 3a, b, f, g) reach NDVI 0.8 in full season, 
while dry pastures (d), acidic ones (e), and resting areas (d) 
present a lower NDVI plateau. The growth curves of dwarf 
and tall shrubs (Fig. 3h, i) present a longer plateau with val-
ues mainly between 0.6 and 0.8, and a sharper end of season 
instead of a gradual senescence.

Fig. 3  Example of NDVI (dashed lines and envelopes) and RSD 
(continuous lines) annual curves in two compared years: 2019 (blue) 
and 2020 (orange). For NDVI, the variability envelope is delimited by 

the the 0.25 and 0.75 quantiles of the daily pixel-value distribution, 
while the dashed line represents the median
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The habitat response to growth disturbances is a key fac-
tor for ecosystem productivity (White et al. 2020; Mahaut 
et al. 2023). Disturbances in mountain rangelands are mainly 
linked to snow presence variations, being the expression of 
meteorological variability. This is most strikingly expressed 
at a seasonal scale with snow persistence at the end of win-
ter. Inter-annual variations in the habitat growth are well 
represented by the differences between 2019 (Fig. 3 blue) 
and 2020 (orange) curves. Those primarily regard the sea-
son length delimited by the SOG and the EOS (Fig. 2). In 
particular, the SOG occurs when winter snow disappears, 
as shown by the RSD time series (Fig. 3 continuous lines). 

Similarly the EOS occurs with the beginning snowfall 
towards the end of the year. For all habitats, the 2019 growth 
season is shorter since delimited by a more persistent snow 
in spring (late SOG) and earlier snow arrival in fall (early 
EOS). This variation does not visibly affect the maximum 
growth, but rather the area under the curve (AUC), whose 
variations are analysed in the following section.

Seasonal growth and elevation

The seasonal growth is analysed by means of the NDVI 
AUC (see “Annual growth curve analysis”) for the first 

Fig. 4  Plot of the NDVI AUC1 (see “Annual growth curve analysis”) 
for different habitat units (different colors), years (same color bars), 
and elevation classes (separated by vertical grid lines): a annual 
median (dots) and.25-.75 quantile envelope (error bar) for different 
years (2016–2023). Letter combinations in the same color of the habi-

tats show statistical similarity according to Tukey’s HSD test. b Mean 
interquartile range (equivalent to the mean error bar length in a). c 
Coefficient of variation of the annual medians (dots in a) for every 
habitat unit
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(AUC1) and second (AUC2) halves of the season. These 
are computed (Figs. 4, 5 panel a) for every habitat (colors), 
four classes of elevation (separated by vertical grid lines), 
and the eight available years (2016–2023), represented by 
adjacent bars of the same color. The statistical variability 
is represented by the median (dots) and 0.25–0.75 quan-
tiles (error bars) of annual curves. A descending trend in 
the AUC1 (Fig. 4a) is observed when elevation increases, 
dropping from the 23–110 range at 2000–2200 m a.s.l., 
to 5–45 at 2600–2800 m. A similar trend is observed for 
AUC2 (Fig. 5a). In both season halves and for lower eleva-
tion (2000–2200 m), mesic and wet habitats (green shades, 

orange, red, and blue colors) present the largest AUC among 
pastures, mainly in the range 40–80. Conversely, lower AUC 
values mainly in between 20 and 50 belong to dry pastures 
(yellow), resting areas (purple), and tall shrubs (brown) pre-
sent the lowest values. These differences even out along the 
elevation profile, until above 2600 m where all units AUC1 
mainly vary in 0–40 for the first part of the season and in 
30–60 for AUC2. The change in the habitat differences are 
confirmed by the CLD labels (Figs. 4, 5 panel a), where 
statistically similar habitats share the same letters.

Tall shrubs (Fig. 4, 5 brown color) keep distinctly higher 
and variable AUC values with elevation, mainly between 50 

Fig. 5  Plot of the NDVI AUC2 (see “Annual growth curve analysis”) 
for different habitat units (different colors), years (same color bars), 
and elevation classes (separated by vertical grid lines): a Annual 
median (dots) and.25-.75 quantile envelope (error bar) for different 
years (2016–2023). Letter combinations in the same color of the habi-

tats show statistical similarity according to Tukey’s HSD test. b Mean 
interquartile range (equivalent to the mean error bar length in a). c 
Coefficient of variation of the annual medians (dots in a) for every 
habitat unit
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and 100, and disappear above 2400 m a.s.l., above the tree-
line. Conversely, dwarf shrubs (beige color) present AUC 
values comparable to wet pastures and persist up to 2600 m 
of elevation.

The vertical error bars in the panel (a) of Figs. 4 and 5, 
defined by the AUC of the 0.25–0.75 curves, are based on 
the variability in daily pixel ensembles. The length of these 
bars (interquartile range) can be related to the spatial vari-
ability of the habitat growth during the year, the spatial vari-
ability of snow persistence and land-cover or atmospheric 
contamination. The means of this quantity (among different 
years) are displayed again as bars in Figs. 4 and 5 panel b). 
For the first season half, tall and dwarf shrubs present a 
sensibly large spatial variability in the growth, with a mean 
interquartile above 60 and 40, respectively. Conversely, the 
other habitats vary mainly between 20 and 30. These val-
ues tend to diminish sensibly with elevation above 2400 m, 
partly because pixel data are scarcer and consequently tend 
to exhibit lower statistical variability. Nevertheless, a similar 
tendency is confirmed on the same analysis with equal-size 
random samples of 50 pixels (supplemental material 2/2). 
For the second half of the season (Fig. 5b), resting areas 
(purple color) stand out with a mean interquartile range 
around 25 while the other habitats range between 10 and 

17. Similarly to the first season half, these differences reduce 
above 2400 m of elevation.

The panels c of Figs. 4 and 5 display the coefficient of 
variation among the AUC median curves of the different 
years considered (dots in panel a of the same figures). This 
indicator represents the relative inter-annual variation of 
the AUC for the different habitats and elevation classes. 
For the first half season (Fig. 4c) and up to 2600 m, rest-
ing areas and tall shrubs present a coefficient of variation 
higher than 0.2 while all other habitat units mainly lie 
between 0.1 and 0.2. This pattern changes above 2600 m, 
where wet nutrient-rich pastures (light green) and mesic 
nutrient-poor ones (red) present a sensibly higher coef-
ficient of variation above 0.3, while all other units range 
around 0.2. In the second half of the season (Fig. 5c), the 
inter-annual coefficient of variation mainly varies between 
0.1 and 0.15 for all units with no clear pattern in function 
of elevation.

The Pearson correlation coefficient r between the AUC 
for all polygons and their median elevation (Table 2) in 
both the first and second season halves is in general nega-
tive, meaning that all habitats grow less with elevation. 
Moreover, dry and acidic nutrient-poor pastures present 
significantly high correlation values for almost all years, 
on average higher than 0.8 in the first half of the season 

Table 2  Pearson correlation coefficient (r) of the median NDVI AUC versus median elevation for different habitat units, computed from every 
polygon and both the first and second halves of season

The mean (mean) and standard deviation (std) columns refer to the annual correlation values on the left. Strong correlation values, higher than 
0.6 or lower than −0.6 , are marked in bold

Habitat 2016 2017 2018 2019 2020 2021 2022 2023 mean std

First season half
Mesic nutrient-rich pastures − 0.53 − 0.51 − 0.48 − 0.50 − 0.55 − 0.55 − 0.45 − 0.53 − 0.51 0.033
Wet nutrient-rich pastures − 0.47 − 0.38 − 0.43 − 0.42 − 0.51 − 0.44 − 0.29 − 0.37 − 0.41 0.063
Resting areas − 0.74 − 0.61 − 0.59 − 0.58 − 0.66 − 0.65 − 0.48 − 0.60 − 0.61 0.070
Dry nutrient-poor pastures − 0.82 − 0.80 − 0.79 − 0.87 − 0.83 − 0.81 − 0.77 − 0.82 − 0.81 0.027
Acidic nutrient-poor pastures − 0.80 − 0.78 − 0.80 − 0.83 − 0.81 − 0.83 − 0.76 − 0.80 − 0.80 0.022
Mesic nutrient-poor pastures − 0.54 − 0.41 − 0.48 − 0.42 − 0.52 − 0.51 − 0.38 − 0.46 − 0.46 0.052
Wetland − 0.56 − 0.42 − 0.40 − 0.49 − 0.45 − 0.49 − 0.34 − 0.45 − 0.45 0.062
Dwarf shrubs − 0.27 − 0.66 − 0.67 − 0.70 − 0.73 − 0.66 − 0.68 − 0.63 − 0.62 0.136
Tall shrubs − 0.26 − 0.02 − 0.17 − 0.14 − 0.19 − 0.30 0.02 0.12 − 0.11 0.135
Second season half
Mesic nutrient-rich pastures − 0.36 − 0.57 − 0.20 − 0.39 − 0.28 − 0.38 − 0.38 − 0.53 − 0.38 0.113
Wet nutrient-rich pastures − 0.30 − 0.48 0.04 − 0.32 − 0.18 − 0.26 − 0.10 − 0.36 − 0.24 0.153
Resting areas − 0.47 − 0.67 − 0.34 − 0.52 − 0.47 − 0.47 − 0.36 − 0.67 − 0.49 0.115
Dry nutrient-poor pastures − 0.57 − 0.75 − 0.64 − 0.56 − 0.73 − 0.57 − 0.71 − 0.58 − 0.63 0.073
Acidic nutrient-poor pastures − 0.69 − 0.75 − 0.70 − 0.70 − 0.75 − 0.76 − 0.74 − 0.76 − 0.73 0.028
Mesic nutrient-poor pastures − 0.33 − 0.55 − 0.15 − 0.57 − 0.16 − 0.35 − 0.26 − 0.64 − 0.37 0.177
Wetland − 0.34 − 0.36 − 0.12 − 0.31 − 0.15 − 0.35 − 0.29 − 0.40 − 0.29 0.093
Dwarf shrubs − 0.44 − 0.39 − 0.07 − 0.20 − 0.44 − 0.27 − 0.54 − 0.37 − 0.33 0.141
Tall shrubs 0.03 − 0.33 − 0.13 − 0.10 0.07 0.05 − 0.02 − 0.44 − 0.10 0.173



43Alpine Botany (2025) 135:33–50 

and higher than 0.7 in the second half, and with a low 
standard deviation among the years (Table 2 mean and std 
columns). Therefore, the growth of these habitats appears 
to be strongly related to the elevation profile. Conversely, 
resting areas and dwarf shrubs growth present a weaker 
(0.5–0.65) correlation, suggesting a weak dependency on 
elevation changes. For these two habitats the correlation 
estimation is also uncertain and varying through the years 
also because it is based on 40–70 data points, while for 
the previously mentioned habitats it is based on 120–220 
data points.

Growth dynamics

The statistical descriptors of the growth curves, described 
in “Annual growth curve analysis”, are put in relation by 
computing the Pearson correlation coefficient (Table 3). 
Among the tested combinations of descriptors, rg,s (SOG 
vs growth slope) is significantly high and positive for all 
pasture units and resting areas, meaning that a later SOG 
(higher value) is associated to a higher growth slope. Both 
quantities are anticorrelated to ACU1, decreasing when 

the SOG and slope increase, as shown by the negative 
coefficients rg,a1 and rs,a1 . Moreover, all pasture habitats 
show a significant positive correlation between AUC2 
and EOS ( ra2,e).

The growth curves of the wetland habitat present a 
weaker but similar correlation pattern as the other pas-
tures. Conversely, dwarf and tall shrubs only show the 
AUC2 correlated to the EOS ( ra2,e ), with a stronger value 
of 0.9 for dwarf shrubs and a weaker one of 0.73 for tall 
shrubs.

Discussion

Methodological considerations

In the present paper, a satellite-based time series analysis 
on mountain grassland ecosystem was developed to inves-
tigate the variability of annual growth in different pasture 
and shrub habitats at different elevation. This land surface 
phenology investigation was based on the satellite images 
from the Sentinel-2 mission, which constitute the current 

Table 3  Correlation coefficients rxy , where x and y are growth curve descriptors (“Annual growth curve analysis”), namely: SOG (g), growth 
slope (s), AUC1 (a1), AUC2 (a2), EOS (e), curve maximum (m)

Bold values indicate significant correlation coefficients (p-value < 0.05)

Habitat rg,s rg,a1 rg,m rg,a2 rg,e rs,a1 rs,m rs,a2

Mesic nutrient-rich p 0.85 − 0.93 0.09 − 0.14 − 0.22 − 0.71 − 0.16 0.29
Wet nutrient-rich p 0.93 − 0.82 − 0.01 − 0.33 − 0.40 − 0.76 − 0.07 − 0.18
Resting areas 0.82 − 0.92 − 0.31 − 0.50 − 0.61 − 0.69 − 0.39 − 0.17
Dry nutrient-poor p 0.90 − 0.89 − 0.29 − 0.20 − 0.40 − 0.75 − 0.49 − 0.02
Acidic nutrient-poor p 0.83 − 0.92 0.07 − 0.16 − 0.41 − 0.75 − 0.33 0.15
Mesic nutrient-poor p 0.85 − 0.93 0.20 − 0.23 − 0.33 − 0.79 − 0.13 0.21
Wetland 0.74 − 0.85 0.19 0.03 − 0.13 − 0.41 − 0.18 0.61
Dwarf shrubs 0.10 − 0.16 − 0.37 0.28 0.51 − 0.70 − 0.48 − 0.03
Tall shrubs − 0.02 − 0.24 − 0.30 0.41 0.06 0.07 − 0.65 0.06

Habitat rs,e ra1,m ra1,a2 ra1,e rm,a2 rm,e ra2,e

Mesic nutrient-
rich p

0.24 0.08 0.34 0.40 − 0.10 − 0.30 0.92

Wet nutrient-rich p − 0.24 0.09 0.57 0.69 0.14 − 0.20 0.90
Resting areas − 0.27 0.46 0.35 0.50 0.23 0.17 0.87
Dry nutrient-poor p − 0.08 0.52 0.30 0.49 − 0.04 − 0.18 0.90
Acidic nutrient-

poor p
− 0.05 0.07 0.30 0.54 − 0.20 − 0.43 0.87

Mesic nutrient-
poor p

0.14 0.02 0.37 0.45 − 0.02 − 0.24 0.93

Wetland 0.51 − 0.07 0.32 0.45 − 0.31 − 0.54 0.91
Dwarf shrubs − 0.01 0.09 0.33 0.32 − 0.06 − 0.09 0.90
Tall shrubs 0.53 0.23 0.07 0.11 − 0.26 − 0.54 0.73
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freely available state-of-the-art product with an optimal 
balance among spatial resolution, sensor quality, temporal 
coverage, and revisit time. Data acquisition based on EOdal 
allowed systematic access to the entire image time-series 
for a large ROI.

Moreover, the use of a data dictionary for the NDVI pixel 
preprocessing and analysis allowed dealing with multiple 
pixel attributes in a much more agile way than consider-
ing whole image cubes. In summary, the main data-filtering 
steps which allowed minimizing data contamination are the 
exclusion of: images presenting more than 30% cloud cov-
erage, all pixels classified as cloudy or non vegetated using 
the Sentinel-2 Scene Classification Layer, the pixels north-
facing, and pixels in shadow (see Appendix A, Appendix 
B, and “Annual growth curve analysis” for more details). 
This allowed approaching a stable reflectance signal from 
the pixel set belonging to a single habitat, showing a statisti-
cal variability imputable to different growth conditions and 
species variability along the elevation profile.

For the considered region, Sentinel-2 delivers complete 
annual time series since 2016. This time span offers a rather 
variable snow persistence for the study region, depending 
on winter precipitation and temperatures. The snowpack 
melt date, measured at the Scuol station (see “Ancillary 
variables”), varies between the beginning of April (2017) 
and the end of May (2021). While these data represent well 
the variability of land surface phenology, multiple decades 
of images are necessary to investigate the effect of climate 
trends. Future research in this direction could employ images 
from the Landsat program (NASA) to extend the investiga-
tion to a larger time coverage. The lower spatio-temporal 
resolution of these images with respect to Sentinel-2 can 
be improved by means of data fusion techniques (see e.g. 
Oriani et al. 2021; Hu et al. 2024), allowing the estimation 
of fine-resolution heterogeneity by stochastic generation. As 
additional possible improvement, periodical updates of the 
habitat survey map can provide a more precise mapping of 
the vegetation spatial distribution, reducing data noise in 
the growth curves.

Finally, NDVI should be considered informative mainly 
of the growth pattern and should not be used alone to esti-
mate absolute growth, which is linked to different physiolog-
ical traits of species (Kattenborn et al. 2019). In particular, 
NDVI saturates at high values, which affects the represen-
tation of maximum growth in the annual curves especially 
in dense vegetation (Li et al. 2013). Empirical correction 
methods have been developed (e.g. Gu et al. 2013) without 
being general and showing variable performance in wet and 
dry habitats (Lu et al. 2015; Tang et al. 2017). The growth 
curve integral (AUC) is affected by saturation to a minor 
extent (Yan et al. 2022) and remains valuable in comparative 
and spatial analysis as done in the present study.

Two types of pasture growth dynamics

With the present analysis, we identified two main types of 
growth patterns, belonging to dry and wet pastures respec-
tively. This difference, as explained in the following, is 
linked to the vegetation response to snow persistence and 
elevation changes.

The AUC statistics (Figs. 4, 5) show that mesic and wet 
pasture habitats present a larger cumulative growth and less 
variable in space compared to dry pastures and resting areas 
during the whole growth season at elevations from 2000 to 
2400 m a.s.l. At higher elevation, we observed a generalized 
reduction of these differences. As suggested by plot studies 
along elevation transects (Dongdong et al. 2020; Mainetti 
et al. 2023), this homogenization of pasture growth among 
habitats can be explained by compositional variations of spe-
cies due to water scarcity and lower temperature conditions, 
usually found at mountain tops. In these conditions, more 
productive and wet habitats may approach a species com-
position more similar to dry ones, with a related reduction 
of productivity.

Dependence of growth on elevation

The polygon-wise analysis of the AUC in relation to ele-
vation (Table 2) reveals a significant correlation between 
growth and elevation in dry and less productive pasture habi-
tats. These habitats are highly dependent on hydroclimatic 
(thermal lapse and soil humidity rates) (Pape and Löffler 
2017; Mainetti et al. 2023) and soil chemistry variations 
(Güsewell et al. 2012) along the elevation profile. Growth 
in the first half of the season appears to be consistently more 
dependent on elevation with respect to growth in the second 
half. Conversely, wetter habitats, more frequently present 
along valley axes, are influenced more strongly by the valley 
orientation and morphology, determining orographic pre-
cipitation regimes, wind exposure, and affecting soil type 
and thickness (Swanson et al. 1988).

Impact of inter‑annual weather variability 
on growth

Following past research (White et al. 2020; Mahaut et al. 
2023), the relation between ecosystem stability and produc-
tivity can be investigated with indicators of i) variability and 
ii) response rate to disturbance events. Indicators of variabil-
ity (i), representing the sensitivity of the habitats to seasonal 
weather variations, are present in this study examining both 
growth variability in space (Figs. 4, 5 panel b) and time 
(Figs. 4, 5 panel c). Moreover, the average response rate (ii) 
to seasonal snow persistence, is examined with the growth 
curve of the habitats (Fig. 3) and put in relation to productiv-
ity (correlation coefficients in Table 3).



45Alpine Botany (2025) 135:33–50 

Inter-annual snow persistence variations turn out to be 
important for growth in pasture habitats, with growth curve 
AUC variations of 15–20 %, as shown by the inter-annual 
coefficient of variation of the AUC, more pronounced in 
the first part of the season (Figs. 4, 5 panel c). There is no 
strong difference of this variation depending on the vegeta-
tion type, with only resting areas tending to be moderately 
more vulnerable than the other habitats.

The statistical descriptors of the growth curves (Table 3) 
allow analyzing the growth dynamics of the vegetation in 
the mountain rangeland ecosystem. Pastures habitats with 
delayed start of the growth season, controlled by snow per-
sistence, show an increase of the growth slope ( rgs ). This 
suggests a compensation in the growth process by increased 
growth speed after late snow melt. These dynamics can be 
explained by mechanisms of damping snow persistence 
variations. While similar results have been previously 
observed in plot-scale studies in alpine meadow and tundra 
ecosystems (Billings and Bliss 1959; Choler 2005; Jonas 
et al. 2008) or belowground processes (Choler 2018) and 
undersnow growth (Tieszen et al. 1978; Fetcher and Shaver 
1990; Walker et al. 1994; Parker et al. 2022), we can confirm 
these findings on a landscape scale. Moreover, the presented 
method allows to estimate the relationships across multiple 
habitats and elevations with comparably low effort. Conse-
quently, the interactions of growth dynamics in these habi-
tats can be monitored throughout space and time, allowing 
to trace if, where and how climate variability—and in the 
long run climate change—affect mountain habitats the most.

Nevertheless, both the SOG and the growth slope are neg-
atively correlated with the AUC in the first part of the season 
( rg,a1 and rs,a1 ), suggesting that the mentioned compensation 
mechanism, faster growth after late-melting snow, does not 
fully recover the lack of assimilation due to a shorter season. 
Therefore, in agreement to previous investigations (Choler 
2015; Xie et al. 2017), snow persistence still appear as one 
main controlling factor on the first half of the growth season 
amplitude and productivity. Similarly, autumn snow occur-
rence ends the season and limits growth in pastures, as sug-
gested by the correlation between the AUC2 and EOS ra2,e , 
with the EOS being linked to the first snow occurrence (see 
Fig. 2). Also, growth in the second season half appears to be 
rather independent from the first half (low ra1,a2).

It should be noted that grazing can also influence standing 
biomass, which potentially influences the temporal pattern 
of growth. Nevertheless, land management for the study area 
follows a stable pattern in space, with only minor variations 
in time in response to seasonal weather conditions. There-
fore, the growth pattern is still mainly affected by climate 
variability.

Shrub habitats: a matter of tallness

The two analyzed shrub habitats show different AUC sta-
tistics (Figs. 4, 5 beige and brown colors). Although being 
present in our ROI only up to 2400 m, tall shrubs present 
the highest growth curve values among all habitats with no 
big variations in the AUC in function of elevation. Since tall 
vegetation does not cope well with low air temperature and 
wind-driven heat loss (Wilson 1959; Holtmeier and Broll 
2010; Ives and Barry 2019; Körner 2021), thermal excur-
sion may be the main limiting factor for their growth at high 
elevation. Conversely, dwarf shrubs present lower growth 
values comparable to pasture habitats and moderately cor-
related with elevation changes (Table 2).

Both shrub types vary twice more their growth in space 
than pastures in the first half of the season (Figs. 4 panel 
b) and tall ones show substantial inter-annual variations in 
the AUC, 15 and 25% among 2016–2023 AUC1 and ACU2 
medians (Figs. 4, 5 panel c).

While, with both shrub types, there isn’t a significant cor-
relation between cumulative growth and the variation of the 
SOG, the arrival of snow in autumn (EOS) seems to limit 
more importantly their growth ( ra2,e in Table 3).

Conclusions and future perspectives

In this paper, we presented a high-resolution satellite image 
analysis focused on the characterization of nine habitat types 
in mountain rangelands. The study is based on the satellite 
product Sentinel-2 and the habitat map of the mountain pas-
tures surrounding the Swiss National Park (Grisons canton, 
Switzerland). An image-analysis workflow was developed to 
derive the growth pattern of the small-scale habitat in a com-
plex topographic setting. Based on the spectral index NDVI, 
the workflow allowed to investigate the habitat phenology in 
relation with elevation and snow persistence.

The main findings of this study are that wet and dry pas-
tures exhibit two main different growth patterns: the former 
more productive at mid elevation, the latter growing more 
variably in space and more sensitive to elevation. The dif-
ference in growth progressively attenuate at high elevation 
above 2400 m a.s.l., suggesting a similar productivity of the 
habitats.

Also, the correlation study among the growth-curve 
descriptors suggests the presence, at a regional scale, of 
some dynamics previously observed at the plot scale: snow 
melt, controlling the beginning of the growing season, 
appears as the main limiting factor for the cumulative growth 
of all pasture habitats. This delay is partially compensated by 
a quicker growth in years with late snow melt. Similarly, the 
arrival of snow in autumn limits accumulation in the second 
part of the season. These dynamics at the end of the season 
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also affects dwarf shrubs, while tall shrubs grow variably in 
space and independently of elevation until the treeline. For 
all habitats, inter-annual weather fluctuations impact growth 
importantly, with 15–20% of AUC variation, with repercus-
sions on the annual rangeland productivity.

These findings, in continuity with previous plot-scale 
studies, expand the knowledge of habitat seasonality and 
their response to changes in hydro-climate factors, in par-
ticular snow persistence. Moreover, the presented regional 
analysis suggests the importance of continuous and possi-
bly real-time monitoring of vegetation growth in mountain 
rangelands for management purposes.

Possible advancements of this research include the com-
parison of the findings from on-site plot analysis and growth 
models, with further application to other mountain areas. 
This study characterized different habitat types by means of 
statistical descriptors of the growth curve. These descrip-
tors can be computed pixel-wise to obtain raster maps as 
supporting tools for rangeland management. For example, 
these maps can be used to detect annual anomalies in pas-
ture productivity to optimize animal carrying capacity and 
provide more targeted and flexible support schemes for farm-
ers. Moreover, the data can be used to monitor the spread 
of invasive shrub species over the pasture lands due to land 
abandonment. Another possible application is the continu-
ous real-time monitoring of the beginning and end of season 
in different pasture areas to improve grazing management, 
especially for remote high-elevation areas.

The maps can also be the object of an in-depth investi-
gation of climate and topographic factors influencing sea-
sonal productivity. This last type of analysis requires the 
realization of detailed annual weather maps and topographic 
descriptors, representative of the complex space variations 
present in the alpine setting.

Appendix A. Data acquisition workflow 
for Sentinel‑2 images

The workflow developed for the programmatic retrieval of 
the Sentinel-2 images consists in the following steps: 

1. According to the parameters set for the EOdal mapper, 
the Sentinel-2 data catalog is queried for a given time 
span and ROI with the STAC protocol https:// stacs pec. 
org. A series of sub-queries to divide the image time 
series in data chunks.

2. For every data chunk, the sub-query is sent to the server 
and the images are downloaded.

3. Within the EOdal preprocessing module, all image pix-
els classified as any cloud type or non-vegetation cover 
are masked. this is done according to the Sentinel-2 

Scene Classification Layer (SCL), available as raster 
band for every image. In this case, snow pixels were 
not masked since they include mixed-spectrum values 
allowing to better observe the early growth of vegeta-
tion.

4. All bands in every image are linearly interpolated on 
a defined target grid of 10 m resolution (in line with 
Sentinel-2 resolution) covering the ROI in the Swiss 
local CRS CH1903/LV95 (EPSG:2056). This leads to 
a 4D data cube for every data chunk, whose dimensions 
consists in xy image coordinates, number of bands, and 
different temporal frames.

5. For every data cube, the NDVI images are computed 
using Sentinel-2 red (B04) and near-infrared (B08) 
bands with the standard formula NDVI = (B08-B04)/
(B08+B04). This leads to a 3D NDVI cube consisting 
in xy image coordinates and temporal frame.

6. Every data cube is stored locally.

Appendix B. Preprocessing workflow 
for the NDVI images

The obtained NDVI images are preprocessed as follows. 
First, the pasture classification map (“Study region and 
data”) of the ROI is interpolated on the same xy grid of the 
NDVI cube, using the nearest-neighbor interpolation. The 
same is done for the DEM (“Ancillary variables”) using 
the bi-linear interpolation. These two raster variables are 
then used in the following steps, run iteratively on every 
NDVI data cube (“Acquisition of the satellite images”): 

1. The NDVI cube is loaded in python.
2. Using the rasterized habitat map, images are discarded 

if they contain less than 10% pixels informed among 
the ones mapped as habitat units. This allows avoiding 
too biased point values in the extracted annual growth 
curves. Among the discarded images there are also the 
ones presenting extensive snow cover for all units, corre-
sponding to days following summer snow events. Those 
are easily detected since they correspond to isolated neg-
ative peaks in the summer period common for all NDVI 
growth curves.

3. For every accepted image, the shadow cast by mountains 
is computed using the package python-dem-shadow 
(adapted script in the Code Availability section) based 
on the DEM and the solar angle available as metadata 
for every Sentinel-2 scene. This way, every pixel is 
labeled as covered by shadow or not.

4. From the DEM, the aspect of every pixel was derived 
using the python package richdem (https:// pypi. org/ proje 
ct/ richd em/). The aspect is used exclude from the analy-

https://stacspec.org
https://stacspec.org
https://pypi.org/project/richdem/
https://pypi.org/project/richdem/
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sis non south-ward pixels (see “Annual growth curve 
analysis”).

5. Pixels mapped as habitat units are extracted from every 
image and stored in a python dictionary, where every 
item represents an attribute linked to pixels and contains 
a vector of values, one for each pixel.

More information on the dataset structure is available in 
the documentation of the attached code (“Conclusions”).

Appendix C. The Gompertz growth function

The Gompertz model (Gompertz 1825) is a sigmoidal type 
of curve suitable to represent growth processes. Similarly, 
we use here the following equation:

with y being the fitted NDVI value, x the DOY, a the curve 
amplitude parameter, b the x coordinate of the sigmoid flex 
point, c the growth slope factor, and d the y coordinate of 
the maximum growth plateau. The function was fitted with 
a least-square method on the Pchip interpolation of the data, 
since it preserves a more stable fitting in case of scarce 
NDVI data in the year. The following parameter bounda-
ries were imposed to preserve a realistic shape of the NDVI 
growth curve: [0, 2] for a, with 0 for zero curve amplitude 
(no growth) and 2 for the maximum NDVI theoretical ampli-
tude from -1 to 1, [50, 200] for b, limiting the center of the 
growth slope between DOY 50 and 200, [0, 1] for c, with 0 
for horizontal slope and 1 for vertical slope, and [0, 1] for d, 
with 0 for the curve maximum equal to zero (no growth) and 
1 for the maximum equal to 1 (NDVI theoretical maximum).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00035- 025- 00327-1.
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