

Ammoniak: Kosten der Emissionsminderung

44

Albert Zimmermann Judith Hausheer Stephan Pfefferli

Ammoniak: Kosten der Emissionsminderung

Betriebswirtschaftliche Beurteilung der Möglichkeiten zur Reduktion der Ammoniak-Emissionen in der Schweiz

1997

Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik, CH-8356 Tänikon TG

Direktor: Prof. Dr. Walter Meier

Vorwort

Stickstoff ist von grosser Bedeutung für die Landwirtschaft. Einerseits als Pflanzennährstoff, andererseits als Ursache von Umweltproblemen, welche durch Nitrat, Ammoniak und Lachgas verursacht werden. Die Forschung und die Politik möchten mithelfen, den Stickstoffhaushalt zu optimieren. Das heisst von den Vorteilen des Stickstoffs zu profitieren und dabei die nachteiligen Folgen soweit machbar zu vermeiden.

Die vorliegende Arbeit ist in diesem Rahmen zu sehen. Ammoniak ist ein Stoff, dem im Stickstoffhaushalt eine zentrale Bedeutung zukommt, weil rund 60 % des in der Schweiz abgelagerten Stickstoffs von Ammoniak-Emissionen herrühren. Die Vorsteher des Eidgenössischen Departementes des Innern und des Eidgenössischen Volkswirtschaftsdepartementes haben deshalb 1994 eine Arbeitsgruppe "N-Haushalt Schweiz" eingesetzt, welche Strategien zur schrittweisen Bewältigung der Umweltprobleme infolge Freisetzung schädlicher Stickstoff-Verbindungen entwickelte (Biedermann et al. 1996). Ebenfalls 1994 erteilte der Bundesrat dem Eidgenössischen Volkswirtschaftsdepartement den Auftrag, einen Massnahmenkatalog zur Vermeidung der Ammoniak-Emissionen bis Ende 1996 zu erarbeiten. Das Bundesamt für Landwirtschaft beauftragte in der Folge das Institut für Umweltschutz und Landwirtschaft (IUL) in Liebefeld, NH3-emissionsmindernde Massnahmen in der Landwirtschaft zu evaluieren und zu quantifizieren sowie die vorgeschlagenen Massnahmen zusammen mit der Eidgenössischen Forschungsanstalt für Agrarwirtschaft und Landtechnik in Tänikon (FAT) betriebswirtschaftlich und aus der Sicht der landwirtschaftlichen Praxis zu beurteilen. Die Ergebnisse der Arbeitsgruppe "Emissionen" sind im Bericht von Menzi et al. (1997) und diejenigen der Arbeitsgruppe "Kosten" im vorliegenden Bericht dokumentiert. Ein Synthesebericht (Stadelmann et al. 1996) fasst die Ergebnisse zusammen.

Die Arbeitsgruppe "Kosten" unter der Leitung von Stephan Pfefferli (FAT) hatte den Auftrag, die Kosten der von der Arbeitsgruppe "Emissionen" vorgeschlagenen emissionsmindernden Massnahmen einzeln und in Kombination zu ermitteln. Judith Hausheer (FAT) hat anhand der Betriebszählungsdaten 1990 problemorientierte Betriebstypen gebildet, welche als Grundlage für Modellrechnungen dienten. Albert Zimmermann (FAT) hat die Stickstoffflüsse und die von der Arbeitsgruppe "Emissionen" vorgeschlagenen Massnahmen in ein LP-Modell eingebaut, die Modellrechnungen durchgeführt und die Ergebnisse auf Sektorebene hochgerechnet. Helmut Ammann, Rainer Frick, Richard Hilty und Margret Keck (alle FAT) haben ergänzende technische Grundlagen für die Kostenkalkulationen geliefert.

Die vorliegende Arbeit ist das Produkt einer intensiven Zusammenarbeit zwischen dem IUL und der FAT, von Vertretern der Bundesämter für Umwelt, Wald und Landschaft (BUWAL) und Landwirtschaft (BLW) sowie weiterer Experten. Allen Beteiligten sei an dieser Stelle für das grosse Engagement gedankt.

Inhalt

Inhalt	
Tabellen	5
Abbildungen	7
Abkürzungen	8
1. Einleitung	9
Z. 1) difficilities in Gloriotomic oloridation in the control of	10 13
3.1 Einzelbetriebliche Optimierung 3.1.1 Vorteile der linearen Optimierung 3.1.2 Aufbau des Betriebsmodells 3.1.3 Abbildung der Stickstoffflüsse im Modell 3.1.4 Berechnung des einzelbetrieblichen Einkommensverlustes 3.1.5 Berücksichtigung der zeitlichen Einflussfaktoren	15 15 16 17 19 19 20 21
4.1 Produktionstechnische und wirtschaftliche Daten 4.2 Ammoniak-Emissionen und Minderungsmassnahmen 4.2.1 Emissionen bei herkömmlichen Verfahren 4.2.2 Verminderung der N-Ausscheidungen über die Fütterung 4.2.3 Massnahmen im Stallbereich 4.2.4 Massnahmen bei der Hofdüngerlagerung 4.2.5 Massnahmen bei der Hofdüngerausbringung 4.2.6 Massnahmen bei der Mineraldüngung 4.2.7 Übersicht über die im Modell berücksichtigten Massnahmen	22 25 25 28 33 37 38 48 49
5. Definition der Betriebstypen 5.1 Auswertung der Betriebszählungsergebnisse 5.2 Festlegung und Beschreibung der Betriebstypen	54
6. Einzelbetriebliche Modellergebnisse 6.1 Ergebnisse der Betriebstypen 6.1.1 Milchviehbetriebe 6.1.2 Schweinehaltungsbetriebe 6.1.3 Übrige Betriebe 6.1.4 Übersicht zu den einzelbetrieblichen Ergebnissen 6.2 Ausgewählte Vergleiche anhand einzelner Betriebstypen 6.2.1 Vergleich zwischen bestehenden Gebäuden und Neubauten 6.2.2 Vergleich zwischen den Landbauformen konventionell, IP und Bio 6.2.3 Vergleich zwischen Weide- und Stallhaltung	63 63 67 69 71 74 74
6.2.3 Vergleich zwischen Weide- und Stallhaltung	- 11

7. Aggregierte Ergebnisse	
7.1 Gesamtemissionen 1994 und 2002 ohne Reduktionsmassnahmen	. 78
7.2 Gesamtkosten der Reduktionsmassnahmen	. 80
7.3 Vergleich zwischen Tal- und Berggebiet	
7.4 Reduktion in bezug auf die gesamtschweizerischen Emissionen	
7.5 Vergleich mit anderen Arbeiten	
7.6 Einkommensoptimierte Massnahmenkombinationen	. 87
8. Zusammenfassung	
9. Résumé	. 92
10. Summary	. 94
11. Literatur	. 96
Anhang A: Wichtigste Modellgleichungen zur Abbildung der N-Flüsse	. 99
Anhang B: Kosten der baulichen Massnahmen im Stallbereich	107
Timeng O. Linzenbethebilohe Wodellergebinsse	117

	,			
	-			
	ı			- `
	Te	۱ĥ۵	llen	Seite
	1. C	ibc		Ocite
	. Tab	. 1.	Ammoniak-Emissionen in der Schweiz im Jahr 1994	14
	Tab		Kriterien für die Bildung der Modell-Betriebstypen	
			Datenquellen des LP-Modells	
			Entwicklung der Naturalerträge im Ackerbau infolge technischen Fortschritts	23
	Tab	o. 5.	Entwicklung der Naturalerträge im Futterbau und der Leistungen in der Tierhaltung	
		٠.	infolge technischen Fortschritts	
•	Tab	6.	Preisveränderungen zwischen 1994 und 2002 (Faktorpreise)	
			Preisveränderungen zwischen 1994 und 2002 (Produktpreise)	
			Veränderungen der Direktzahlungen für das Jahr 2002	
			Emissionsfaktoren für Hofdünger (in Prozent des Stickstoffgehaltes)	
-			Berechnung der Ammoniak-Emissionen am Beispiel des Anbindestalls	
	Tạt	o. 11.	Auswirkung einer Reduktion der N-Ausscheidung auf die Emissionen	ć 29
	Tab	. 12.	Im Modell angebotene Futtermittel für das Rindvieh	30
	Tab	o. 1 <mark>3</mark> .	Einkommensverlust bei Fütterungsmassnahmen (Beispiel Milchviehbetrieb, Modell-	
	٠		ergebnisse)	
			Kosten für die Reduktion der N-Ausscheidung bei Schweinen	32
	Tab	o. 15.	Einkommensverlust bei Fütterungsmassnahmen (Beispiel Schweinemastbetrieb,	•
			Modellergebnisse)	
			Kosten von Massnahmen im Boxenlaufstall	
			Kosten von Massnahmen im Boxenlaufstall pro kg N-Reduktion	
			Kosten von Massnahmen im Mastschweinestall	
	Tab	o. 19.	Kosten von Massnahmen im Mastschweinestall pro kg N-Reduktion	35
	Tak	o. 20.	Kosten von Massnahmen im Zuchtschweinestall	36
			Kosten von Massnahmen im Zuchtschweinestall pro kg N-Reduktion	
			Kosten von Güllebehälter-Abdeckungen	
			Kosten von Güllebehälter-Abdeckungen pro kg N-Reduktion	
			Kosten der Gülleausbringung (Standardverfahren)	
			Verlustreduktion durch auf die Witterung ausgerichtete Massnahmen	
	Tal	o. 26.	Kosten für die Gülleverdünnung (Mehrkosten pro m³ Verdünnungswasser)	41
•			Kosten für die Gülleverdünnung pro kg N-Reduktion	
	Tal	o. 28.	Kosten für Einarbeiten oder Bodenlockerung	43
	Tal	o. 29.	Kosten für Einarbeiten oder Bodenlockerung pro kg N-Reduktion	43
	Tal	o. 30.	Abschätzung der Anwendungspotentiale emissionsarmer Gülleausbringungsverfahrer	
			im Tal- bzw. Berggebiet	
			Maximale Gülleausbringungsmengen pro Hektare im Modell (m³/ha)	
			Kosten emissionsarmer Gülleausbringungsverfahren	
	Tal	o. 33.	Kosten emissionsarmer Gülleausbringungsverfahren pro kg N-Reduktion	4/
	Tal	o. 34.	Im Modell berücksichtigte Massnahmen und deren Reduktionswirkung	49
	Tal	b. 35.	Maximale Emissionsreduktionen der einzelnen Massnahmen	.,. 51
	Tal	b. 36.	Kosten der einzelnen Massnahmen pro Einheit Emissionsreduktion	53
	Tal	b. 37.	Tierbestände gemäss Betriebszählung 1990	54
	T∕ai	þ. 38.	Berücksichtigte Betriebe aus der Betriebszählung 1990	58
	Tal	þ. 39.	Merkmale von Betrieben mit bestimmten Tieren im Talgebiet	59
,	Tal	b. 40.	Merkmale von Betrieben mit bestimmten Tieren im Berggebiet	60
			Definierte Betriebstypen für das Tal- und Berggebiet	
	Tal	b. 42.	Vergleich der hochgerechneten Betriebstypen mit der Betriebszählung 1990	62
	Ta	b. 43	Massnahmen des Milchviehbetriebes mit Boxenlaufstall im Talgebiet	64
			Massnahmen des Milchviehbetriebes mit Anbindestall im Talgebiet	
	Ta	b. 45	Massnahmen des Schweinemastbetriebes mit Teilspaltenboden im Talgebiet	ნგ

Tab. 46.	Massnahmen des Mutterkuhhaltungsbetriebes im Talgebiet	69
Tab. 47.	Reihenfolge der Reduktionsmassnahmen auf den einzelnen Betriebstypen	72
Tab. 48.	Vergleich der Massnahmen bei bestehenden und neuen Gebäuden am Beispiel des	
	Milchviehbetriebes mit Boxenlaufstall im Talgebiet	74
Tab. 49.	Veränderung der Ammoniak-Emissionen und des GVE-Bestandes durch die Umstel-	
		76
Tab. 50.	Veränderung der Ammoniak-Emissionen durch die Umstellung von konventionell auf	
	IP oder Bio am Beispiel des Milchviehbetriebes mit Anbindestall im Talgebiet	76
Tab. 51.	Vergleich der Ammoniak-Emissionen gemäss hochgerechneten Modellergebnissen	,
	im Jahr 1994 mit anderen Angaben	79
Tab. 52.	Reduktion der im Modell berücksichtigten Ammoniak-Emissionen zwischen 1994	
``		79
Tab. 53.	Einkommensoptimierte Massnahmenkombinationen im Jahr 2002 für das Tal- und	
	Berggebiet bei steigender Emissionsreduktion, bezogen auf die berücksichtigten	
- ,		82
	Berechnung der gesamtschweizerischen Emissionen 1994 und 2002	84
Tab. 55.	Berechnung der Emissionsreduktion bezogen auf die gesamtschweizerischen	
• •		84
Tab. 56.	Einkommensoptimierte Massnahmenkombinationen im Jahr 2002 bei steigender	
	Emissionsreduktion, bezogen auf die gesamtschweizerischen Emissionen im	
,	Jahr 1994	88

Abbildungen

Abb. 1.	Schema der wichtigsten N-Flüsse und Bilanz für die Schweiz 1994	1.0
Abb. 2.		11
Abb. 3.,	Stickstoff-Emissionen in der Schweiz in den Jahren 1900 bis 1995	12
Abb. 4.	Contoniacionio di antica apo al moneto antica antica apo al moneto antic	16
Abb. 5.	Conformation parotoniang act retraining to the contract of the	17
	Darotonang add Emiterianiene en	19
Abb. • 7.	· · · · · · · · · · · · · · · · · · ·	27
Abb. 8.	, 0,00,00,000,000,000,000,000,000,000,0	28
Abb. 9.	1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,	55
	Voltonaria doi Troro dar dio Destatta e agree e a agree e agre	55
Abb. 11.	Verteilung der Betriebe mit Kühen nach Bestandesgrösse	56
Abb. 12.	Verteilung der Betriebe mit Mastrindern nach Bestandesgrösse	56
Abb. 13.	Verteilung der Betriebe mit Mastschweinen nach Bestandesgrösse	57
Abb. 14.	Einkommensverlust infolge der Reduktionsmassnahmen beim Milchviehbetrieb mit	
	Boxenlaufstall im Talgebiet	65
Abb. 15.	Einkommensverlust pro kg N bei den Milchviehbetrieben	67
Abb. 16.	Einkommensverlust pro kg N bei den Schweinehaltungsbetrieben	69
Åbb. 17.	Emiliarion de la company de la	70
	Einkommensverlust pro kg N bei verschiedenen Betriebstypen	73
Abb. 19.	Einkommen bei einer Reduktion der Ammoniak-Emissionen am Beispiel des Milch-	
`	viehbetriebes mit Boxenlaufstall im Talgebiet im Vergleich zur Anbindehaltung	75
Abb. 20.	Vergleich der Ammoniak-Emissionen bei unterschiedlicher Weidehaltung am Beispiel	
	des Milchviehbetriebes mit Anbindestall im Talgebiet	77
Abb. 21.	Ammoniak-Emissionen und Gesamteinkommen in den Jahren 1994 und 2002 (Hoch-	
-	.gerechnete Modellergebnisse)	78
Abb. 22.	Verlauf des Einkommensverlustes im Jahr 2002 bei steigender Emissionsreduktion,	
	bezogen auf die im Modell berücksichtigten Emissionen im Jahr 1994	80
Abb. 23.	Ammoniak-Emissionen im Tal- und Berggebiet bei zunehmendem Zwang zur Emis-	
	sionsreduktion im Jahr 2002 (Hochgerechnete Modellergebnisse)	81
Abb. 24.	Verlauf des Einkommensverlustes im Jahr 2002 bei steigender Emissionsreduktion,	
	bczogen auf ale geodinicon wolzen en annie steri al annie steri al annie steri al annie steri al annie steri a	8
Abb. 25.	Vergleich der Emissionsreduktion mit anderen Arbeiten	8

Abkürzungen

	MOILC	arzungen,	,	•
	AF	Ackerfläche	N .	Stickstoff
	AG:	Arbeitsgruppe	N ₂	_
	APD	Absorbierbares Protein im Darm		Distickstoff (Luftstickstoff)
	Bio	Biologischer Landbau	N ₂ O	Lachgas
	BLW	Bundesamt für Landwirtschaft	N _{Ant} ,	N-Anfall mit den Ausscheidungen der Tiere
	BUWAL		N _{Aus}	N-Ausscheidungen der Tiere (=N _{Anf})
	DOVAL	Bundesamt für Umwelt, Wald und Land- schaft	NEL	Netto-Energie Milch (Laktation)
	dt	,	NEV	Netto-Energie Mast (Viandè)
	E.	Dezitonne (0,1 Tonnen) Einheit	NH ₃	Ammoniak
	E. ETHZ		NH ₄ ⁺	Ammonium
		Eidg. Technische Hochschule Zürich	NH _y	Reduzierte N-Verbindungen
	EVD	Eidg. Volkswirtschaftsdepartement	N _{löslich}	Löslicher Stickstoff (entspricht etwa NH ₄ +)
	FAC	Eidg. Forschungsanstalt für Agrikultur-	NO	Stickstoffmonoxid
		chemie und Umwelthygiene, Liebefeld-	NO ₂	Stickstoffdioxid
	- 40	Bern (ab 1996 IUL)	NO ₃ -	Nitrat
	FAG	Eidg. Forschungsanstalt für viehwirt-	NOx	Stickoxid (NO, NO ₂)
		schaftliche Produktion, Posieux (ab	NOy	Oxidierte Stickstoff-Verbindungen
		1996 RÁP)	N _{total}	Gesamtstickstoff
	FAL	Eidg. Forschungsanstalt für Agraröko-	МW	Naturwiese
	•	logie und Landbau, Zürich-Reckenholz	OA	Offene Ackerfläche
	FAM	Eidg. Forschungsanstalt für Milchwirt-	P	Phosphor -
		schaft, Liebefeld-Bern	PG	Projektgruppe
	FAP	Eidg. Forschungsanstalt für landwirt-	-pH (Säuregrad
		schaftlichen Pflanzenbau, Zürich-Rek-	PI.	Platz
		kenholz (ab 1996 FAL)	RAC	Eidg. Forschungsanstalt für Pflanzenbau,
	FAT	Eidg. Forschungsanstalt für Agrarwirt-		Changins
	÷	schaft und Landtechnik; Tänikon	RAP	Eidg. Forschungsanstalt für Nutztiere, Po-
	FAW	Eidg. Forschungsanstalt für Obst-,		sieux
	_	Wein- und Gartenbau, Wädenswil	ŖF	Rohfaser
	GVE	Grossvieheinheit	RP	Rohprotein
	GVP	Grossviehplatz	Std.	Stadium
	h 🛴	Stunde (entspricht 1 AKh)	TS:	Trockensubstanz
,	ha	Hektare	VHZ	Voralpine Hügelzone
,	HNO₃	Salpetersäure	ZSP	Zuchtschweineplatz
٠,	IAW	Institut für Agrarwirtschaft der ETHZ	•	
	IP	Integrierte Produktion	1	
'	IUĽ ,	Institut für Umweltschutz und Landwirt-		
		schaft, Liebefeld-Bern (ab 1996 der FAL		
		angegliedertes Institut)		
		Konventionell	•	
	kt . ;	Kilotonne (1000 Tonnen)		
	KW.	Kunstwiese		•
		Liter	•	· · · · · · · · · · · · · · · · · · ·
	LBL -	Landwirtschaftliche Beratungszentrale		· · · · · · · · · · · · · · · · · · ·
		Lindau		,

Lindau Landwirtschaftliche Nutzfläche

Lineare Programmierung Maximal

Megajoule (Energieeinheit) Mastschweineplatz

Milliarden

Millionen

LN LP

max. Mia.

Mio.

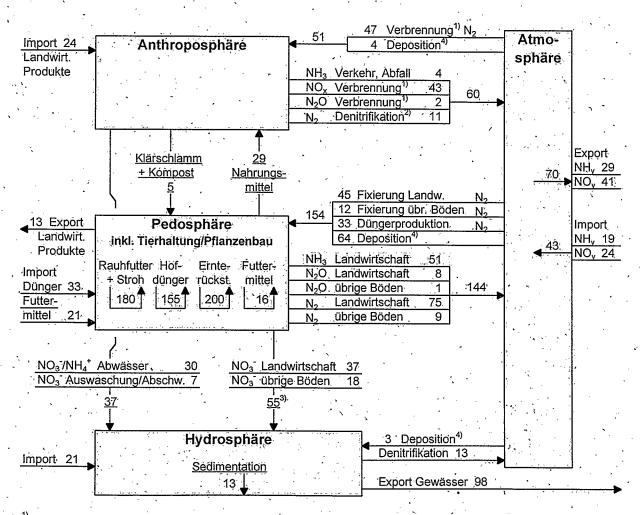
MJ MSP

1. Einleitung

Die Stickstoffdeposition in der Schweiz beträgt durchschnittlich 23 kg N pro Hektare und Jahr (Rihm 1996). Etwa 60 % davon bestehen aus reduzierten N-Verbindungen, die hauptsächlich von Ammoniak-Emissionen aus der Landwirtschaft stammen. Stickstoffdepositionen sind verantwortlich für die Überdüngung von Ökosystemen, die auf eine N-Limitierung angewiesen sind, und tragen zur Versauerung der Böden und Gewässer bei.

Bereits seit 1991 wurden Ammoniak-Emissionen in den Bereichen Stall, Hofdungerlagerung und Hofdungeranwendung in verschiedenen Projekten des Institutes für Umweltschutz und Landwirtschaft der Eidg. Forschungsanstalt für Agrarökologie und Landbau (FAL-IUL, bis 1995 FAC) und der Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT) untersucht.

Am 26. Oktober 1994 beauftragte der Bundesrat das Volkswirtschaftsdepartement (EVD), bis Ende 1996 einen Massnahmenkatalog zur Reduktion der Ammoniak-Emissionen aus der Landwirtschaft zu erarbeiten. Daraufhin wurde dem IUL und der FAT das Mandat erteilt, emissionsmindernde Massnahmen zu evaluieren und aus technischer und betriebswirtschaftlicher Sicht zu beurteilen. Eine Projektgruppe mit Vertretern des IUL, der FAT, des BLW und des BUWAL setzte zwei Arbeitsgruppen ein: Die Arbeitsgruppe "Emissionen" quantifizierte anhand von Versuchen und Literaturangaben die Ammoniak-Emissionen in der Schweiz und beurteilte die Möglichkeiten zu deren Reduktion aus technischer Sicht. Die Arbeitsgruppe "Kosten" untersuchte die Kosten dieser Massnahmen. In der vorliegenden Schriftenreihe werden die Berechnungen der Arbeitsgruppe "Kosten" vorgestellt. Sie basieren auf den von der Arbeitsgruppe "Emissionen vorgeschlagenen Massnahmen (Menzi et al. 1997). Die beiden Berichte bildeten die Grundlage für den Schlussbericht der Projektgruppe an das EVD (Stadelmann et al. 1996).


Die Berechnungen wurden mit der Methodik der linearen Programmierung auf Betriebsebene durchgeführt. Über ausgewählte Betriebstypen erfolgte eine Hochrechnung auf die Schweiz. Der dabei unterstellte Zeitraum (1994 bis 2002) und die erwarteten wirtschaftlichen und produktionstechnischen Rahmenbedingungen im Jahr 2002 wurden im wesentlichen abgestimmt auf die Annahmen im technischen Bericht Landwirtschaft (Häfliger et al. 1995), einem Teilbericht des Projektes "Stickstoffhaushalt Schweiz" (Biedermann et al. 1996). Im Unterschied zu diesem Projekt, welches den gesamten Stickstoffhaushalt in den Bereichen Landwirtschaft, Verbrennung/Verkehr und Abwasserreinigung untersuchte, beschränkte sich die Projektgruppe "Ammoniak-Emissionen Schweiz" auftragsgemäss im wesentlichen auf die in der Landwirtschaft entstehenden Ammoniak-Emissionen. Dabei wurden mögliche Emissionsminderungen bis auf der Stufe der einzelnen technischen Massnahmen beurteilt.

Die mit emissionsmindernden Massnahmen verhinderte Menge an Ammoniak-Emissionen sollte im Rahmen einer gesamtökologischen Betrachtung des Stickstoffhaushalts zu einer Reduktion des in der Düngung gesamthaft eingesetzten Stickstoffs führen. Ist dies nicht der Fall, besteht die Gefahr, dass im Gegenzug andere N-Verluste (Nitratauswaschung, Lachgas-Emissionen, N-Eintrag in Oberflächengewässer) erhöht werden.

2. Ammoniak-Emissionen und ihre Auswirkungen

2.1 Ammoniak im Stickstoffkreislauf

Im N-Kreislauf existiert eine Vielzahl von N-Flüssen und N-Prozessen. Die wichtigsten gesamtschweizerischen Flüsse sind schematisch in Abbildung 1 dargestellt (Einheit: kt N/Jahr). Unterschieden ist zwischen vier Räumen: den Siedlungsflächen samt menschlichen Aktivitäten (Anthroposphäre), dem Boden (Pedosphäre), dem Grund- und Oberflächenwasser (Hydrosphäre) und der Lufthülle der Erde (Atmosphäre). Vom gesamten inländischen N-Input in die Atmosphäre (217 kt N) entfiel im Jahr 1994 rund die Hälfte auf den ökologisch unschädlichen elementaren Stickstoff (N2). Die restliche Menge setzte sich zusammen aus rund 50 % Ammoniak (NH₃), 40 % Stickoxiden (NO_x) sowie 10 % Lachgas (N₂O). Die mengenmässig bedeutendste N-Verbindung, die in die Hydrosphäre gelangt, bildet das Nitrat (NO3).

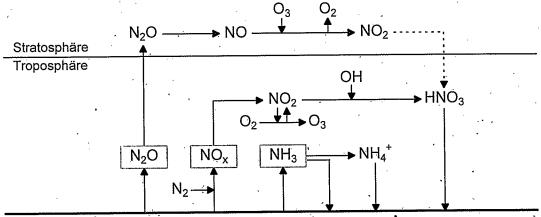
Verbrennungsprozesse (Verkehr, Industrie, Haushalte)

Einheit: kt N pro Jahr

Infolge Einzelflussbetrachtung (Schätzungen) sind unausgeglichene Bilanzen in den vier Sphären möglich

Quelle: nach Biedermann et al. 1996

Abb. 1. Schema der wichtigsten N-Flüsse und Bilanz für die Schweiz 1994,


²⁾ Denitrifikation aus Abwasserreinigungsanlagen

³⁾ Davon Auswaschung: 46, Abschwemmung: 9

⁴⁾ Davon rund 60 % ŃH_y, 40 % NO_y

Die gesamte Stickstoff-Deposition in der Schweiz (1994: 72 kt N) besteht nach EMEP (1995) zu rund 60 % aus reduzierten N-Verbindungen (NH_y). Rund 40 % der Deposition fallen auf oxidierte N-Verbindungen (NO_y). Der in die Schweiz importierte Anteil an der Deposition beträgt bei den reduzierten N-Verbindungen über 40 %, bei den oxidierten über 80 %. Die exportierte Menge übersteigt allerdings den Import.

Abbildung 2 zeigt eine vereinfachte Darstellung der wichtigsten Reaktionswege der N-Verbindungen in der Atmosphäre. Vom emittierten NH₃ lagert sich ein Grossteil in der näheren Umgebung wieder ab, da Ammoniak gut von Oberflächen aufgenommen wird. Die nicht an einen Niederschlag gebundene Ablagerung wird als Trockendeposition bezeichnet (Neftel 1994). Befinden sich Wassertröpfchen in der Atmosphäre, so wird das meiste NH₃ darin gelöst. Das basisch wirkende NH₃ erhöht dabei die Aufnahme von Schwefeldioxid (SO₂) in die Tröpfchen, so dass als Folge mehr SO₂ zu Sulfat (SO₄ ²) oxidiert wird. Auf diese Weise werden kleine Aerosole gebildet. Sie bestehen vor allem aus H₂SO₄, (NH₄)₂SO₄ und NH₄ NO₃. Die Aerosole können über weite Distanzen transportiert werden, bevor sie als nasse Deposition abgelagert werden. Insgesamt gelangen rund 50 % des emittierten Ammoniaks innerhalb von 10 km wieder auf den Boden (Rhim 1996).

Quelle: nach Neftel 1988, vereinfacht

Abb. 2. Schema der wichtigsten Reaktionswege von N-Verbindungen in der Atmosphäre

NO_x stammt hauptsächlich aus den Bereichen Verkehr, Industrie und Gewerbe. Die beiden Komponenten NO und NO₂ spielen zusammen mit flüchtigen organischen Verbindungen (VOC) eine wichtige Rolle bei der Bildung von Ozon (O₃). Folgende Reaktionen laufen dabei ab:

$$NO_2 + UV$$
-Licht $\rightarrow NO + O$
 $O + O_2 \rightarrow O_3$
 $NO + RO_2 \rightarrow NO_2 + RO$

RO₂: Peroxiradikal (Oxidationsprodukt flüchtiger organischer Verbindungen)

Die Produktion von O_3 über diesen Reaktionsverlauf erfolgt nur, solange Licht und Peroxiradikale vorhanden sind. Dabei wird die Menge des katalytisch wirkenden NO_x nicht geändert (Staffelbach et al. 1995). Ein wichtiges Oxidationsprodukt von NO_2 ist Salpetersäure (HNO₃), ein Hauptbestandteil des sauren Regens. Es wird vor allem über die Reaktion mit OH-Radikalen gebildet (Neftel 1988).

 N_2 O entsteht neben N_2 durch Denitrifikationsprozesse, in welchen bei Sauerstoffmangel Nitrat von Bakterien zur Atmung genutzt wird. In der Troposphäre ist N_2 O am Treibhauseffekt beteiligt, wobei es bei einer mittleren Lebensdauer von 100 Jahren sehr reaktionsträg ist (BUWAL 1993). Beim Übertritt in die Stratosphäre kann N_2 O in NO zerlegt werden und zum Abbau der Ozonschicht beitragen.

In Abbildung 3 ist der Verlauf der gesamtschweizerischen NH₃-, NO_x- und N₂O-Emissionen der Jahre 1900 bis 1995 aufgezeichnet. Nicht berücksichtigt sind Emissionen aus natürlichen Quellen sowie von Menschen und Haustieren. Die Zahlen stammen vom BUWAL (1995). Für die Ammoniak-Emissionen haben Menzi et al. (1997) exaktere Abschätzungen durchgeführt, allerdings nur für die Zeit ab 1950. Die Ammoniak-Emissionen nahmen bis zum Jahr 1980 kontinuierlich zu. Seither sind sie infolge des abnehmenden Tierbestandes wieder rückläufig. Seit 1991 sinkt auch der Mineraldüngerverbrauch, dessen Beitrag zu den Ammoniak-Emissionen aber nur gering ist. Die prozentuale Zunahme der Emissionen lag dank Leistungssteigerungen deutlich unter der Zunahme der mengenmässigen Produktion aus der Nutztierhaltung. Wesentlich stärker als die Ammoniak-Emissionen erhöhten sich die Stickoxid-Emissionen, vor allem seit 1950. Seit der Einführung der Katalysatortechnik bei Motorfahrzeugen sind sie wieder deutlich rückläufig. Die Lachgas-Emissionen stiegen seit 1960 durch den vermehrten Mineral- und Hofdüngereinsatz an. Seit 1980 nehmen diejenigen Lachgas-Emissionen, die aus der Landwirtschaft stammen, wieder ab.

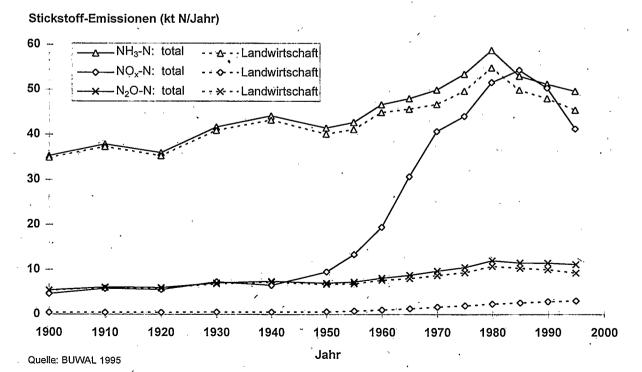


Abb. 3. Stickstoff-Emissionen in der Schweiz in den Jahren 1900 bis 1995

2.2 Auswirkungen der Ammoniak-Emissionen

Hohe NH₃-Konzentrationen führen beim Menschen zu Verätzungen der Atemwege und Augen. Gemäss Untersuchungen in Schweinehaltungsbetrieben (Keck 1997) wird die Maximale Arbeitsplatzkonzentration für Ammoniak (MAK-Wert), bei welcher die Gesundheit der Beschäftigten nach aktuellem Kenntnisstand im allgemeinen nicht gefährdet wird, zeitweise überschritten. Auch die in der Atmosphäre gebildeten Aerosole können die menschliche Gesundheit direkt beeinträchtigen. Bei den Tieren verringern hohe Konzentrationen die Vitalität sowie die Futterverwertung und begünstigen Infektionen der Atemwege. Die gesundheitsschädigenden Folgen von Ammoniak sind aber insgesamt deutlich weniger schwerwiegend als etwa diejenigen von Stickoxiden (NO_x).

Für die Landwirtschaft stellen die Ammoniak-Emissionen einen ernst zu nehmenden Verlust an Stickstoffdüngern dar, wobei auch die Unsicherheit über das Ausmass der Verluste und damit über die Düngungswirkung eine Rolle spielt. Im weiteren ist Ammoniak an der Schädigung von Bauwerken mitbeteiligt (Spieck et al. 1990).

Von zentraler Bedeutung sind aber die Auswirkungen der Ammoniak-Emissionen auf die Umwelt. Die erhöhten Stickstoff-Depositionen haben insbesondere eine Eutrophierung und Bodenversauerung zur Folge:

Eutrophierung: Übersteigt der N-Eintrag in einem Oekosystem dessen Aufnahmekapazität, führt dies zu einer Stickstoff-Anreicherung im Boden, was mit erhöhter Nitratauswaschung, einer Verschiebung der Artenzusammensetzung und einer Artenverarmung verbunden ist. Das mit dem N-Eintrag ausgelöste verstärkte Wachstum kann die Anfälligkeit der Pflanzen für sekundäre Stressfaktoren wie Schädlinge, Krankheiten, Windfall und Frost erhöhen. Betroffen sind besonders natürliche, N-limitierte Ökosysteme. Der kritische N-Eintrag, oberhalb welchem bei längerfristiger Einwirkung negative Auswirkungen zu befürchten sind, wird als "critical load" angegeben. Er liegt für Wälder pro Hektare und Jahr zwischen 7 und 30 kg N und wurde 1990 in 98 % der Wälder der Schweiz überschritten. Eine deutliche Überschreitung ergab sich auch auf Hochmooren und artenreichen Wiesen der Voralpen- und Juraregionen (Rhim 1996).

Bodenversauerung: Bei der Nitrifikation von NH₃ und NH₄⁺ zu Nitrat (NO₃⁻) und bei der Aufnahme von NH₄⁺ durch die Wurzeln werden Protonen freigesetzt, das heisst es erfolgt ein Säureeintrag in die Umgebung. Dieser erhöht die Nährstoffauswaschung (Ca, K, Mg) und beeinträchigt das pflanzliche Wachstum. In der Schweiz hat die Bodenversauerung dank der hohen Pufferfähigkeit tonreicher Böden erst in einzelnen Regionen ein kritisches Niveau erreicht (Menzi et al. 1997). Zudem trägt Ammoniak zum sauren Regen bei. NH₃ kann zwar Säuren in atmosphärischen Wassertröpfchen neutralisieren, seine puffernde Wirkung beschleunigt aber die pH-abhängige Oxidation von SO₂ durch Ozon zu Schwefelsäure (BUWAL 1993).

2.3 Ammoniak-Emissionen und Landwirtschaft

Stickstoff wird von Lebewesen zum Aufbau von Proteinen oder zur Energiegewinnung benötigt. Der elementare Stickstoff aus der Luft kann nur durch spezielle Organismen fixiert werden. Die übrigen pflanzlichen und tierischen Lebewesen nehmen Stickstoff mit anorganischen oder organischen Verbindungen auf. Überschüssiger Stickstoff wird in verschiedenen Formen abgegeben. Landtiere scheiden ihn wegen der Toxizität von Ammoniak als Harnstoff oder Harnsäure aus. Im Harn machen diese leicht abbaubaren Moleküle den grössten Teil des Stickstoffs aus. Demgegenüber liegen im Kot über 70 % des Stickstoffs in schlecht abbaubaren, organischen Verbindungen vor (Trunk 1995).

Sobald der Harn mit Kot in Kontakt kommt, wandeln ureaseaktive Bakterien den Harnstoff in Ammonium (NH_4^+) um. Die Umwandlung erfolgt am schnellsten in schwach basischem Milieu (pH 7,8 bis 8,8) und bei hohen Temperaturen. Ammonium befindet sich in der Lösung in einem Gleichgewicht mit Ammoniak ($NH_4^+ + OH^- \leftrightarrow NH_3^- + H_2O$). Das Gleichgewicht verschiebt sich ebenfalls bei hohem pH und hoher Temperatur in Richtung Ammoniak. Das Ammoniak in der Lösung steht seinerseits in einem temperaturabhängigen Gleichgewicht mit dem Ammoniak in der Atmosphäre. Dabei ist die NH_3 -Verflüchtigung pro Zeiteinheit abhängig von der Differenz der NH_3 -Partialdrucke sowie von der Grösse der Grenzfläche zwischen der flüssigen und gasförmigen Phase (Borka 1994). Die Ammoniak-Emissionen der Tierhaltung können grundsätzlich nicht verhindert, sondern höchstens vermindert werden.

Tabelle 1 gibt eine Übersicht über die gesamtschweizerischen Ammoniak-Emissionen im Jahr 1994. Aus der Landwirtschaft stammen 87 % der Emissionen. Diese wiederum betreffen zu rund 90 % die Nutztierhaltung.

Tabelle 1. Ammoniak-Emissionen in der Schweiz im Jahr 1994

Emissionsquellen	Ammoniak-	Prozentanteile		
	Emissionen (kt N pro Jahr)	Total	Nur Land- wirtschaft	
Rindvieh	33,6	57 %	65 %	
Schweine	9,1	16 %	` 18 %	
Übrige Nutztiere	3,1	5 %	['] 6 %	
Mineraldünger	3,1	` 5 %	6 %	
Andere ¹⁾	2,5	4 %	5 %	
Landwirtschaft total	51,6	87 %	100 %	
Industrie, Gewerbe, Verkehr	3,9	7 %	-	
Menschen, Haustiere	2,8	5 %	•	
Natürliche Quellen	0,7	1 %	. :	
Total	59,0	100 %		

¹⁾ Kulturpflanzen, Klärschlammaustrag

3. Methode zur Berechnung der Kosten

3.1 Einzelbetriebliche Optimierung

3.1.1 Vorteile der linearen Optimierung

Die Massnahmen zur Minderung von Ammoniak-Emissionen sind betriebswirtschaftlich zu beurteilen. Es interessieren die Auswirkungen auf die Einkommenssituation landwirtschaftlicher Betriebe und auf den landwirtschaftlichen Sektor insgesamt. Betriebswirtschaftliche Planungen sind grundsätzlich mit Voranschlagmethoden oder mit Optimierungsmethoden möglich.

Das Optimierungsverfahren der linearen Programmierung (LP) wird gewählt, weil:

- die günstigste Massnahmenkombination mitsamt einer Anpassung der Produktionsstruktur des Betriebes nur mit einer Optimierung eindeutig bestimmt werden kann;
- die optimalen Lösungen für verschiedene Reduktionsszenarien und Rahmenbedingungen mit einem Optimierungsprogramm einfach untersucht werden können;
- an der FAT ein gut ausgebautes einperiodisches Betriebsmodell als Grundlage zur Verfügung steht (Malitius 1996).

Èin lineares Programmierungsmodell (LP-Modell) baut auf einem linearen Gleichungssystem auf, das aus einer Zielfunktion und einer Vielzahl von Restriktionen besteht. Es lässt sich in Matrixschreibweise wie folgt formulieren:

Zielfunktion:

 $c_n * x_n \rightarrow max$

Restriktionen:

 $A_{mn} * X_n \le b_m$

 $X_n \ge 0$

In einfachen Modellen stellen die Variablen x_n Produktionsverfahren dar, zum Beispiel den Anbau von Weizen oder die Produktion von Milch, und die Koeffizienten cn deren Deckungsbeiträge. Das Niveau dieser Aktivitäten, das heisst die Anzahl Einheiten wie Hektaren oder Kühe, wird bei der Modelloptimierung bestimmt. Dazu wird die Zielfunktion maximiert, wobei gleichzeitig die Restriktionen eingehalten werden müssen. Diese sind durch mehrere Ungleichungen definiert, in denen die Produktionskoeffizienten am (Matrix Am) den Bedürfnissen einer Einheit der Aktivitäten nach begrenzten Faktoren entsprechen, zum Beispiel nach Ackerfläche oder Stallplätzen, und die Koeffizienten b_m die Verfügbarkeit dieser Faktoren angeben. Die Aktivitäten dürfen keine negativen Werte annehmen. In grösseren Modellen werden die Produktionsfaktoren als separate Aktivitäten dargestellt und deren Umfänge somit modellintern bestimmt. Die Koeffizienten c_n geben dabei, mit negativem Vorzeichen, die Kosten dieser Faktoren an. Zudem können Aktivitäten eingebaut werden, die nicht in die Zielfunktion einfliessen, wie beispielsweise die anfallende Hofdungermenge. Im weiteren sind die Restriktionen auch als "grösser-gleich"-Bedingungen oder sogar als Gleichungen formulierbar. So kann beispielsweise in einer einfachen Bilanzierungsgleichung die gesamte Güllemenge verschiedener Tieraktivitäten summiert werden. Die Optimierung des ganzen Gleichungssystems erfolgt mit dem Simplexalgorithmus, wofür spezielle EDV-Programme bestehen.

3.1.2 Aufbau des Betriebsmodells

Abbildung 4 gibt einen schematischen Überblick über den Aufbau des Modells. Dem modellierten Betrieb stehen verschiedene Betriebszweige des Pflanzenbaus und der Tierproduktion zur Auswahl, die über das lineare Gleichungssystem direkt oder indirekt an einen Bedarf an Flächen, Arbeitskräften, Maschinen, Einrichtungen und Betriebsmitteln gebunden sind, und die bestimmte Erträge abwerfen. Im monetären Bereich des Modells wird über eine Erfolgsrechnung das ländwirtschaftliche Einkommen berechnet. Nicht voll beanspruchte Familienarbeitskräfte können teilweise einen Nebenerwerb aufnehmen. Unter Einhaltung der Restriktionen bestimmt das Modell diejenige Produktionsstruktur, die zu einem maximalen Gesamteinkommen führt.

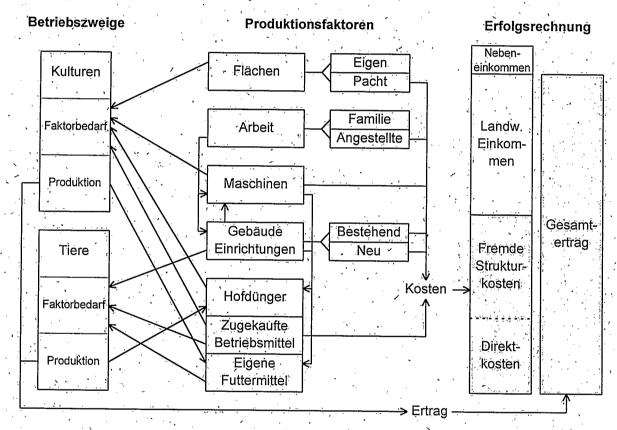


Abb. 4. Schematische Struktur des LP-Modells zur Abbildung verschiedener Betriebstypen

Der Arbeitszeitbedarf ist auf der Grundlage des Arbeitsvoranschlags der FAT (Näf 1996) periodenweise bilanziert. Näf unterteilt ein Anbaujahr in acht Sommerperioden und eine Winterperiode. Der Beginn und die Länge der Perioden sind in Abhängigkeit der Region (Höhenlage) und der Produktionsstruktur (Acker-/Futterbau) definiert. Weil im Modell die Ausrichtung eines Betriebstyps auf Acker- oder Futterbau erst mit der Optimierung bestimmt wird, sind für alle Betriebe Ackerbauperioden unterstellt. Die Arbeiten im Futterbau werden im Falle einer Nichtübereinstimmung der Acker- und Futterbauperioden entsprechend der Überlappung aufgeteilt. In den Sommerperioden sind die verfügbaren Tage für die Feldarbeiten und die Futterkonservierung eingeschränkt.

Die wichtigsten Grössen zur Definition des im Modell abzubildenden Betriebstyps sind die landwirtschaftliche Nutzfläche, die maximale Ackerfläche, der familieneigene Arbeitskräftebestand, das Milchkontingent, die bestehenden baulichen Einrichtungen und die zugelassenen Betriebszweige der Tierhaltung und des Pflanzenbaus. Zudem kann verlangt werden, dass die IP- oder Bio-Anforderungen eingehalten werden. Es wird unterschieden zwischen dem Tal- und Berggebiet mit unterschiedlichen Erträgen, Hangneigungsstufen und Beiträgen.

3.1.3 Abbildung der Stickstoffflüsse im Modell

Um die Ammoniak-Emissionen im Modell abzubilden, wurden die Bereiche der Fütterung, Aufstallung, Hofdüngerlagerung und Hofdüngeranwendung ausgebaut. Berücksichtigt sind die bezüglich Emissions- und Kostenunterschieden relevanten Systeme und Verfahren. Das Modell hat zudem die Möglichkeit, Massnahmen zur Reduktion der Emissionen zu ergreifen. Abbildung 5 gibt eine schematische Übersicht über den Hofdüngerbereich im Modell.

In der Tierhaltung sind pro Tierkategorie verschiedene Leistungsstufen formuliert. Bei den Milchkühen zum Beispiel stehen dem Betrieb vier Kuhtypen mit jährlichen Milchleistungen zwischen 4500 kg und 7500 kg zur Auswahl. Dabei darf das Herdenmittel die vorgegebene

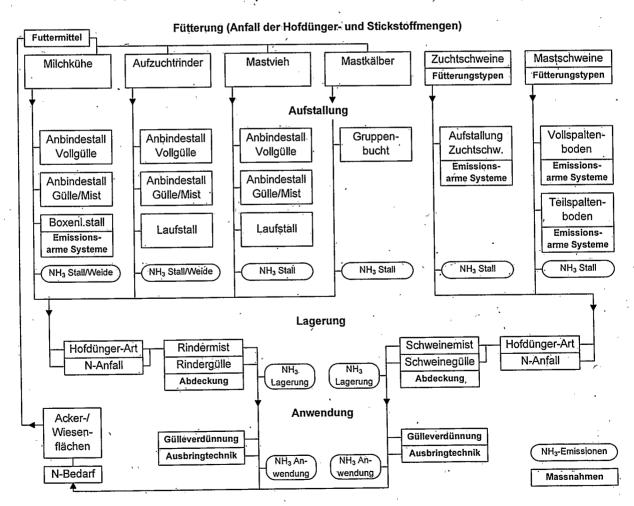


Abb. 5. Schematische Darstellung der Hofdünger-Flüsse im Modell

maximale Leistung nicht überschreiten. Die Zusammenstellung der Futterration erfolgt für das Rindvieh modellintern mit der Optimierung. Die Bedürfnisse der Tiere werden periodenweise gedeckt, wobei eine Reihe von Fütterungsrestriktionen erfüllt werden muss (maximale TS- und Rauhfutter-TS-Aufnahme, minimale NEL-, APD-, Rohprotein- und Rohfaseraufnahme). Bei der Schweinehaltung sind im Modell vereinfachend verschiedene zur Auswahl stehende Fütterungstypen mit fester Ration formuliert. Die in den Futtermitteln enthaltene N-Menge abzüglich der N-Bindung durch Wachstum und Produktion ergibt die N-Ausscheidung.

Die Ammoniak-Emissionen im Stallbereich hängen vom Aufstallungssystem ab, das entweder fest vorgegeben oder durch den Optimierungsprozess ausgewählt werden kann. Bei bestimmten Stallsystemen können die Emissionen durch spezielle, mit Kosten verbundenen Massnahmen vermindert werden. In der Milchviehhaltung sind die Aufstallungssysteme zusätzlich unterteilt nach dem Umfang der Weidehaltung und damit nach dem auf der Weide anfallenden Hofdünger. Im Modell steht also für jede Tierkategorie eine Reihe von Stalltypen zur Auswahl, welche sich nach Aufstallungssystem und Weidedauer unterscheiden.

Die in Abhängigkeit vom Stalltyp anfallenden Hofdüngerarten und -mengen werden in einer vorhandenen oder neu zu bauenden Einrichtung gelagert. Bei offenen Lagerungsbehältern für Gülle können die Emissionen durch Abdeckungsmassnahmen reduziert werden. Eine Gülleverdünnung, welche die Emissionen bei der Anwendung verringert, ist in der Sommerund/oder Winterperiode möglich.

Die Anwendung der Hofdünger erfolgt unter Beachtung allfälliger Einschränkungen (Anwendungspotentiale) mit einer frei wählbaren und bestimmte Emissionen verursachenden Technik. Die Düngungswirksamkeit hängt dabei von der Hofdüngerart, der Vegetation (Wiese/Acker) und der Ausbringungsperiode ab. Zudem wird angenommen, dass der durch die Reduktion der Ammoniak-Emissionen eingesparte Stickstoff vollständig pflanzenverfügbar wird.

Die Stickstoffflüsse in den Bereichen von der Fütterung bis zur Höfdüngeranwendung sind im Modell miteinander verbunden. Eine Reduktion der Emissionen in einem Bereich führt deshalb zu höheren Stickstoffgehalten der Hofdünger in den nachfolgenden Bereichen. Die Massnahmen können teilweise kumuliert werden. Dabei entspricht die Wirkung einer Kombination zweier Massnahmen nicht der Summe der Einzelmassnahmen. Bei Fütterungsmassnahmen wird das Verlust- und damit auch das Einsparungspotential der Massnahmen in den nachfolgenden Bereichen vermindert. Bei einer Kombination der Massnahmen in den Bereichen Stall, Lagerung und Ausbringung dagegen liegt das gesamte Reduktionspotential etwas höher als die Summe der einzelnen Potentiale, weil durch erhöhte N-Gehalte der Hofdünger in nachfolgenden Bereichen das Verlust- und somit auch das Reduktionspotential ansteigt.

Eine Darstellung der wichtigsten Modellgleichungen zur Berechnung der Ammoniak-Emissionen ist in Anhang A enthalten.

3.1.4 Berechnung des einzelbetrieblichen Einkommensverlustes

Die Auswirkungen der Massnahmen zur Reduktion der Ammoniak-Emissionen werden für bestimmte Betriebstypen untersucht. Zuerst wird eine Referenzlösung ohne Massnahmen berechnet. Unter Einhaltung der Restriktionen maximiert der Modellbetrieb das Gesamteinkommen. Danach wird der Betrieb gezwungen, seine Ammoniak-Emissionen schrittweise zu reduzieren. Das Modell passt sich so an, dass die Einkommensverluste so gering wie möglich ausfallen. Daraus ergibt sich die Reihenfolge der Massnahmen. Aus den Modellösungen lässt sich der Verlauf des Einkommensrückgangs mit zunehmender Emissionsreduktion bestimmen. In Abbildung 6 ist eine solche Kurve dargestellt. In der Regel wird sie progressiv ansteigen.

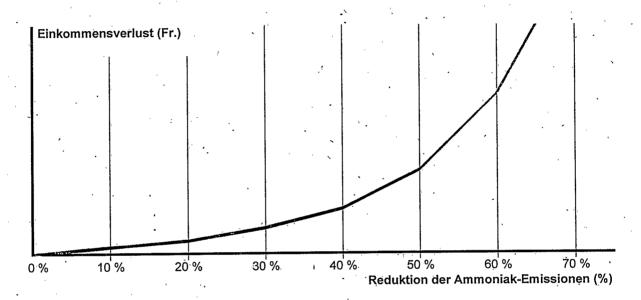


Abb. 6. Darstellung des Einkommensverlusts bei einer Emissionsreduktion

3.1.5 Berücksichtigung der zeitlichen Einflussfaktoren

Wird eine Reduktion der Ammoniak-Emissionen nicht unmittelbar, sondern nach Ablauf einer bestimmten Zeitspanne verlangt, so können sich die für den Betrieb günstigsten Massnahmen aufgrund der wirtschaftlichen und produktionstechnischen Rahmenbedingungen ändern. Es werden deshalb Modellösungen für das Ausgangsjahr 1994 und für das Jahr 2002 berechnet. Dieser Planungshorizont wurde auch im Bericht "Stickstoffhaushalt Schweiz" (Biedermann et al. 1996) gewählt.

Für das Jahr 1994 werden die Modellbetriebe vorerst unter Annahme der konventionellen Landbauform optimiert. Gemäss Evaluationskonzept des BLW sollen bis zum Jahr 2005 90 % der Betriebe am IP- oder Bio-Programm nach Art. 31b LwG teilnehmen (BLW 1995a). Um den reinen Umstellungseffekt zu untersuchen, werden die Betriebe im Jahr 1994 zusätzlich mit integrierter Landbauform gerechnet. Die Wirkung einer Umstellung auf biologischen Landbau wird in einer separaten Rechnung untersucht. Im Jahr 2002 wird mit Ausnahme der intensiven Schweinehaltungsbetriebe die Integrierte Produktion unterstellt. Ausgehend von den Lösungen

im Jahr 2002 werden die erlaubten Ammoniak-Emissionen auf den einzelnen Betriebstypen schrittweise gesenkt.

Grundsätzlich werden mit den Modellrechnungen verschiedene Zustände miteinander verglichen (komparativ-statisches Modell), das heisst Kosten für die nötigen Anpassungsprozesse sind nicht berücksichtigt. Besonders bei baulichen Massnahmen zur Reduktion der Ammoniak-Emissionen ist aber von den bestehenden Strukturen auszugehen. Die Betriebstypen werden deshalb mit vorhandenen Gebäuden und Inneneinrichtungen ausgestattet. Für diese fallen auch bei einer Nichtbenutzung Kosten an, lediglich einige variable Kosten wie Reparaturen werden reduziert. Die Situation von Betrieben, die neu investieren, wird gesondert betrachtet. Für solche Betriebe könnte der direkte Neubau emissionsarmer Systeme kostengünstiger sein als für Betriebe, die bestehende Einrichtungen umbauen oder ersetzen müssen.

3.2 Hochrechnung der einzelbetrieblichen Ergebnisse

Die einzelbetrieblichen Modellergebnisse bilden die Grundlage für die Hochrechnung auf die Sektorebene. Mit verschiedenen Betriebstypen sind deshalb die bestehenden Strukturen in bezug auf die Möglichkeiten zur Emissionsminderung und die Produktionskosten möglichst gut widerzugeben. Die Definition der Betriebstypen stützt sich hauptsächlich auf die eidgenössische Betriebszählung 1990 (Bundesamt für Statistik 1992).

3.2.1 Bestimmung geeigneter Betriebstypen

Die Betriebsstruktur beeinflusst die Ammoniak-Emissionen durch verschiedene Faktoren wie Tierkategorie, Fütterung, Aufstallung, Hofdüngerlagerung und -anwendung. Um die Kombinationsmöglichkeiten dieser Faktoren einzuschränken, werden eher spezialisierte Betriebstypen gebildet. Dies erlaubt auch eine Zuordnung der Massnahmen bei der Hofdüngerlagerung und -anwendung zu den entsprechenden Tierkategorien. Bei der Fütterung erfolgt keine spezielle Unterscheidung zwischen den Betriebstypen. Für die Referenzlösungen wird in der Schweinefütterung mit durchschnittlichen N-Ausscheidungen nach heutigen Richtwerten (FAP, RAC, FAC 1994) gerechnet, und die Vorgaben der Rindviehhaltungsbetriebe (insbesondere Futterlager) werden so bestimmt, dass die Zusammensetzung der Futtermittel ebenfalls zu durchschnittlichen Ausscheidungen führt. Im Bereich der Aufstallung werden Betriebstypen mit den häufigsten und bezüglich Ammoniak-Emissionen relevantesten Systemen gebildet. Entsprechend dem Stallsystem benötigen die Betriebstypen Hofdüngerlager für Mist oder Gülle. Für die Unterscheidung zwischen offenen und geschlossenen Güllebehältern werden nicht separate Betriebstypen definiert, sondern Durchschnitts-Behälter abgebildet. Deshalb müssen die Emissionen und Kosten im Modell auf eine Einheit Hofdungermenge oder Lagerraum bezogen werden, das heisst mit zunehmender Grösse linear ansteigen. Ebenso wird, allerdings getrennt zwischen Tal- und Bergbetrieben, mit durchschnittlichen Verhältnissen bezüglich Weideregime, Hangneigungsstufen und Anwendungspotentialen bei der Hofdüngerausbringung gerechnet. Je nach Betriebstyp unterschiedlich sind dagegen - in Abstimmung mit den vorhandenen Tierkategorien - die vorgegebenen Anteile an ackerfähigem Land.

Die Ertragsverhältnisse und die Produktionsbedingungen bestimmen die Höhe der Produktionskosten. Deshalb ist zwischen Tal- und Berggebiet sowie zwischen kleineren und grösseren Betrieben bezüglich Flächenausstattung und Tierzahl zu unterscheiden.

Tabelle 2 enthält die wichtigsten Kriterien zur Definition der Betriebstypen.

Tabelle 2. Kriterien für die Bildung der Modell-Betriebstypen

Kriterium	Ausprägungen				
Region	Talgebiet / Berggebiet				
Tierkategorie	Milchkühe / Mutterkühe / Aufzucht / Mastkälber / Mastrinder / Mastschweine / Zuchtschweine				
Aufstallung Rindvieh	Anbindestall mit Schwemmentmistung / Anbindestall mit Gülle/Mist-System / Boxenlaufstall / Tiefstreustall / Tretmiststall				
Aufstallung Schweinemast	Vollspalten / Teilspalten ¹⁾				
Aufstallung Schweinezucht	Einzelstand ²⁾				
Tierbestand	Gross / klein				
Tierbesatz	Hoch / tief				
Ackerflächenanteil	Hoch / tief				

¹⁾ Etwa 5-10 % der Mastschweine werden in Einstreu- oder Tiefstreusystemen gehalten. Auf diese Systeme wird einfachheitshalber verzichtet. Es wird angenommen, dass etwa 70 % der Schweine auf Vollspalten- und 30 % auf Teilspaltenböden gehalten werden (Schätzung FAT). Für die Stall-Emissionen in der Schweinehaltung haben Menzi et al. (1997) nicht zwischen verschiedenen Aufstallungssystemen unterschieden.

3.2.2 Aggregierung zur gesamtschweizerischen Kostenkurve

Für jeden Betriebstyp werden die Ammoniak-Emissionen, ausgehend von der Referenzlösung, schrittweise gesenkt. Die Betriebe ergreifen dabei diejenigen Massnahmen mit den geringsten Einkommensverlusten. Durch eine Hochrechnung der Modellergebnisse gemäss der Vertretung der einzelnen Betriebstypen in der Grundgesamtheit ergibt sich der gesamtschweizerische Emissions- und Einkommensrückgang. Dazu werden zuerst die Ergebnisse für die Jahre 1994 und 2002 ohne Zwang zur Emissionsminderung hochgerechnet. Anschliessend erfolgt die Hochrechnung der Ergebnisse des Jahres 2002 mit zwangsweise reduzierten Emissionen. Dabei müssen nicht alle Betriebstypen die gleiche prozentuale Reduktion aufweisen. Die Reihenfolge der hochzurechnenden Reduktionsschritte richtet sich nach dem zusätzlichen Einkommensverlust pro Mengeneinheit Emissionsreduktion. So könnte zum Beispiel auf einem Betriebstyp der Reduktionsschritt von 10 % auf 20 % pro kg N einen geringeren Einkommensverlust verursachen als auf einem anderen Betriebstyp der Schritt von 0 % auf 10 %.

²⁾ Um das Modell zu vereinfachen, wird vom Einzelstand ausgegangen, obwohl etwa 50 % der Galtsauen in Gruppen gehalten werden und etwa 10 % der säugenden Sauen sich frei bewegen können (Schätzung FAT).

4. Datengrundlagen und deren Einbau in das Betriebsmodell

4.1 Produktionstechnische und wirtschaftliche Daten

Die wichtigsten Datengrundlagen für das Modell sind in Tabelle 3 zusammengestellt. Es wurden hauptsächlich Publikationen und Versuchsergebnisse der Forschungsanstalten und Beratungszentralen verwendet. Das Modell wurde nicht neu erstellt, sondern auf der Grundlage der Arbeiten an der FAT und am IAW der ETH Zürich der Problemstellung entsprechend erweitert. Nicht berücksichtigt ist die Haltung von Geflügel, Pferden, Schafen und Ziegen. Die Ammoniak-Emissionen dieser Nutztiere betrugen 1994 6 % der landwirtschaftlichen bzw. 5 % der gesamtschweizerischen Emissionen (vgl. Tabelle 1, S. 14).

Tabelle 3. Datenquellen des LP-Modells

Quelle	Verwendung der Daten
Deckungsbeitragskataloge LBL, FiBL	Produktionsverfahren und Direktkosten
Ökopilotbetriebsnetz BLW	Produktionsverfahren Pflanzenbau
Versuche Chaiblen/Burgrain FAT	Erträge Pflanzenbau
Grundlagen für die Düngung FAP, RAC, FAC	Nährstoffbedarf, Hofdüngeranfall und -verfügbarkeit
IP-/Bio-Mindestanforderungen BLW	IP-/Bio-Anforderungen
Fütterungsempfehlungen Wiederkäuer FAG	Fütterung Rindvieh
Fütterungsempfehlungen Schweine FAG	Fütterung Schweine
Arbeitsvoranschlag FAT	Arbeitsbedarf
Preisbaukașten FAT	Gebäude- und Einrichtungskosten
Maschinenkosten FAT	Maschinenkosten
Direktzahlungsverordnungen	Direktzahlungen
Zentrale Auswertung FAT	Allgemeine Betriebskosten, Eigenkapital, u.a.

Für die Berechnung der Modellösungen zum Zeitpunkt 2002 sind Annahmen über den technischen Fortschritt und über Preis- und Kostenentwicklungen notwendig. Die entsprechenden Koeffizienten sind in den Tabellen 4 bis 8 enthalten. Die Ertragsprognosen basieren auf Expertenbefragungen (Malitius 1996). Aus derselben Arbeit sind die Schätzungen über die Entwicklung der Preise und Direktzahlungen entnommen, die in Absprache mit dem BLW bestimmt wurden. Diese Annahmen beziehen sich auf das Jahr 1995. Für die Modellrechnungen wurde die Veränderung zwischen 1994 und 1995 mitberücksichtigt.

Für allgemeine Lohnarbeiten Dritter werden im Jahr 2002 Lohnkosten von Fr. 25.-/h angenommen (1994: Fr. 21,56/h). Bei anspruchsvollen Arbeiten wird teilweise ein höherer Ansatz verwendet. Nebenerwerbsarbeiten des Betriebsleiters sind, bei einem Lohn von Fr. 22,80/h (1994: Fr. 19,60/h), nur im Winter zugelassen und erlangen damit keine grosse Bedeutung.

Tabelle 4. Entwicklung der Naturalerträge im Ackerbau infolge technischen Fortschritts

Kultur	****	Talgebiet					
		Konv.	IP		Bio		ge-
	1994	2002	1994	2002	1994	2002	biet1)
Winterweizen dt/ha	67,5	72,7 (+8.%)	58,4	62,5 (+7 %)	48,1	51,5 (+7.%)	84 %
Sommerweizen dt/ha	· 57,1	61,6 (+8 %)	49,5	52,9 (+ ⁷ %)	40,7	43,6 (+7 %)	85 %
Wintergerste dt/ha	71,0	78,9 (+11 %)	60,2	66,0 (+10 %)	46,0	50,5 (+10 %)	. 71 %
Sommergerste dt/ha	55,9	62,1 (+11 %)	45,6	50,1 (+10 %)	37,1	40,7 (+10 %)	71 %
Körnermais dt/ha	92,8	102,1 (+10 %)	88,2	97,0 (+10 %)	83,3	91,6 (+10 %)	
Silomais dt TS/ha	158,3	167,6 (+6 %)	150,4	159,2 (+6 %)	126,7	134,0 (+6 %)	86 %
Raps dt/há	33,3	37,5 (+13`%)	31,0	33,7 (+9 %)			
Kartoffeln dt/ha	413	438 (+6 %)	392	416, (+6 %)	268	285 (+6 %)	89 %
Zuckerrüben dt/ha	710 ⁻	742 (+5 %)	674	705 (+5 %)			

¹⁾ Naturalertrag Berggebiet im Vergleich zum Talgebiet

Quelle: Malitius 1996 (Berggebiet: SBV 1995 / Zentrale Auswertung FAT)

Tabelle 5. Entwicklung der Naturalerträge im Futterbau und der Leistungen in der Tierhaltung infolge technischen Fortschritts

Wiesentyp	Talgebiet	Berg-	Merkmal	٦ ,	Talgebiet	Berg-
4	1994=2002	geb.1)	<u>.</u>	1994	2002	geb. ¹⁾
KW sehr intensiv	140 dt TS		Milchleistung kg/Jahr	5577	6185 (+11 %)	-400 kg
intensiv	120 dt TS	83.%	Rindviehmast g TZW ²⁾	1184	1222 (+3 %)	
mittelintensiv	100 dt TS	80 %	Schweinemast g TZW ²⁾	685	709 (+4%)	
NW sehr intensiv	120 dt TS		Fut.bedarf Schweine %	100	90 (-10 %)	
intensiv	105 dt TS	83 %	Arbeitsproduktivität, Be	triebsw	/achstum	
mittelintensiv	90 dt TS	80 %	Arbeitsprod. Feld %	100	110 (+10 %).	
wenig intensiv	60 dt TS	80 %	Arbeitsprod. Tiere %	100	´ 104	-
extensiv	30 dt TS	80 %	Betriebswachstum %	100	113 (+13 %)	<u> </u>

¹⁾ Naturalertrag Berggebiet im Vergleich zum Talgebiet Quelle: Malitius 1996 (Naturalerträge Wiesen: Eigene Abschätzung nach Dietl 1986)

Tabelle 6. Preisveränderungen zwischen 1994 und 2002 (Faktorpreise)

Produktionsfaktor	2002 zu 1994	Produktionsfaktor	2002 zu 1994
Saatgut Getreide	-35 %	Pflanzenbehandlungsmittel	o %
Saatgut Mais, Raps	-0 %	Düngemittel	`0%
Saatgut Kartoffeln	-20 %	Übrige Betriebskosten	+16 %
Saatgut Zuckerrüben	+7 %	Maschinen, Gebäude	0 %
Futtermittel	-40 %	Lohnarbeit (1994: Fr. 21,56/h)	+16 %
Zinsen	0 %	Nebenerwerb (1994: Fr. 19,60/h)	+16 %

Quelle; Malitius 1996 -

²⁾ Gramm Tageszuwachs

Tabelle 7. Preisveränderungen zwischen 1994 und 2002 (Produktpreise)

Produkt ,	2002	2002	Einheit	Preis Ko	nv./IP	Preis	Bio
	zu 1995	źu 1994		1994 (Fr.)	2002 (Fr.)	1994 (Fr.)	2002 (Fr.)
Weizen	-40 %	-45 %	dt	93,60	51,60	132,00	72,80
Gerste	-40 %	-42 %	\ dt	62,00	35,70	82,00	47,20
Körnermais	-40 %	-45 %	dt	67,00	36,90	67,00	36,90
Raps	-40 %	-45 %	dt [.]	165,00	99,00	·	
Kartoffeln	-25 %	-25 %	dt	54,00 ¹⁾	.40,50 ¹⁾	61,,00	45,80
Zuckerrüben	-20 %	-19 %	- dt	13,90	11,30		
Milch	-25 %	-25 %	kg	0,97	0,73	1,01 ²⁾	0,832)
Rindfleisch	-25 %	-31 %	kg LG	6,11	4,19	6,11	4,19
Zuchtvieh	-25 %	-28 %	Tier	3640	2634	3640	2634
Schweinefleisch	⁻³⁰ %	-35 %	kg LG	4,19	2,74	4,19	2,74
Ferkel	-30 %	-40 %	Tier	165,30	99,40	165,30	99,40

Tabelle 8. Veränderungen der Direktzahlungen für das Jahr 2002

Direktzahlungsart	2002 zu 1995	2002 zu 1994	Einheit	Beitrag 1994 (Fr.)	Beitrag 2002 (Fr.)	ļ
Anbauprämien Futtergetreide	-100 %	-100 %	ha .	770´	Ō	
Ackerbohnen	-100 %	-100 %	. ha	1260	0	
Extenso-Getreide	-40 %	-55 % ·	ha	800	360	÷
Grünbrache, Buntbrache	-40 %	40 % <u>:</u>	ha	3000	1800	
31a Betriebsbeitrag	+14 %	+37 %	Betrieb	3500	4788	(Tal) ¹⁾
Basisbeitrag (LN)	0 %	0 %	ha	380	380	
Grünlandbeitrag (Grünland)	.0%	0.%	hạ	290	290	(Tal) ¹⁾
31b IP-Betriebsbéitrag	+25 % -	+67 %	Betrieb	1500	2500	
IP-Flächenbeitrag (OA)	+43 %	+150 %	ha.	400	1001	,
IP-Flächenbeitrag (übrige LN)	+175 %	+450 %	, ha.	1.00	550	,
Wiesen extensiv	0 %	+20 %	ha	1000	1200	(Tal) ¹⁾
Wiesen wenig intensiv	0 %	0 %	, hạ	650	650	(Tal) ¹⁾
Hangbeiträge (ab VHZ) 18-35 %	. 0.%	0 %	ha	370	370	
> 35 %	0 %	0 %	, ha	510	510	
Kostenbeiträge (ab VHZ)	0 %	0 %	ha	410	410	(Bergz. 1) ¹⁾

¹⁾ Derselbe prozentuale Kürzungssatz gilt auch für die übrigen Gebiete. Quelle: Malitius 1996 (Veränderung 1994/1995: LBL 1995)

Gilt für Konv. (Sorte Bintje); IP 46,00 bzw. 34,50 (Sorte Désirée).
 Bio-Milchpreis 1994 gemäss Buchhaltungsergebnissen (FAT 1996); 2002 eigene Annahme.
 Quelle: Malitius 1996 (Preisveränderung 1994/1995: LBL 1995)

4.2 Ammoniak-Emissionen und Minderungsmassnahmen

Die folgenden Unterkapitel beschreiben die Grundlagen für die Bestimmung der Ammoniak-Emissionen und der Kosten von Minderungsmassnahmen. In einem ersten Teil werden die bei herkömmlichen Verfahren auftretenden Emissionen aufgeführt. Diese Faktoren haben Menzi et al. (1997) aufgrund umfangreicher Messungen an der FAT und am IUL abgeleitet. Teilweise wurden auch ausländische Versuchsergebnisse auf schweizerische Verhältnisse übertragen. Die weiteren Teile behandeln die Wirkungen und Kosten der Reduktionsmassnahmen in den Bereichen Fütterung, Aufstallung, Hofdüngerlagerung und -anwendung sowie Mineraldüngung. Die Kosten basieren vor allem auf Angaben und Berechnungen der FAT. Berücksichtigt ist die erwartete Entwicklung für das Jahr 2002. Im Vergleich zu 1994 wird dabei von unveränderten Maschinen- und Gebäudekosten, aber erhöhten Arbeitskosten ausgegangen. Auch ist der erwartete technische Fortschritt wie etwa ein verminderter Arbeitsbedarf unterstellt (vgl. S. 23). Im Bereich der Fütterung können die Massnahmen bedeutende Anpassungen nach sich ziehen, zum Beispiel durch eine Extensivierung oder eine Ausdehnung bestimmter Futterflächen. Die wirtschaftlichen Auswirkungen dieser Massnahmen werden deshalb nachfolgend anhand von Modellrechnungen angegeben, in denen der Einkommensverlust bei zwangsweiser Reduktion der N-Ausscheidungen der Nutztiere minimiert wird. In den übrigen Bereichen dagegen erfolgen zum Kostenvergleich der einzelnen Massnahmen Kalkulationen, wobei insbesondere auch die familieneigene Arbeit bewertet wird (Fr. 25.-/h im Jahr 2002).

4.2.1 Emissionen bei herkömmlichen Verfahren

Tabelle 9 enthält die durchschnittlichen Ammoniak-Emissionen in Prozent des jeweiligen Stickstoffgehalts der Hofdünger (nach Menzi et al. 1997), Auf der Weide entweichen lediglich 5 % des ausgeschiedenen Stickstoffs als Ammoniak, weil Kot und Harn getrennt ausgeschieden werden und der Harn vor dem Abbau zu Ammonium im Boden versickern kann. Angesichts der geringeren Effizienz dieses Stickstoffs im Vergleich zum Stickstoff in Gülle und Mist ist aber zu vermuten, dass gleichzeitig die N-Verluste durch Denitrifikation höher sind. Im Stallbereich betragen die NH₃-Emissionen beim Rindvieh-Anbindestall 7 % des ausgeschiedenen N. Beim Laufstall liegen sie um 120 % höher. Die Angaben beruhen allerdings auf wenig Datenmaterial, da freie Lüftungen die Messung des Luftaustausches stark erschweren. In Schweineställen ist mit Verlusten von 15 % zu rechnen. Bei der Lagerung und Anwendung der Hofdünger werden die Emissionen in Prozent des löslichen Stickstoffs angegeben. Umgerechnet auf den Gesamtstickstoff betragen sie im Bereich der offenen Lagerung je nach Hofdüngerart zwischen 8 % und 12 %. Geschlossene Lager reduzieren die Emissionen um 90 %. Weil die Emissionen bei der Güllelagerung stark von der Gülleoberfläche beeinflusst sind, werden sie im Modell in Abhängigkeit der Grösse des Lagerbehälters angegeben. Bei offener Lagerung wird dabei, pro m² Oberfläche und Tag, von Emissionen in der Höhe von 3,5 g (Rindviehgülle) bzw. 6,0 g (Schweinegülle) ausgegangen. Die Emissionen im Bereich der Hofdüngeranwendung betragen für herkömmliche Verfahren (Prallteller, Mistzetter) bezogen auf den löslichen Stickstoff 50 % (Gülle) bzw. 60 % (Mist). Sie können jedoch witterungsbedingt deutlich schwanken.

Tabelle 9. Emissionsfaktoren für Hofdünger (in Prozent des Stickstoffgehaltes)

	Emissionen Rin	dviehhaltung	Emissionen Sch	nweinehaltung
	In % von N _{löslich}	In % von N _{total}	In % von N _{löslich}	In % von N _{total}
Weide	,	5 %		
Stall	.,	7 % (Anbindestall) 15,4 % (Laufstall)	,	15 %
Lagerung (offen)	15 % (Vollgülle) 15 % (Kotarme Gülle) 30 % (Stapelmist) 30 % (Laufstallmist) ²⁾	8 % ¹⁾ .10 % ¹⁾ .8 % ¹⁾ .9 % ¹⁾	12 % (Vollgülle) 30 % (Mist)	8 % ¹⁾ 12 % ¹⁾
Anwen- dung	50 % (Vollgülle) 50 % (Kotarme Gülle) 60 % (Stapelmist) 60 % (Laufstallmist)	26 % ¹⁾ 32 % ¹⁾ 12 % ¹⁾ 13 % ¹⁾	50 % (Vollgülle) 60 % (Mist)	34 % ¹⁾ 20 % ¹⁾

¹⁾ Eigene Umrechnung, gilt bei mittleren Anteilen von löslichem Stickstoff am gesamten Stickstoff.
²⁾ Bei Tiefstreusystemen sind die Emissionen während der Lagerung dem Stallbereich zuzuordnen.
Quelle: Menzi et al. 1997

Tabelle 10 beinhaltet die Berechnung der Emissionen am Beispiel des Anbindestalls mit Schwemmentmistung. Bei einer angenommenen jährlichen Milchleistung von 6000 kg beträgt die N-Ausscheidung nach Richtwerten (FAP, RAC, FAC 1994) 115,5 kg N pro Jahr. Der lösliche Anteil, der etwa dem Anteil an Ammonium-N (NH₄⁺) entspricht, beträgt rund 60 %, wobei Abbauprozesse von organischem N während der Lagerung bereits berücksichtigt sind. Bei angenommenen 80 Tagen Halbtagesweide (8 h/Tag) fallen von diesen 115,5 kg N etwa 8,4 kg auf der Weide an. Davon gehen 5 % als NH3 verloren. Der N-Anfall im Stall beträgt demzufolge 107,1 kg. Weil die Stallflächen auch während der Weideabwesenheit verschmutzt sind, werden die Stall-Emissionen nicht auf den N-Anfall im Stall, sondern auf den gesamten N-Anfall bezogen und für die Weideperiode teilweise reduziert. Bei einer Weide von 8 h pro Tag beträgt diese Reduktion während der Weidetage 20 % (statt 33 % entsprechend dem tieferen Anfall). Die anfallende N-Menge im Stall abzüglich der NH₃-Emission im Stall ergibt die N-Menge für die Lagerung. Vom löslichen N im Stall werden ebenfalls die gesamten Emissionen abgezogen, weil sie aus dieser Teilmenge entweichen. Die Emissionen bei der Lagerung betragen 15 % des löslichen N bei offener bzw. 1,5 % bei geschlossener Lagerung. Im Beispiel wird von 20 % offener Lagerung ausgegangen, was für die Rindviehgülle etwa der heutigen Situation entspricht. Bei der Gülleanwendung entweichen 50 % des löslichen N als NH₃. Die gesamten NH₃-Emissionen betragen somit 37,6 kg N oder 32,6 % der N-Ausscheidung.

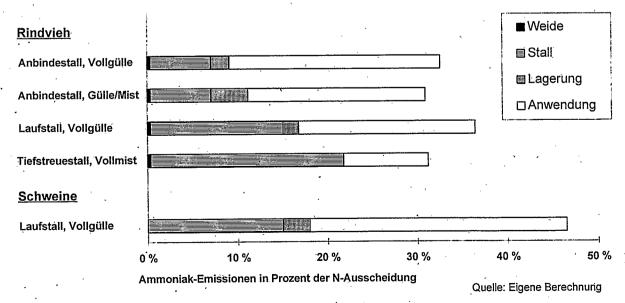
Der lösliche Anteil am ausgeschiedenen Stickstoff (60 % bei Rindvieh-Vollgülle) beträgt bei Harngülle 70 %, bei Stapelmist 30 % (unter der Annahme, dass etwa 57 % des Stickstoffs auf die Harngülle und 43 % auf den Stapelmist entfällt), bei Laufstallmist 40 %, bei Schweinegülle 75 % und bei Schweinemist 50 %. Die an Weidetagen vorzunehmende Reduktion der Emissionen im Stallbereich (20 % bei 8 h/Tag) beläuft sich bei einer Weide von 16 h/Tag auf 40 % (statt 66 %). Nur bei einer Vollweide von 24 h/T. erfolgt eine vollständige Reduktion um 100 %.

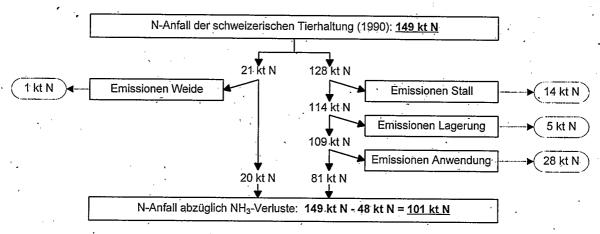
Tabelle 10. Berechnung der Ammoniak-Emissionen am Beispiel des Anbindestalls

	N _{total} (kg N)	Davon N _{iöslich} (kg N)	NH ₃ -Emissionen (kg N)
N-Ausscheidung	<u>115,5 kg N/Jahr</u> (= N _{Aus})	69,3 60 % von N _{total} .	
N auf Weide	8,4 gemäss Weidezeit ¹⁾	5,0 60 % von N _{total}	0,4 5 % von N _{total}
N im Stall	107,1 N _{Aus} - N _{total} auf Weide	64,3 60 % von N _{total}	7,7 7 % von N _{Aus} ²⁾
N für Lagerung	99,4 N _{total} im Stall - NH ₃ Stall	56,6 N _{löslich} im Stall - NH ₃ Stall	2,4 15 % von N _{löslich} ³⁾
N für Anwendung	97,0 N _{total} für Lagerung - NH ₃ Lagerung	54,2 N _{löslich} für Lagerung - NH ₃ Lagerung	27,1 50 % von N _{löslich}
Emissionen total			37,6 bzw. 32,6 % von N _{Aus} .

^{1) 80} Tage Halbtagesweide à 8 h/Tag: N auf Weide = (80*8/24)/365 * N_{Aus}.

Einen Vergleich zwischen verschiedenen Stallsystemen zeigt Abbildung 7. Beim Rindvieh-Anbindestall mit Schwemmentmistung ergibt die Rechnung Emissionen in der Höhe von 32,6 % der N-Ausscheidung (Annahme: 80 Weidetage, 20 % offene Güllelager). Leicht tiefere Emissionen entweichen beim Gülle/Mist-System (30,9 %). Die grössten Emissionen der Rindviehhaltung weist infolge der höheren Emissionen im Stallbereich der Boxenlaufstall aus (36,4 %).




Abb. 7. Ammoniak-Emissionen bei verschiedenen Stallsystemen

²⁾ Bei Weidehaltung sind die Emissionen im Stall zu reduzieren. Dabei beträgt z.B. bei Halbtagesweide (8 h/Tag) die Stall-Reduktion nicht entsprechend der Weidezeit 33 %, sondern nur 20 % (verschmutzte Flächen im Stall auch während Weide): NH₃-Emission = 0,07 * N_{Aus} - 0,07 * N auf Weide * (0,2/0,33).

Bei geschlossenen Behältern sind die Emissionen um 90 % zu reduzieren: NH₃-Emission bei durchschnittlich 20 % offenen Lagern = 0,15 * N_{löslich} für Lagerung * 0,2 ± 0,015 * N_{löslich} für Lagerung * 0,8.

Etwa im Bereich des Anbindestalls liegen die Emissionen des Tiefstreu-Laufstalls (31,2 %). In Schweinegülle ist der Anteil an löslichem Stickstoff im Vergleich zu Rindergülle deutlich höher (75 % statt 60 %). Entsprechend höhere Emissionen (46,5 % der N-Ausscheidung) entstehen beim Schweinestall mit Voll- oder Teilspaltenboden (Annahme: 35 % offene Güllelager).

Abbildung 8 zeigt die Höhe der Ammoniak-Emissionen aus der gesamtschweizerischen Tierhaltung für das Jahr 1990. Von diesen Emissionen entstehen rund 60 % bei der Hofdüngeranwendung (inkl. der wenig bedeutenden Weide-Emissionen), 30 % im Stall und 10 % während der Lagerung. Die nicht als NH₃ entwichene Menge Stickstoff steht Pflanzen nur zur Verfügung, wenn sie nicht durch anderweitige Verluste verlorengeht.

Quelle: Menzi et al. 1997

Abb. 8. Ammoniak-Emissionen aus der schweizerischen Tierhaltung 1990

4.2.2 Verminderung der N-Ausscheidungen über die Fütterung

Die Wirkung einer verringerten N-Ausscheidung auf die Ammoniak-Emissionen ist in Tabelle 11 am Beispiel der Emissionen eines Kuh- bzw. eines Mastschweineplatzes berechnet (Vollgülle-Systeme). Beim Kuhplatz gehen bei einer N-Ausscheidung nach Richtwerten insgesamt 39,6 kg als Ammoniak verloren. Durch eine Reduktion der N-Ausscheidung um 10 % sinken die Emissionen. Im Stallbereich beträgt die Reduktion aber nicht 10 %, sondern nur 5 %, weil sich der Umfang der verschmutzten Flächen nicht ändert und damit im Stall nur etwa 50 % der verminderten N-Ausscheidung reduktionswirksam werden (Annahme Menzi et al. 1997). Bei der Lagerung verringern sich die Emissionen kaum, wenn von derselben Güllegrube (gleiche Oberfläche) ausgegangen wird. Die Emissionen bei der Hofdüngeranwendung nehmen deutlich ab. Sie werden in Prozent des löslichen Stickstoffs bestimmt. In Rindvieh-Vollgülle beträgt der Anteil an löslichem Stickstoff bei einer N-Ausscheidung nach Richtwerten 60 %. Durch die Reduktion der Ausscheidung verringert sich dieser Anteil, weil die reduzierte Menge Stickstoff zu 80 % auf löslichen Stickstoff entfällt (Menzi et al. 1997). Dadurch sinken die gesamten Ammoniak-Emissionen prozentual stärker als die N-Ausscheidungen.

In der Schweinehaltung dagegen bleibt der Anteil an löslichem N auch bei verminderter N-Ausscheidung etwa gleich hoch. Weil die Emissionen im Stallbereich entsprechend der Situation beim Kuhplatz nur um 5 % abnehmen, ergibt sich eine Gesamtreduktion, die prozentual unter der verminderten N-Ausscheidung liegt.

Tabelle 11. Auswirkung einer Reduktion der N-Ausscheidung auf die Emissionen

	Milchkuh-Aı 1 Pla	nbindestall atz (ohne Weide)	Mastschweinestall 1 Platz		
N-Ausscheidung	nach Richtwert	-10 %	nach Richtwert	-10 %	
N-Ausscheidung pro Jahr	115,5 kg N	104,0 kg N	15,00 kg N	13,50 kg N	
Anteil N _{löslich}	60,0 %	57,8 %	75,0 %	75,0 %	
Emissionen Stall	8,1 kg N	7,7 kg N	2,25 kg N	2,14 kg N	
Emissionen Lagerung	1,7 kg N	1,7 kg N	0,48 kg N	0,48 kg N	
Emissionen Anwendung	29,8 kg N	25,3 kg N	4,26 kg N	3,75 kg N	
Emissionen total	39,6 kg N	35,7 kg.N	6,99 kg N	6,37 kg N	
Emissionsreduktion	,	12,2 %		8,9 % _,	

 $^{^{1)}}$ Beim Rindvieh entfällt 80 % (statt 60 %) der N-Reduktion auf $N_{\text{löslich}}$ Quelle: Eigene Berechnung

Die Möglichkeiten zur Reduktion der N-Ausscheidungen über die Fütterung werden in folgende Stufen eingeteilt (nach Menzi et al. 1997):

- Potential 1: Vermeiden von Proteinüberschüssen im Vergleich zu den Empfehlungen
- Potential 2: Weitere Optimierung der Proteinversorgung über die Rationengestaltung
- Potential 3: Spezielle Massnahmen (Reine Aminosäuren, Phasenfütterung etc.)

Im Modell wird die Fütterung von Rindvieh und Schweinen unterschiedlich gehandhabt: Beim Rindvieh werden die Rationen unter Beachtung der Fütterungsrestriktionen (FAG 1994) modellintern zusammengestellt. Die N-Ausscheidung wird dabei über eine Bilanzierung der Zuund Wegfuhr von Stickstoff berechnet und kann somit über die Wahl der Futtermittel reduziert werden. Bei den Schweinen würde eine modellinterne Auswahl der Futtermittel die Ration so optimieren, dass die N-Ausscheidungen bereits in der Ausgangssituation deutlich unter den Richtwerten (FAP, RAC, FAC 1994) lägen. Im Modell sind deshalb verschiedene Schweinetypen mit festen Rationen vorgesehen. Bei den N-Ausscheidungen wird unabhängig von der Ration mit den Richtwerten gerechnet, da auch unterschiedliche Rationen bei entsprechendem Ergänzungsfuttergehalt zu vergleichbaren N-Ausscheidungen führen können. Für die Reduktion der Ausscheidungen wird von den Reduktionspotentialen 1 bis 3 ausgegangen.

Rindviehfütterung

In der Rindviehfütterung wird die Umsetzung von Potential 1 vorausgesetzt (Menzi et al. 1997), weshalb im Modell eine Überschreitung der N-Ausscheidungsrichtwerte nicht erlaubt wird. Bei der Rindviehmast, der Mutterkuhhaltung und der Aufzucht hat dies zur Folge, dass bereits in der Ausgangssituation Futtermittel mit vergleichsweise tiefem N-Gehalt eingesetzt werden müssen. Für die Aufzucht wird zudem verlangt, dass ein Teil des Futters von extensiven bis mittelintensiven Wiesen stammt. Einen Einfluss auf die N-Ausscheidung haben im weiteren die Futterlagerräume (Heu, Silage), die den Modellbetrieben vorgegeben werden. So kann die Bereitstellung von Silageraum einen vermehrten Einsatz von Grassilage zur Folge haben, die im Vergleich zu Heu einen höheren Rohproteingehalt aufweist.

In Tabelle 12 sind die im Modell möglichen Futtermittel und deren Gehalte zusammengestellt. Weide- und Eingrasfutter steht nur in der Sommerperiode für Kühe und Aufzuchttiere zur Verfügung. Die letzte Spalte beinhaltet das Verhältnis zwischen Stickstoff- und NEL-Gehalt. Futtermittel mit tiefen N/NEL-Verhältnis können die N-Ausscheidung reduzieren, solange neben dem minimalen NEL-Bedarf auch die übrigen Fütterungsrestriktionen eingehalten werden.

Tabelle 12. Im Modell angebotene Futtermittel für das Rindvieh

Futtermittel	Intensität und	Bestand ¹⁾	, ``	Gehal	ite pro kg	TŞ	, , ,	N/NEL
			MJ NEL	MJ NEV	g APD	g RP	g RF	(g/MJ)
Grassilage	sehr intensiv	A2 Std. 3	6,1	6,3	79	169	232	4,4
	intensiv	A2 Std. 3-4	5,90	6,05	· 77	156	248	4,2
	mittelintensiv	A2 Std. 4	5,7	5,8	74	143	264	4,0
Belüftungs-	sehr intensiv	A2 Std. 3	5,6	5,7	93	148	236	4,2
heu	intensiv	A2 Std4	5,40	5,38	88 ·	132	263	3,9
	mittelintensiv	A2 Std. 4-5	5,20	5,05	82	115	291	3,5
Dürrheu	sehr intensiv	A2 Std. 4	5,4	5,3	86	125	271	3,7
	rintensiv	A2 Std. 4-5	5,20	5,05	82	115	291	3,5
•	mittelintensiv	A2 Std. 5	5,0	4,8	78	105	310	3,4
i i	wenig intensiv	K Std. 5-6	4,65	4,40	74	103	288	3,5
	extensiv	K Std. 6	4,5	4,2	70	92	.317	3,3 `
Maissilage	Teigreife ·	,	6,4	6,7	72	85	199	2,1
Futtergetr.	Gerste		7,5	8,1	98	132	82	2,8
Sojaschrot			7,8	8,3	261	499	65	10,2
Weidegras	sehr int. / int.	A2 Std. 1-2 ²⁾	6,55	6,85	112	205	180	5,0.
	mittelintensiv	A2 Std. 2 ²⁾	. 6,5	6,8	109	189	190	4,7
	wenig int. / ext.	K Std. 2-3	6,25	6,40	104	177	161	4,5
Eingras-	sehr int. / int.	A2 Std. 2 ²⁾	6,5	6,8	109	189	190	4,7
futter	mittelintensiv	A2 Std. 2-3 ²⁾	6,35	6,60	106	175	206	4,4
	wenig int. / ext.	K Std. 3	6,1	6,2	101	165	171	4,3

¹⁾ A2=ausgewogen, K=Kräuterreich, Stadien von 1 (sehr früh, intensiv) bis 7 (sehr spät, extensiv).

²⁾ Nutzungen im Frühling/Sommer. Für Herbstnutzungen Herabsetzung des Stadiums um ½ Punkt. Quelle: nach Futtermittelgehalten in FAG 1994

Zur Reduktion der N-Ausscheidung und damit der Ammoniak-Emissionen ist im Modell die Möglichkeit vorgesehen, die Zusammenstellung der Ration zu verändern. Dazu können Anpassungen in der Bodennutzung, im Arbeitsaufwand oder bei der Futterlagerung erforderlich sein. Die Modellreaktion wird mitbeeinflusst durch die Annahmen über die Faktorausstattung auf den einzelnen Betriebstypen. Durch die Abweichung von der wirtschaftlich optimalen Ausgangssituation entsteht ein Einkommensverlust. Tabelle 13 enthält für den Milchviehbetrieb mit Boxenlaufstall im Talgebiet (Betrieb T5, vgl. S. 61) die Futterrationen der Kühe in den Jahren 1994 und 2002 sowie deren Anpassung, wenn der Betrieb gezwungen wird, die N-Ausscheidungen zu reduzieren.

Im Jahr 1994, bei konventioneller Bewirtschaftung, ergibt sich unter den gegebenen Rahmenbedingungen und mit der vorhandenen Betriebsstruktur eine N-Ausscheidung, die etwa den Richtwerten entspricht. Im Jahr 2002 wird es für den Betrieb, bei integrierter Bewirtschaftung und gestiegener Milchleistung, bereits ohne Zwang lohnend, die Wiesennutzung teilweise zu extensivieren und im Winter über 2 kg Futtergetreide pro Kuh und Tag einzusetzen. Damit sinken die N-Ausscheidungen im Vergleich zu den Richtwerten um gegen 6 %. Bei einer erzwungenen Reduktion um weitere 5 % (gerundet auf 11,0 %) erhöht der Modellbetrieb den Futtergetreideanteil im Winter, während er auf Grassilage ganz verzichtet. Um den Proteinbedarf zu decken, muss die Sojaschrot-Gabe leicht erhöht werden. Dafür kann im freiwerdenden Siloraum zusätzlich Maissilage gelagert werden, die während der Sommerperiode gefüttert wird. Durch eine deutliche Extensivierung des Futterbaus wird der Proteinüberschuss im Sommer gesenkt. Die Kosten für Futtergetreide und Sojaschrot betragen im Jahr 1994 rund Fr. 7600.- (inkl. Eigenproduktion). Im Jahr 2002 sinken sie trotz der höheren Menge wegen der um 40 % tieferen Kraftfutterpreise sogar ein wenig. Mit der erzwungenen Reduktion der N-Ausscheidungen steigen sie um über Fr. 3000.- oder 40 % an. Als Folge der betrieblichen Umstellung, insbesondere eines tieferen Maschineneinsatzes, beträgt der Einkommensverlust nur etwa die Hälfte dieses Betrages. Der Verlust pro Einheit Emissionsreduktion (kg N) beträgt rund Fr. 21.-.

Tabelle 13. Einkommensverlust bei Fütterungsmassnahmen (Beispiel Milchviehbetrieb, Modellergebnisse)

Jahr :	Redukt. N-Aus-	Winterfütterung (kg TS pro Kuh u. Tag)				Sommerfütterung (kg TS pro Kuh u. Tag)			Kosten Kraft-	Ein- kommen			
	schei- dung ¹⁾	Heu IN ²⁾	Heu EX ³⁾		Mais- silage		Soja- schrot	Gras IN ²⁾	Gras EX ³⁾	Mais- silage	Futter- getr.	futter (Fr.) ⁴⁾	(Fr.)
1994	0,3 %	10,0	<u></u>	2,0	1,3	1,4	`	12,1			0,4	7 615	121.852
2002	5,6 %	6,8	3,9	1,1	2,1	2,4	0,1	11,6	1,5		0,5	7 385	95 478
-	11,0 %	6,3	3,7		2,3	3,2	0,3	7,9	4,3	0,6	0,7	10 534	93 [.] 858
		-0,5	-0,2	-1,1	+0,2	+0,8	+0,2	-3,7	+2,8	+0,6.	+0,2	+3 149	-1 620
	,	Eink	Einkommensverlust pro kg N Emissionsreduktion								21		

¹⁾ Reduktion der N-Ausscheidung im Vergleich zu den Richtwerten nach FAP, RAC, FAC 1994.

²⁾ IN: sehr intensiv bis intensiv.

³⁾ EX: mittelintensiv bis extensiv.

⁴⁾ Inkl. Eigenproduktion zu Zukaufspreisen bewertet.

Schweinefütterung

Gemäss Aussagen von Fachleuten wird die Futterverwertung der Schweine bis zum Jahr 2002 um etwa 10 % verbessert (Malitius 1996). Mit dem Minderverbrauch an Futtermitteln ist auch eine tiefere N-Ausscheidung verbunden. Im Modell wird deshalb angenommen, dass das Potential 1 im Jahr 2002 umgesetzt ist (Tabelle 14). Das Potential 2 umfasst den flächendekkenden Einsatz von Kraftfutter mit reduziertem Rohproteingehalt und Aminosäurenzusatz sowie getrennte Rationen für säugende und tragende Sauen und für Vor- und Endmast. Im Modell wird von einer Verteuerung des Futters um Fr. 27 - pro Tonne TS ausgegangen (3 kg Lysin à Fr. 4.-, 1 kg Methionin à Fr. 5.-, 1,2 kg Threonin à Fr. 8,50). Dies entspricht, bei der erwarteten Abnahme des Futterverbrauchs im Jahr 2002 um 10 %, zusätzlichen Kosten von rund Fr. 4,50 pro Tier oder bei drei Umtrieben Fr. 13,50 pro Platz. Diese Kosten können im Modell je nach gewähltem Schweinetyp etwas höher oder tiefer sein. Die Preise der Aminosäuren werden dabei im Jahr 2002 als unverändert angenommen. Bei sinkenden Preisen würden sich die Kosten entsprechend verringern. Potential 3 beinhaltet zusätzlich zu Potential 2 eine Mehrphasenfütterung, das heisst eine laufende Anpassung des Proteingehaltes an den Bedarf der Tiere sowie weitere Optimierungen der Ration (Zusatz von Tryptophan). Die Futterkosten erhöhen sich zusätzlich zu Potential 2 um Fr. 20.- pro Tonne TS oder rund Fr. 10.- pro Platz. Zur Umsetzung des Potentials 3 ist eine computergesteuerte Fütterung erforderlich. Im Modell wird von den Kosten für eine Trockenfütterungsanlage ausgegangen. Die reduzierten N-Ausscheidungen haben im Modell im weiteren einen erhöhten Mineraldüngerbedarf zur Folge, was Kosten für dessen Zukauf und Ausbringung verursacht.

Tabelle 14. Kosten für die Reduktion der N-Ausscheidung bei Schweinen

Potential	ı	tion N- neidung	, , , , , , , , , , , , , , , , , , , ,				
1: Verbesserte Futterverwertung	10) %	Keine (Zuchtfortschritte und Fütterung)				
2: Zusatz von Aminosäuren	20	%	% Fr. 13,50 (Futtermittel)				
3: Mehrphasenfütterung	28	3%	Fr. 24,00 (Futtermittel) + Fütterungsanlage				nlage
Kosten Fütterungsanlage			Total		Pro Platz		
	,	60 PI,	120 Pl.	480 Pİ.	60 Pl.	120 Pl.	480 Pl.
Jahreskosten ¹⁾ Fr.	4 704	5 792	12 415	78	. 48	26	
Investitionen Fr.		31 784	39 134	.83 884	530	326	175

¹⁾ Zins 3,6 %, Abschreibung 10 %, Reparaturen 1 %, Versicherung 0,2 %

Die Anpassungsreaktion für einen Schweinemastbetrieb mit Teilspaltenboden (Betrieb T3d mit 192 Plätzen, vgl. S. 61) ist in Tabelle 15 ersichtlich. Gemäss Annahmen liegt die N-Ausscheidung im Jahr 2002 bereits 10 % unter den Richtwerten. Die zusätzlichen Futterkosten bei einer Reduktion um 20 % betragen für diesen Betrieb rund Fr. 2600.-. Der Einkommensverlust liegt etwas höher, was vor allem auf den Mehrbedarf an N-Mineraldünger als Folge der tieferen Hofdüngergehalte zurückzuführen ist. Die Realisierung von Potential 3 verursacht Mehrkosten für das Futter und die computergesteuerte Fütterungsanlage von über Fr. 11 600.-.

Tabelle 15. Einkommensverlust bei Fütterungsmassnahmen (Beispiel Schweinemastbetrieb, Modellergebnisse)

	Mehrkos	sten (Jahr 2002)	Einkommensverlust (Jahr 2002)			
Reduktion N-Ausscheidung ¹⁾	Futter (Fr.)	Fütterungsanlage (Fr.)	Total (Fr.)	Pro kg reduziertes N (Fr./kg)		
10 % (Potential 1)	0	. 0	, 0	. 0		
20 % (Potential 2)	2619	0	2 864	25		
28 % (Potential 3)	4545	7119	12 369	56		

¹⁾ Reduktion der N-Ausscheidung im Vergleich zu den Richtwerten nach FAP, RAC, FAC 1994.

4.2.3 Massnahmen im Stallbereich

Menzi et al. (1997) haben die für den Stallbereich vorgeschlagenen Massnahmen zur Minderung der Ammoniak-Emissionen und deren Anwendungseinschränkungen beschrieben. Im folgenden sind die Kosten der einzelnen Massnahmen aufgeführt. Die Preisannahmen gelten für das Jahr 2002, was aber nur für die Betriebskosten von Bedeutung ist, da im Vergleich zu 1994 unveränderte Gebäudekosten unterstellt sind. Einfachheitshalber werden im Modell die Anwendungspotentiale dieser Massnahmen nicht eingeschränkt.

Aufstallung Rindvieh

Die Massnahmen zur Minderung der Ammoniak-Emissionen betreffen beim Rindvieh nur die Boxenlaufställe für Milchkühe mit Vollgülle-System. Für den Tiefstreu-Laufstall und den Anbindestall sind kaum Massnahmen bekannt, zudem sind in letzterem die Emissionen bereits mehr als 50 % geringer als im Laufstall (vgl. Tabelle 9, S. 26). Bei der Rindviehmast ist die Wirksamkeit der Massnahmen gering.

Drei Massnahmen werden dem Milchviehbetrieb mit Boxenlaufstall im Modell angeboten: Optimierte Schiebersysteme, optimierte Schiebersysteme mit Sprayer und Fütterungsbuchten. Die optimierten Schiebersysteme beinhalten eine regelmässige Ingangsetzung mittels Zeitschaltuhr. Mit einem geneigten Boden wird die Wirksamkeit erhöht. Schiebersysteme mit Sprayer reinigen den Boden zusätzlich durch den Einsatz von Wasser. Bei Fütterungsbuchten wird die verschmutzte Fläche durch Abschrankungen vermindert. In Tabelle 16 sind die Jahreskosten der Massnahmen bei einer Stallgrösse von 40 Plätzen enthalten. Unterschieden ist zwischen Kosten, die durch einen Einbau in einen bestehenden Stall verursacht werden, und Zusatzkosten, die bei einem Neubau im Vergleich zu einer herkömmlichen Einrichtung anfallen. Die Zusammensetzung der Kosten und deren Höhe für andere Stallgrössen ist in Anhang B aufgeführt. Für die Modellrechnungen wurden lineare Beziehungen zwischen Stallgrösse und Kosten berechnet, so dass unterschiedliche Bestandesgrössen abgebildet werden können. Bei Neubauten ist angenommen, dass keine Kostenunterschiede zwischen ebenem und geneigtem Boden bestehen. Bei Einbauten ist die Belassung eines ebenen Bodens für Festbodenställe angezeigt, ein Einbau eines geneigten Bodens ist dagegen für Spaltenbodenställe, bei welchen die Spalten sowieso entfernt werden müssen, wegen der höheren Wirksamkeit geeigneter. Rund 80 % der bestehenden Laufställe weisen einen Festboden auf. Im Modell wird mit einem Durchschnittsbetrieb gerechnet, der die Möglichkeit hat, eine Massnahme zum Beispiel nur beim Festboden-Anteil zu ergreifen. Dabei werden nur 80 % der Kosten, aber auch nur 80 % der Emissionsminderung angerechnet. Tabelle 17 enthält für die mittlere Bestandesgrösse der Modellbetriebstypen die Kosten bezogen auf eine Mengeneinheit Emissionsreduktion.

Tabelle 16. Kosten von Massnahmen im Boxenlaufstall

Massnahme	Reduktion	Einbau (4	10 Plätze)	Neubau (40 Plätze)		
	der NH ₃ - Emis- sionen	Investi- tionen pro Platz	Jahres- kosten pro Platz	Investi- tionen pro Platz	Jahres- kosten pro Platz	
Optimiertes Schiebersystem mit ebenem Boden mit geneigtem Boden	5 % 15 %	75 ³⁾ 1511 ⁴⁾	14 127	75 75	14 14	
Schiebersystem mit Sprayer ¹⁾ mit ebenem Boden mit geneigtem Boden	20 % 30 %	1213 ³⁾ 2279 ⁴⁾	200 264	1200 1200	199 199	
Fütterungsbuchten	10 %	188 ³⁾	28 ²⁾	68	- 12 ²⁾	

¹⁾ Zusätzlicher Güllelagerraum nötig (nicht bewertet).

Tabelle 17. Kosten von Massnahmen im Boxenlaufstall pro kg N-Reduktion

Massnahme	Mittlerer	Kosten p	ro Platz ²⁾	Emissions-	Kosten pro kg N		
	Bestand ¹⁾ (PI.)	Einbau (Fr./Pl.)		reduktion ³⁾ (kg N/Pl.)	Einbau (Fr./kg)	Neubau (Fr./kg)	
Optimiertes Schiebersystem mit ebenem Boden mit geneigtem Boden	26,1 26,1	21 155	21 21	0,44 1,31	48 118	48 16	
Schiebersystem mit Sprayer mit ebenem Boden mit geneigtem Boden	26,1 26,1	272 336	271 271 ´	1,75 2,62	156 128	155 103	
Fütterungsbuchten	26,1	33	. 12 .	0,87	. 38	13	

¹⁾ Gewichtete mittlere Bestandesgrösse der Modellbetriebstypen.

Aufstallung Mastschweine

Für die Aufstallung der Mastschweine stehen fünf emissionsarme Systeme zur Auswahl, die bei Ställen mit Voll- und/oder Teilspaltenboden anwendbar sind (Tabellen 18 und 19).

²⁾ Inkl. Mehrarbeit 0,11 h pro Platz und Jahr (Fr. 2,75).

³⁾ Ausgangssituation: Festboden.

⁴⁾ Ausgangssituation: Spaltenboden.

²⁾ Berechnung für den mittleren Bestand; siehe Anhang B.

³⁾ Basierend auf einer NH₃-Emission pro Platz und Jahr von 18,21 kg N (15,4 % der N-Ausscheidung nach Richtwerten bei einer Milchleistung von 6185 kg; keine Weide) und unter Annahme eines Verlustes der eingesparten Emissionen in den nachfolgenden Bereichen von 52 % (Menzi et al. 1997).

Tabelle 18. Kosten von Massnahmen im Mastschweinestall

Massnahme	Reduktion	Einbau (1	20 Pļätze)	Neubau (120 Plätze)		
	der NH ₃ - Emis- sionen	Investi- tionen pro Platz	Jahres- kosten pro Platz	Investi- tionen pro Platz	Jahres- kosten pro Platz	
Buchtengestaltung Vollspaltenboden ¹⁾	25 %	107	14		·	
Spülsystem Vollspaltenboden Teilspaltenboden	30 % 30 %	254 254	. 41 35	254 254	41 . 41	
Schiebersystem Vollspaltenboden Teilspaltenboden	35 % 35 %	295 148	40 21	275 144	38 20	
Biowäscher	30 %	170	45	100	38	
Impulsarme Zuluftführung	20 %	54	5	• 0	· 0	

¹⁾ Umbau in einen Teilspaltenboden; inkl. Mehrarbeit 0,09 h pro Platz und Jahr (Fr. 2,13); nicht mitgerechnet ist die für ein einwandfreies Funktionieren erforderliche Bestandesreduktion um 20 %.

Tabelle 19. Kosten von Massnahmen im Mastschweinestall pro kg N-Reduktion

Massnahme	Mittlerer Bestand ¹⁾ (PI.)	Kosten pro Platż ²⁾		Emissions-	Kosten pro kg N	
		Einbau (Fr./Pl.)	Neubau (Fr./Pl.)	reduktion ³⁾ (kg N/Pl.)	Einbau (Fr./kg)	Neubau (Fr./kg)
Buchtengestaltung Vollspaltenboden	206,6	, 14		0,27	53	
Spülsystem Vollspaltenboden Teilspaltenboden	206,6 24,0	28 125	28 125	0,32 0,32	86 385	86 385
Schiebersystem Vollspaltenboden Teilspaltenboden	206,6 24,0	25 72	23 72	0,38 0,38	67 191	61 190
Biowäscher Vollspaltenboden Teilspaltenboden	206,6	42 73	36 62	0,32 0,32	129 226	110 190
Impulsarme Zuluftführung Vollspaltenboden Teilspaltenboden	206,6 24,0	5 5	0	0,22 0,22	24 24	0

¹⁾ Gewichtete mittlere Bestandesgrösse der Modellbetriebstypen, unterteilt nach Voll-/Teilspaltenboden.

Die erste Massnahme, eine optimierte Buchtengestaltung, bezieht sich auf Vollspaltenböden und beinhaltet im wesentlichen einen Umbau in einen Teilspaltenboden. Das Ziel dieser Massnahme ist die Verringerung der verschmutzten Fläche, indem die Tiere nur den Spalten-

²⁾ Berechnung für den mittleren Bestand; siehe Anhang B.

Basierend auf einer NH₃-Emission pro Platz und Jahr von 2,25 kg N (15 % der N-Ausscheidung nach Richtwerten) und unter Annahme eines Verlustes der eingesparten Emissionen in den nachfolgenden Bereichen von 52 % (Menzi et al. 1997).

boden als Kotplatz benutzen. Um dies zu erreichen, ist ein höheres Platzangebot pro Tier notwendig, das heisst im Modell muss der Tierbestand reduziert werden. Die erforderliche Mehrarbeit betrifft die Arbeitszeitdifferenz zwischen Voll- und Teilspaltenboden.

Das Spülsystem unter dem Spaltenboden kann sowohl bei Voll- als auch bei Teilspaltenböden eingebaut werden. Bei diesem System wird der Güllekanal regelmässig mit der abgesetzten Dünngülle durchgespült. Bei Ställen mit mehr als einer Buchtenreihe ist für die Umspülleitung ein Dreiweghahn nötig. Für den Betrieb des Spülsystems fallen je nach Stallgrösse Stromkosten während 60 bis 120 Minuten pro Tag an.

Ebenfalls in Ställe mit Voll- oder Teilspaltenboden kann ein automatisiertes Schiebersystem unter den Spaltenboden eingebaut werden. Für den Vollspaltenboden ist als Variante zusätzlich ein Umbau in einen Teilspaltenboden berechnet (Anhang B). Dabei reduzieren sich die Kosten für das Schiebersystem. Damit aber nur der Spaltenboden als Kotplatz benutzt wird, ist wiederum eine grössere Fläche pro Tier notwendig.

Ein Biowäscher kann in Ställe mit Zwangsentlüftung und zentraler Abluftführung eingebaut werden. Bei einem Einbau in einen bestehenden Stall muss die bisherige Lüftung ersetzt werden.

Mit der impulsarmen Zuluftführung wird die Luftgeschwindigkeit über der verschmutzten Fläche reduziert. Der Einbau verursacht im Vergleich zu den übrigen Systemen die geringsten Kosten. Bei einem Neubau kann das System sogar ohne Mehrkosten integriert werden.

Aufstallung Zuchtschweine

Die Massnahmen für Mastschweineställe sind mit Ausnahme der ersten (Umbau in Teilspaltenboden) auch bei Zuchtschweinen möglich. Dafür steht als zusätzliche Massnahme die Reduktion der Güllefläche im Kanal zur Auswahl (Tabellen 20 und 21).

Tabelle 20. Kosten von Massnahmen im Zuchtschweinestall

Massnahme	Reduktion	Einbau (3	0 Plätze)	Neubau (30 Plätze)			
,	der NH ₃ - Emis- sionen	Investi- tionen pro Platz	Jahres- kosten pro Platz	Investi- tionen pro Platz	Jahres- kosten pro Platz		
Spülsystem	23 % ¹⁾	1360	234	1360	234		
Schiebersystem	35 %	1476	,206	1476	206		
Reduzierte Güllefläche im Kanal	30 %	1679	300	. 1559	288		
Biowäscher	30 %	927	171	347	95		
Impulsarme Zuluftführung	20 %	203	20	0	0'		

¹⁾ Durchführung nur im Abferkel- und Galtbereich (Wirkung in diesen Bereichen 30 %).

Tabelle 21. Kosten von Massnahmen im Zuchtschweinestall pro kg N-Reduktion

Massnahme	Mittlerer	Kosten p	ro Platz²)	Emissions-	Kosten pro kg N		
	Bestand ¹⁾ (Pl.)	Einbau (Fr./Pl.)	Neubau (Fr./Pl.)	reduktion ³⁾ (kg N/PI.)	Einbau (Fr./kg)	Neubau (Fr./kg)	
Spülsystem	9,3	598	598	. 0,67	891	891	
Schiebersystem	· 9,3	550	550	1,02	538	538	
Reduzierte Güllefläche im Kanal	9,3.	627	615	0;87	715	702	
Biowäscher	9,3	222	· 119	0,87	255	136	
Impulsarme Zuluftführung	9,3	20 .	0	0,58	34	0	

¹⁾ Gewichtete mittlere Bestandesgrösse der Modellbetriebstypen.

4.2.4 Massnahmen bei der Hofdüngerlagerung

Die Massnahmen zur Reduktion der Ammoniak-Emissionen während der Hofdüngerlagerung beruhen auf dem Prinzip der Abdeckung. Die Emissionen sind bei Güllegruben mit einer festen Betonabdeckung um 90 % tiefer als bei offenen Güllebehältern. Die Abdeckung von offenen Behältern kann mit Holz, einem Zeltdach oder einer Schwimmschicht aus Strohhäcksel erfolgen. Nicht untersucht werden Schwimmschichten aus anderem Material und mit Gaslagerkissen vergleichbare "Güllesäcke". Deren Wirkungen und Praxistauglichkeiten sind noch unsicher.

In den Tabellen 22 und 23 sind die jährlichen Abdeckungskosten für einen mittelgrossen Behälter mit einem Durchmesser von 12 m und einer Höhe von 3 m zusammengestellt. Für die Modellrechnungen wurden die Kubikmeterkosten aus dem Durchschnitt verschiedener Behältergrössen verwendet. Mit der Bezugnahme der Kosten auf eine Volumeneinheit hat der Modellbetrieb die Möglichkeit, theoretisch nur einen Teil des Raumes abzudecken, bei einer entsprechend tieferen Emissionsminderung. Auf diese Weise kann das heute bestehende Verhältnis zwischen geschlossenen und offenen Lagerräumen ohne zusätzliche Betriebstypen abgebildet werden. Ausgehend von einem Durchschnitts-Lagerraum mit einem bestimmten "offenen Anteil" sind nur Massnahmen bis zu diesem Anteil zulässig. Die heutigen Anteile gedeckter Güllelagerbehälter betragen beim Rindvieh 80 %, bei den Schweinen 65 % (Schätzungen Menzi et al. 1997). Diese Anteile werden bei allen Betriebstypen für die bestehenden Güllelager vorgegeben.

²⁾ Berechnung für den mittleren Bestand; siehe Anhang B.

³⁾ Basierend auf einer NH₃-Emission pro Platz und Jahr von 6,08 kg N (15 % der N-Ausscheidung nach Richtwerten bzw. das 2,7fache der Emissionen eines Mastschweineplatzes) und unter Annahme eines Verlustes der eingesparten Emissionen in den nachfolgenden Bereichen von 52 % (Menzi et al. 1997).

Tabelle 22. Kosten von Güllebehälter-Abdeckungen

Massnahme (offener Güllebehälter ∅ 12 m, Höhe 3 m)	Red. NH ₃ (%)	Neu- preis (Fr.)	Zins (%)		ł I	i	Betr- kosten (Fr.)	total	Kosten pro m³ (Fr./m³)	dell ¹⁾
Feste Holzabdeckung	90 %	10 319 ²⁾	3,6	6,6	2,0	0,2		1280	3,77	3,86
Zeltdach-Abdeckung	80.%.	18 545	3,6	6,6	2,0	0,2		2300	6,78 .	3)
Strohhäcksel	60 %			-			590 ⁴⁾	590	1,74	1,64

¹⁾ Durchschnittskosten verschiedener Behältergrössen pro m³.

Tabelle 23. Kosten von Güllebehälter-Abdeckungen pro kg N-Reduktion

Massnahme	Emiss Reduk. (%)	Kosten total ¹⁾ (Fr./m²)	Emiss pro Ja (kg N/	ıhr²) [′]	Reduk- tion (kg N/m²)	Folge- emission ³⁾ (%)	Kosten pro kg N (Fr.)
Feste Holzabdeckung	90 %	11,56	Rind	1,28	1,15	50 % ,	20
,			Schwein	2,19	1,97		12
Strohhäcksel	60 %	4,91	Rind	1,28	0,77	50 %	13
<u> </u>	<u> </u>	75.	Schwein	2,19	1,31		7

¹⁾ Umrechnung Fläche - Volumen: 1 m² entspricht bei mittlerer Grubengrösse (Höhe 3 m) 3 m³.

4.2.5 Massnahmen bei der Hofdüngerausbringung

Im Modell erfolgt die herkömmliche Hofdüngerausbringung mit bestimmten, der Hangneigung angepassten Verfahren. Tabelle 24 zeigt die bei der Gülleausbringung verwendeten Verfahren und deren Kosten für das Jahr 2002. Den Modellbetrieben werden durchschnittliche Anteile an den verschiedenen Hangneigungsstufen vorgegeben. Je nach Stufe wendet der Betrieb das entsprechende Ausbringungsverfahren an. Einfachheitshalber wird für die fixen Kosten ein mittleres Verfahren unterstellt. Die variablen Kosten der Maschinen ergeben sich in Abhängigkeit der Ausbringungsmenge. Die Kosten für die Zugkraft- und Arbeitsstunden hängen von der Modellreaktion ab. Die erforderlichen Zugkraftstunden können durch eigene oder gemietete Fahrzeuge gedeckt werden. Die Arbeit verursacht keine Kosten, wenn in der entsprechenden Periode freie Arbeitskräfte zur Verfügung stehen. Ansonsten sind Angestellte oder Einsparungen in anderen Bereichen notwendig. Um die gesamten Kosten vergleichen zu können, sind in Tabelle 24 Arbeitskosten von Fr. 25.-/h und Zugkraftkosten bei eigenen, voll ausgelasteten Fahrzeugen unterstellt.

²⁾ Inkl. Abzug von 15 % (angenommene Eigenleistung).

³⁾ Nicht ins Modell aufgenommen, da Kosten bei tieferer NH₃-Reduktion höher als bei der Holzabdekkung.

⁴⁾ Stroh 7 kg/m² à Fr. 12.-/dt, 2 x Feldhäckslereinsatz à Fr. 200.-.

²⁾ Ammoniak-Emission pro m² und Tag: Rindvieh: 3,5 g, Schweine: 6,0 g.

³⁾ Anteil der eingesparten Emissionen, der in nachfolgenden Bereichen verloren geht (Menzi et al. 1997).

Bei Hangneigungen bis 35 % sind die Kosten einer Ausbringung mit dem Fass zugrundegelegt. Die variablen Kosten einer Verschlauchung ab Hof würden etwa gleich hoch liegen. Bei stärker geneigten Flächen, die nur im Berggebiet von Bedeutung sind, wird einfachheitshalber von einem Durchschnittswert zwischen Fass und Verschlauchung ausgegangen (je 50 %). Für die Fassvariante sind dabei ein Transport und eine Verschlauchung ab Fass unterstellt sowie ein um 10 % bis 20 % höherer Arbeitszeitbedarf im Vergleich zu ebenem Gelände. Für die Verschlauchung direkt ab Hof wird angenommen, dass zusätzlich zu dieser Arbeitszeiterhöhung zwei Arbeitskräfte benötigt werden. Damit steigen die Kosten deutlich an.

Tabelle 24. Kosten der Gülleausbringung (Standardverfahren)

Hang-	Masch	ninen		Zug	kräfte		Aı		
neigung ¹⁾	fixe Ko- sten (Fr./Betr.)	variable Kosten (Fr./m³)	tor	porter	achsm.	Kosten ²⁾ (Fr:/m³)	Bedarf (h/m³)	Kosten (Fr./m³)	Kosten total ³⁾ (Fr./m ³)
0-18 %		0,16	0,064			1,72	0,064	-1,60	4,63
18-35 %		0,16	0,082			2,20	0,082	2,05	5,57
35-50 % .	2881	0,47		0,095	0,130	5,78	0,151	3,78	11,17
>50 %		0,47		0,100	0,145	6,29	0,169	4,23	12.14

^{1) 0-18 %:} Fass 5000 I; 18-35 %: Fass 4000 I; >35 %: je ½ Verschlauchung ab Fass bzw. ab Hof.

Massnahmen bei der Organisation der Düngung

Die Rücksichtnahme auf die Witterung bei der Hofdüngerausbringung, das heisst die Bevorzugung der Ausbringung an kühlen Tagen, am Abend und vor einsetzendem Regen (Tabelle 25), wird im Modell nicht abgebildet. Diese Massnahmen stellen erhöhte Anforderungen an den Betriebsleiter, verursachen aber grundsätzlich keine Mehrkosten. Mit dem Ziel einer kostengünstigen Reduktion der Ammoniak-Emissionen sind sie somit vor allen anderen im Modell berücksichtigten und kostenverursachenden Massnahmen durchzuführen.

Tabelle 25. Verlustreduktion durch auf die Witterung ausgerichtete Massnahmen

Massnahme	Reduktion der Ammo	oniak-Emissionen
	Gülle	Mist
Ausbringen an kühlen Tagen	20 % _	10 %
Ausbringen am Abend	25 %	10 %
Ausbringen bei Regen	40 %	40 %

²⁾ Fixe Kosten (bei einer Auslastung von 600 bzw. 550 bzw. 300 h: Fr. 13,42 bzw. 13,58 bzw. 17,39/h) + variable Kosten (Fr. 13,46 bzw. 11,39 bzw. 8,79/h).

³⁾ Kosten Maschinen (Auslastung 2500 m³) + Kosten Zugkräfte + Kosten Arbeit.

Ebenfalls nicht im Modell berücksichtigt ist die Vermeidung des Gülleeinsatzes in den Sommermonaten. Wegen des stark eingeschränkten Anwendungspotentials, besonders unter den Vorgaben der IP, dürfte diese Massnahme keine grosse Bedeutung erlangen.

Mit den von Menzi et al. (1997) unterstellten Anwendungspotentialen dieser Massnahmen könnten die Ammoniak-Emissionen aus der Tierhaltung um maximal 7 % bzw. die im Modell berücksichtigten Emissionen (Rindvieh- und Schweine-haltung, Mineraldungung) um maximal 6,5 % reduziert werden.

Verdünnung der Gülle

Die Verdünnung der Gülle mit Wasser verringert den Trockensubstanz- und Ammoniumgehalt der Gülle. Verdünnte Gülle fliesst an den Pflanzen besser ab und dringt rascher in den Boden ein. Im Modell wird in der Ausgangssituation von einem Verdünnungsgrad 1:1 (1 Teil Gülle zu 1 Teil Wasser) ausgegangen. Als Massnahmen werden im Winter (inkl. erste Arbeitsperiode im Frühling) die Verdünnung 1:2 sowie im Sommer die Verdünnungen 1:2 und 1:4 angeboten. Dabei muss die gesamte Gülle den gleichen Verdünnungsgrad aufweisen. Es wird angenommen, dass dadurch die Ausbringungsmenge angepasst wird, dass also pro Fläche ein höheres Volumen ausgebracht wird. Durch die Verdünnung reduzieren sich die Emissionen im Bereich der Gülle-Anwendung um 20 % (Verdünnung auf 1:2) bzw. 45 % (1:4). Bei der Lagerung ergibt sich keine Reduktion, was vor allem durch die schlechteren Voraussetzungen für die Schwimmschicht-Bildung und das grössere Lagervolumen bedingt ist.

Die Kosten der Gülleverdünnung (Tabellen 26 und 27) werden durch einen Mehrbedarf an Lagerraum, durch das Verdünnungswasser und durch die höhere Ausbringungsmenge verursacht. Eine Vergrösserung der bestehenden Lagerkapazität ist aber insbesondere im Sommer nicht notwendig, wenn das Modell so reagiert, dass die Zeitabstände des Ausbringens entsprechend verkürzt werden.

Die Kosten für das Verdünnungswasser sind abgeleitet aus Daten der Zentralen Auswertung der FAT. Gemäss diesen Buchhaltungsergebnissen betragen die Wasserkosten der Gruppe der Rindviehhaltungsbetriebe im Talgebiet, umgerechnet auf die anhand des Tierbestandes abgeschätzte unverdünnte Güllemenge, 65 bis 70 Rappen pro Kubikmeter Gülle. Bei einer Verdünnung von 1:1 entspricht dies ebenfalls den Kosten pro Kubikmeter Verdünnungswasser. Da in diesen Kosten trotz der geringen Ackerfläche noch ein Anteil an Bewässerungswasser sowie in die Kanalisation fliessendes Wasser enthalten sein dürfte, werden Wasserkosten von 50 Rappen pro Kubikmeter angenommen (2002: 57 Rappen). Für das Berggebiet ergibt die entsprechende Abschätzung Kosten von 30 Rappen pro Kubikmeter (2002: 34 Rp.). Damit wird ein durchschnittlicher Wasserpreis eingesetzt. Auf Betrieben, die Leitungswasser verwenden, kann er deutlich höher sein. Auf Betrieben mit eigener Wasserversorgung entstehen dagegen keine Mehrkosten.

Die höhere Ausbringungsmenge verursacht zusätzliche Maschinen-, Zugkraft- und Arbeitskosten. Im Modell können, sofern verfügbar, eigene Maschinen und Arbeitskräfte eingesetzt werden. In Tabelle 26 sind die Kosten eigener Zugkräfte und Arbeitskosten von Fr. 25.-/h eingesetzt. Weil davon ausgegangen werden kann, dass die Maschinen und Zugkräfte auf dem Betrieb vorhanden sind, werden bei der Kalkulation der Kubikmeterkosten nur die variablen Kosten berücksichtigt.

Tabelle 26. Kosten für die Gülleverdünnung (Mehrkosten pro m³ Verdünnungswasser)

Hangneigung	Ausbringungs-	Wasser- kosten	Kosten total (Fr./m³)				
	kosten ¹⁾ (Fr./m³)	(Fr./m³)	total	nur variable ²⁾			
0-18 %	4,63	0,57	5,20	3,19			
18-35 %	5,57	0,57	6,14	3,88			
35-50 %	11,17	. 0,57	11,74	7,04			
>50 %	12,14	0,57	12,71	7,68			

¹⁾ Berechnung vgl. Tabelle 24.

Tabelle 27. Kosten für die Gülleverdünnung pro kg N-Reduktion

Verdünnung	Emiss Reduk.		Kosten ¹⁾		Ammoniak- Emission ²⁾	Reduk- tion	Kosten ¹⁾ pro kg N
	(%)	Fremdk. (Fr./m³)	Arbeit (Fr./m³)	Total (Fr./m³)	(kg N/m³)	(kg N/m³)	(Fr.)
Von 1:1 zu 1:2 Hangneigung 0-18 %	. 20 %	0,80	0,80	1,60	Rind 0,56 Schwein 1,01		14 8
Von 1:1 zu 1:2 Hangneigung 18-35 %	20 %	0,92	1,03	1,94	Rind 0,56 Schwein 1,0	'	17 10
Von 1:1 zu 1:4 Hangneigung 0-18 %	, 45 %	2,39	2,40	4,79	Rind 0,56 Schwein 1,0		19 11
Von 1:1 zu 1:4 Hangneigung 18-35 %	45 %	2,75	3,08	5,82	Rind 0,50 Schwein 1,0		23 13

Ohne Fixkosten Zugkraft; Bezugsbasis ist 1 m³ Gülle bei einer Verdünnung von 1:1; der Bedarf an Wasser beträgt ½ m³ bei einer Verdünnung auf 1:2 (bzw. 1½ m³ bei 1:4).

²⁾ Kosten total ohne Fixkosten Maschinen und Zugkraft.

²⁾ Ammoniak-Emission pro m³ bei Normgehalt.

Technische Massnahmen

a) Einarbeiten (Mist, Gülle) oder Bodenlockerung (Gülle)

Im Ackerbau ist es möglich, durch eine Bearbeitung der Bodenoberfläche auf die Ammoniak-Emissionen Einfluss zu nehmen. Das Einarbeiten von Mist oder Gülle innerhalb von 24 Stunden nach dem Ausbringen verringert die Emissionen um 20 %, das Einarbeiten innerhalb von 4 Stunden um 40 %. Die Bodenlockerung vor der Gülleanwendung bewirkt eine Reduktion um 20 % (Tabellen 28 und 29).

Wenn die rasche Einarbeitung bzw. die Bodenlockerung eine spätere Bodenbearbeitung ersetzt und genügend Arbeitskräfte verfügbar sind, entstehen keine Mehrkosten. Im Modell wird aber mit ungünstigeren Varianten gerechnet, bei welchen Kosten einzusetzen sind. Zur Einarbeitung von Mist oder Gülle innerhalb von 4 Stunden sind zwei Arbeitskräfte nötig. Deshalb werden für einen Teil der Arbeit Lohnkosten angenommen. Die dabei eingesparte eigene Arbeitszeit wird nicht berücksichtigt, weil eine spätere Bearbeitung in Randstunden durchgeführt werden könnte. Nicht erhöht werden die Maschinen- und Zugkraftkosten. Bei Gülle ist die unmittelbare Einarbeitung wegen des Verschmierens der Bodenoberfläche problematisch. Geeigneter wäre eine Einarbeitung innerhalb von 24 Stunden, die ohne zweite Arbeitskraft und mit einer Emissionsreduktion um 20 % durchgeführt werden könnte.

Für die Kosten der Bodenlockerung vor der Gülleanwendung wird im Modell mit einem zusätzlichen Arbeitsgang gerechnet. Dabei werden nur die variablen Kosten (Reparaturen und Treibstoff) berücksichtigt. Auch diese Massnahme könnte jedoch im Rahmen der Saatbettbereitung so angelegt werden, dass im Vergleich zur herkömmlichen Gülleanwendung keine Mehrkosten entstehen.

Die gesamtschweizerischen Anwendungspotentiale dieser Massnahmen betragen nach Menzi et al. (1997) für die Misteinarbeitung 40 %, die Gülleeinarbeitung 8 % und die Lockerung vor der Gülleausbringung 4 %. Sie sind vor allem durch die Beschränkung auf den Ackerbau bedingt. Die Potentiale werden für die Modellrechnungen nach Tal- und Berggebiet aufgeteilt, unter Berücksichtigung des Verhältnisses der offenen Ackerfläche (etwa 9,5 zu 1, das heisst das Potential ist im Talgebiet rund 10 mal höher als im Berggebiet). Dabei werden die Prozentzahlen so bestimmt, dass gewichtet mit dem Hofdüngeranfall imTal- und Berggebiet (etwa 2 zu 1 gemäss GVE-Beständen) das gesamtschweizerische mittlere Anwendungspotential resultiert. Allen Modellbetrieben im Tal- bzw. im Berggebiet werden dieselben Begrenzungen mengenmässig vorgegeben, ausgehend von den Hofdüngermengen in der Referenzlösung. Bei der Interpretation der Ergebnisse ist zu berücksichtigen, dass auf Praxisbetrieben grosse Unterschiede in den Anwendungspotentialen bestehen können.

Tabelle 28. Kosten für Einarbeiten oder Bodenlockerung

Massnahme	Einheit	Emissions-	Anwer	idungspo	Kosten ²⁾	
	(E.)	reduktion	total	total Tal		(Fr./E.)
Einarbeiten (Mist)	t	20 %	40 %	57,0 %	6,0 %	0,00
Modell:	t	40 %	40 %	57,0 %	6,0 %	1,90 ³⁾
Einarbeiten (Gülle)	m ³	20 %	8 %.	11,4 %	1,2 %	.0,00
Modell:	m³	40.%	8 %	11,4 %	1,2 %	1,90 ³⁾
Bodenlockerung	m ³	20 %	4 %	5,7 %	0,6 %	0,00
Modell:	m³	20 %	4 %	5,7 %	0,6 %	1,92 ⁴⁾

¹⁾ Anwendungspotential total: Schätzung (Menzi et al. 1997), in Prozent des gesamtschweizerischen Mist- bzw. Gülleanfalls (bedingt durch die Einschränkung auf den Ackerbau und durch ungeeignete Bodenverhältnisse); Tal/Berg: Eigene Aufteilung anhand des Verhältnisses der geeigneten Flächen.

Tabelle 29. Kosten für Einarbeiten oder Bodenlockerung pro kg N-Reduktion

Massnahme	Ein-	Emis-		Kosten ¹⁾		Ammoniak-	Reduk-	Kosten ¹⁾
	heit (E.)	sions- redukt. (%)	Fremd- kosten (Fr./E.)	Eigene Arbeit (Fr./E.)	Total (Fr./E.)	Emissionen ²⁾ (kg N/E.)	tion (kg N/E.)	pro kg N (Fr.)
Einarbeiten (Mist)	t	40 %	1,90	<u> </u>	1,90	Rind (S) ³⁾ 0,60 Rind (L) ³⁾ 1,05 Schwein 1,89	0,24 0,42 0,76	8 5 3
Einarbeiten (Gülle)	m³	40 %	1,90		1,90	Rind 0,56 Schwein 1,01	0,23 0,40	8 5.
Boden- lockerung	m ³	20 %	0,80	- 1,12	1,92	Rind 0,56 Schwein 1,01	0,11 0,20	17 10

¹⁾ Nur variable Kosten (ohne Fixkosten Maschinen und Zugkraft).

b) Emissionsarme Ausbringtechniken

Emissionsarme Ausbringtechniken verfolgen das Ziel, die Kontaktfläche zwischen Gülle und Luft und die Verweilzeit der Gülle auf dem Boden zu reduzieren. Unterschieden wird zwischen bandförmiger Gülleablage (Schleppschlauch oder -schuh), flachem Eindrillen und tiefer Injektion.

²⁾ Nur variable Kosten (ohne Fixkosten Maschinen und Zugkraft).

³⁾ Annahme: Die Hälfte des Pflügens erfolgt durch eine zweite Arbeitskraft (2 h/ha bei 30 t bzw. m³/ha). Lohnkosten Fr. 1,90/E.

⁴⁾ Annahme: Der Arbeitsgang Lockerung wird zusätzlich ausgeführt (Arbeitszeit 1,4 h/ha bei 30 m³/ha). Variable Kosten Spatenrollegge Fr. 0,19/m³, Zugkraft Fr. 0,61/m³, eigene Arbeit Fr. 1,12/m³.

²⁾ Ammoniak-Emission pro Einheit bei Normgehalt.

³⁾ Stapelmist (S) bzw. Laufstallmist (L).

Zu diesen Verfahren sind ebenfalls gesamtschweizerische Anwendungspotentiale abgeschätzt worden (Menzi et al. 1997). Mit dem Schleppschlauch können bis zu 30 % der anfallenden Gülle ausgebracht werden. Die übrige Menge kommt wegen Verstopfungsproblemen (30 %), zu steilen Flächen (20 %) oder ungeeigneten Parzellengrössen oder -formen (20 %) nicht in Frage. Ähnliche Einschränkungen gelten für den Schleppschuh. Die Schlitzdrilltechnik ist vor allem wegen der eingeschränkten Hangtauglichkeit nur für maximal 10 % der Gülle anwendbar. Von den wenig geneigten Wiesen sind die Kunstwiesen geeigneter als die Naturwiesen. Für die Injektion gilt aufgrund der dazu notwendigen tiefgründigen, weitgehend skelettfreien Böden ein Anwendungspotential von lediglich 6 %. Davon entfallen 2 % auf offene Ackerflächen und 4 % auf Kunstwiesen. Auf Naturwiesen ist ein Einsatz nicht empfehlenswert. Die gesamtschweizerischen Anwendungspotentiale werden nach Tal- und Berggebiet differenziert, unter Berücksichtigung der geeigneten Flächen und des Hofdungeranfalls in diesen Regionen (Tabelle 30). Innerhalb der Region werden die Anwendungspotentiale bei allen Betriebstypen gleich vorgegeben.

Tabelle 30. Abschätzung der Anwendungspotentiale emissionsarmer Gülleausbringungsverfahren im Tal- bzw. Berggebiet

Massnahme	Redukt.	Geeignete Flächen ¹⁾	Verhältnis	Anwen	Anwendungspotential ³⁾			
indooridiino/	NH ₃	Occignete Flacileit	Tal:Berg ²⁾	total	Tal	Berg		
1: Schleppschlauch	45 %	AF + NW (Neigung ≤25 %)	·7:3	30 %	37 % ·	16 %		
2: Schleppschuh	⁻ 60 %	AF + NW (Neigung' ≤25 %)	7:3	30 %	37 %	16 %		
3: Schlitzdrill	70 ⁻ %	KW + NW (Neigung ≤10 %)	4:1 ⁴⁾	10 %	13,3 %	3,3 %		
4: Tiefe Injektion	90 %	AF	9:1	6 %	8,5 %	1,0 %		
3 + 4		max. Potential des Schlitzdri	lls.	10 %	13,3.%	3,3 %		
1+2+3+4	,	max. Potential des Schlepps	chlauchs . ,	30 %	.37 %	16,%		

¹⁾ Flächen, auf denen das Verfahren anwendbar ist: AF = Ackerfläche (davon OA = Offene Ackerfläche, KW = Kunstwiese), NW = Naturwiese.

Als zweite Einschränkung wurden für die einzelnen Verfahren maximale Ausbringungsmengen pro Hektare festgelegt. Diese Mengen sind kulturspezifisch begrenzt, wobei mögliche, aber ökologisch nicht sinnvolle Güllegaben wie etwa nach Kartoffeln nicht berücksichtigt sind (Tabelle 31). Aufgrund der reduzierten Anwendungspotentiale, zum Beispiel wegen ungünstigen Gülle- oder Bodeneigenschaften, wurden diese Mengen zusätzlich verringert. In den Modellrechnungen wirkt besonders bei Betrieben mit tiefen Tierbesatz nicht diese zweite, flächenabhängige Einschränkung zuerst begrenzend, sondern die prozentuale Einschränkung aufgrund der anfallenden Güllemenge.

²⁾ Eigene Abschätzung des Verhältnisses der geeigneten Flächen zwischen Tal- und Berggebiet; Hangflächen näherungsweise anhand der ausbezahlten Hangbeiträge (BLW 1995b).

³⁾ Anwendungspotential total: Schätzung (Menzi et al. 1997), in Prozent des gesamtschweizerischen Gülleanfalls (vgl. Text); Tal/Berg: Eigene Aufteilung anhand des Verhältnisses der geeigneten Flächen.

⁴⁾ Die Schlitzdrilltechnik bereitet auf Kunstwiesen häufig weniger Probleme als auf Naturwiesen. Deshalb werden die Kunstwiesen für die Aufteilung des Anwendungspotentials nach Tal-/Berggebiet 5 mal stärker gewichtet als die Naturwiesen.

Tabelle 31. Maximale Gülleausbringungsmengen pro Hektare im Modell (m³/ha)

					P	cke	land	4				,		•
Schleppschlauch	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Total			Modeli
Rüben		40								1	40		•	28
Kartoffeln			40					•	•	-	40	Anwe	en∹	28 -
Raps	30					50	30		•		110	dung	js-	77
Mais	,		50		50					,	1.00	poten		70
Sommergetreide	40		30			-	50				120	70 °	% ¹⁾	84
Wintergetreide	-	30					50		30	•	110			77
Schleppschuh	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Qkt	Nov	Total	Ĺ, ,	·	Modell
Rüben		,	· · · · · · · · · · · · · · · · · · ·								0			0 '
Kartoffeln											O-	Anw	en-	′ 0
Raps	30										30	duṇg	gs-	21
Mais '					-	•			,	,	0	poten	ıtial:	0
Sommergetreide			30		•	. ,					30	70	% ¹⁾	21
Wintergetreide	,	30.							30		60			42
Tiefe Injektion	Feb.	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Total			Modell
Rüben		40						•			40			. 8
Kartoffeln	1		40			`					40 ⁻	Anw	en-	8
Raps						50	30				80	dung	gs-	16
Mais		-	50		40			,		. '	90 1	poter	ıtial:	18
Sommergetreide	40	₹					50	,			90	20 9	% ²⁾	18
Wintergetreide							50				50		ı	10
1	,	Wies	sland	l (Hai	ngnei	gun	gen 0	-18%	und	18-3	5 %)	,		
Schleppschlauch	T	otal	Ne	eigun	g 0-1	8 %		Mode	II.	Nei	gung 1	8-35 %	, 1	Viodell
Wiese 5 Schnitte	7	150		م الم	ndung	16-		75	,	Δ	nwendı	inas-	., .	38
Wiese 4 Schnitte	.	120	. ′		ential:			60		^	potenti	•		30
Wiese 3 Schnitte		90						45			25 %			23
Wiese 2 Şchnitte	ľ	60	۰,	, 5	0 % ¹⁾³	"		30			. 25 %	/o ''		- 15
Schleppschuh	Ţ	otal	No	eigun	ıg 0-1	8 %		Mode	dĺ	Nei	gung 1	8-35 %		Modell
Wiese 5 Schnitte		150		۸ صدره	ndung	70		75		- Δ	nwendu	inde-	• •	38
Wiese 4 Schnitte		120	,		•	-		60		^	•	_		30
Wiese 3 Schnitte	1	90		7	ential:			45		i	potent			, 23
Wiese 2 Schnitte		60		5	0 %1):	·)		30			25 %	/o '/	,	15
Schlitzdrill	7	otal	N	eigur	ig 0-1	8 %		Mode	ell		٠,		•	
Wiese 3-5 Schnitte	1	60		Anw.r	otent	ial:		15 / 3	3 .	1		-		
Wiese 2 Schnitte		30	-	•	6 / 5 °			157	3					
Tiefe Injektion	1	otal	N	eigur	ng 0-1	8 %		Mode	ell .					.'
∥ moré mjorcion														
Wiese 3-5 Schnitte		60		Anw.r	otent	ial:		15/	0	7		•		-

Reduktion der max. Ausbringungsmenge pro ha anhand der durchschnittlichen Anwendungspotentiale: (nach Menzi et al. 1997, teilweise vereinfacht):

¹⁾ Verstopfungsprobleme: -30 %

²⁾ Ungünstige Bodenverhältnisse: -80 %

³⁾ Parzellenform: -20 %

⁴⁾ Hangneigung: Potential ½ tiefer als 0-18 %

⁵⁾ Auf KW ungünstige Bodenverhältnisse, Hangneigung nur bis 10 %: -75 % / Auf NW Potential 5x tiefer: -95 %

⁶⁾ Auf KW ungünstige Bodenverhältnisse: -75 % / Auf NW kaum anwendbar

Die Mehrkosten der emissionsarmen Ausbringungsverfahren im Vergleich zu den Standardverfahren sind in den Tabellen 32 und 33 enthalten. Mitberücksichtigt sind die Fixkosten der Ausbringungsgeräte, weil diese neu angeschafft werden müssen. Die Kosten werden auf ei-

Tabelle 32. Kosten emissionsarmer Gülleausbringungsverfahren

Verfahren	Neupreis	Maschin	en/Lohn	Traktor ³⁾	Arbeit ³⁾	Koste	n total
	(Fr.)	fixe Kosten ¹⁾ (Fr./m³)	var. Kosten ²⁾ (Fṛ./m³)	(h/m³)	(h/m³)	total ⁴⁾ (Fr./m ³)	o. Fixk. Trakt. ⁵⁾ (Fr./m³)
Schleppschlauchverteiler abz. Standardausbringung <u>Schleppschlauch</u> Verschlaucl	16 500 nung	1,14 1,14	0,08 0,08	0,05 -0,03 0,02	0,11 -0,07 0,04	5,18 -2,66 2,52	4,57 -2,19 2,37
Schleppschlauchverteiler Pumpfass 5000l abz. Standardausbringung <u>Schleppschlauch</u> am Fass	16 500 22 000	1,14 1,30 2,44	0,08 0,35 -0,16 0,27	0,08 -0,07 0,01	0,08 -0,07 0,01	5,37 1,65 -3,79 3,23	4,30 1,65 -2,85 3,10
Lohnarbeit inkl. Maschinen Hilfsarbeiten (2 Arbeitskräfte) abz. Standardausbringung <u>Schleppschlauch</u> Zw.lager (Lo	ohn)		8,98 0,08 -0,16 8,90	0,04 -0,07 -0,03	0,11 -0,07 0,04	8,98 3,75 -3,79 8,94	8,98 3,28 -2,85 9,41
Schleppschuh Pumpfass 5000l abz. Standardausbringung <u>Schleppschuh</u> am Fass	25 300 22 000	1,29 1,30 2,59	0,42 0,35 -0,16 0,61	0,08 -0,07 0,01	0,08 -0,07 0,01	6,57 1,65 -3,79 4,43	5,09 1,65 -2,85 3,89
Lohnarbeit inkl. Maschinen abz. Standardausbringung <u>Schleppschuh</u> am Fass (Lohn)		6,43 -0,16 6,27	-0,07 -0,07	-0,07 -0,07	6,43 -3,79 2,64	6,43 -2,85 3,58
Schlitzdrillgerät inkl, Fass Miete Traktor 85 kW abz. Standardausbringung <u>Schlitzdrill</u> am Fass	86 500	4,54 4,54	0,29 3,00 -0,16 3,13	-0,07 -0,07	0,06 -0,07 -0,01	6,33 3,00 -3,79 5,54	6,33 3,00 -2,85 6,48
Lohnarbeit inkl. Maschinen abz. Standardausbringung <u>Schlitzdrill</u> am Fass (Lohn)			7,33 -0,16 7,17	-0,07 -0,07	-0,07 -0,07	7,33 -3,79 3,54	7,33 -2,85 4,48
Tiefer Injektor inkl. Fass Miete Traktor 85 kW abz. Standardausbringung Tiefer Injektor auf Wiese	38 000	1,91 1,91	0,25 3,50 -0,16 3,59	-0,07 -0,07	0,07 -0,07	3,91 3,50 -3,79 3,62	3,91 3,50 -2,85 4,55
Tiefer Injektor inkl. Fass abz. Standardausbringung <u>Tiefer Injektor auf Acker</u>	33 600	1,70 1,70	0,25 -0,16 0,09	0,08 -0,07 0,01	0,08 -0,07 0,01	6,79 -3,79 3,00	5,32 -2,85 2,47

¹⁾ Zins, Abschreibung, Versicherung, Gebäudekosten. ²⁾ Reparaturen, Treibstoff; Lohnkosten.

5) Kosten total ohne Fixkosten des Traktors (Fr. 13,42/h bzw. 18,44 für Schleppschuh/Injektor).

³⁾ Benötigte Zeit abzüglich Zeit der herkömmlichen Ausbringung; Basis ist der Zeitbedarf im Jahr 1994.

⁴⁾ Kosten Maschinen/Lohn+Traktor (Fr. 26,86/h bzw. 35,66 für Schleppschuh/Injektor)+Arbeit (Fr. 25/h).

Tabelle 33. Kosten emissionsarmer Gülleausbringungsverfahren pro kg N-Reduktion

Verfahren	Emiss		Kosten ¹⁾		Emission ²⁾	Reduk-	. Kosten ¹⁾
	Reduk.	Fremdk.	Arbeit	Total		tion	pro kg N
• ,	(%)	(Fr./m³)	(Fr./m³)	(Fr./m³)	(kg Ń/m³)	(kg.N/m³)	(Fr.)
Schleppschlauch	45 %	1,37	1,00	2,37	Rind 0,56	0,25	9
Verschlauchung	,	·	•		Schwein 1,01	0,45	5
Schleppschlauch	45 %	2,85	0,25	3,10	Rind 0,56	0,25	12
am Fass	r .		•		Schwein 1,01	0,45	7.
<u>Schleppschlauch</u>	45 %	8,41	1,00	9,41	Rind 0,56	0,25	37
ab Zw.lager (Lohn)					Schwein 1,01	0,45	21
<u>Schleppschuh</u>	60 %	3,64	0,25	3,89	Rind 0,56	0,34	12
am Fass					Schwein 1,01	Ò,60	7
<u>Schleppschuh</u>	60 %	5,33	-1,75	3,58	Rind 0,56	0,34	11
am Fass (Lohn)			•	:	Schwein 1,01	0,60	6
<u>Schlitzdrill</u>	70 %	6,73	-0,25	6,48	Rind 0,56	0,39	1.6
am Fass		, ,	١	,	Schwein 1,01	0,70	9
Schlitzdrill	70 %	6,23	-1,75	4,48.	Rind ' 0,56	0,39	11
am Fass (Lohn)					Schwein 1,01	0,70	6
<u>Tiefer Injektor</u>	90 %	4,55	•	4,55	Rind 0,56	0,51	9
auf Wiese	<u> </u>	,			Schwein 1,01	0,90	5
<u>Tiefer Injektor</u>	90 %	2,22	0;25	2,47	Rind 0,56	0,51	5
auf Acker	,				Schwein 1,01	0,90	. 3

¹⁾ Ohne Fixkosten Zugkraft.

nen Kubikmeter Gülle bezogen, so dass im Modell mit durchschnittlichen Anwendungspotentialen gerechnet werden kann und ein Einsatz mehrerer Verfahren nebeneinander möglich ist. Bedeutsam ist dabei die angenommene Auslastung der Geräte. Mit Ausnahme des Schlitzdrills im Lohn (5000 m³) wird eine Auslastung von 2500 m³ angenommen, was einem Tierbestand von rund 60 GVE entspricht. Damit wird eine überbetriebliche Verwendung der Geräte unterstellt. Eine einzelbetriebliche Anschaffung hätte höhere Kosten zur Folge. Bei den meisten Geräten ist im Modell auch eine Ausführung in Lohnarbeit möglich. Bei Lohnarbeit verringert sich der Bedarf an eigener Arbeit, dafür fallen Lohnkosten an. Die Bereitstellung der erforderlichen Traktor- und Arbeitsstunden hängt von der Modellreaktion ab. In den letzten beiden Spalten von Tabelle 32 sind Arbeitskosten von Fr. 25/h und mit Ausnahme des leistungsstarken 85 kW-Traktors eigene Traktoren unterstellt. Wenn die Traktoren ohnehin auf dem Betrieb vorhanden sind, fallen deren Fixkosten in jedem Fall an. In der letzten Spalte sind sie deshalb nicht miteinbezogen.

Für den Schleppschlauch werden im Modell drei Verfahren zur Auswahl gestellt: Eine Verschlauchung direkt ab Hof, eine Ausbringung ab Fass und eine Verschlauchung ab einem Zwischenlager am Feldrand. Das dritte Verfahren erfolgt mit Ausnahme einer Mithilfe beim Gülletransport im Lohn. Am kostengünstigsten ist die Verschlauchung direkt ab Hof. Bei der

²⁾ Ammoniak-Emission pro Einheit bei Normgehalt.

Ausbringung mit dem Fass ist zwar die Mehrarbeit geringer (Ein-/Ausklappen Balken), dafür fallen Kosten für das zusätzlich notwendige Pumpfass an. Deutlich teurer ist die Ausbringung ab einem Zwischenlager, da für einen reibungslosen Ablauf vier Arbeitskräfte notwendig sind. Die Verschlauchung direkt ab Hof ist nur auf hofnahen Parzellen möglich. Auf den Modell-Betriebstypen wird sie entsprechend der durchschnittlichen Situation nur für einen Teil des gesamten Anwendungspotentials des Schleppschlauchs zugelassen (Talgebiet 20 %, Berggebiet 50 %).

Die Ausbringung mit dem Schleppschuh kann mit eigenen (überbetrieblich eingesetzten) Maschinen oder im Lohn erfolgen. Im Vergleich zum Schleppschlauch sind die Kosten wegen des teureren Gerätes höher, dafür können die Ammoniak-Emissionen stärker reduziert werden.

Schlitzdrillgeräte sind in der Schweiz erst versuchsweise eingesetzt worden. Angeboten werden schwere Maschinen (Vakuumfass 8500 I), die auch leistungsstarke Traktoren erfordern. Im Modell ist eine überbetriebliche Anschaffung oder Lohnarbeit möglich.

Die Preise von Maschinen für die tiefe Injektion sind sehr unterschiedlich. Im Modell wird, getrennt nach Geräten für den Einsatz im Acker- oder Grünland, mit einem Durchschnittspreis gerechnet. Im Grünland ist ein stärkerer Traktor nötig, für welchen Mietkosten angenommen werden. Gemessen an der Emissionsreduktion ist besonders die tiefe Injektion auf Ackerland sehr kostengünstig. Das Anwendungspotential der tiefen Injektion ist aufgrund ungünstiger Bodenbeschaffenheiten aber stark eingeschränkt. Zudem kann die Injektion zu anderweitigen Auswirkungen wie Denitrifikation oder Bodenschädigung führen.

4.2.6 Massnahmen bei der Mineraldüngung

Bei der Mineraldüngung werden bezüglich Ammoniak-Emissionen Harnstoffdünger und andere N-haltige Dünger unterschieden. Gemäss Angaben in ECETOC (1994) betragen die Emissionen von Harnstoffdünger im Mittel etwa 15 % des ausgebrachten Stickstoffs. Die Emissionen der meisten anderen Dünger liegen, mit Ausnahme etwa von Ammonsulfat, um einen Faktor 10 tiefer. Gerechnet wird mit 2 % des Stickstoffs. Durch den Ersatz der Harnstoffdünger durch andere N-haltige Dünger können die Ammoniak-Emissionen demzufolge um 87 % (13/15 %) reduziert werden. Für die Kosten dieses Ersatzes wird die Preisdifferenz zwischen Harnstoffdünger und Ammonsalpeter verwendet, bezogen auf 1 kg N. Sie beträgt 1994 rund 0,35 Fr./kg (nach LBL 1995). Die Emissionen vermindern sich dabei um 0,13 kg N. Umgerechnet auf 1 kg N-Emissionsreduktion liegt die Preisdifferenz bei Fr. 2,70.

1994 wurden gesamtschweizerisch etwa 66 800 t N zugekauft (SBV 1995). Davon entfielen schätzungsweise 18,5 % oder 12 360 t N auf Harnstoffdünger (Menzi et al. 1997). Damit hätte ein vollständiger Ersatz der Harnstoffdünger durch Ammonsalpeter die gesamtschweizerischen Emissionen im Jahr 1994 um etwa 2,7 % (1600 t N) gesenkt und wegen der Preisdifferenz zwischen Harnstoffdüngern und Ammonsalpeter Kosten von 4,3 Mio. Franken verursacht.

4.2.7 Übersicht über die im Modell berücksichtigten Massnahmen

In Tabelle 34 sind die im Modell berücksichtigten Massnahmen und deren Wirkungen auf die Ammoniak-Emissionen zusammengefasst. Angegeben sind für jede Massnahme die Emissio-

Tabelle 34. Im Modell berücksichtigte Massnahmen und deren Reduktionswirkung

Bereich	Massnahme	Mittle	re Emissic	n (kg N)	Emissions-	Folge-
-		Einheit	Rindvieh	Schweine	reduktion	emission ¹⁾
Fütterung	Rindvieh (Bsp.: N _{Anf} -10 %)	1 Pl.	39,56 ^{2)′}	-	12,2 %	,
	Schweine (Bsp,: N _{Anf} -10 %)	1 Pi.		6,99 ²⁾	8,9 %	
Aufstallung	Optimierter Schieber	1 Pl.	18,21 ³⁾	:	5 %	52 %
Milchvieh	+ geneigter Boden	1 Pl.	18,21	-	15 %	52.%
(Boxen-	Schieber mit Sprayer	1 Pl.	18,21	-	20 %	52 %
laufstall)	+ geneigter Boden	. 1 Pl.	18,21	٠ -	30 %	52 %
-	Fütterungsbuchten	1 Pl.	18,21	-	10 %	52 %
Aufstallung	Buchtengestaltung	1 Pl.	- ' .	2,25 ⁴⁾	25.%	52 %
Mast-	Spülsystem	1 Pl.	ļ. -	2,25	30 %	52 %
schweine	Schiebersystem	1 Pl.	-	2,25	35 %	52 %
	Biowäscher	1 Pl.		2,25	30 %	52 %
-	Impulsarme Zuluftführung	1 Pl.	=	2,25	20 %	52·%
Aufstallung	Spülsystem	1 Pl.	١ -	6,08 ⁵⁾	23 %	52 %
Zucht-	Schiebersystem	1 Pl.	-	6,08	35 %	52 %
schweine	Red, Güllefläche im Kanal	1 Pl.	_	6,08	30 %	52 %
	Biowäscher	1 Pl.		6,08	30 %	52 %
	Impulsarme Zuluftführung	1 Pl.		6,08	20 %	52 %
Lagerung	Holzabdeckung	1 m ²	1,28 ⁶⁾	2,19 ⁶⁾	90 %	50 %
	Strohhäcksel	. 1 m ² .	1,28	2,19	60 %	50 %
Anwendung	Verdünnung 1:2 Winter	1 m ³	0,56 ⁷⁾	1,01 ⁷⁾	20 %	-
_,	Verdünnung 1:2 Sommer	1 m ³	0,56	1,01	20 %	
	Verdünnung 1:4 Sommer	1 m ³	0,56	1,01	45 %	
	Einarbeiten (Mist)	1 t	0,608)	1,89 ⁸⁾ .	40 %	
	Einarbeiten (Gülle)	1 m ³	0,56	1,01	20 %	-
,	Bodenlockerung	1 m ³	0,56	1,01	20 %	
	Schleppschlauch	1 m ³	0,56	1,01	45 %	`.
	Schleppschuh	1 m ³	0,56	1,01	60 %	-
	Schlitzdrill	1 m ³	0,56	1,01	70 %	,
	Tiefe Injektion	1 m ³	0,56	1,01	90 %	
Weitere	Ersatz von Harnstoffdüngern	1 kg N	0,15 ⁹⁾	0,15	87 %	<u> </u>

¹⁾ Anteil der eingesparten Emissionen, der in nachfolgenden Bereichen verloren geht.

²⁾ Gesamte Emissionen am Beispiel eines Platzes beim Milchvieh-Anbindestall bzw. beim Mastschweinestall.

³⁾ Bei einer Milchleistung von 6185 kg/Kuh im Jahr 2002 (Talgebiet) fallen 22,5 m³ unverdünnte Gülle mit einem Gehalt von 5,25 kg N/m³ an. Von diesem N-Anfall entweichen im Laufstall 15,4 % als NH₃.

⁴⁾ Jährlicher Gülleanfall 2 m³ pro Platz mit einem Gehalt von 7,5 kg N/m³; Emission 15 % dieser N-Ausscheidung.

^{5) 1} Zuchtschweineplatz entspricht 2,7 Mastschweineplätzen.

⁶⁾ Die Emissionen betragen pro m² und Tag 3,5 g N für Rindergülle und 6,0 g N für Schweinegülle (Menzi et al. 1997).

 ^{1:1} verdünnte Rindviehgülle: N-Gehalt 2,25 kg/m³, davon 50 % löslich, Emission 50 %;
 1:1 verdünnte Schweinegülle: N-Gehalt 3,0 kg/m³, davon 67 % löslich, Emission 50 % (Menzi et al. 1997).
 Rindvieh-Stapelmist: N-Gehalt 5 kg/t, davon 20 % löslich, Emission 60 %;

⁸⁾ Rindvieh-Stapelmist: N-Gehalt 5 kg/t, davon 20 % löslich, Emission 60 %; Rindvieh-Laufstallmist: N-Gehalt 5 kg/t, davon 30 % löslich, Emission 70 % (=1,05; nicht in Tabelle) Schweinemist: N-Gehalt 9 kg/t, davon 30 % löslich, Emission 70 % (Menzi et al. 1997).

⁹⁾ Bei der Düngung von 1 kg Harnstoff-N entweichen 15 % als NH₃.

nen, die ohne Durchführung der Massnahme bei mittleren Verhältnissen und Normgehalten der Hofdünger auftreten, dazu die prozentuale Reduktion der Emissionen durch die Massnahme sowie bezogen auf diese Reduktion derjenige Anteil, der in den nachfolgenden Bereichen infolge des erhöhten Verlustpotentials trotzdem als NH₃ verlorengeht. Damit kann für eine einzelne Massnahme die Höhe der Emissionsreduktion berechnet werden. In den Modellrechnungen werden die N-Gehalte der Hofdünger durch die getroffenen Massnahmen bestimmt, so dass die Verluste der eingesparten Emissionen in nachfolgenden Bereichen direkt über die höheren N-Gehalte berücksichtigt werden.

Für die Massnahmen im Bereich der Fütterung ist als Beispiel die Wirkung einer 10prozentigen Verringerung der N-Ausscheidungen aufgeführt. Ausgehend von den Norm-Emissionen eines Kuh- bzw. Mastschweineplatzes (vgl. Tabelle 11, S. 29) ist die Reduktion der gesamten Emissionen angegeben. Bei den übrigen Massnahmen beziehen sich die NH₃-Emissionen auf den entsprechenden Bereich. So beträgt beim Milchvieh-Boxenlaufstall die Emission im Stallbereich im Jahr 2002 im Mittel 18,21 kg N pro Kuh. Mit dem Einbau eines optimierten Schiebers (Zeitschaltuhr) kann diese Emission um 5 % reduziert werden. Wenn in den nachfolgenden Bereichen keine Massnahmen ergriffen werden, geht aber über die Hälfte der Einsparung wieder verloren.

Tabelle 35 enthält eine Abschätzung der Emissionsreduktionen, welche durch die einzelnen Massnahmen maximal erreicht werden können. Zudem sind die dazugehörigen kalkulierten Kosten aufgeführt. Die Emissionsreduktionen sind berechnet anhand der aus Tabelle 34 folgenden Reduktion pro Einheit, multipliziert mit den im Jahr 2002 vorhandenen Einheiten gemäss hochgerechneten Modellresultaten. Sie beziehen sich auf die im Modell berücksichtigten Emissionen im Jahr 2002 (Rindvieh- und Schweinehaltung sowie Mineraldüngung). Diese betragen gemäss den hochgerechneten Modellergebnissen 42,4 kt N, wenn angenommen wird, dass keine Abnahme der N-Ausscheidungen im Vergleich zu den Richtwerten erfolgt (vgl. Tabelle 54, S. 84). Bezogen auf die gesamtschweizerischen Emissionen würden die berücksichtigten Emissionen im Jahr 2002 einem Anteil von etwa 73 % entsprechen, wenn die im Modell nicht berücksichtigten Emissionen im Vergleich zu 1994 unverändert bleiben. Die in der Tabelle aufgeführten Werte der maximalen Emissionsreduktionen müssen deshalb entsprechend verringert werden, um die Beziehung zu den gesamtschweizerischen Emissionen anzugeben. In der Tabelle sind sie in Klammern aufgeführt. Die hochgerechneten Kosten entsprechen den kalkulierten Kosten pro Einheit (im Falle der Massnahmen im Stall bezogen auf mittlere Bestandesgrössen), multipliziert mit der Anzahl Einheiten. Sie beinhalten die jährlichen Kosten für die erforderlichen Maschinen und Einrichtungen, Betriebskosten zum Beispiel für Strom oder Wasser, Lohnkosten und Kosten der eigenen Arbeit. Nicht enthalten sind fixe Kosten vorhandener Maschinen (Traktoren, Druckfass), Änderungen im Mineraldüngerbedarf und Auswirkungen einer Anpassung der Produktionsstruktur und des Nebenerwerbes.

Für den Bereich der Fütterung ist die Emissionsreduktion angegeben, die ohne Kosten erreicht werden kann. Sie beträgt 4,7 % der im Modell berücksichtigten Emissionen (oder 3,4 % der gesamtschweizerischen Emissionen). Im Bereich der Aufstallung können die gesamten Emissionen nur geringfügig reduziert werden, selbst wenn angenommen wird, dass die entsprechende Massnahme in alle Ställe eingebaut wird. Beispielsweise werden mit einem Einbau

Tabelle 35. Maximale Emissionsreduktionen der einzelnen Massnahmen

Bereich	Massnahme	Anzahl	Anwen-	Maximale	Hochge	rechnete
	1	Einheiten '	dungs-	Emissions-	Jahres	kosten .
		im Jahr	poten-	reduktion ³⁾	Fremd-	Eigene
	, ,	2002 ¹⁾	tial ²⁾	,	kosten	Arbeit
. •				%	Mio. Fr.	Mio. Fr.
Fütterung	Rindvieh (N _{Anf} -2.8 %) ⁴⁾			2,7 % (1,9)	0,0	
s	Schweine % (N _{Ant} -10 %) ⁴⁾			2,0 % (1,4)	0,0	
Aufstallung	Optimierter Schieber	69 655 Pl.	100	0,1 % (0,1)	1,5	
Milchvieh	+ geneigter Boden	69 655 Pl.	100	0,2 % (0,2)	10,8	
(Boxen-	Schieber mit Sprayer	69 655 Pl.	100	0,3 % (0,2)	18,9	
laufstall)	+ geneigter Boden	69 655 Pl.	100	0,4 % (0,3)	23,4	,
,	Fütterungsbuchten	69 655 Pl.	100	0,2 % (0,1)	2,1	0,2
Aufstallung	Buchtengestaltung ⁵⁾	790 744 Pl.	70	0,4 % (0,3)	8,0	
Mast-	Spülsystem ⁶⁾	790 744 Pl.	100	0,6 % (0,5)	55,7	
schweine	Schiebersystem	790 744 Pl.	100	0,7 % (0,5)	36,3	
,	Biowäscher	790 744 Pl.	100	0,6 % (0,5)	44,0	l,
	Impulsarme Zuluftführung	790 744 Pl.	100	0,4 % (0,3)	4,2	
Aufstallung	Spülsystem ⁶⁾	127 927 Pl.	100	0,2 % (0,1)	7Ĝ,4	,
Zucht-	Schiebersystem	127 927 Pl.	100	0,4 % (0,2)	70,2	
schweine	Red. Gullefläche im Kanal	127 927 Pl.	100	0,3 % (0,2)	80,0	
,	Biowäscher	127 927 Pl.	100	0,3 % (0,2)	28,5	`,
	Impulsarme Zuluftführung	127 927 Pl.	100	0,2 % (0,1)	2,5	
Lagerung	Holzabdeckung	1 018 639 m ²	100	1,7 % (1,2)	11,8	
	Strohhäcksel	1 018 639 m ²	100	1,1 % (0,8)	5,0	
Anwendung	Verdünnung 1:2 Winter ⁶⁾	11 ₋ 627 613 m ³	80 -	2,9 % (2,0)	8,0	-8,5
,	Verdünnung 1:2 Sommer ⁶⁾	21 066 858 m ³	80.	5,1 % (3,5)	14,4	15,4
	Verdünnung 1:4 Sommer ⁶⁾	21 066 858 m ³	80	11,7 % (8,0)	43,3	46,1
	Einarbeiten (Mist)	4 418 333 t	40	1,1 % (0,8)	3,4	
,	Einarbeiten (Gülle)	32 694 472 m ³	8	0,8 % (0,6)	0,0	0,0
	Bodenlockerung	32 694 472 m³	4	0,4 % (0,3)	0,0	0,0
_	Schleppschlauch	32 694 472 m ³	30	6,8 % (4,7)	18,7	6,8
-	Schleppschuh	32 694 472 m ³	30	9,1 % (6,2)	34,3	2,5
,	Schlitzdrill	32 694 472 m ³	10	3,5 % (2,4)	22,4	-0,8
	Tiefe Injektion	32 694 472 m ³	6	2,7 % (1,9)	3,8	0,5
Weitere	Ersatz Harnstoffdünger ⁷⁾	3 097 821 kg N	100	1,0 % (0,7)	1,1	

Anzahl Einheiten gemäss hochgerechneten Modellbetriebstypen für das Jahr 2002; dabei beträgt das Verhältnis Rinder- zu Schweinegülle bei der offenen Güllelagerung 79:21, bei der Anwendung 87:13.

²⁾ Angenommenes Anwendungspotential; im Stallbereich einfachheitshalber überall auf 100 % gesetzt.

4) Reduktion der N-Ausscheidung ohne Kosten, gemäss hochgerechneten Modellbetrieben.

Ohne Kosten für zusätzlichen Güllelagerraum.

Reduktion bei Ausschöpfung des geschätzten Anwendungspotentials, bezogen auf die Emissionen der Bereiche Rindvieh, Schweine und Mineraldunger im Jahr 2002 (42,4 kt N, vgl. Tab. 54). In Klammern die maximale Reduktion bezogen auf die gesamten Emissionen im Jahr 1994 (59 kt N).

⁵⁾ Ohne Kosten für zusätzlichen Platzbedarf; nur für Ställe mit bestehendem Vollspaltenboden (70 % der Ställe).

Bezogen auf den Verbrauch von Harnstoffdüngern im Modell für das Jahr 2002; dieser beträgt infolge der Modelloptimierung und der Nichtberücksichtigung von Intensivkulturen nur etwa die Hälfte des tatsächlich zu erwartenden Verbrauchs im Jahr 2002 sowie wegen der Extensivierung bis ins Jahr 2002 nur etwa einen Viertel des gesamtschweizerischen Verbrauchs im Jahr 1994.

eines optimierten Schiebersystems in die Milchvieh-Boxenlaufställe die gesamten Emissionen nur um 0,1 % gesenkt, weil nur ein kleiner Teil aller Kühe im Laufstall gehalten wird. Dennoch entstehen, da von einem Einbau in bestehende Ställe ausgegangen wird, hohe Kosten. Der Güllelagerraum in den hochgerechneten Modellrechnungen liegt im Vergleich zu dem in der Landwirtschaftszählung 1990 ausgewiesenen Raum etwa 10 % höher. Entsprechend wären die angegebenen Emissionsreduktionen und Kosten leicht zu reduzieren.

Bei den Massnahmen im Bereich der Hofdungeranwendung ist insbesondere für die Gülleverdünnung ein hoher Aufwand an eigener Arbeit erforderlich, der im Modell keinen Einkommensverlust verursacht, wenn der Betrieb über genügend familieneigene Arbeitskräfte verfügt. Für die Mist-Einarbeitung ist angenommen, dass eine zusätzliche Arbeitskraft aufgeboten werden muss. Das Einarbeiten der Gülle und die Bodenlockerung vor der Gülleanwendung verursachen keine zusätzlichen Kosten, wenn keine Lohnarbeitskraft benötigt wird und die Bodenbearbeitung in jedem Fall erfolgt. Im Modell dagegen wird von entsprechenden Kosten ausgegangen (vgl. S. 42).

Die angegebene Emissionsreduktion beim vollständigen Ersatz von Harnstoffdüngern durch Ammonsalpeter bezieht sich auf den gemäss Modellresultaten eingesetzten Harnstoffdünger. Wegen der optimierten Düngung im Modell entspricht dieser Einsatz aber bereits im Jahr 1994 nur rund der Hälfte des gesamtschweizerisch ausgewiesenen Zukaufs. Unter der Annahme, dass die Modelloptimierung auch für das Jahr 2002 eine Halbierung des in der Praxis erforderlichen Bedarfs bewirkt hat, würde sich die in der Tabelle aufgeführte maximale Emissionsreduktion ebenso wie deren Kosten verdoppeln. Die Zahlen beziehen sich auf die im Modell berücksichtigten Emissionen (bzw. in Klammern auf die gesamtschweizerischen Emissionen) im Jahr 2002. Aus den Modellrechnungen für 1994 und 2002 ergibt sich für das Jahr 2002 zudem eine Halbierung des Mineraldüngerbedarfs wegen der starken Extensivierung des Pflanzenbaus. Für das Jahr 1994 wäre die maximale Emissionsminderung durch den Verzicht auf Harnstoffdünger deshalb noch höher (vgl. S. 48).

In Tabelle 36 sind unter denselben Annahmen wie in den beiden vorangehenden Tabellen die Kosten pro Einheit Emissionsreduktion aufgeführt. Als Ausnahme sind bei den Fütterungsmassnahmen nicht die kalkulierten Kosten angegeben, sondern die Einkommensrückgänge, die für Beispiel-Modellbetriebe ermittelt wurden, indem diesen Betrieben die N-Ausscheidungen zwangsweise gesenkt wurden (vgl. Tabelle 13, S. 31, bzw. Tabelle 15, S. 33). So sind im Einkommensverlust etwa Minderkosten durch eine Extensivierung des Futterbaus, aber auch indirekte Mehrkosten wie ein zusätzlicher Bedarf an Mineraldüngern infolge der geringeren Hofdüngergehalte mitberücksichtigt. Bei den baulichen Massnahmen im Stall sind neben den Kosten bei einem Einbau in bestehende Gebäude in Klammern die Mehrkosten enthalten, die bei einem Neubau im Vergleich zu einem herkömmlichen System anfallen. In der letzten Spalte ist zudem angegeben, ob die Massnahme in mindestens einer Modellösung vorkommt. Einige Massnahmen werden von keinem der Betriebstypen ergriffen und erscheinen deshalb auch nicht in der Hochrechnung. Im Einzelfall kann es aber durchaus möglich sein, dass eine hier nicht ausgewählte Massnahme vorzuziehen wäre.

Im Bereich der Fütterung sind die Möglichkeiten zur Reduktion der Stickstoff-Ausscheidungen bei den Schweinen grösser als beim Rindvieh. Durch eine Verringerung der N-Ausscheidungen

Tabelle 36. Kosten der einzelnen Massnahmen pro Einheit Emissionsreduktion

Bereich	Massnahme	Reduktion		Kost		Modeli:
•		Emissionen		(Fr./kg	N)	Mass-
		1	Fremd-	<u>Eigene</u>	Total	nahme
,	,		kosten		· ·	gewählt
Fütterung	Rindvieh	2,7 % ¹⁾	, ,		0	ja .
	•	- 4,8 % ²⁾			. 21 ³)	i ja
	Schweine	2,0 % ¹⁾			0 .	ja
` .	,	4,0 % ²⁾		-	25 ³⁾	ja
Aufstallung	Optimierter Schieber	5 %	48		48 (48) ⁴⁾	
Milchvieh	+ geneigter Boden	15.%	118		118 (16)	<u></u>
(Boxen-	Schieber mit Sprayer	20 %	156		156 (155)	
laufstall)	+ geneigter Boden	30 %	128		128 (103)	·
	Fütterungsbuchten	10 %	35	3	38 (13)	ja
Aufstallung	Buchtengestaltung	25 %	53	•	53	
Mast-	Spülsystem	30 %	217		217 (217)	3.
schweine	Schiebersystem	35 %	121		121 (118)	ja .
1	Biowäscher	30 %	- 172		172 (145)	
	Impulsarme Zuluftführung	20 %	24		24 (0)	ja
Aufstallung	Spülsystem	23 %	891		891 (891)	
Zucht-	Schiebersystem	35 %	538		538 (538)	
schweine	Red. Güllefläche im Kanal	30.%	715		715 (702)	
	Biowäscher	30 %	255		255 (136)	
	Impulsarme Zuluftführung	20 %	34		34 (0)	ja
Lagerung	Holzabdeckung	90 %	18		18	ja
	Strohhäcksel	60 %	11		· 11	ja
Anwendung	Verdünnung 1:2 Winter	20 %	7	7	14	ja
` ,	Verdünnung 1:2 Sommer	20 %	7	7	14	ja
	Verdünnung 1:4 Sommer	45 %	,9	10	19	ja
	Einarbeiten (Mist)	40 %	8		8	ja
	Einarbeiten (Gülle)	20 %		,	0	ja
. ,	Bodenlockerung	- 20 %			-0	ja ja
	Schleppschlauch	45 %	7	2	9	ja
	Schleppschuh	60 %	9	1	10	ja
	Schlitzdrill	70 %	, 16	. -1 ⁵⁾	15	ja
	Tiefe Injektion	90 %	3	. 0,5		ja_
Weitere	Ersatz von Harnstoffdungern	n 87 % _	3		3 .	ja j

¹⁾ Emissionsminderung bei einer Reduktion der N-Ausscheidungen im Vergleich zu den Normwerten nach FAP, RAC, FAC (1994) um 2,8 % beim Rindvieh bzw. 10 % bei den Schweinen (Reduktion, die bei den hochgerechneten Modellbetrieben im Jahr 2002 ohne Kostenfolgen umgesetzt wird).

im Vergleich zu den Richtwerten werden die Ammoniak-Emissionen gemäss den Modellresultaten für das Jahr 2002 um insgesamt 4,7 % gesenkt, ohne dass Mehrkosten entstehen. Eine weitere Optimierung der Ration, zum Beispiel durch spezielle Futtermittelzusätze oder rohproteinärmeres Rauhfutter, wirkt sich auf das Einkommen aus.

²⁾ Emissionsminderung bei einer Reduktion der N-Ausscheidungen um weitere 5 % bzw. 10 % (Hochgerechnete Ergebnisse von Berechnungen mit einzelnen Betriebstypen, vgl. Tabellen 13 und 15).

³⁾ Einkommensverlust.

⁴⁾ In Klammern Mehrkosten bei einem Neubau im Vergleich zum Neubau eines herkömmlichen Systems.

⁵⁾ Einsparung eigener Arbeitszeit im Vergleich zur herkömmlichen Ausbringung (grösseres Vakuumfass).

Die Massnahmen im Stallbereich verursachen bei einem Einbau in bestehende Ställe vergleichsweise hohe Kosten pro Mengeneinheit Emissionsminderung. Im Falle von Neubauten sind die Mehrkosten teilweise deutlich tiefer. Die impulsarme Zuluftführung in der Schweinehaltung kann bei Neubauten sogar ohne zusätzliche Kosten integriert werden. Bei den meisten Massnahmen hängen die Kosten pro Platz von der Stallgrösse ab, so dass die Kosten pro kg verhinderte NH₃-N-Emission bei grösseren Ställen tiefer liegen.

5. Definition der Betriebstypen

Als Grundlage für die Definition der Betriebstypen dient hauptsächlich die eidgenössische Betriebszählung 1990 (Bundesamt für Statistik 1992). Neuere Ergebnisse einer integralen gesamtschweizerischen Erhebung über Bodennutzung, Tierbestände, Arbeitskräfte und Hofeinrichtungen waren nicht verfügbar. Die Ergebnisse der Betriebszählung 1996 werden ab Frühling 1997 publiziert. Anhand der einzelbetrieblichen Daten werden gemäss den ausgewählten Kriterien (vgl. Tabelle 2, S. 21) Betriebstypen definiert, welche die Grundgesamtheit möglichst gut repräsentieren. Die Betriebszählung liefert geeignete Daten zum Tierbestand und zur Flächenausstattung. Angaben zu Arbeitskräften oder Hofeinrichtungen (insbesondere Aufstallungs- und Entmistungssysteme) können aufgrund unpräziser Parameter nicht herangezogen werden. Für die Aufstallungs- und Entmistungssysteme werden nach Möglichkeit die Schätzungen von Menzi et al. (1997) verwendet.

5.1 Auswertung der Betriebszählungsergebnisse

Tabelle 37 zeigt den Tierbestand der Schweizer Landwirtschaft, aufgeteilt nach Region und Tierart. Der Rindvieh- und Schweinebestand erreicht über 90 % des gesamten GVE-Bestandes. Die weiteren Tierarten Schafe, Ziegen, Geflügel, Pferde und Hirsche haben im Vergleich dazu eine geringe Bedeutung. Vom gesamten GVE-Bestand gehören 64 % dem Talgebiet an. Der Anteil Schweine ist im Talgebiet deutlich höher als im Berggebiet, so dass 80,5 % der Schweine auf das Talgebiet entfallen. Der Rindviehbestand befindet sich zu 61 % im Talgebiet.

Tabelle 37. Tierbestände gemäss Betriebszählung 1990

Gebiet	Total	G\	/E-Bestände ¹⁾	der einzelnen	Tierkategori	en
* .	·	Rindvieh	Schweine	Schafe, Ziegen	Geflügel	Pferde, Hirsche
Schweiz	1 445 382	1 106 325	217 617	49 050	44 740	27 650
	100 %	76,5 %	15,1 %	3,4 %	3,1 %	1,9 %
Talgebiet	925 972	674 965	175 278	18 976	36 191	20 562
	100 %	72,9 %	18,9 %	2,1 %	3,9 %	2,2 %
Berggebiet	519 410	431 360	42 339	30 073 ,	8 549	7 088
	100 %	83 %	8,2 %	5,8 % .	1,6 %	1,4 %

¹⁾ GVE-Faktoren gemäss Landwirtschaftlicher Begriffsverordnung, Änderung vom 26. Januar 1994.

Die Abbildungen 9 und 10 geben eine Übersicht über die Bestandesgrössenverteilungen der einzelnen Tierkategorien im Tal- und Berggebiet. Im Berggebiet sind die Bestände im allgemeinen kleiner als im Talgebiet. Die Konzentration und Spezialisierung sind im Talgebiet weiter fortgeschritten. Dies gilt in erster Linie für die Mastrinder, von denen im Berggebiet nur 20 % in Beständen mit mehr als 5 GVE (8 Mastrinder) stehen. Im Talgebiet trifft dies für 70 % der Mastrinder zu. Bei den Schweinen gibt es grosse Unterschiede in den Bestandesgrössen. In Beständen von weniger als 5 GVE (30 Mastschweine bzw. 11 Mutterschweine) werden im Talgebiet 10 % der Mastschweine und 15 % der Zuchtschweine gehalten. Gleichzeitig stehen

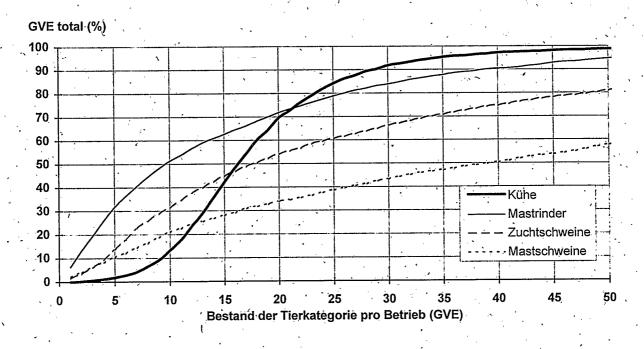


Abb. 9. Verteilung der Tiere auf die Bestandesgrössen im Talgebiet

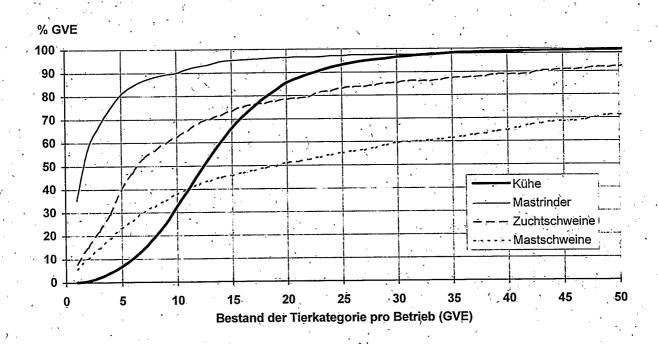


Abb. 10. Verteilung der Tiere auf die Bestandesgrössen im Berggebiet.

40 % der Mastschweine und 20 % der Zuchtschweine in Beständen mit mehr als 50 GVE. Im Berggebiet dagegen ist der Anteil Schweine in grossen Beständen deutlich geringer. Bei den Kühen zeigen die Bestände eine engere Grössenverteilung. Im Talgebiet beträgt der Anteil Kühe in Herden mit 10 bis 25 Tieren 70 %, im Berggebiet derjenige mit 5 bis 20 Tieren 80 %.

Für die Betriebe mit den Tierkategorien Kühe, Mastrinder bzw. Mastschweine ist in den Abbildungen 11 bis 13 die Verteilung der Betriebe auf die Bestandesgrössen dargestellt. Ausgewiesen ist auch die mittlere Fläche jeder Bestandesgrössenklasse. Mit steigender Kuh-

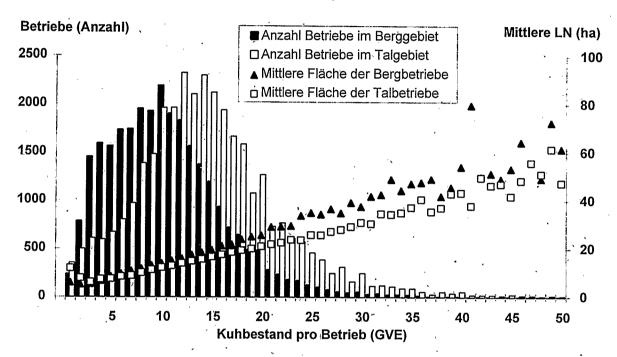


Abb. 11. Verteilung der Betriebe mit Kühen nach Bestandesgrösse

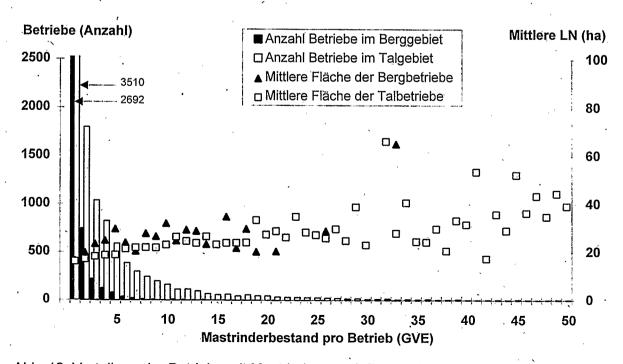


Abb. 12. Verteilung der Betriebe mit Mastrindern nach Bestandesgrösse

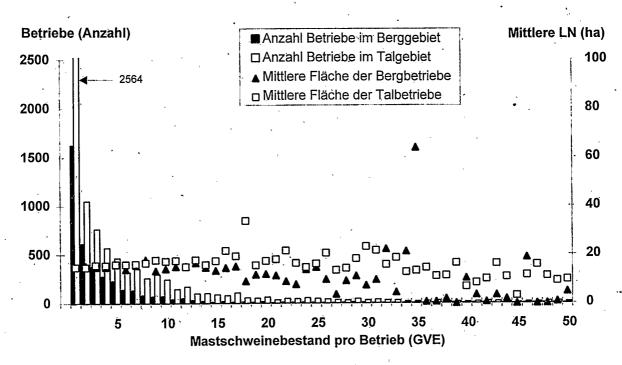


Abb. 13. Verteilung der Betriebe mit Mastschweinen nach Bestandesgrösse

herdengrösse nimmt auch die Fläche der Betriebe zu. Dieser Zusammenhang ist bei den Betrieben mit Mastrindern weniger ausgeprägt, weil die Mastrinder auf den meisten Betrieben nur eine von mehreren Tierkategorien ausmachen. Die spezialisierten Betriebe mit einem hohen Mastschweinebestand verfügen sogar häufig über keine oder nur eine geringe Fläche. Dasselbe Bild ergäbe sich für die Verteilung der Betriebe mit der Tierkategorie Zuchtschweine.

5.2 Festlegung und Beschreibung der Betriebstypen

Schafe, Ziegen, Geflügel, Pferde und Hirsche machen einen kleinen Anteil am gesamten GVE-Bestand aus (vgl. Tabelle 37, S. 54). Zur Vereinfachung der Modellrechnungen werden diese Tierarten nicht ins Modell integriert.

Zur Bestimmung der für die Modellrechnungen relevanten Grundgesamtheit werden von den insgesamt 108 296 Betrieben in der Betriebszählung 1990 vorerst diejenigen Betriebe ausgeschieden, welche gar keine Tiere, kein Rindvieh und keine Schweine oder höchstens 3 GVE halten (Tabelle 38). Die übrigen 65 752 Betriebe verfügen über Rindvieh oder Schweine, können aber gleichzeitig Schafe, Ziegen, Geflügel, Pferde oder Hirsche halten. Weil diese Tierarten im Modell nicht berücksichtigt werden, wird die landwirtschaftliche Nutzfläche der entsprechenden Einzelbetriebe um den Prozentsatz reduziert, den diese Tiere am GVE-Bestand ausmachen. Dagegen wird die Fläche von Betrieben mit einem hohen Tierbesatz so vergrössert, dass der Tierbesatz auf die gemäss Gewässerschutzgesetz vorgeschriebenen 3 GVE pro Hektare sinkt. Diesen Betrieben werden also diejenigen Flächen zugewiesen, auf denen sie den wegzuführenden Hofdunger ausbringen. Auf diese Weise kann bei den Modellrechnungen der Hofdungerverkauf als scheinbare Massnahme zur Reduktion der Ammoniak-Emissio-

nen ausgeschlossen werden. Die Alpflächen werden einfachheitshalber entsprechend ihrer Ertragsfähigkeit zur landwirtschaftlichen Nutzfläche addiert (1 ha Kulturland mittlerer Ertragsfähigkeit im Mittelland entspricht 1,21 ha in den Bergzonen 1 und 2, 1,45 ha in der Bergzone 3 und 1,91 ha in der Bergzone 4). Damit werden die Ammoniak-Emissionen während der Alpung dem Heimbetrieb angerechnet. Die so berücksichtigten Betriebe besitzen immer noch 91,2 % des GVE-Bestandes. Dies entspricht 99,5 % des Rindviehs und 99,6 % der Schweine.

Tabelle 38. Berücksichtigte Betriebe aus der Betriebszählung 1990

	Betriebe	GVE total	Rindvieh	Schweine	LN	AF
	Anzahl	GVE	GVE	GVE	ha	ha
Alle Betriebe	108 296	1 445 382	1 106 325	217 617	1 145 006	402 710
	100 %	100 %	100 %	100 %	100 %	100 %
Betriebe ohne Tiere	18 818 17,4 %		- - -	•	60 619 5,3 %	32 211 8,0 %
Betriebe ohne Rind-	19 774	62 770	<u>-</u>	-	60 433	22 197
vieh und Schweine	18,3 %	4,3 %		, ,-	5,3 %	5,5 %
Betriebe mit ≤ 3 GVE¹)	3 952	7 151	5 316	872	12 697	4 368
	3,6 %	0,5 %	0,5 %	0,4 %	1,1 %	1,1 %
Übrige Betriebe	65 752	1 375 461	1 101 010	216 745	1 0.11 257	343 936
	60,7 %	95,2 %	99,5 %	99,6 %	88,3 %	85,4 %
Reduktion der Fläche ²⁾	· -	57, 707 4,0 %	-		37 632 3,3 %	12 194 3,0 %
Erhöhung der Fläche bei > 3 GVE/ha	-	 -	-	- -	35 636 3,1 %	16 203 4,0 %
Berücksichtigt	65 752	1 317 754	1 101 010	216 745	1 009 261	347 947
	60,7 %	91,2 %	99,5 %	99,6 %	88,1 %	86,4 %
Nicht berücksichtigt	42 544	127 627	5 316	872	135.745	54 767
	39,3 %	8,8 %	0,5 %	0,4 %	11,9 %	13,6 %

¹⁾ Betriebe mit kleinen Beständen werden nicht berücksichtigt.

Anhand dieser Grundgesamtheit werden nun ausgerichtet auf die Fragestellung geeignete Betriebstypen definiert. Ein wichtiges Merkmal für die Ammoniak-Emissionen und mögliche Reduktionsmassnahmen ist die Tierkategorie. Mit einer Gruppierung der Betriebe nach Tierkategorie ergeben sich aber Durchschnittsbetriebe, die trotzdem von allen Tierkategorien mindestens geringe Anteile aufweisen. Um dies zu vermeiden, werden auf der Grundlage solcher Durchschnittsbetriebe Betriebstypen definiert, die lediglich bestimmte Tierkategorien halten, in den wichtigsten Kennzahlen wie Bestandesgrösse, Tierbesatz oder Nutzfläche aber übereinstimmen.

In den Tabellen 39 und 40 sind die Betriebe nach dem Vorkommen bestimmter Tiere gruppiert, wobei der gleiche Betrieb mehrmals vorkommen kann, wenn er verschiedene Tierkategorien hält. Berücksichtigt sind nur Betriebe mit einem gesamten Tierbestand von mehr als 3 GVE.

²⁾ Reduktion der Fläche nach Anteil Schafe, Ziegen, Geflügel, Pferde und Hirsche.

Tabelle 39. Merkmale von Betrieben mit bestimmten Tieren im Talgebiet

Tierkategorie	Anzahl	Mittlere	Mittlere	Mittlerer	Bestand	Tier-
	Betriebe ¹⁾	LN	AF .	Tierkategorie	Alle Tiere	besatz
	Anz.	ha/Betrieb	há/Betrieb	GVE/Betrieb	GVE/Betrieb	GVE/ha
Milchkühe ²⁾	13 818	16,1	7,4 .	15,0	19,9	1,2
Milchkühe ³⁾	8 99.7	15,7	8,2	15,1	27,0	1,7
Milchkühe⁴)	5 541	18,9	10,6	15,1	22,9	1,2
Milchküḥe ⁵⁾	2 340	20,5	12,0	16,4	32,3	1,6
Kühe ohne Milchkont.	1 735	10;4	5,7-	6,4	14,4	1,4
Mutterkühe	467	18,0	9,8	13,5	24,8	1,4
Aufzucht	30 785	17,0	8,7	4,1	23,7	1,4
Mastkälber	15 757	16,8	8,2	0,4	24,2	1,5
Mastrinder	10 318	18,7	11,2	4,7	24,3	1,3
Mastrinder ⁶⁾	840	18,2	15,0	14,5	16,1	0,9
Mastschweine	11 405	15,1	· 8,6	9,6	31,8 -	2,1
Mastschweine ⁷⁾	705		-	44,6 (9,6) ¹¹⁾	55,4	-
Mastschweine ⁸⁾	489	7,7	5,7	35,0 (0,0) ¹¹⁾	39,3	5,1
Mastschweine ¹⁰⁾	1 031	8,2	6,2	27,6 (14,9) ¹¹⁾	45,5	5,5
Zuchtschweine	. 7 123	15,0	8,3	9,1	32,0	2,1
Zuchtschweine ⁷⁾	282 .	-	-	29,2 (19,2) ¹²⁾	50,1	-
Zuchtschweine ⁹⁾	166	7,5	5,7	15,6 (0,0) ¹²⁾	18,4	2,4
Zuchtschweine ¹⁰⁾	7.09	8,4	6,3	25,3 (16,3) ¹²⁾	43,6	5,2

Anzahl Betriebe mit der entsprechenden Tierkategorie und Erfüllung folgender Bedingungen:

Die Betriebe im Talgebiet sind in der Regel grösser als die analogen Betriebe im Berggebiet

- grössere landwirtschaftliche Nutzfläche und höherer Ackerflächenanteil
- mehr Tiere und höherer Tierbesatz.

Im Berggebiet ist der Anteil der Milchviehbetriebe, die gleichzeitig auch Mastrinder und/oder Schweine aufweisen, geringer als im Talgebiet. Ebenso sind deutlich weniger Betriebe vorhanden, die auf die Haltung von Mastrindern oder Schweinen spezialisiert sind.

In Tabelle 41 sind die definierten Betriebstypen zusammengefasst, wobei in den Modellrechnungen die entsprechenden Aufstallungskapazitäten vorgegeben werden, der genaue Tierbestand aber modellintern bestimmt wird.

Die Anzahl Mutterkuhhaltungsbetriebe ist gering, deshalb wird pro Gebiet nur ein spezialisierter Betrieb (T1, B1) mit einem durchschnittlichen Mutterkuhbestand gebildet. Dem Betriebstyp

²⁾ Keine Schweine, keine Grossviehmast

³⁾ Schweine > 0, keine Grossviehmast

⁴⁾ Keine Schweine, Grossviehmast > 0

⁵⁾ Schweine > 0, Grossviehmast > 0.

⁶⁾ Keine Schweine, Kühe, Aufzuchtrinder

¹¹⁾ In Klammern mittlerer Zuchtschweinebestand

⁸⁾ Keine RiGVE, keine Zuchtschweine 9) Keine RiGVE, keine Mastschweine

¹⁰⁾ Keine RiGVE

¹²⁾ In Klammern mittlerer Mastschweinebestand

Tabelle 40. Merkmale von Betrieben mit bestimmten Tieren im Berggebiet

Tierkategorie	Anzahl	Mittlere	Mittlere	Mittlerer	Bestand	Tier-
	Betriebe ¹⁾	LN	AF	Tierkategorie	Alle Tiere	besatz
	Anz.	ha/Betrieb	ha/Betrieb	GVE/Betrieb	GVE/Betrieb	GVE/ha
Milchkühe ²⁾	13 385	15,5	1,1	11,1	16,0	1,0
Milchkühe ³⁾	6 423	14,8	2,0	12,2	20,8	1,4
Milchkühe⁴)	1 713	19,1	2,1	12,2	19,4	1,0
Milchkühe ⁵⁾	679	· 18,8	2,5	13,4	24,4	1,3
Kühe ohne Milchkont.	5 139	12,2	0,3	7,0	12,0	1,0
Mutterkühe	397	15,7	1,2	11,5	16,9	1,1
Aufzucht	27 304	15,3	1,3	4,2	17,0	1,1
Mastkälber	11 606	14,7	1,4	0,4	17,3	1,2
Mastrinder	3 844	17,5	1,7	1,5	18,3	1,0
Mastrinder ⁶⁾	31	7,5	2,0	6,3	11,3	1,5
Mastschweine	6 514	14,4	1,8	4,1	21,7	1,5
Mastschweine ⁷⁾	271	-	, -	36,7 (6,1) ¹¹⁾	43,7	-
Mastschweine ⁸⁾	124	4,3	0,1	11,6 (0,0) ¹¹⁾ ,	17,3	4,0
Mastschweine ¹⁰⁾	191	4,0	0,1	11,3 (5,9) ¹¹⁾	22,3	5;6
Zuchtschweine	4 081	13,4	1,7	3,8	21,7	1,6
Zuchtschweine ⁷⁾	96.		-	20,2 (16,2) ¹²⁾	37,9	-
Zuchtschweine ⁹⁾	51	3,2	0,1	7,2 (0,0) ¹²⁾	11,2	3,6
Zuchtschweine ¹⁰⁾	118	3,3	0,1	12,6 (6,1) ¹²⁾	22,7	6,9

Legende siehe Tabelle 39.

werden dazu eine mittlere Anzahl Aufzucht- und Masttiere zugeteilt. Da auf vielen Betrieben noch andere Tierkategorien gehalten werden, kann nur entweder die landwirtschaftliche Nutzfläche oder der Tierbesatz dem Durchschnittsbetrieb angepasst werden. Übernommen wird der Tierbesatz, so dass sich die Fläche proportional zum tieferen GVE-Bestand verringert.

Spezialiserte Rindermastbetriebe sind nur im Talgebiet in grösserer Zahl vorhanden. Es wird deshalb ein Talbetrieb (T2) mit 20 Mastrinder-GVE definiert. Die übrigen Masttiere im Talgebiet werden einem anderen Betriebstyp (T7) zugewiesen.

Ebenso werden spezialisierte Schweinemast- (T3, B2) und -zuchtbetriebe (T4, B3) gebildet. Diese Betriebstypen werden mit Ausnahme des Zuchtbetriebes im Berggebiet unterteilt in je einen Typ mit hohem und einen Typ mit tiefem Tierbesatz. Der höhere Besatz wird auf 3 GVE/ha begrenzt. Der durchschnittliche Tierbesatz von spezialisierten Schweinehaltungsbetrieben liegt zwar deutlich höher. Weil im Modell aber keine Hofdüngerwegfuhr erlaubt ist, wird die Fläche dieser Betriebstypen entsprechend erhöht. Es ist anzunehmen, dass Betriebe mit solch hohen Besatzdichten bis zum Jahr 2002 nicht auf IP umgestellt haben werden, da die Einhaltung einer ausgeglichenen Phophorbilanz mit einem massiven Bestandesabbau verbunden wäre. In den Modellrechnungen wird für diese Betriebstypen deshalb eine konventionelle Bewirtschaftung auch im Jahr 2002 unterstellt. Dagegen wird bei den Betriebstypen mit

Tabelle 41. Definierte Betriebstypen für das Tal- und Berggebiet

F=		<u> </u>												
		•			E	Betriebs	typen	Γalgebi	et	·	11 <u>55</u> .			
	- ,	1	Rind-	Schw		Schwe			Milch-	Milch-	Milch-	Milch-		
		ter-	vieh-	mas	st".	zuc	ht	vieh	vieh	vieh/ Mast	vieh/ Mast	, vieh/√ Mast		
	,	kuh	mast				_	. * .		IVIASL		(Schw.)		
	-	T1	T2	T3a/b	T3c/d	T4a	T4b	T5	T6	T7	T _. 8	T9		
ŀ	Jahr: 1994		Konv.	Konv.	Konv.	Konv.	Konv.	Konv.	Konv.	Konv.	Konv.	Konv.		
il.	Jahr: 2002	1P	ΙP	Konv.	ΙP	Konv.	IΡ	İP	ΙP	IP [,]	IP .	ΙΡ		
ŀ	Aufstallung ¹⁾	Tief-	Voll-	Voll-/	Voll-/	Einz		Boxen-	Ànb	Anb	Anb	Anb		
		streue	spalten	Teil-	Teil-	stand	stand	aufstall	stall	stall/ Voll-	stall/ Tret-	stall/ Teil-		
	•			spaiten	spalten		,		,	spalten	mist	spalten		
•	Betriebe	560	850	1 050	1.050	450	450	2 000	13 000	9 000	1 700	6 900		
⊩	LN (ha)	14,0	19,0	13,5	15,0	10,5	10,5	30,0	15,0	20,0	11,0	11,0		
ĺ	AF (ha)	5,0	18,0	9,0	10,0	6,5	6,5	22,0	8,0	10,0	5,0	4,5		
	Milchkont. (t)	-	٠	- .	- •			145	70	106 ⁻	· _ ·	45		
	GVE:				`.			20.0	, 42.0	, 20 U	7.0	9,0		
	Kühe Aufzucht	14,0 2,0		,				29,0	13,0 5,0	20,0 5,3	7,0 2,0	9,0		
	Mastvieh	2,0	20,0				•		,,,,	, 3,7		1		
	Mastkälber	2,4				• .					1,0	4.5		
Ì.	M.schweine	, i		40,0	30,0	31,0	21,0	,			3,0	4,5 6,0		
-	Z.schweine GVE/ha	1,3	1,1	3,0	2,0	3,0	2,0	1,0	· 1,2	1,4	1,2	1,8		
ŀ	GVL/IIa	1,0	11!		1	ypen B			.,-,-	, ,,,,	,,,,	<u> </u>		
			0 -1		Schw		Milch-	Milch-	Milch-	Milch-				
	• •	Mutter- kuh		reine-′ st¹)	zucht	vieh	vieh	vieh/	vieh/	vieh/		•		
			,,,,,				,	Mast	Mast	Mast	-			
				· · · · · ·			,	-	<u> </u>	(Schw.)				
		B1	B2a/b	B2c/d	B3	B4	B5	B6	B7	B8 `		*		
	Jahr: 1994	Konv.	Konv.	Konv.	Konv.	Kony.	Konv.	Konv.	Konv.	Konv.				
	Jahr: 2002	IP.	Konv.	IP	IP	IP	IP Amb	IP Anb	IP Anh	IP Anb				
	Aufstallung ¹⁾	Boxen- laufstall		Voll-/ Teil-		Boxen- laufstall		stall/	Anb	stall/				
		lauistaii		spalten	1			Voll-	Tret-	Teil-	,			
	. ,							spalter		spalten				
	Betriebe	465	300	300	250	<u> </u>	10 000		5 330	7 400		,		
	LN (ha)	14,0	6,7	11,5	6,4	30,5	16,0	11,0 2,5	12,0	14,0 2,5				
	AF (ha)	0,5	2,0	4,0	2,0	7,0	63	18	-	45.				
	Milchkont. (t) GVE:		-		-	100	00	10.	 	1		. ' 4		
	Kühe	12,0		· ·		21,0	13,0	8,0	7,0	10,0				
1	Aufzucht	1,0			1	5,0	4,0	5,0	3,0	6,0				
	Mastvieh	20						2,0	0,8					
	Mastkälber M.schweine	2,0	20,0	20,0			ľ		0,0	` 2,0				
	Z.schweine		,-		11,0			,		1,7				
1	GVE/ha	1,1	3,0	1,7	1,7	0,9	1,1	1,4	0,9	1,4				

¹⁾ Die spezialisierten Schweinemastbetriebe werden unterteilt in Betriebe mit Vollspaltenboden (90 %: Betriebe a und c) bzw. mit Teilspaltenboden (10 %: Betriebe b und d).

einem tiefen Tierbesatz, gleich wie bei den übrigen Betriebstypen, von einer Umstellung auf IP ausgegangen. Eine zusätzliche Unterteilung nach Voll- und Teilspaltenboden erfolgt für die Betriebe mit Mastschweinehaltung. Über die Häufigkeit dieser Systeme bestehen keine Erhebungen (Schätzung FAT: 70 % Vollspalten-, 30 % Teilspaltenboden). Für die spezialisierten Mastschweinebetriebe wird von 90 % Vollspalten-, für die kombinierten Betriebe von 100 % Teilspaltenboden ausgegangen.

Die Milchviehbetriebe werden in verschiedene Typen eingeteilt, die sich bezüglich der Bestandesgrösse, der Flächennutzung oder des Tierbesatzes unterscheiden (T5-9, B4-8). Es gibt je zwei reine Milchviehbetriebe (T5/6, B4/5), davon je ein Betrieb mit Boxenlaufstall. Die restlichen Betriebstypen sind kombiniert mit Grossviehmast (T7, B6), Kälbermast (B7) und Mastschweinen (T8) oder Schweinen (T9, B8). Dem Betriebstyp mit Kälbermast wird im Modell kein Milchkontingent zugeteilt.

Die Betriebstypenbildung ist ein Kompromiss. Einerseits sollen die Betriebstypen die Betriebsstrukturen in der Schweiz möglichst repräsentativ widergeben, andererseits sollen sie für die
Modellrechnung und die Fragestellung möglichst spezialisiert sein. Die Vertretung der einzelnen Betriebstypen in der Grundgesamtheit (Anzahl Betriebe pro Typ) wurde so abgestimmt,
dass die wichtigsten Merkmale (Tierbestände, mittlere Bestandesgrössen, Aufstallungssysteme, Flächen) insgesamt etwa übereinstimmen. Der Vergleich zwischen den hochgerechneten Betriebstypen und der Grundgesamtheit zeigt daher eine gute Übereinstimmung
(Tabelle 42).

Tabelle 42. Vergleich der hochgerechneten Betriebstypen mit der Betriebszählung 1990

		Modellbetriebe	Betriebszählung 1990 (berücksichtigte Betriebe)
Betriebe total	Anz.	66 055 + 0,5 %	65 752
LN total	ha	1 008 258 - 0,1 %	1 009 2̂61
AF total	ha	359 358 + 3,3 %	347 947 ,
Schweine und Rindvieh total	GVE	1 314 912 - 0,2 %	1 317 754

6. Einzelbetriebliche Modellergebnisse

6.1 Ergebnisse der Betriebstypen

6.1.1 Milchviehbetriebe

Am Beispiel des Milchviehbetriebes mit Boxenlaufstall im Talgebiet (Betrieb T5) wird die Reaktion der Modellbetriebe auf eine erzwungene Emissionsreduktion verdeutlicht (Tabelle 43; eine ausführlichere Darstellung der Resultate ist in Anhang C enthalten). Der überdurchschnittlich grosse Betriebstyp hat im Jahr 1994 eine landwirtschaftliche Nutzfläche (LN) von 30 ha, davon 22 ha ackerfähig. Es sind Stallplätze für 29 Kühe vorhanden, aber keine Aufzuchtplätze. Die trächtigen Rinder werden aus dem Berggebiet zugekauft, so dass zum Milchkontingent von 145 000 kg ein Zusatzkontingent von rund 10 000 kg hinzukommt. Bei einem durchschnittlichen Betriebswachstum von 1,5 % pro Jahr nimmt die LN bis zum Jahr 2002 um 3,8 ha zu. Das Milchkontingent wird im gleichen prozentualen Ausmass erhöht. Damit die Gesamtfläche und das Gesamt-Milchkontingent unverändert bleiben, wird die Anzahl Betriebe für die Hochrechnung entsprechend verringert. Die dem Betrieb vorgegebenen Stallplätze werden dabei so angepasst, dass die höhere Produktionsmenge erreicht werden kann. Weil das höhere Milchkontingent zum grössten Teil über die Leistungssteigerung ausgeschöpft wird, ist die Anzahl Plätze nur leicht anzuheben.

Im Jahr 1994 wird das Gesamteinkommen des Modellbetriebes bei konventioneller Bewirtschaftung wie auch unter Einhaltung der Anforderungen an die Integrierte Produktion maximiert. Der konventionelle Modellbetrieb nutzt die Ackerfläche zu über 50 % zum Anbau von Getreide oder Mais. 18 % der Ackerfläche bestehen aus Kunstwiesen, der Rest ist vor allem mit Zuckerrüben und Kartoffeln belegt. Vom integrierten Betrieb wird eine weniger intensive Wiesennutzung verlangt. Er muss deshalb die Kunstwiesenfläche zulasten des Maisanbaus ausdehnen. Infolge der tieferen Naturalerträge erzielt der IP-Betrieb trotz Direktzahlungen und tieferen Direktkosten kein höheres Gesamteinkommen als der konventionelle Betrieb. Die Ammoniak-Emissionen betragen im Jahr 1994 bei konventioneller Anbauweise insgesamt 1270 kg NH₃-N. Wird der Betrieb integriert bewirtschaftet, verringern sie sich auf 1242 kg N. Die extensivere Wiesennutzung führt zu einem geringeren N-Gehalt im Futter und damit zu tieferen N-Ausscheidungen. Gleichzeitig sinkt der Mineraldüngereinsatz.

Im Jahr 2002 bewirken die veränderten wirtschaftlichen Rahmenbedingungen eine Anpassung der Bodennutzung. Die angenommenen massiven Preissenkungen verringern die Wirtschaftlichkeit der Ackerkulturen im Vergleich zu den mit Beiträgen geförderten extensiven Wiesen. Der Modellbetrieb reagiert darauf mit einer starken Extensivierung des Grünlands und einer Ausdehnung der Wiesen zuungunsten der Ackerflächen. Gleichzeitig haben die Preissenkungen, trotz erhöhten Direktzahlungen und tieferen Kosten, einen deutlichen Einkommensrückgang zur Folge. Die Ammoniak-Emissionen sinken wegen des durch die Extensivierung bedingten tieferen Mineraldüngereinsatzes leicht auf 1218 kg N. Die Emissionen aus der Tier-

Tabelle 43. Massnahmen des Milchviehbetriebes mit Boxenlaufstall im Talgebiet

		,		 		min		·		<u> </u>	<u> </u>
	,	19	94	,,,			. 20	002		•	
Landbauform	* •	Konv.	IP	ΙP	Redu	ıktion de	r Ammon	iak-Emiş	sionen (B	asis 2002	!) um:
Landw. Nutzfläche (LN) Max. Ackerfläche (AF)		30,00	30,00	33,79	10 %	20 %	.30 %	40 % È	, 50 [`] %	60 %	70 %
Milchkontingent	ha kg	22,00 145 000	22,00 145 000	24,78 163 341			,				. "
NH ₃ -Emissionen Total	kg N	1270 kg	1242 kg	1218 kg	1096 kg	974 kg	852 kg	731 kg	609 kg	487 kg	365 kg
Einkommensverlust Pro kg eingespartes N	Fr. Fr./kg	-			792 6,50	2 464 10,12	5 748 15,74	11 079. 22,75	17 626 28,95	24 023 32,88	30 898 36,25
	,		-11*		Anwend	dungsgra	ad der Ma	ssnahme	(Fütteru	ng: Redu	ktion N)
Fütterung Küh	ę .	a .	2 %	6%	6 %	√8 %	7%	13 %	18 %	18 %	18 %
Stall Kühe	all Kühe Schieber+Zeitschaltung							· .		1 -	
		ngsbuchte	en _{t.}				100 %	100 %	100.%	100 %	100 %
Lagerung Gülle offen		-					1 1-	• ,		***************************************	
	Stronha				· .			100 %	100 %	100 %	100 %
Anwendung Gülle		nung 1:2 \			i.	•			`	100 %	
	,	nùng 1:2 \$.,		•	100 op 200 and analysis of the		WALLOW DOG 11 1111		,
		nung 1:4 S			" " <u></u>			100 %	100 %		
,		iten oder			. 3% .		7.%	7 %	2 70	11 %	19 %
,		oschlauch	` *	. 1		1%	6 %	6 %	8 %	11 %	9.%
	Schlepp				5.%	26 %	13 %	14 %	15 %	25′%	49 %
	Gülledri			,	2 %	2 %		nan angangan	n silanggi in	a. Cristia mandagana	1.%
4	Injektio	•	الشط		8.%	. 8 %	3 % *	3.%	2 %	11 %	17 %
		usbringted		4000	19 %	46 %	29 %	31 %	34 %	58 %	95 %,
Moitoro Maganakasas		gungsmei		1268	1268	1268	2121	1951	1664	998:	_(611 _k
Weitere Massnahmen		t auf Harn			92-%	100 %	100 %	100 %	100 %	100 %	100 %
	-Appau	Γierbestar	10	. , ,		(-1.	7 %	19 %	37 %	52 %

haltung ändern sich kaum, da auch die gesamte N-Ausscheidung trotz der deutlich höheren Milchmenge fast unverändert bleibt. Dies ist neben der höheren Milchleistung auf die veränderte Zusammensetzung der Futterration zurückzuführen (vgl. Tabelle 13, S. 31). Vor allem in der Winterfütterung werden die Anteile der Futtermittel mit vergleichsweise tiefem Rohproteingehalt (extensives Dürrfutter, Maissilage und Futtergetreide) erhöht.

Wird der Modellbetrieb nun gezwungen, die Ammoniak-Emissionen weiter zu reduzieren, setzt er emissionsarme Verfahren der Gülleausbringung ein. Weil die Kosten dieser Verfahren im Modell vollständig auf eine Mengeneinheit Gülle bezogen werden, hat der Betrieb die Möglichkeit, mehrere Verfahren nebeneinander anzuwenden, aber jeweils nur bis zu einem bestimmten, vorgegebenen Anwendungspotential (vgl. S. 44). Am wirtschaftlichsten ist die tiefe Injektion, mit welcher die Emissionen im Vergleich zu einer heute üblichen Ausbringung um 90 % gesenkt werden können. Dieses Verfahren wird bis zum stark eingeschränkten Anwendungspotential ausgeschöpft. Die Wahl weiterer Verfahren hängt neben der Wirksamkeit von den Maschinen- bzw. Lohnkosten und von der verfügbaren eigenen Arbeitszeit ab. Um die Ammoniak-Emissionen um 10 % zu reduzieren, ersetzt der Betrieb gleichzeitig den Harnstoffdünger durch Ammonsalpeter. Infolge dieser Massnahmen verringert sich das Gesamteinkommen um rund Fr. 800.- oder Fr. 6,50 pro reduziertes kg N.

Bei einer Reduktion der Emissionen um 20 % erfolgt ein vermehrter Einsatz der emissionsarmen Ausbringtechniken. Zudem werden bei einem Teil der sehr intensiven Wiesen die Nutzungsintervalle ausgedehnt, so dass infolge der geringeren Rohproteingehalte die N-Ausscheidung weiter sinkt. Eine Reduktion um 30 % wird mit einer Gülleverdünnung im Sommer und mit dem Einbau von Fütterungsbuchten erreicht. Ab einer Reduktion um 40 % nimmt die N-Ausscheidung durch den Einsatz von Maissilage im Sommer weiter ab. Die Wirtschaftlichkeit einer solchen Fütterungsmassnahme wird durch die bestehenden, dem Modellbetrieb vorgegebenen Lagerungseinrichtungen beeinflusst. Zusätzlich wird der offene Güllebehälter (Annahme: 20 % offene Lagerung) mit Strohhäcksel bedeckt, und der Tierbestand muss bereits leicht verringert werden, wodurch der Einkommensverlust trotz Nebenerwerbsarbeiten im Winter stark ansteigt. Umgerechnet auf ein Kilogramm verkaufte Milch beträgt der Einkommensverlust bei einer Emissionsminderung um 20 % etwa 1,5 Rappen, bei einer Minderung um 40 % 6,9 Rappen.

Abbildung 14 zeigt den Verlauf des Einkommensrückgangs gesamthaft und bezogen auf ein kg NH₃-N der verhinderten Emissionen. Bei dem auf eine Mengeneinheit NH₃-N bezogenen Einkommensverlust ist zu unterscheiden zwischen dem durchschnittlichen Verlust über die gesamte Reduktion und dem zusätzlichen Verlust bei einem 10 %-Reduktionsschritt. Letzterer entspricht annähernd dem Grenzverlust, das heisst dem Verlust, der bei einem kg N zusätzlicher Emissionsreduktion entsteht. Er steigt mit zunehmender Emissionsreduktion an, weil immer teurere Massnahmen ergriffen werden müssen. Dadurch erhöht sich der gesamte Einkommensverlust des Betriebes progressiv. Ein linearer oder gar abnehmender Anstieg des gesamten Verlustes (bzw. ein gleichbleibender oder sinkender Grenzverlust) ist denkbar, wenn eine an sich effiziente Massnahme nicht kontinuierlich, sondern erst ab einem gewissen Umfang eingesetzt werden kann, beispielsweise eine Investition im Stall-, Lagerungs- oder Anwendungsbereich. Im Modell sind aber insbesondere in letzterem Bereich die Kosten auf eine Hofdüngereinheit bezogen, damit Betriebstypen mit durchschnittlichen Anwendungspotentialen abgebildet werden können.

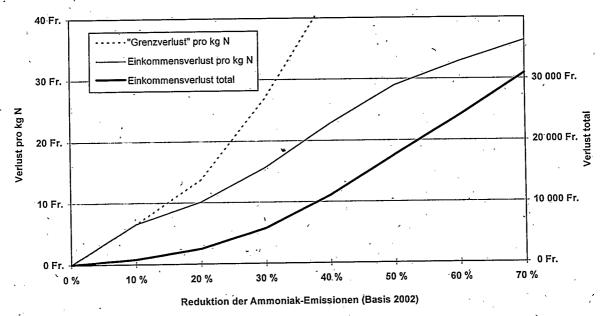


Abb. 14. Einkommensverlust infolge der Reduktionsmassnahmen beim Milchviehbetrieb mit Boxenlaufstall im Talgebiet

Im Vergleich zum Milchviehbetrieb mit Boxenlaufstall sind die Emissionen beim Anbindestall (Betrieb T6) im Stallbereich um über 50 % geringer. Die gesamtbetrieblichen Emissionen betragen beim Betrieb mit Boxenlaufstall 36,3 % des ausgeschiedenen Stickstoffs, beim Betrieb mit Anbindestall 29,8 %, wobei zu diesem tieferen Wert auch die im Sommer auf der Weide gehaltenen Aufzuchttiere beitragen. Die Reduktionsmassnahmen sind in Tabelle 44 enthalten. Wie beim Betrieb mit Boxenlaufstall werden, neben dem Ersatz des Harnstoffdüngers, zuerst Massnahmen in den Bereichen Fütterung und Hofdüngeranwendung ergriffen. Statt des Schleppschuhs kommt dabei vorerst vor allem der Schleppschlauch zum Einsatz. Bereits bei einer Emissionsreduktion um 20 % wird die Gülle im Sommer verdünnt. Dies kann kostengünstiger sein als eine spezielle Ausbringtechnik, wenn dem Betrieb genügend Arbeitszeit und ein nicht voll ausgelasteter Traktor zur Verfügung stehen. Massnahmen im Stallbereich sind bei diesem Betrieb nicht möglich. Ab einer Reduktion um 50 % muss die Tierzahl verringert werden.

Bei den Milchviehbetrieben im Berggebiet verläuft die Reihenfolge der Massnahmen ähnlich wie im Talgebiet. Weil aber die emissionsarmen Ausbringtechniken infolge der kleineren Ackerflächen und der Hangneigungen stärker eingeschränkt sind, werden bereits früher andere Massnahmen nötig.

Abbildung 15 zeigt für die Milchviehbetriebe den Verlauf des Einkommensverlustes pro kg N bei zunehmender Emissionsreduktion. Ausgangsbasis sind die Ammoniak-Emissionen im Jahr 2002 ohne spezielle Massnahmen. Weil sich deren Höhe je nach Betriebstyp unterscheidet,

Tabelle 44. Massnahmen des Milchviehbetriebes mit Anbindestall im Talgebiet

		1994					20	02			(
Landbauform		Konv.	. iP .	, IP	Redu	iktion der	Ammon	iak-Emis	sionen (B	asis 2002) um:		
Landw. Nutzfläche (LN) Max. Ackerfläche (AF) Milchkontingent		15,00 8,00 70 000	15,00 8,00 70 000	16,90 9,01 78,854	10 %	20 %	30 %	40 %	50 %	60 %	70 %		
NH ₃ -Emissionen Total	kg N	593 kg.	590 kg	592 kg	533 kg	473 kg	414 kg	355 kg	296 kg	237 kg	178 kg		
Einkommensverlust Pro kg eingespartes N	Fr. Fr./kg				225 - 3,80	597 5,05	1 193 6,72	2 204 9,31	5 565 18,81	9 336 26,30	13 320 32,16		
					Anwendungsgrad der Massnahme (Fütterung: Reduktion N)								
Fütterung Küĥe Aufzucht				3 %	7 % 1 %	7 % 1 %	7% - 1%	10 % 2 %	10 % 3 %	14 % 3 %	16 % 3 %		
Lagerung Gülle offen					100 %	100,%	100 %	100 % ′					
Anwendung Gülle	Anwendung Gülle Verdünnung 1:2 Winter Verdünnung 1:2 Sommer					100%							
	Verdünnung 1:4 Sommer Einarbeiten oder Hacken			•	6%	9.%	100 % 6 %	100 % 5 %		6 %	100 %		
	Schleppschlauch Schleppschuh Gülledrill			•	7.%	3.%	'2.%	4 % 2 %	8 % 8 %	9′% 11 %	16 % 12 %		
	Injektion Total Ausbringtechnik				1 % . 14 %	2 % 14 %	2 % 10 %	3 % 14 %	5 % 21 %	6 % ` 32 %	8.% 35.%		
	Ausbringungsmenge (m³)			666	663	872	1259	1366	1161	961	698		
Weitere Massnahmen	,	it auf Harr Tierbesta	,		97 %	100.%	100 %	100 % 1 %	100 % 15 %	100 % 29 %	47 %		

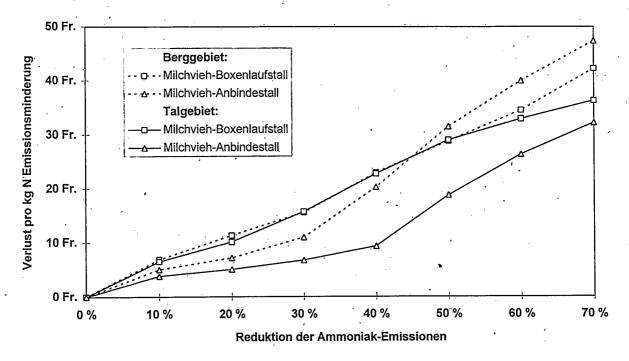


Abb. 15. Einkommensverlust pro kg N bei den Milchviehbetrieben

entsprechen die gleichen prozentualen Reduktionsschritte nicht denselben absoluten Grössen. Die Milchviehbetriebe mit Boxenlaufstall verzeichnen grössere Einkommensrückgänge pro kg N als die Betriebe mit Anbindestall, weil die höheren Emissionen im Stallbereich die Wirksamkeit der Massnahmen bei der Hofdüngeranwendung herabsetzen. Beim Boxenlaufstall sind die Verluste des Betriebes im Berggebiet trotz der tieferen Anwendungspotentiale für emissionsarme Ausbringtechniken etwa gleich hoch wie diejenigen des Talbetriebes, da dem Bergbetrieb günstiges Wasser für die Verdünnung der Gülle und genügend Familienarbeitskräfte für deren Ausbringung zur Verfügung stehen. Beim Anbindestall dagegen hält der Modellbetrieb im Berggebiet die Kühe in einem Gülle/Mist-System und besitzt keine Ackerflächen, so dass ihm die Möglichkeiten für emissionsarme Ausbringungsverfahren stärker eingeschränkt sind.

6.1.2 Schweinehaltungsbetriebe

Die Modellbetriebe mit Schweinehaltung sind aufgeteilt in Betriebe mit einem hohen Tierbesatz, die bei einer Umstellung auf IP den Tierbestand massiv reduzieren müssten, und in Betriebe mit einem tiefen Tierbesatz, für welche die Erreichung einer ausgeglichenen Nährstoffbilanz ohne Bestandesabbau möglich ist. Tabelle 45 zeigt die Anpassung des Betriebes mit Mastschweinehaltung auf Teilspaltenboden und tiefem Tierbesatz (Betrieb T3d). Wegen der angenommenen Verbesserung der Futterverwertung reduziert sich die N-Ausscheidung im Jahr 2002 um 10 %. Als zusätzliche Minderungsmassnahmen werden zuerst emissionsarme Ausbringungsverfahren eingesetzt, neben der Einarbeitung vor allem der Schleppschlauch und der Injektor. Danach erfolgt eine Verdünnung der Gülle im Sommer. Ab einer Emissionsreduktion um 40 % werden bauliche Massnahmen bei der Güllelagerung (Annahme: 35 % offene Lagerung) und im Stallbereich notwendig. Im Stall ist die impulsarme Zuluftführung am

Tabelle 45. Massnahmen des Schweinemastbetriebes mit Teilspaltenboden im Talgebiet

	<u> </u>			<u> </u>			*	<u> </u>				
		1994					2002				/	
Landbauform		Konv.	IP	ΙP	Reduktion der Ammoniak-Emissionen (Basis 2002) um:							
Landw. Nutzfläche (LN)		15,00	15,00	16,89	10.%		- 30 %	40 %	50 %	60.%	70 %	
Max. Ackerfläche (AF) Schweinemastplätze) ha ∞SMP	10,00 176	10,00 176	11,26 192		,	• .		٠, ٠,			
NH ₃ -Emissionen Total	kg N	1239 kg	1248 kg	1248 kg	1124 kg	999 kġ	'874 kg	749 kg	624 kg	499 kg	375 kg	
Einkommensverlust Pro kgʻeingespartes N	Fr. Fr./kg				345 2,76		1 788 4,77	4 668 9,35	10 734 17,20	19 373 25,87	29 161 33,37	
			,)	• • •	ndungsgra				, ; ; -		
	weiné			. 10 %	10 %	10 %	10 %	12 %	20 %	20.%	20 %	
Stall Mastschweine	all Mastschweine Schiebersystem Impulsarme Zuluftführung					,	-	100%	100%	100%	100%	
Lagerung Gülle offen	,	J			100 %	100:%	100 %	100 %				
	•		- 6	49 %	;	}		man etter Mag				
Anwendung Gülle	Anwendung Gülle Verdünnung 1:2 Winter Verdünnung 1:2 Sommer					100 %						
· (nung 1:4				********	100 %	.100%	100:%	100 %	100 %	
*	Einarbe	iten oder	Hacken		9 %	7 %	5 %	4 %	4.%	6.%	8 %	
	Schleppschlauch				10 %	20 %	10'%	4 %	4 %	4 %	2%	
•	Schlep	oschuh [.]			he restaurant to		Amely	10 %.	10 %	16:%	24 %	
	Gülledr	ill	`. '	. ' [1%	". ·	1000	1 %	1 %	14 T A T 1	77 % 77	
	Injektion				9%	6.%	4 %	4 %	4 %	6 %	8%	
	Total Ausbringtechnik]	28 %	33-%	18 %	23 %	23 %:	31 %	41 %	
(· · · · · · · · · · · · · · · · · · ·	Ausbringungsmenge (m³)			768	768	989	1503	1553	1500	1112	854	
Weitere Massnahmen	*	t auf Harn					100 %	100 %	100 %	100%	100 %	
	Abbau -	Tierbestar	nd 🐫		, .	·,		, a samula	5 %	23 %	43 %	

kostengünstigsten, bereits ab einer Reduktion um 50 % muss aber das wirksamere automatisierte Schiebersystem unter dem Spaltenboden eingebaut werden. Zudem ist bereits eine Verringerung des Tierbestandes erforderlich.

Für Betriebe mit hohem Tierbesatz wird auch im Jahr 2002 eine konventionelle Bewirtschaftung angenommen. Die bei einer erzwungenen Emissionsreduktion getroffenen Massnahmen unterscheiden sich aber kaum von den Betrieben mit Integrierter Produktion. Auch die Betriebe mit Zuchtschweinehaltung reagieren ähnlich, wobei sich im Stallbereich nur die impulsarme Zuluftführung als lohnende Massnahme zur Verhinderung eines sonst notwendigen Bestandesabbaus erweist.

In Abbildung 16 ist für einige Schweinehaltungsbetriebe der Verlauf des Einkommensverlustes pro kg N bei zunehmender Emissionsreduktion ersichtlich. Im Talgebiet bestehen kaum Unterschiede zwischen den verschiedenen Betriebstypen. Im Berggebiet müssen die Betriebe wegen der geringeren Anwendungspotentiale der Ausbringtechniken im allgemeinen einen grösseren Verlust hinnehmen. Der Modellbetrieb mit Zuchtschweinehaltung im Berggebiet zeigt einen etwas abweichenden Verlauf. Eine Emissionsreduktion um bis zu 20 % verursacht diesem Betrieb geringe Kosten, da ihm ausreichend Familienarbeitskräfte für den durch die Gülleverdünnung bedingten höheren Arbeitsaufwand zur Verfügung stehen. Dagegen ist der Einkommensverlust bei einer stärkeren Emissionsreduktion höher als bei den übrigen Betrier ben, vor allem weil mit der Reduktion des Tierbestandes auch die Kostenbeiträge für Zuchtschweine wegfällen.

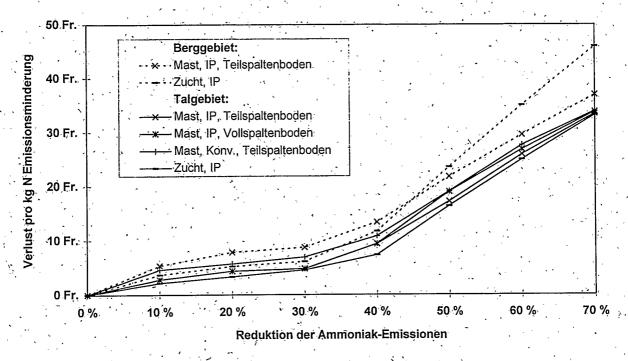


Abb. 16. Einkommensverlüst pro kg N bei den Schweinehaltungsbetrieben

6.1.3 Übrige Betriebe

Neben den Milchvieh- und Schweinehaltungsbetrieben wurden Betriebe mit Mutterkuhhaltung oder Rindviehmast sowie kombinierte Betriebe mit verschiedenen Tierkategorien untersucht.

Tabelle 46 zeigt die Anpassung des Betriebes mit Mutterkuhhaltung im Talgebiet (Betrieb T1). Die Kühe werden in einem Tiefstreu-Laufstall gehalten. In der Ausgangssituation des Jahres 2002 sind die Ammoniak-Emissionen gemessen an der N-Ausscheidung mit 21,6 % gering. Dies ist, neben den bei Mistsystemen leicht tieferen Emissionen als bei Güllesystemen, vor allem auf den hohen Weideanteil, der dem Betrieb vorgegeben ist, zurückzuführen. Ausser dem Einarbeiten des Mistes und dem Verzicht auf Harnstoffdunger bleiben dem Betrieb kaum

Tabelle 46. Massnahmen des Mutterkuhhaltungsbetriebes im Talgebiet

		1994		,	2002						
Landbauform	` .	Konv.	IP :	ΙP	IP Reduktion der Ammoniak-Emissionen (Basis 2002						
Landw. Nutzfläche (LN)	ha:	14,00	14,00 5,00	15,77 5,63	-10 ⁻ %	20 %	30 %	40 %	50 %·	60 %	70 %
Max. Ackerfläche (AF) Stallplätze Rindvieh	ha GVP	5,00 19,8	19,8	22,3	: ; ; ·	<u> </u>				·	
NH ₃ -Emissionen Total	kg N	409 kg	408 kg	444 kg	400 kg	355 kg	311 kg	. 267 kg	222 kg	178 kg	133 kg
Einkommensverlust Pro kg eingespartes N	Fr. Fr./kg				140 3,1 6	537 6,04	1144 8,58	1866 10,50	2778 12,51	4009 - 15,04	5871 18,88
					Anwend	lungsgra	d der Ma	ssnahme	(Fütteru	ng: Redul	ction N)
Fütterung Kühe	e .			1.%	1%	1.%	` 1%		1%		1 %;
Anwendung Mist	Einarb Ausbri	eiten ngungsme	enge (t)	158	14% 154	63 % 143	126	109	99 <i>%</i> 91	71	100 % 52
Weitere Massnahmen		ht auf Har Tierbesta			100 % 2 %	100 % 9 %	(100 % 20 %	774	100 % 7. 42 %	100 % 55 %	100 % 67 %

weitere Reduktionsmöglichkeiten. Die bereits zu Beginn extensive Fütterung kann kaum mehr durch rohproteinärmere Futtermittel verändert werden, und im Stall sowie bei der Lagerung sind keine Massnahmen möglich. Bereits bei geringer Emissionsreduktion muss der Tierbestand verringert werden. Wegen des tiefen Ertrages pro GVE liegt der Einkommensverlust pro kg N aber dennoch unter demjenigen der meisten anderen Betriebstypen.

Der Einkommensverlust pro kg N ist in Abbildung 17 für verschiedene Betriebstypen aufgetragen, die sich bezüglich Region oder Tierkategorie unterscheiden. Diese Kriterien haben aber einen geringeren Einfluss auf den Verlust als bestimmte Annahmen für die einzelnen Modellbetriebe. Unter den kombinierten Betrieben steigt der Einkommensverlust am stärksten beim Kälbermastbetrieb im Berggebiet an. Dieser Betrieb verfügt über keine Ackerfläche, so dass der vorgegebene Hochsilo nur mit Grassilage genutzt werden kann. Eine Umstellung der Winterfütterung ist daher mit grösserem Aufwand verbunden. Zudem ist der bestehende Stall mit einem Gülle/Mist-System ausgestattet. Für den anfallenden Stapelmist gibt es aber auf Grünland keine emissionsmindernden Massnahmen. Aus demselben Grund steigt auch der Einkommensverlust des Milchviehbetriebes mit Schweinehaltung im Berggebiet ab einer Reduktion um 40 % stark an. Für diese beiden Betriebe ist der Verlust nur bis zu einer Reduktion um 60 % aufgezeichnet, weil ein weiterer Schritt ein negatives landwirtschaftliches Einkommen ergäbe. Deutlich tiefer fällt der Verlust beim Milchviehbetrieb mit Rindviehmast im Berggebiet aus. Bei diesem Betrieb trägt der mit zwölf Plätzen kleine Mastviehbestand nur wenig zum Einkommen bei, so dass die Tierzahl ab einer Emissionsminderung um 40 % verringert werden kann, ohne dass das Einkommen stark sinkt. Diese Modellreaktion erfolgt auch beim Milchviehbetrieb mit Rindviehmast im Talgebiet. Die beiden übrigen kombinierten Betriebe im Talgebiet zeigen keine Besonderheiten. Auf beiden Betrieben fällt neben Gülle auch Stapelmist an, bei dessen Ausbringung auf der Ackerfläche die Möglichkeit des emissionsmindernden Einarbeitens besteht.

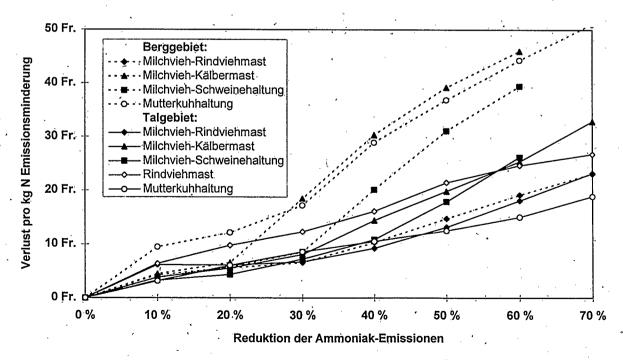


Abb. 17. Einkommensverlust pro kg N bei den übrigen Betrieben

Auf dem spezialisierten Rindviehmastbetrieb mit Vollspaltenboden besteht die Futterration in der Ausgangssituation zu einem Grossteil aus Silomais. Dadurch kann die N-Ausscheidung durch einfache Fütterungsanpassungen kaum mehr reduziert werden. Zudem führen die beim Mastvieh tieferen N-Gehalte in der Gülle zu einer verminderten Wirkung der weiteren Reduktionsmassnahmen. Der Einkommensverlust pro kg N liegt daher bereits bei einer geringen Emissionsreduktion vergleichsweise hoch. Im Stallbereich bestehen keine wirksamen Massnahmenvorschläge, so dass ab einer Emissionsreduktion um 30 % die Tierzahl gesenkt wird. Für das Berggebiet wurde kein spezialisierter Mastviehbetrieb definiert, weil diese Betriebe gemäss Landwirtschaftszählung 1990 nur im Talgebiet in grösserer Zahl vorkommen.

Im Gegensatz zum Mutterkuhbetrieb im Talgebiet steigt der Einkommensverlust des entsprechenden Betriebes im Berggebiet bereits bei einer geringen Reduktion deutlich stärker an.
Dem Betrieb ist ein Boxenlaufstall und im Sommer eine Vollweidehaltung vorgegeben. Weil im
Berggebiet neben den Kuhhalterbeiträgen zusätzlich Kostenbeiträge ausgerichtet werden,
versucht der Betrieb, einen Bestandesabbau vorerst mit emissionsmindernden Massnahmen
zu verhindern. Infolge der eingeschränken Massnahmen, bei bereits tiefen Emissionen in der
Ausgangssituation, ist dies nur noch bedingt möglich.

6.1.4 Übersicht zu den einzelbetrieblichen Ergebnissen

Die Reaktionen der Modellbetriebe auf die wirtschaftlichen und technischen Rahmenbedingungen in den Jahren 1994 und 2002 zeigen bei allen Betriebstypen Gemeinsamkeiten:

Bodennutzung: Die stark sinkenden Preise der Ackerkulturen im Jahr 2002 bewirken, dass die mit Ökobeiträgen geförderten extensiven und wenig intensiven Wiesen konkurrenzfähiger werden. Sofern eine ausgeglichene Nährstoffbilanz eingehalten werden kann, nutzen die Betriebe einen Teil ihres Grün- oder Ackerlandes als extensive Wiesen. Dadurch verringert sich auch der Mineraldüngerzukauf.

Tierbestand: Trotz der angenommenen Flächenzunahme von 1,5 % pro Jahr erhöht sich der Milchviehbestand auf den einzelnen Betriebstypen im Jahr 2002 nur geringfügig. Das grössere Milchkontingent kann zu einem Grossteil durch die höhere Milchleistung ausgeschöpft werden. Auf den Betrieben mit Mastvieh oder Schweinehaltung nehmen die Bestände zwar zu, infolge von Leistungssteigerungen aber ebenfalls nicht im selben Ausmass wie die Nutzfläche. Wegen der tieferen Zahl hochzurechnender Betriebe sinkt damit der gesamte Rindviehbestand zwischen 1994 und 2002 bei gleicher Produktionsmenge um insgesamt 10 %, der Schweinebestand um rund 4 %. Bezogen auf die düngbare LN erfolgt gleichwohl keine Abnahme des Tierbesatzes, was auf die Zunahme der extensiven Wiesen zurückzuführen ist.

Landwirtschaftliches Einkommen: Unter den getroffenen Annahmen (vgl. Kapitel 4.1) verringert sich das landwirtschaftliche Einkommen im Jahr 2002 bei den meisten Betriebstypen massiv. Die sinkenden Preise und teilweise ansteigenden Betriebskosten können durch höhere Direktzahlungen und tiefere Futtermittelpreise sowie durch die Ausnützung des technischen Fortschritts nicht kompensiert werden.

Ammoniak-Emissionen: Gemessen am ausgeschiedenen Stickstoff geht auf den Betrieben mit Schweinehaltung mehr Ammoniak verloren als auf den Betrieben mit Rindviehhaltung, weil in Schweinegülle der Anteil an löslichem und damit verlustgefährdetem Stickstoff höher ist als in Rindviehgülle. Am tiefsten fallen die Verluste auf den Betrieben mit Mutterkuhhaltung aus, da für diese ein hoher Weideanteil angenommen wurde. Im Jahr 2002 erfolgt bezogen auf die Produktionsmenge eine Abnahme der Ammoniak-Emissionen. Dies ist hauptsächlich eine Folge der tieferen N-Ausscheidungen in der Tierhaltung, bedingt durch biologisch-technische Fortschritte (Leistungssteigerungen und bei Schweinen bessere Futterverwertung) sowie durch die agrarpolitischen Rahmenbedingungen (rohproteinärmere Futtermittel).

Tabelle 47 gibt für die Betriebstypen, die in der Tierhaltung nur eine Produktionsrichtung verfolgen, eine Übersicht über die Reihenfolge der getroffenen Massnahmen zur verlangten Reduktion der Ammoniak-Emissionen. Bereits ohne Zwang erfolgen im Jahr 2002 Anpassungen im Bereich der Fütterung. Eine Ausnahme bilden die Modellbetriebe mit Mutterkuhhaltung und Rindviehmast im Talgebiet, da sie bereits in der Ausgangssituation rohproteinarme Rationen aufweisen, so dass eine weitere Verbesserung nur noch bedingt möglich ist. Geringe Auswirkungen auf das Einkommen haben Massnahmen bei der Hofdungeranwendung (Einarbeiten, Ausbringtechnik). Auf den Betriebstypen des Berggebietes ist teilweise die Gülleverdünnung vorteilhafter, besonders wenn genügend Lagerraum und Wasser sowie freie Arbeitszeit zur Verfügung stehen. Für die Betriebe mit Rindviehhaltung ist der Ersatz der Harnstoffdünger durch emissionsärmere Mineraldünger eine der ersten Massnahmen, während auf Schweinehaltungsbetrieben vorerst die Massnahmen bei der Hofdungeranwendung stärker zum Zuge kommen, da deren Wirksamkeit wegen des höheren Verlustpotentials bei Schweinegülle grösser ist. Erst bei einer verlangten Emissionsminderung auf 30 oder 40 % werden bauliche Massnahmen bei der Aufstallung und Lagerung durchgeführt. Eine weitere Minderung muss mit einer Verringerung der Tierzahl erreicht werden. Die Betriebe mit Mutterkuhhaltung und Rindviehmast ergreifen diese Massnahme wegen der stärker eingeschränkten Massnahmenauswahl und der geringeren Einkommensreduktion pro abgebaute GVE bereits früher.

Tabelle 47. Reihenfolge der Reduktionsmassnahmen auf den einzelnen Betriebstypen

Massnahmen		Betriebe Talgebiet							Betriebe Berggebiet						
	Milch	vieh	Schv	veine	Mutter- Rine		Milchvieh		Schweine		Mutter-				
	Boxen- laufstall	Anb stall	Mast	Zucht	kuh	vieh- mast	Boxen- laufstall	Anb	Mast	Zucht	kuh				
Fütterung	x	х	х	x	xxxx	xxxx	х	x	x	x	x				
Aufstallung	xxx	,	XXXX	xxxx			XXXX.		XXXX	XXXX					
Lagerung	XXXX	XXXX	XXX	XXXX		XXXXX	XXXX	xxxx	xxx	XXX	xxx				
Gülleverdünnung	xxx	XX	xx	xx		xx	xx	х	X	x	xx				
Anwendung	х .	Х	х	х	x	X	·x	XXX	х	х	x				
Harnstoffdünger	x	X	XXX	XXX	×	X	х	XXX	xx	XX	х				
Abbau Tierbestand	xxxx	XXXXX.	xxxxx	xxxxx	XX .	xxx	XXXX.	XXXX .	xxxxx	xxxxx	xxxx				

Massnahme durchgeführt bei einer erzwungenen Emissionsreduktion um:

 $10 \% = x \quad 20 \% = xx \quad 30 \% = xxx \quad 40 \% = xxxx \geq 50 \% = xxxxx$

---- = Massnahme , nicht möglich

In Abbildung 18 ist für diese Betriebstypen nochmals der Einkommensverlust pro kg reduziertés NH₃-N bei verschiedenen Emissionsminderungen aufgetragen, was neben dem Vergleich zwischen Tal- und Berggebiet einen Vergleich zwischen den Tierkategorien ermöglicht. Die Betriebe im Berggebiet erleiden bei derselben prozentualen Reduktion wegen des geringeren Anwendungspotentials emissionsarmer Ausbringtechniken einen höheren Verlust als die Betriebe im Talgebiet. Am geringsten ist der Einkommensverlust auf den Betriebstypen mit Mast- oder Zuchtschweinehaltung im Talgebiet. Etwa den gleichen Verlauf zeigen die Kosten des Milchviehbetriebes mit Anbindestall im Talgebiet. Wegen den tiefen Emissionen im Stallbereich und damit nur wenig abnehmenden N-Gehalten der Hofdünger fällt die pro Mengeneinheit erreichbare Emissionsminderung bei der Anwendung ähnlich hoch aus wie bei den Schweinehaltungsbetrieben. Die Betriebe mit Mutterkuhhaltung oder Rindviehmast verzeichnen bei hohen Emissionsreduktionen, bei denen ein Abbau des Tierbestandes notwendig wird, vergleichsweise tiefe Verluste. Die grössten Verluste pro kg N treten im Talgebiet beim Milchviehbetrieb mit Boxenlaufstall auf. Auch im Berggebiet entstehen bei den Schweinehaltungsbetrieben die geringsten Verluste, und zumindest bei geringer Emissionsreduktion liegt der Milchviehbetrieb mit Anbindestall im selben Bereich. Mit zunehmender Reduktion steigt der Verlust dieses Betriebes aber stärker an, da ihm, im Gegensatz etwa zum Betrieb mit Boxenlaufstall, keine Ackerfläche vorgegeben wurde, so dass neben den fehlenden Möglichkeiten im Stallbereich auch die Massnahmen bei der Hofdüngeranwendung stark eingeschränkt sind. Im Berggebiet weist auch der Mutterkuhhaltungsbetrieb hohe Verluste aus. Infolge der Vollweide im Sommer und des damit verbundenen geringen Hofdungeranfalls sind, bei eingeschränkten Massnahmen im Bereich der Anwendung, bereits zu Beginn teurere Massnahmen notwendig.

Die einzelbetrieblichen Modellergebnisse zeigen, dass der Einkommensverlust bei einer bestimmten Emissionsreduktion je nach Betrieb oder Region unterschiedlich sein kann. Eine kostengünstige Reduktion der Ammoniak-Emissionen erreichen die Modellbetriebe vor allem durch Massnahmen bei der Fütterung und Hofdüngeranwendung.

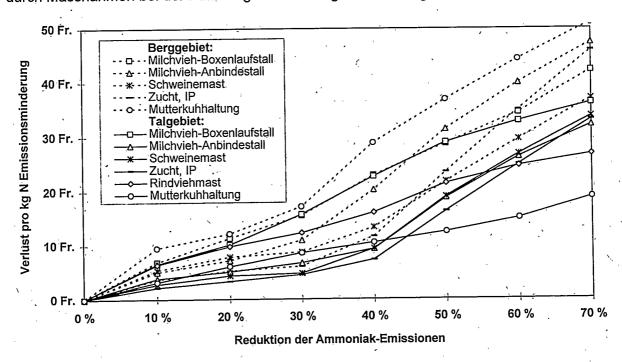


Abb. 18. Einkommensverlust pro kg N bei verschiedenen Betriebstypen

6.2 Ausgewählte Vergleiche anhand einzelner Betriebstypen

6.2.1 Vergleich zwischen bestehenden Gebäuden und Neubauten

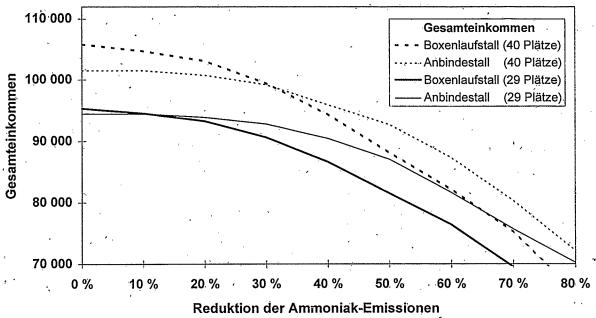

Die Modellrechnungen basieren auf Betriebstypen mit bestehenden Gebäuden. In einem separaten Vergleich wird zusätzlich ein Betriebstyp optimiert, der in neue Stalleinrichtungen investieren muss. Berechnet wird der Milchviehbetrieb mit Boxenlaufstall im Talgebiet. Aus Tabelle 48 ist ersichtlich, dass der neu investierende Betrieb bereits bei einer Emissionsminderung um 20 % Fütterungsbuchten einbaut. Die Mehrkosten liegen im Vergleich zu einem Einbau in einen bestehenden Stall um rund zwei Drittel tiefer, weil die Kosten für Anpassungen am bestehenden Schieber wegfallen (vgl. Tabelle 16, S. 34). Ab einer verlangten Emissionsminderung um 30 % ist beim Neubau ein automatisiertes Schiebersystem mit geneigtem Boden und Schlitzrinne wirtschaftlich vorteilhaft. Dadurch können die Massnahmen, die beim Betrieb mit bestehenden Einrichtungen notwendig sind, teilweise ersetzt werden. Der Einkommensverlust fällt dabei um über Fr. 1000.– geringer aus. Bei einer weiteren Reduktion der Emissionen erhöht sich diese Differenz, da die zusätzlichen Massnahmen zunehmend teurer werden.

Tabelle 48. Vergleich der Massnahmen bei bestehenden und neuen Gebäuden am Beispiel des Milchviehbetriebes mit Boxenlaufstall im Talgebiet

	Reduktion der Emissionen (Basis 2002)									
Emissionsreduktion (100 % = 1218 kg N)	10 % 1096	20 % 974	30 % 852	40 % 731	50 % 609	60 % 487	70 % 365	80 % 244		
Bestehender Stall		•								
Fütterungsbuchten			xxxx	XXXXX	xxxxx	XXXXX	XXXXX	XXXXX		
Einkommensverlust (in 1000 Fr.)	0,8	2,5	5,8	11,1	17,6	24,0	30,9	39,5		
Neuer Stall	*			-	-	a				
Fütterungsbuchten Optimiertes Schiebersystem		XXXXX	xxxxx	XXXXX	xxxxx	xxxxx	xxxx	xxxx		
Einkommensverlust (in 1000 Fr.)	0,8	2,0	4,7	8,7	13,8	18,9	25,8	34,3		

xxxxx = Massnahme durchgeführt

Für diesen Betriebstyp bietet sich bei einem Neubau eine weitere Möglichkeit zur Reduktion der Ammoniak-Emissionen an: Statt eines Laufstalls könnte ein emissionsärmerer Anbindestall eingerichtet werden. Abbildung 19 zeigt bei zunehmender Reduktion der Emissionen den Verlauf des Gesamteinkommens für die Varianten Boxenlauf- und Anbindestall. Neben dem Betriebstyp mit 29 Plätzen ist zusätzlich die Situation für einen Betrieb mit 40 Plätzen aufgezeichnet. Bei einer Bestandesgrösse von 29 GVE ist der Boxenlaufstall ohne Zwang zur Emissionsminderung knapp wirtschaftlicher. Gleichzeitig liegen aber die gesamtbetrieblichen Ammoniak-Emissionen um über 10 % höher als beim Anbindestall. Eine Reduktion dieser Emissionen um 10 % erfordert beim Boxenlaufstall Massnahmen, die zu einem Einkommens-

(Basis: Emissionen beim Betrieb mit Boxenlaufstall ohne Massnahmen im Jahr 2002)

Abb. 19. Einkommen bei einer Reduktion der Ammoniak-Emissionen am Beispiel des Milchviehbetriebes mit Boxenlaufstall im Talgebiet im Vergleich zur Anbindehaltung

verlust von rund Fr. 800.- führen, während beim Anbindestall noch keine Massnahmen notwendig sind. Bei einer Reduktion um 20 % ist das Einkommen beim Anbindestall bereits höher als beim Boxenlaufstall. Eine weitere Emissionsreduktion vergrössert den Unterschied noch stärker. Das heisst, dass bei der vorgegebenen Bestandesgrösse von 29 Plätzen das Ziel einer Reduktion der Ammoniak-Emissionen wirtschaftlicher mit dem Anbindestall als mit zusätzlichen Massnahmen beim Boxenlaufstall zu erreichen ist. Bei einer Stallgrösse von 40 Plätzen dagegen ist der Anbindestall erst wirtschaftlicher, wenn die Emissionen um mehr als 30 % reduziert werden müssen. Dies ist die Folge des zunehmenden ökonomischen Vorteils des Boxenlaufstalls bei steigender Stallgrösse (Duttweiler et al. 1988, Isermeyer 1988, Pfefferli et al. 1994). Zudem sind weitere Vorteile des Boxenlaufstalls wie die tiergerechtere Haltung oder die ergonomisch günstigere Situation beim Melken im Melkstand nicht berücksichtigt.

6.2.2 Vergleich der Landbauformen konventionell, IP und Bio

Tabelle 49 enthält für die einzelnen Betriebstypen die prozentualen Veränderungen der Ammoniak-Emissionen und des GVE-Bestandes bei einer Umstellung von konventionell auf IP im Jahr 1994. Eine deutliche Reduktion der Emissionen tritt bei denjenigen Betriebstypen ein, welche zur Erreichung einer ausgeglichenen Nährstoffbilanz den Tierbestand reduzieren müssen. Die übrigen Betriebstypen zeigen im allgemeinen nur geringe Veränderungen. Das heisst, dass nicht die Integrierte Produktion als ganzes eine Emissionsminderung bewirkt, sondern die dabei verlangte Einhaltung einer ausgeglichenen Düngungsbilanz.

Tabelle 49. Veränderung der Ammoniak-Emissionen und des GVE-Bestandes durch die Umstellung von konventionell auf IP

Betriebstyp	Talbetriebe	(Jahr 1994)	Bergbetriebe (Jahr 1994)			
,	(Änderung in % v	(Änderung in % von Konv. zu IP)		von Konv. zu IP		
	Emission NH ₃	GVE-Bestand	Emission NH ₃			
Mutterkuh	-0,2 %	0,0 %	-0,3 %	0,0 % -		
Rindermast	-0,7 %	- 0,0 %				
Schweinemast	-14,4 %	-15,9 %	-21,8 %	-22,7 %		
Schweinezucht	-16,1 %	-18,6 %	-1,5 %	-2,8 %		
Milch Bóxenlaufstall	-2,2 %	0,0 %	-7,9 % ¹⁾	0,4 %		
Milch Anbindestall	-0,5 %	0,0 %	0,0 %	0,0 %		
Milch + Rindermast	-1,9 %	0,0 %	1,6 %	0.0 %		
Milch + Kälbermast	0,2 %	0,0 %	0,0 %	0,0 %		
Milch + Schweinemast	0,6 %	0,0 %	0,4 %	0,0 %		
Total (Hochrechnung)	-2,8 %	-2,0 %	-1,0 %	-0,6 %		

¹⁾ Emissionsreduktion aufgrund einer Umstellung der Fütterung beim Übergang zu IP.

Der Vergleich mit der biologischen Landbauform erfolgt am Beispiel eines Milchviehbetriebes mit Anbindestall im Talgebiet (Tabelle 50). Dem Betriebstyp sind 10 ha landwirtschaftliche Nutzfläche, 13 Kuhplätze und ein Milchkontingent von 65 000 kg vorgegeben. Das Gesamteinkommen bei biologischer Bewirtschaftung übertrifft sowohl dasjenige bei integriertem als auch bei konventionellem Anbau (um rund Fr. 400.- bzw. Fr. 1000.-), es hängt aber stark von den getroffenen Annahmen über die Produktpreise ab. Die NH₃-Emissionen aus der Tierhaltung liegen bei der IP-Variante infolge einer teilweise extensiveren Wiesennutzung etwas tiefer als beim konventionellen Anbau. Bei der Bio-Variante wären infolge des grösseren Tierbestandes höhere Emissionen zu erwarten. Neben der tieferen Milchleistung trägt beim untersuchten Modellbetrieb aber ein erhöhter Silomaisanteil in der Fütterung zu verminderten N-Ausscheidungen bei. Zusammen mit den wegfallenden Mineraldunger-Emissionen resultieren deshalb insgesamt etwas tiefere Emissionen. Auch beim Biolandbau hat demzufolge die Landbauform nur einen grösseren Einfluss auf die Emissionen, wenn der Tierbestand verringert werden muss.

Tabelle 50. Veränderung der Ammoniak-Emissionen durch die Umstellung von konventionell auf IP oder Bio am Beispiel des Milchviehbetriebes mit Anbindestall im Talgebiet

	Jahr 1994							
	Konventionell	. IP	Bio					
Milchkühe	12,2 Kühe	12,2 Kühe	13,0 Kühe					
Gesamteinkommen	36 728 Fr.	37 321 Fr.	37 713 Fr.					
NH ₃ -Emissionen: Tierhaltung Mineraldünger	518 kg N 20 kg N	502 kg N 19 kg N	506 kg N 0 kg N					
Total	538 kg N	521 kg N	506 kg N					

6.2.3 Vergleich zwischen Weide- und Stallhaltung

Bei der Stallhaltung von Rindvieh gehen etwa 30 % des ausgeschiedenen Stickstoffs als Ammoniak verloren, auf der Weide sind es nur etwa 5 %. Durch eine Erhöhung der Weidedauer könnten deshalb die Emissionen reduziert werden. Den Modellbetrieben wurde das Weideregime aufgrund einer geschätzten durchschnittlichen Dauer (Menzi et al. 1997) fest vorgegeben. Unterschieden wurde lediglich zwischen den Betriebstypen des Tal- und Berggebietes und zwischen Milchvieh- und Mutterkuhhaltungsbetrieben.

Am Beispiel des Milchviehbetriebes mit Anbindestall im Talgebiet (13 Kühe) werden die Auswirkungen der Weidehaltung auf die Ammoniak-Emissionen und das Einkommen aufgezeigt (Abbildung 20). Die Weidedauer der Aufzucht wird konstant gehalten. Die gesamtbetrieblichen Ammoniak-Emissionen liegen bei ganzjähriger Stallhaltung der Kühe (ohne Weide) um 4,6 % höher als bei einer Weidedauer von 60 Halbtagen à 8 h/Tag. Dabei wird eine noch grössere Differenz verhindert durch die fütterungsbedingt etwas höhere N-Ausscheidung bei der Weidevariante. Die Weidedauer von 60 Halbtagen entspricht etwa der festgelegten Vorgabe für die Modellbetriebe. Bei einer Ausdehnung der Halbtagesweide auf die gesamte Sommerperiode würden die Emissionen um 11,5 % sinken. Mit der Erhöhung der Weidedauer steigt gleichzeitig das Gesamteinkommen leicht an, weil die mit der Weidehaltung freiwerdende Arbeitszeit über die Modellanpassung in anderen Bereichen eingesetzt werden kann.

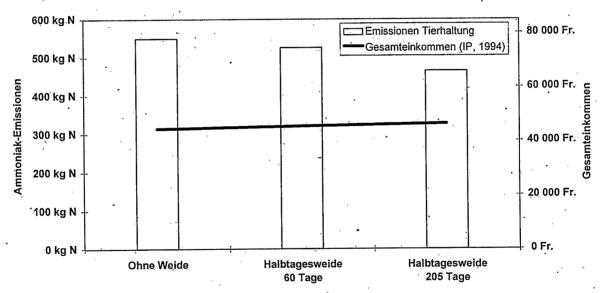


Abb. 20. Vergleich der Ammoniak-Emissionen bei unterschiedlicher Weidehaltung am Beispiel des Milchviehbetriebes mit Anbindestall im Talgebiet

Aus der Sicht der Ammoniak-Emissionen wie auch wirtschaftlich ist die Weidehaltung vorteilhaft. Allerdings dürfte auf vielen Betrieben ein wesentlicher Ausbau der Weide aus Gründen der Betriebsstruktur (Arrondierung, Pflanzenbestände) kaum möglich sein. Zudem ist die Düngewirkung des auf der Weide ausgeschiedenen Stickstoffs wegen der zeitlich und räumlich schlechten Verteilung sehr gering. Vermehrtes Weiden würde deshalb vermutlich andere N-Verluste (Denitrifikation, Nitratauswaschung) erhöhen.

7. Aggregierte Ergebnisse

Um die gesamtschweizerischen Ergebnisse zu erhalten, wurden die einzelbetrieblichen Modellösungen gemäss der festgelegten Betriebszahl, basierend auf der Landwirtschaftszählung 1990, hochgerechnet. Für das Jahr 2002 wurden die Faktoren entsprechend den angenommenen Flächenzunahmen verringert.

7.1 Gesamtemissionen 1994 und 2002 ohne Reduktionsmassnahmen

Abbildung 21 zeigt die Veränderungen der hochgerechneten Betriebstypen zwischen den Jahren 1994 und 2002. Für das Jahr 1994 sind die Ergebnisse sowohl für die konventionelle als auch für die integrierte Bewirtschaftung ausgewiesen, wobei in der integrierten Variante angenommen wird, dass einige Betriebstypen mit hohem Tierbesatz konventionell bleiben. Auf Biobetriebe wird einfachheitshalber verzichtet, da deren Zahl gemäss Annahmen von Häfliger et al. (1995) auch mit der Umsetzung der Agrarpolitik 2002 tief bleibt und die Unterschiede bei den Ammoniak-Emissionen gering sind.

Die Ammoniak-Emissionen der Modellbetriebe betragen im Jahr 1994 bei konventioneller Bewirtschaftung 43,5 kt N. Sie beziehen sich auf die Rindvieh- und Schweinehaltung und auf die Mineraldüngung. Ein Vergleich mit den entsprechenden in Menzi et al. (1997) ausgewiesenen Ammoniak-Emissionen ergibt für die Modell-Hochrechnung um 2,3 kt N tiefere Emissionen (Tabelle 51). Die Differenz ist teilweise auf die in den Modellrechnungen erfolgte Optimierung der Düngung zurückzuführen.

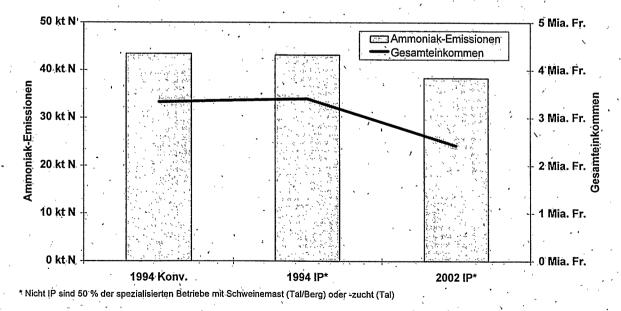


Abb. 21. Ammoniak-Emissionen und Gesamteinkommen in den Jahren 1994 und 2002 (Hochgerechnete Modellergebnisse)

Tabelle 51. Vergleich der Ammoniak-Emissionen gemäss hochgerechneten Modellergebnissen im Jahr 1994 mit anderen Angaben

Emissionsquelle	Emissionen im Jahr 1994							
	Modellergebnisse, Konv. (kt N)	Menzi et al. (1997) (kt N)						
Rindvieh- und Schweinehaltung	41,9	42,7						
Mineraldünger	1,6	3,1						
Total im Modell berücksichtigte Emissionen	<u>43,5</u>	<u>45,8</u>						
Andere Nutztierhaltung		3,1						
Kulturland		1,6						
Klärschlammaustrag		0,9						
Nicht-landwirtschaftliche Quellen		7,4						
Total Emissionen in der Schweiz		<u>59,0</u>						

Eine Umstellung der meisten Betriebe auf die Integrierte Produktion ergibt für dasselbe Jahr eine leichte Reduktion auf 43,2 kt N. Die Veränderung ist nur gering, weil für die Betriebe mit hohem Tierbesatz weiterhin eine konventionelle Bewirtschaftung unterstellt ist und dadurch der Tierbestand unverändert bleibt.

Im Jahr 2002 betragen die Emissionen noch 38,4 kt N, was im Vergleich zur konventionellen Variante im Jahr 1994 einer Abnahme um 11,7 % entspricht (Tabelle 52). Diese Reduktion ist zu rund der Hälfte auf die unter den Modellannahmen erfolgte Abnahme des GVE-Bestandes um 9 % zurückzuführen, wobei diese Abnahme durch höhere Ausscheidungen pro GVE teilweise wieder kompensiert wird. Ein Sechstel der Reduktion ist bedingt durch den verminderten Mineraldungereinsatz, und ein Drittel ergibt sich aus den im Jahr 2002 fütterungsbedingt tieferen N-Ausscheidungen im Vergleich zu den Richtwerten.

Tabelle 52. Reduktion der im Modell berücksichtigten Ammoniak-Emissionen zwischen 1994 und 2002

NH ₃ -Emissionen der Rindvieh- und Schweinehaltung sowie des Mineraldüngereinsatzes									
NH ₃ -Emissionen 1994	43,5 kt N	(100 %)							
Emissionsreduktion durch Abnahme des Tierbestandes Emissionsreduktion durch verminderten Mineraldüngereinsatz	2,4 kt N 0,8 kt N								
NH ₃ -Emissionen 2002 mit N-Ausscheidungen gemäss Normwerten	40,3 kt N	(- 7,4 %)							
Emissionsreduktion durch Reduktion der N-Ausscheidungen	1,9 kt N	•							
NH ₃ -Emissionen 2002	38,4 kt N	(-11,7 %)							

7.2 Gesamtkosten der Reduktionsmassnahmen

Durch die Hochrechnung der einzelbetrieblichen Modellergebnisse wird der gesamtschweizerische Einkommensverlust ermittelt. Die Reihenfolge der aggregierten Reduktionsschritte richtet sich einzig nach dem Einkommensverlust pro kg vermindertes NH₃-N, das heisst die Emissionsreduktion erfolgt nicht für alle Betriebstypen prozentual gleichmässig, sondern stärker bei denjenigen Betriebstypen, die einen tiefen Verlust pro kg N ausweisen.

Abbildung 22 zeigt den Verlauf des aggregierten Einkommensverlustes der Landwirtschaft bei zunehmender Emissionsreduktion im Jahr 2002. Die Emissionsreduktion bezieht sich auf die Emissionen der Rindvieh- und Schweinehaltung sowie des Mineraldüngereinsatzes im Jahr 1994. Selbst ohne spezielle Massnahmen verringern sich die Emissionen im Jahr 2002 um 11,7 %, was vor allem auf den biologisch-technischen Fortschritt und die veränderten Rahmenbedingungen zurückzuführen ist. Bei einer Reduktion von 11,7 % auf 20 % beträgt der jährliche Verlust gesamthaft 16 Mio. Fr. oder durchschnittlich Fr. 4,40 pro kg NH₃-N, bei einer optimierten Massnahmenkombination. Eine Reduktion von 11,7 % auf 30 % verursacht Verluste von rund 50 Mio. Fr. pro Jahr, mit rasch steigender Tendenz bei weiteren Reduktionsschritten.

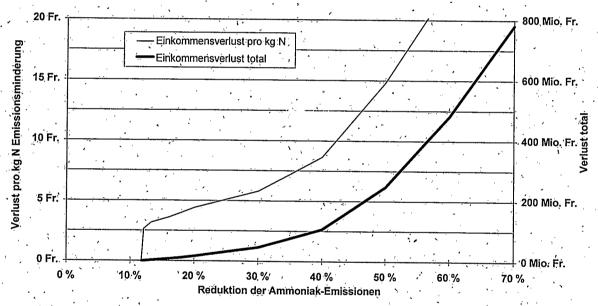


Abb. 22. Verlauf des Einkommensverlustes im Jahr 2002 bei steigender Emissionsreduktion, bezogen auf die im Modell berücksichtigten Emissionen im Jahr 1994

7.3 Vergleich zwischen Tal- und Berggebiet

Vom gesamten Tierbestand werden etwa zwei Drittel im Talgebiet gehalten. Die Reduktion der gesamtschweizerischen Ammoniak-Emissionen entsprechend der einkommensoptimierten Reihenfolge der Reduktionsschritte erfolgt aber im Tal- und Berggebiet nicht gleichmässig. Abbildung 23 zeigt die Aufteilung der verbleibenden Emissionen zwischen den beiden Regionen.

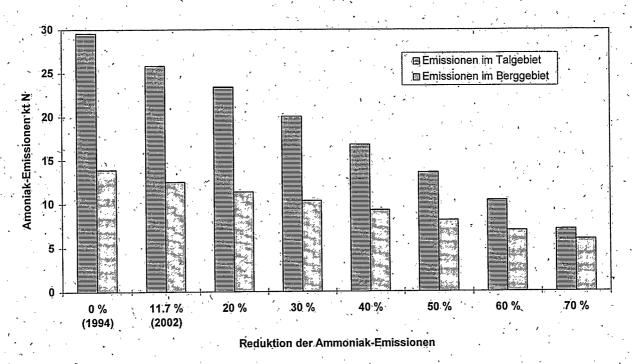


Abb. 23. Ammoniak-Emissionen im Tal- und Berggebiet bei zunehmendem Zwang zur Emissionsreduktion im Jahr 2002 (Hochgerechnete Modellergebnisse)

Im Jahr 2002 sinken die Emissionen bereits ohne spezielle Massnahmen um insgesamt 11,7 %. Dabei ist die Reduktion im Talgebiet absolut, aber auch prozentual höher als im Berggebiet (12,6 % im Vergleich zu 9,9 %). Diese Entwicklung ist zu einem Teil auf die stärkere Extensivierung des Grünlands im Talgebiet zurückzuführen. Dadurch nimmt der Mineraldungerbedarf ab und mit den rohproteinärmeren Futtermitteln sinken die N-Ausscheidungen. Im Berggebiet ist die Extensivierung geringer, weil bereits in der Ausgangssituation im Jahr 1994 ein Teil der Wiesen wenig intensiv oder extensiv genutzt wird und die Beiträge nach Art. 31b LwG weniger hoch sind als im Talgebiet. Ein zweiter Grund ist der höhere Anteil an Schweinen im Talgebiet, für welche im Jahr 2002 eine stärkere Reduktion der N-Ausscheidungen als für das Rindvieh erwartet wird.

Beim gesamtschweizerischen Reduktionsschritt auf 20 % mit möglichst geringem Einkommensverlust ist die Emissionsreduktion im Tal- und Berggebiet, ausgehend von den jeweiligen Emissionen im Jahr 2002, prozentual etwa gleich hoch. Während im Talgebiet vor allem emissionsarme Ausbringungsverfahren zur Anwendung kommen, wird im Berggebiet, neben dem Einsatz des Schleppschlauchs, insbesondere die Gülle im Sommer verdünnt. Dies ist nur mit einem geringen Einkommensverlust verbunden, weil die meisten Betriebe infolge der kürzeren Vegetationsperiode und der Weidetätigkeit ausreichend Lagerraum aufweisen, weil kaum Wasserkosten anfallen und weil den Modellbetrieben genügend eigene Arbeitskräfte für den höheren Aufwand für das Ausbringen zur Verfügung stehen.

Bei einer weiteren Reduktion der Emissionen erhöht sich der prozentuale Rückgang im Talgebiet mehr als im Berggebiet. Im Berggebiet sind die emissionsarmen Ausbringungsverfahren stärker eingeschränkt, so dass das Ausmass der möglichen Emissionsreduktion bei gleichem Einkommensverlust pro kg N tiefer als im Talgebiet ausfällt.

Tabelle 53. Einkommensoptimierte Massnahmenkombinationen im Jahr 2002 für das Tal- und Berggebiet bei steigender Emissionsreduktion, bezogen auf die berücksichtigten Emissionen im Jahr 1994

			Talge	biet				Berg	gebiet			
Emissionsreduktion	12,6%	20%	.30%	40%	50%	60%	9,9%	20%	30%	40%	50%	60%
Emissionen (kt N)	25,8	23,6	20,7	17,7	14,8	11,8	12,5	11,1	9,7	8,3	6,9	5,6
Massnahme.	Re	duktio	n N-A	ussch	reidun	g ¹⁾	Re	duktie	on N-/	Ausscl	neidur	ıg¹)
Fütterung				. ,	•					,		
Kühe Aufzucht	5%	6%	7%	8%	9%	15%	1		. 5%			
Mastvieh	1%	1%	. 2%	2%	3%	2%		2%	2%	2%	5%	6%
Mastschweine	10%	10%	10%	10%	2% 14%	18% 17%	10%	100/	10%	4.40/	200/	200/
Zuchtschweine	10%	10%	10%	10%	14%	20%	10%			14% 11%		
Massnahme	,		/endu				1070	,	7.	ıngsgı		2070
Stall Milchkühe ³⁾				3-3.		-	-	7,11,	·	1119391	au .	
Fütterungsbuchten		· ·		•	100%	100%		,			100%	100%
Stall Mastschweine ⁴⁾					٠.		v		-			
Schiebersystem					4%	. 7%	٠,				4%	7.%
Impulsarme Zuluftführ.				33%	96%	93%			27%	100%	.100%	100%
Stall Zuchtschweine ⁵⁾									•			
Impulsarme Zuluftführ.				15%	100%	100%			41%	100%	100%	100%
Lagerung ⁶⁾	,			-				,				
Holzabdeckung		404		-	8%	20%				1%		
Strohhäcksel		1%	3%	22%	62%	80%		<u> </u>	8%	29%	88%	88%
Verdünnung Gülle ⁷⁾			•						1			
1:2 Winter 1:2 Sommer		407	400/	000/	•	6%		000/				
1:4 Sommer		· 4% · 3%	42% 13%	22% 60%	93%	75%		92%	050/	4000/	4000/	4 À 0.07
Ausbringung Mist ⁸⁾		, 7/0	13 /0	. 00 /6	9370	15%	·	,170	95%	100%	100%	100%
Einarbeiten		13%	22%	60%	66%	90%		40/.	60/	70/	.70 <i>i</i>	00/
Ausbringung Gülle ⁹⁾		1370	- 22 /0	00 %	00%	90%	· ·	1%	6%	7%	7%	9%
Einarbeiten/Hacken	-,	10/	-6%	7%	6%	00/		.40/	1 40/	40/	407	. 407
Schleppschlauch	.]	7%	6%	7 % 5%	4%	8% 5%		1% 3%	1% 2%	1% 4%		
Schleppschuh		7 70	1%	8%	9%	13%		370	- 270	1%	. 3% 4%	4% 4%
Schlitzdrill		٠.	1,70	1%	1%	1070	, ,			. 1 70	1%	1%
Tiefe Injektion		2%	5%	5%	4%	5%		1%	1%	1%		1%
Weitere Massnahmen			· 1				. ,			. , , ,		
Ersatz Harnstoffdü. 10)		44%	68%	100%	100%	100%		42%	54%	100%	100%	100%
Abbau Tierbestand ¹¹⁾			5%	6%	_	18%		1%	1%		14%	
Einkommensverlust		·			• •		•				,	
Total (Mio. Fr.)		9	²⁸	63	134	277		7	21.	54	125	229
Pro kg NH ₃ -N (Fr./kg)		4,15	5,40		12,13					12,90		

¹⁾ Reduktion der N-Ausscheidung im Vergleich zum Richtwert nach FAP,RAC,FAC (1994).

²⁾ Umsetzung der Massnahme gemäss hochgerechneten Modellbetrieben im Jahr 2002, bezogen auf:

³⁾ Boxenlaufställe ⁴⁾ Mastschweineställe ⁵⁾ Zuchtschweineställe ⁶⁾ Offene Güllelager ⁷⁾ Güllemenge im Winter bzw. im Sommer ⁸⁾ Mistmenge ⁹⁾ Güllemenge ¹⁰⁾ Harnstoffdünger-Einsatz ¹¹⁾ Tierbestand

Tabelle 53 gibt eine Übersicht über die im Tal- und Berggebiet getroffenen Massnahmen zur Emissionsminderung. Die einzelnen Reduktionsschritte beziehen sich dabei auf die Emissionen in der jeweiligen Region. Angegeben ist der Durchführungsgrad der einzelnen Massnahmen in Prozent der in der Legende bezeichneten Bezugsgrösse. Beispielsweise bezieht sich der Durchführungsgrad der Massnahmen im Milchviehstall auf die gemäss hochgerechneten Modellbetrieben bestehenden Boxenlaufställe. Im Jahr 2002 sinken die Emissionen im Talgebiet wie bereits erwähnt stärker als im Berggebiet. Bei gleichen prozentualen Reduktionsschritten im Tal- und Berggebiet ergibt sich für das Talgebiet wegen des grösseren Tierbestandes ein höherer Einkommensverlust, bezogen auf Menge der verhinderten Emissionen ist der Verlust aber deutlich tiefer. Dies ist die Folge der tieferen Anwendungspotentiale emissionarmer Ausbringungsverfahren im Berggebiet. Während beispielsweise bei einer Reduktion der Emissionen um 40 % im Talgebiet 25 % der Gülle und 60 % des Mistes mit solchen Verfahren ausgebracht werden, sind dies im Berggebiet nur je knapp 7 %.

7.4 Reduktion in bezug auf die gesamtschweizerischen Emissionen

Die Resultate beziehen sich auf die Reduktion der Ammoniak-Emissionen in den Bereichen der Rindvieh- und Schweinehaltung sowie der Mineraldüngung. Die anhand der Modelloptimierung für die Ausgangssituation im Jahr 1994 erhaltenen Emissionen stimmen jedoch nicht genau mit den von Menzi et al. (1997) ausgewiesenen Emissionen überein, obwohl dieselben Emissionsfaktoren verwendet wurden. Weil die Differenz nur gering ist, werden vereinfachend die Modellresultate sowohl für 1994 als auch für 2002 entsprechend dieser prozentualen Abweichung korrigiert. In Tabelle 54 sind die so erhaltenen Emissionen aufgeführt. Im Jahr 1994 erreichen die Emissionen gemäss den Modellrechnungen 43,5 kt N, nach Menzi et al. (1997) sollten sie aber 45,8 kt N betragen. Um die prozentuale Differenz werden auch die Emissionen im Jahr 2002 erhöht. Zu diesen Werten werden die im Modell nicht berücksichtigten Emissionen addiert. Dazu gehören die Emissionen aus nichtlandwirtschaftlichen Quellen, aus pflanzlichen Abbauprozessen, aus dem Klärschlammaustrag sowie aus der Geflügel- und anderer Nutztierhaltung. Gemäss Menzi et al. (1997) werden die jährlichen Emissionen der Legehennenhaltung infolge des erwarteten Ersatzes der Kotgrubensysteme durch die emissionsärmeren Kotbandsysteme in den nächsten Jahren sinken, und zwar um etwa 0,2 kt N. Unter der Annahme, dass sich die Emissionen in den übrigen Bereichen nicht verändern, ergeben sich damit für das Jahr 2002 insgesamt Emissionen in der Höhe von 53,4 kt N. Ohne die Reduktion infolge der verbesserten Fütterung bliebe dieser Wert auf 55,4 kt N.

Tabelle 55 enthält dieselbe proportionale Korrektur der Modellresultate für die einzelnen Reduktionsschritte und für die entsprechenden Einkommensverluste. Die Emissionsreduktionen sind zudem in Prozent der gesamtschweizerischen Emissionen des Jahres 1994 angegeben. Die Reduktion der im Modell berücksichtigten Emissionen zwischen 1994 und 2002 um 11,7 % entspricht, bezogen auf die gesamtschweizerischen Emissionen, einer Abnahme um 9,1 %. Wenn die Reduktion durch die Umstellung der Legehennenställe sowie die ohne Mehrkosten erzielbaren Einsparungen durch auf die Witterung ausgerichtete Massnahmen bei der Hofdüngerausbringung mitberücksichtigt werden, erhöht sich diese Abnahme auf 14,9 %.

Tabelle 54. Berechnung der gesamtschweizerischen Emissionen 1994 und 2002

	1994	2002	2002a ¹⁾
Im Modell berücksichtigte Emissionen: (Rindvieh- und Schweinehaltung sowie Mineraldüngung)			
- Gemäss hochgerechneten Modellresultaten - Nach Korrektur um die prozentuále Differenz 1994 ²⁾	43,5 kt N 45,8 kt N	38,4 kt N 40,4 kt N	• *
Im Modell nicht berücksichtigte Emissionen: (übrige Bereiche)			•
- Gemäss Menzi et al. (1997) ³⁾ - Nach der erwarteten Umstellung der Legehennenställe	13,2 kt N 13,2 kt N	13,2 kt N 13,0 kt N	-
Emissionen total davon landwirtschaftliche Emissionen	59,0 kt N (100 %) 51,6 kt N	53,4 kt N (- 9,5 %) 46,0 kt N	55,4 kt N (- 6,1 %) 48,0 kt N
Emissionen total bei einer Umsetzung der auf die Witterung ausgerichteten Massnahmen		50,2 kt N (-14,9 %)	

Ammoniak-Emissionen bei N-Ausscheidungen gemäss Normwerten (keine Umsetzung der fütterungsbedingten Abnahme der N-Ausscheidungen).

Tabelle 55. Berechnung der Emissionsreduktion bezogen auf die gesamtschweizerischen Emissionen im Jahr 1994

	•			ktion d Einkom				•
% der im Modell berücksichtigten Emissic	<u>onen</u>	<u>11.7 %</u>	<u>20 %</u>	<u>30 %</u>	<u>40 %</u>	<u>50 %</u>	<u>60 %</u>	<u>70 %</u>
Einkommensverlust Modell (Basis 2002) Einkommensverlust korrigiert ¹⁾	Mio. Ér. Mio. Fr.		16 17	46 48	106 112	247 260	481 507	782 825
Emissionsreduktion Modell Emissionsreduktion korrigiert ¹⁾	kt N kt N	5,1 5,4	8,7 9,2	13,0 13,7	17,4 18,3	21,7 22,9	26,1 27,5	30,4 32,1
% der gesamtschweizerischen Emissione	<u>eņ</u>	<u>9,1 %</u>	<u>15 %</u>	<u>23 %</u>	<u>31 %</u> ,	<u>39 %</u>	<u>47 %</u>	
Reduktionsmassnahmen ohne Kosten:								,
Witterung ²⁾	kt Ň	3,2	3,2	3,2	3,2	3,2	3,2	3,2
Legehennenställe ³⁾	kt N	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Emissionsreduktion total	kt N	8,8	12,6	17,2	21,8	26,4	30,9	35,5
% der gesamtschweizerischen Emissione	<u>en</u>	<u>14,9 %</u>	<u>21 %</u>	<u>29 %</u>	<u>37 %</u> .	<u>45 %</u>	<u>52 %</u>	<u>60 %</u>

¹⁾ Wegen des Unterschiedes zwischen den gemäss Menzi et al. (1997) für das Jahr 1994 ausgewiesenen Emissionen der Rindvieh- und Schweinehaltung sowie der Mineraldungung (45,8 kt N) und den entsprechenden Modellresultaten (43,5 kt N) erfolgt vereinfachend eine proportionale Korrektur.

²⁾ Korrektur der durch die Modelloptimierung erhaltenen Emissionen anhand der in Stadelmann et al. (1996) für das Jahr 1994 ausgewiesenen Emissionen der entsprechenden Bereiche (45,8 kt N).

Davon 3,1 kt N aus anderer Nutztierhaltung, 2,5 kt N aus pflanzlichen Abbauprozessen und aus dem Klärschlammaustrag sowie 7,4 kt N nichtlandwirtschaftliche Emissionen.

²⁾ Besondere Rücksichtnahme auf die Witterung: 7 % der Emissionen aus der Tierhaltung.

³⁾ Umstellung auf emissionsarme Systeme: 10 % der Emissionen aus der Legehennenhaltung (1,7 kt N.)

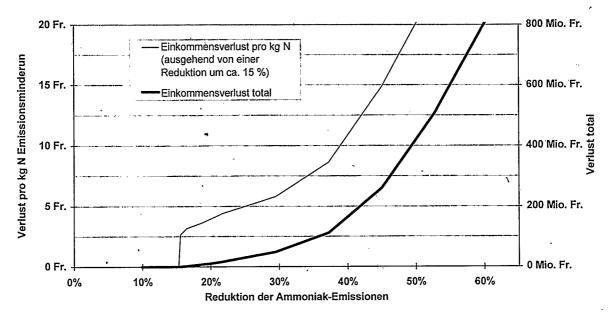


Abb. 24. Verlauf des Einkommensverlustes im Jahr 2002 bei steigender Emissionsreduktion, bezogen auf die gesamtschweizerischen Emissionen im Jahr 1994

Abbildung 24 zeigt den Verlauf des Einkommensverlustes der Landwirtschaft bei zunehmender Emissionsreduktion, bezogen auf die gesamtschweizerischen Emissionen im Jahr 1994. Durch die veränderte Bezugsgrösse beträgt die Reduktion im Jahr 2002 ohne spezielle Massnahmen 9,1 % statt 11,7 % (vgl. Abbildung 22). Mit Einbezug der Emissionsminderung in den Legehennenställen verringern sich die Emissionen um 9,5 %. Wenn dazu die geschätzten Anwendungspotentiale der auf die Witterung ausgerichteten Massnahmen bei der Hofdüngeranwendung vollständig umgesetzt werden, können die Emissionen ohne Kosten sogar um knapp 15 % gesenkt werden. Eine weitere Emissionsminderung ist mit Einkommensverlusten verbunden. Bei einer Reduktion von 15 % auf 20 % beträgt der jährliche Verlust gesamthaft 11 Mio. Fr. oder Fr. 4.- pro kg NH₃-N, sofern die entsprechende einkommensoptimierte Massnahmenkombination umgesetzt wird. Eine Reduktion von 15 % auf 30 % verursacht Verluste von rund 50 Mio. Fr., eine Reduktion auf 40 % bereits 150 Mio. Fr. pro Jahr.

7.5 Vergleich mit anderen Arbeiten

Im Zusammenhang mit den Verhandlungen in der UN-Wirtschaftskommission für Europa (UN/ECE) über Massnahmen zur Verminderung der Luftverschmutzung wurden die Kosten der Reduktion von Ammoniak-Emissionen in verschiedenen Arbeiten untersucht.

Klaassen (1993) entwickelte ein regionales Simulationsmodell zur Abbildung der Flüsse von versauernd wirkenden Stoffen, darunter Ammoniak, und zur Abschätzung der Kosten für die Reduktionsstrategien. Die Stickstoffflüsse sind im Modell aber nicht abgebildet, so dass Beziehungen zwischen Reduktionsmassnahmen in gleichen oder aufeinanderfolgenden Bereichen durch separate Massnahmenkombinationen in das Modell einfliessen müssen. Die eingebauten Massnahmen sind in ihrer Anzahl stark reduziert und beruhen teilweise auf

durchschnittlichen Werten mehrerer Einzelmassnahmen. Als Basiseinheit für die Kostenermittlung dient nicht der Einzelbetrieb, sondern der landwirtschaftliche Sektor in einer Region oder einem Land insgesamt. Die Kosten einer Massnahme berechnen sich aus der Menge der Emissionsverursacher wie etwa dem Tierbestand, multipliziert mit den Kosten pro Einheit sowie dem in Prozent angegebenen Anwendungspotential. Die Emissionsreduktion einer Massnahme ergibt sich aus deren Wirkung, bezogen auf die entsprechenden Emissionen im Ausgangszustand, multipliziert mit dem Anwendungspotential. Aufgrund der daraus folgenden Kosten pro Einheit Emissionsreduktion bestimmt das Modell in einem iterativen Verfahren die kostengünstigste Reihenfolge der Massnahmen und stellt eine Kostenkurve zusammen. Berechnungen für die Länder Europas erfolgten für das Jahr 2010 unter Berücksichtigung von länderspezifischen Kostenangaben und der erwarteten Entwicklung der Tierbestände (UN/ECE 1996). Mögliche betriebliche Anpassungsreaktionen aufgrund veränderter Rahmenbedingungen bleiben dabei unbeachtet.

Eine ähnliche Vorgehensweise wählten Cowell/ApSimon (1996). Im Unterschied zu Klaassen bildeten sie aber die Stickstoffflüsse ab, und es ist eine grössere Anzahl Massnahmen eingebaut. Die optimale Reihenfolge wird ebenfalls in einem iterativen Verfahren mittels einer automatisierten Tabellenkalkulation ermittelt. Berechnungen für die Länder Europas erfolgten für das Jahr 1990. Die Kosten basieren auf Ansätzen für Grossbritannien.

Abbildung 25 zeigt für die drei Arbeiten den Verlauf der Kosten bzw. des Einkommensverlustes bei zunehmender Emissionsreduktion. Weil die Angaben auf unterschiedlichen Zeitpunkten beruhen, sind die Zahlen nur bedingt vergleichbar. Die Emissionsreduktion bezieht sich auf die gesamtschweizerischen Emissionen. Diese betragen 48,5 kt N (UN/ECE), 52,4 kt N (Cowell/ApSimon) bzw. 53,4 kt N (diese Arbeit), wobei die Unterschiede neben den zeitlichen

Kosten bzw. Einkommensverlust

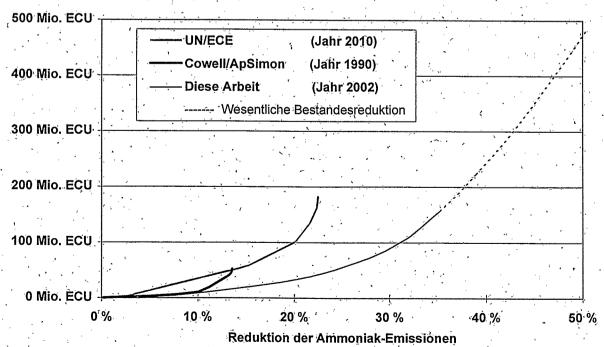


Abb. 25. Vergleich der Emissionsreduktion mit anderen Arbeiten

Abweichungen auf unterschiedliche Emissionsfaktoren und Berechnungsweisen der Ausgangsemissionen zurückzuführen sind. Die maximal mögliche Emissionsreduktion beträgt nach Cowell/ApSimon 13,5 % (mit Kosten von 53 Mio. ECU), nach UN/ECE 22,5 % (183 Mio ECU) und nach der vorliegenden Arbeit, ohne wesentliche Bestandesreduktion, 30-40 % (mit einem Einkommensverlust von rund 150 Mio. ECU; 1,62 Fr./ECU).

Für die Differenzen der möglichen Emissionsreduktionen können die unterschiedlichen Ausgangssituationen, die Anzahl der berücksichtigten Massnahmen sowie die Annahmen über deren Wirkungen und Anwendungspotentiale verantwortlich sein. Die grössere Emissionsreduktion in der vorliegenden Arbeit ist teilweise durch die auf die Witterung ausgerichteten Massnahmen zu erklären, mit welchen die Emissionen im Jahr 2002 ohne Kosten um gegen 6 % gesenkt werden können und die in den beiden anderen Arbeiten nicht vorkommen. Ebenso hat der Reduktionsbeitrag der Gülleverdünnung, welche in den anderen Arbeiten nur ansatzweise miteinbezogen ist, ein wesentlich stärkeres Gewicht. Durch die Optimierung im Modell wurde dieser Beitrag von gegen 10 % Emissionsminderung allerdings eher überschätzt. Wesentlich wirksamer und kostengünstiger sind im weiteren die Massnahmen im Bereich der Fütterung. Dagegen sind die Aufstallungsmassnahmen in der Arbeit der UN/ECE ungleich bedeutender, wo sie einen Anteil von etwa der Hälfte der möglichen Emissionsminderung erreichen. Dies ist zum einen auf die angenommenen höheren Wirkungen dieser Massnahmen zurückzuführen, vor allem aber auf das unterschiedliche Anwendungspotential bei den Milchkühen. Gemäss UN/ECE sind in zwei Drittel der Ställe Massnahmen anwendbar, während dies in der vorliegenden Arbeit nur die Milchkühe in Boxenlaufställen betrifft.

Die Kosten der einzelnen Massnahmen, bezogen auf eine Mengeneinheit Emissionsreduktion, sind bei Cowell/ApSimon, welche Kostenansätze für Grossbritannien verwenden, im allgemeinen tiefer als bei den anderen Arbeiten. Bezüglich der Reihenfolge der Massnahmen werden in der vorliegenden Arbeit zuerst Massnahmen in den Bereichen Hofdüngeranwendung, Fütterung und Harnstoffersatz ergriffen, gefolgt von den Bereichen Lagerung und Aufstallung. Im Unterschied dazu erscheinen die Fütterungsmassnahmen in den beiden anderen Arbeiten erst weiter hinten in der Reihenfolge, und in der UN/ECE-Studie sind Massnahmen im Stall- und Lagerungsbereich relativ vorteilhafter.

7.6 Einkommensoptimierte Massnahmenkombinationen

Eine Gesamtübersicht über die von den Modellbetrieben ergriffenen Massnahmen enthält Tabelle 56. Für jeden Reduktionsschritt ist angegeben, zu welchen Teilen die einzelnen Massnahmen durchzuführen sind, so dass der gesamte Einkommensverlust am geringsten bleibt. Diese Prozentzahlen beziehen sich auf die in der Tabelle angegebenen, anhand der hochgerechneten Modellergebnisse erhaltenen Bezugsgrössen. Beispielsweise bezieht sich der Durchführungsgrad der Massnahmen bei der Hofdüngeranwendung auf die gesamthaft ausgebrachte Hofdüngermenge im Jahr 2002.

Tabelle 56. Einkommensoptimierte Massnahmenkombinationen im Jahr 2002 bei steigender Emissionsreduktion, bezogen auf die gesamtschweizerischen Emissionen im Jahr 1994

Emissionsreduktion (%, I Emissionen im Jahr 2002	14,9 % ¹⁾ 50,2		30 % 41,3	40 %	50 % 29,5	60 %	
		50,2	47,2	35,4	23,6		
Massnahme	Bezug		Reduk				
Fütterung		ŀ					•
Kühe		4 %	5 %	6 %	8 %	14 %	19 %
Aufzucht	N-Ausschei-	1 %	1 %	2 %	2 %	4.%	4 %
Mastvieh	dung nach				1 %	10 %	18 %
Mastschweine	Norm	10 %	10 %	10 %	13 %	18 %	20, %
Zuchtschweine		10 %	10 %	10 %	11 %	20 %	20 %′_
Massnahme	Bezug			Anwend	ungsgra	Ė	
Stall Milchkühe	,					•	
Fütterungsbuchten	Boxenlaufs	tälle	•		74 %	100 %	100 %
Stall Mastschweine						,	
Schiebersystem	Mastschwe			•	3 %	· 5 %	6.%
Impulsarme Zuluftführung	ställe	•			92 %	95 %	94 %
Stall Zuchtschweine				,			
Impulsarme Zuluftführung	Zuchtschwein	eställe			97.%	100 %	100 %
Lagerung		'					•
Holzabdeckung	Offene			•	5 %	17 %	22 %
Strohhäcksel	Lagerbeha	ilter		2 %	36 %	83 %	78 %
Verdünnung Gülle					•		•
1:2 Winter	Gülle im W					9 %	6 %
1:2 Sommer	bzw. Gül		27 %	28 %	10 %	0 %	0 %
1:4 Sommer	im Somm	er		35 %	85 %	82 %	64 %
Ausbringung Mist							•
Einarbeiten	Mistmen	ge	1 %	32 %	33 %	42 %	46 %
Ausbringung Gülle				-		,	
Einarbeiten od. Hacken		`	3 %	5 %	4 %		5 %
Schleppschlauch	0		4 %	6 %	4 %		6 %
Schleppschuh Schlitzdrill	Güllemen	ge		1 %	6 [.] %	10 %	19 %
Tiefe Injektion			1 %	2.0/	2.0/	4.0/	1 %
Weitere Massnahmen			1 70	3 %	3 %	4 %	7 %
Ersatz Harnstoffdünger	Harnstoffdünger-Einsatz		33 %	84 %	100.0/	400.0/	400.0/
Abbau Tierbestand	Tierbesta	0.%	3 %	100 % 5 %	100 % 16 %	100 % 36 %	
Kosten (Mio. Fr.)			· · · · · · · · · · · · · · · · · · ·		3 70	10 /0	JU 76 ,
Investitionen (Einrichtungen	Maschinen\	ļ	19	55	207	1 226	222
Kalkulierte Jahreskosten	, wasciilleji <i>j</i>			55 44	207	236	233
Kalkulierte Jahreskosten in	d eigene Arbeit	. 1	11 18	44 73	93 140	90	70 05
Einkommensverlust ²⁾	eigerie Arbeit				140	136	95 901
<u>Entrollmiciosellasi</u>			11 ————	51	149	411	801

¹⁾ Emissionsreduktion im Jahr 2002 mit Einbezug der auf die Witterung ausgerichteten Massnahmen bei der Hofdungeranwendung.

²⁾ Inkl. Betriebsumstellungen (z.B. Bestandesabbau), Mineraldüngereinsparung; ohne eigene Arbeit.

Bis zum Jahr 2002 sinken die N-Ausscheidungen im Vergleich zu den Richtwerten bereits ohne spezielle Massnahmen. Zusammen mit den auf die Witterung ausgerichteten Massnahmen bei der Hofdüngeranwendung beträgt die maximale Emissionsminderung ohne Kosten 14,9 % der gesamtschweizerischen Emissionen. Zur Ausweitung der Reduktion auf 20 % kommen bei 8 % der gesamten Gülle emissionsarme Ausbringungsverfahren zum Einsatz, rund ein Viertel der im Sommer ausgebrachten Gülle wird verdünnt und ein Drittel des Harnstoffdüngers wird durch andere Mineraldünger ersetzt. Die Emissionsreduktion erfolgt zu rund drei Vierteln im Talgebiet, da hier die Anwendungspotentiale der Ausbringungsverfahren höher sind als im Berggebiet, in welchem vor allem die Gülleverdünnung durchgeführt wird. Bei einer Reduktion um 30 % werden alle diese Massnahmen verstärkt eingesetzt. Zudem wird die Fütterung weiter optimiert und einzelne kombinierte Betriebstypen verzichten auf Tierkategorien, die nur wenige Tiere umfassen. Ab einer Reduktion um 40 % ist bei offenen Güllebehältern eine Zugabe von Strohhäcksel zur Bildung einer Schwimmschicht lohnend, und in den Ställen werden emissionsarme Systeme eingebaut. Eine weitere Reduktion wird mit proteinoptimierten Futterrationen (extensive Wiesennutzung, Futtergetreide, Maissilage im Sommer, spezielle Aminosäuren in der Schweinefütterung) erreicht, die teilweise aufwendige Betriebsumstellungen bedingen. Ab diesem Reduktionsniveau müssen die Tierbestände abgebaut werden, was mit einem starken Anstieg des Einkommensverlustes verbunden ist.

8. Zusammenfassung

Mit Modellrechnungen wurde die Einkommenswirksamkeit von Massnahmen zur Reduktion der Ammoniak-Emissionen auf Rindvieh- und Schweinehaltungsbetrieben untersucht. Im Jahr 1994 betrugen die dabei erfassten Emissionen rund 90 % der landwirtschaftlichen bzw. 78 % der gesamtschweizerischen Ammoniak-Emissionen. Für die nicht erfassten Bereiche sind konstante Emissionen zwischen 1994 und 2002 angenommen. Gemäss den Ergebnissen für das Jahr 2002 ergibt sich aus betriebswirtschaftlicher Sicht die untenstehende Reihenfolge der Massnahmen, wobei Abweichungen in Abhängigkeit vom Betriebstyp möglich sind. Die angegebenen Emissionsminderungen beziehen sich auf die gesamtschweizerischen Emissionen des Jahres 1994.

- Zuchtfortschritte (Abnahme der Tierzahl durch Leistungssteigerungen, verbesserte Futterverwertung) und die agrarpolitischen Rahmenbedingungen (Extensivierung des Futterbaus, tiefere Futtermittelpreise) führen zwischen 1994 und 2002 bereits ohne spezifische Massnahmen zu einer Emissionsminderung um rund 10 %.
- Eine bessere **Berücksichtigung der Witterung** bei der Hofdüngeranwendung lässt sich weitgehend ohne zusätzliche Kosten durchführen. Das Ausbringen am Abend oder bei leichtem Regen beinhaltet ein maximales Reduktionspotential von gegen 5 %.
- Das Einarbeiten von Gülle oder Mist unmittelbar nach der Ausbringung auf Ackerland verursacht ebenfalls keine Mehrkosten, sofern dadurch eine spätere Bodenbearbeitung ersetzt wird und keine Arbeitsengpässe entstehen. Wenn diese Massnahmen im Ausmass des geschätzten Anwendungspotentials von 8 % der Gülle und 40 % des Mistes realisiert werden, lassen sich die gesamten Emissionen um 1,4 % senken (vgl. Tab. 35, S. 51).
- Eine Optimierung der Fütterung in bezug auf den Proteinbedarf führt zu einer weiteren Senkung der im Jahr 2002 bereits verringerten N-Ausscheidungen. Das mit geringem Aufwand realisierbare Potential ist aber begrenzt. Bei der Fütterung der Schweine hängen die Kosten stark von den Preisen für Aminosäuren ab. Ein besonderer Vorteil von Fütterungsmassnahmen ist die Senkung auch anderer Formen von Stickstoffverlusten.
- Eine zusätzliche Verdünnung der Gülle ist zu empfehlen, wenn genügend Lagerraum, Wasser und Arbeitskräfte vorhanden sind. Werden im Sommer 80 % aller Gülle im Verhältnis 1:2 statt 1:1 verdünnt, vermindern sich die gesamten Emissionen um gegen 4 %. Durch eine Verdünnung auf 1:4 könnte diese Reduktion sogar mehr als verdoppelt werden, allerdings mit entsprechend höheren Transportkosten für das Ausbringen.
- Der Verzicht auf Harnstoffdunger ist eine weitere vergleichsweise kostengunstige Massnahme. Bezogen auf den Verbrauch im Jahr 1994 könnte ein vollständiger Ersatz durch andere Mineraldunger die gesamten Emissionen um rund 3 % reduzieren.
- Technische Massnahmen bei der Gülleausbringung können bei überbetrieblicher Verwendung der Geräte kostengünstig ausgeführt werden. Besonders wirksam ist die im Ackerund Kunstfutterbau anwendbare tiefe Injektion, deren Anwendungspotential aufgrund ungünstiger Bodenbeschaffenheiten aber begrenzt ist und die zu anderweitigen Auswirkun-

gen wie Denitrifikation oder Bodenschädigung führen kann. Ein grösseres Anwendungspotential besitzen die Schleppschuh- und die Schleppschlauchtechnik. Letztere eignet sich besonders auch für Verschlauchungsanlagen. Die mit diesen Techniken maximal erzielbare Reduktion beträgt unter Berücksichtigung der Anwendungseinschränkungen gegen 10 %.

- Nicht berücksichtigt wurde in der Hochrechnung die Errichtung neuer Ställe. Bei solchen Gelegenheiten können emissionsarme Einrichtungen (z.B. optimierte Schiebersysteme) ohne oder mit geringen Mehrkosten integriert werden. Das damit verbundene Reduktionspotential ist zwar nur längerfristig realisierbar, könnte in der Milchviehhaltung aber die mit der erwarteten Zunahme von Laufställen ansteigenden Emissionen teilweise kompensieren.
- Massnahmen bei der Güllelagerung und in bestehenden Ställen werden erst bei stärkerer Emissionsreduktion durchgeführt, mit beträchtlichen Einkommensverlusten. Hemmend wirkt sich dabei auch das mit den eingesparten Emissionen erhöhte Verlustpotential in den nachfolgenden Bereichen aus.

Die Genauigkeit der Berechnungen lässt sich nur grob abschätzen. Der Fehler der Gesamtemissionen in Menzi et al. (1997) liegt nach Aussage des Autors deutlich unter 20 %, weil allfällige Fehler einzelner Annahmen in beide Richtungen wirken dürften. Auch die in den Kostenberechnungen verwendeten Angaben beruhen auf mittleren Werten und Annahmen, so dass zu vermuten ist, dass sich die Fehler zu einem Grossteil gegenseitig aufheben. Der Verlauf des Einkommensverlustes bei zunehmender Emissionsreduktion bezieht sich dabei auf eine optimale Anpassung der Einzelbetriebe. Insgesamt dürften deshalb die in der Praxis erreichbaren Emissionsreduktionen eher überschätzt worden sein.

Gemäss den Modellrechnungen verringern sich die gesamtschweizerischen Ammoniak-Emissionen zwischen 1994 und 2002 wegen der erwarteten Entwicklung der Rahmenbedingungen in der Landwirtschaft und bei einer maximalen Anwendung der Witterungsmassnahmen um 15 %. Eine Reduktion um 30 % hat für die Landwirtschaft jährliche Einkommensverluste von 50 Mio. Franken zur Folge. Für eine Reduktion um 50 % muss mit Verlusten von über 400 Mio. Franken gerechnet werden, wobei bereits ein Abbau der Tierbestände notwendig ist.

9. Résumé

Evaluation économique des mesures de réduction des émissions d'ammoniac en Suisse

Les effets de différentes mesures de réduction des émissions d'ammoniac sur le revenu des exploitations d'élevage de bétail bovin et de porcs ont été examinés à l'aide de simulations. En 1994, les émissions relevées représentaient environ 90 % des émissions d'ammoniac d'origine agricole et 78 % des émissions d'ammoniac totales de la Suisse. Pour les domaines non examinés, nous sommes partis de l'hypothèse que ces émissions resteraient constantes entre 1994 et 2002. Du point de vue économique, les simulations font ressortir pour l'année 2002 **l'ordre suivant des mesures**, des différences d'un type d'exploitation à l'autre étant pourtant possibles. Les taux de réduction indiqués se rapportent aux émissions d'ammoniac totales en 1994.

- Même sans mesures spécifiques, les progrès réalisés sur le plan de la sélection (réduction des cheptels grâce à l'augmentation des performances, meilleure mise en valeur des aliments) ainsi que le nouveau contexte agropolitique (extensification de la culture fourragère, réduction des prix des aliments) entraînent une diminution des émissions d'ammoniac d'environ 10 % entre 1994 et 2002.
- Une prise en considération plus conséquente des conditions météorologiques lors de l'épandage des engrais de ferme n'occasionne pour ainsi dire pas de frais supplémentaires. Les émissions d'ammoniac peuvent être réduites de 5 % au maximum si les engrais de ferme sont épandus le soir ou lors d'une petite pluie.
- L'enfouissement du lisier ou du fumier, immédiatement après l'épandage sur des terres assolées, n'occasionne pas non plus de frais supplémentaires, à condition que cette opération se substitue à un travail du sol ultérieur et qu'elle ne provoque pas de goulots d'étranglement dans le déroulement des travaux. En supposant que cette mesure concerne 8 % du lisier et 40 % du fumier, les émissions d'ammoniac totales se réduisent de 1,4 % (tableau 35, page 51).
- Une adaptation optimale de l'alimentation aux besoins en proteines entraîne une réduction supplémentaire des excrétions d'azote, déjà diminuées jusqu'en 2002. Cette mesure occasionne peu de frais, mais le potentiel réalisable est limité. Sur le plan des porcs, les frais dépendent fortement des prix des amino-acides. Les mesures concernant l'alimentation offrent l'avantage de réduire également d'autres formes de pertes d'azote.
- Une dilution supplémentaire du lisier est à recommander si les exploitations disposent de suffisamment de volume de stockage, d'eau et de main-d'oeuvre. Si, en été, 80 % de la quantité globale de lisier sont dilués dans le rapport 1:2 au lieu de 1:1, les émissions d'ammoniac totales se réduiront d'environ 4 %. Par une dilution de 1:4, on pourrait même

arriver à plus du double, mais l'épandage du lisier occasionnerait une augmentation correspondante des frais de transport.

- Renoncer à l'utilisation d'engrais à base d'urée est une autre mesure qui occasionne des frais relativement peu importants. Si la quantité entière utilisée en 1994 était remplacée par d'autres engrais minéraux, les émissions d'ammoniac totales pourraient être réduites d'environ 3 %.
- Les mesures portant sur la **technique d'épandage du lisier** occasionnent des frais peu élevés si les outils correspondants sont utilisés en commun. L'injection en profondeur, applicable dans les grandes cultures et les prairies temporaires, est particulièrement efficace, mais les possibilités d'application sont limitées puisqu'elles dépendent de l'état du sol. En plus, cette technique peut avoir des effets indésirables (dénitrification, dégâts au sol). Les possibilités d'utilisation des épandeurs à tuyaux souples ou de ceux à tuyaux semi-rigides avec socs sont plus grandes. Compte tenu des restrictions d'application, ces techniques permettent une réduction d'environ 10 % au maximum.
- La construction de nouvelles étables n'a pas été prise en considération dans l'extrapolation. Il est pourtant possible d'intégrer dans les nouvelles constructions des installations peu polluantes (par ex. systèmes à racleur optimisés pour l'évacuation du fumier) sans que les frais augmentent de façon notable. Dans ce cas, le potentiel de réduction des émissions ne peut être réalisé qu'à long terme, mais il permettrait de compenser en partie l'augmentation des émissions à laquelle il faut s'attendre par suite du nombre croissant d'étables libres pour bétail laitier.
- Les mesures concernant le **stockage du lisier** et les **étables existantes** ne viennent s'ajouter que pour une réduction plus importante des émissions. Cela avant tout pour des raisons économiques, mais également du fait que la réduction des émissions réalisée dans ces domaines implique un potentiel de pertes accru en aval.

L'exactitude des calculs ne peut être que grossièrement estimée. L'inexactitude de la valeur relative aux émissions totales dans Menzi et al. (1997) est, selon l'auteur, nettement inférieure à 20 %, étant donné que d'éventuelles erreurs dans les hypothèses particulières se répercutent en sens opposé. Quant aux indications utilisées pour les calculs des frais, basées sur des hypothèses et des valeurs moyennes, on peut également supposer que la plupart des erreurs s'annulent réciproquement. La progression des pertes de revenu allant de pair avec une réduction croissante des émissions se rapporte à des exploitations adaptées de façon optimale. Les réductions d'émissions réalisables dans la pratique ont donc probablement été surestimées.

Pour la période de 1994 à 2002, les simulations laissent présager que les émissions d'ammoniac totales de la Suisse seront réduites de 15 % par suite du nouveau contexte agropolitique et d'une observation plus stricte des conditions météorologiques lors de l'épandage des engrais de ferme. Une réduction de 30 % occasionne à l'agriculture des pertes de revenu annuelles de 50 millions de francs. Une réduction de l'ordre de 50 % implique des pertes de plus de 400 millions de francs et exige une diminution des effectifs d'animaux.

10. Summary

Farm economic assessment of ammonia control measures in Switzerland

Model calculations were used to investigate the effect of ammonia control measures on the income of cattle and pig farms. In 1994 the emissions recorded amounted to some 90 % of the agricultural or 78 % of total Swiss ammonia emissions. For the areas not accounted for in the model the emission rates were assumed to remain constant between 1994 and 2002. According to the calculations for 2002, the impact of the control measures on incomes increases in the **following order**, variations depending on the farm type being possible. The reduction rates indicated below relate to the total ammonia emissions in 1994.

- Breeding progress (lower number of animals thanks to higher animal performances, higher feed conversion ratio) and changed agropolitical conditions (extensification of fodder cropping, lower feed prices) lead to a reduction of approximately 10 % between 1994 and 2002, without any specific measures being taken.
- A more consistent **consideration of the weather conditions** when timing the application of farm manure does generally not involve any extra cost. Manuring in light rain or in the evening offers a maximum reduction potential of some 5 %.
- The incorporation of solid or liquid manure into the soil immediately after the application on arable land does not involve any extra cost either, provided it substitutes for later tillage and does not interfere with other work to be done. Assuming that 8 % of liquid and 40 % of solid manure can be incorporated into the soil, total ammonia emissions can be reduced by 1,4 % (cf. Table 35, p. 51).
- Feeding optimisation with regard to protein requirements results in an additional reduction of the amount of excreted nitrogen, already decreasing till 2002. The reduction potential of this low-cost measure is, however, limited. In pig feeding the costs are strongly dependent on amino acid prices. The additional reduction of other forms of nitrogen losses is a particular advantage of feeding measures.
- Additional slurry dilution is recommended where sufficient storage volume, water, and labour capacity are available. Diluting 80 % of the total amount of slurry at a rátio of 1:2 instead of 1:1 in summer allows total ammonia emissions to be cut by about 4 %. By choosing a 1:4 dilution ratio this reduction could be more than doubled. However, the transport costs for spreading would rise accordingly.
- The non-use of urea fertilisers is another comparatively low-cost measure. Replacing
 the entire quantity used in 1994 by other mineral fertilisers would reduce total ammonia
 emissions by approximately 3 %.

- The **improvement of slurry spreading techniques** is a low-cost measure for farmers using the corresponding implements in collective ownership. Deep injection, suitable for crop husbandry and temporary ley, is a particularly efficient method. In unfavourable soil conditions its applicability is, however, limited, and it may have adverse effects such as denitrification or soil damage. Umbilical hose slurry spreading techniques have a wider field of application. Their maximum reduction potential is about 10 %.
- The construction of new livestock buildings has not been considered in the extrapolation. Low-emission facilities (e.g. optimised scraper systems for dung removal) can be integrated into new buildings without any or at moderate extra cost. Although the reduction potential will show its effect only at longer term, it could partly counterweigh the expected increase in emissions caused by the more and more widespread use of loose housing systems for dairy cattle.
- Measures relating to slurry storage and existing livestock buildings are only taken for a further reduction of ammonia emissions, causing substantial income losses and implying an increased loss potential in the subsequent fields.

The accuracy of the calculations can only be roughly estimated. The total emissions indicated by Menzi et al. (1997) show, according to the author, an error of clearly less than 20 %, possible inaccuracies of certain hypothesis having their effects in both directions. It may be presumed that the inaccuracies of the data used for the cost calculations, based on average values, mostly compensate each other as well. The course of the income losses due to an increasing reduction of ammonia emissions relates to optimally adapted farms. Thus the reductions obtainable in practice have probably been overrated.

According to the model calculations, the expected development of the agropolitical conditions and a more consistent consideration of the weather conditions when timing the application of farm manure result in a 15 % decrease of total Swiss ammonia emissions between 1994 and 2002. A 30 % reduction means yearly income losses of 50 million francs in agriculture. A 50 % reduction causes losses of more than 400 million francs, smaller herd sizes becoming indispensable.

11. Literatur

- Biedermann, R. (Vorsitz), 1996: Stickstoffhaushalt Schweiz: Schlussbericht. Projektgruppe Stickstoffhaushalt Schweiz. INFRAS AG, Zürich.
- Borka, G., 1994: Ammoniakemissionen aus Nutztierställen. In: Ammoniak in Landwirtschaft und Umwelt, Schriftenreihe der FAC Nr. 19, S. 51-59, Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC), Liebefeld-Bern.
- BLW, 1995a: Evaluation der Oeko-Massnahmen. Evaluationskonzept des Bundesamtes für Landwirtschaft (BLW), Bern (unveröffentlicht).
- BLW, 1995b: Bericht über die Ausrichtung von Direktzahlungen im Jahr 1994. Bundesamt für Landwirtschaft (BLW), Bern.
- Bundesamt für Statistik, 1992: Eidgenössische Landwirtschafts- und Gartenbauzählung 1990. Bern.
- BUWAL, 1993: Der Stickstoffhaushalt in der Schweiz. Konsequenzen für Gewässerschutz und Umweltentwicklung. Schriftenreihe Umwelt Nr. 209, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.
- BUWAL, 1995: Vom Menschen verursachte Luftschadstoff-Emissionen in der Schweiz von 1900 bis 2010. Schriftenreihe Umwelt Nr. 256, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.
- Cowell, D., ApSimon, H., 1996: The MARACCAS Project. Assessing the potential and cost of Ammonia emission abatement in Europe. Imperial College, centre for Environmental Technology, London, UK.
- Dietl, W., 1986: Pflanzenbestand, Bewirtschaftungsintensität und Ertragspotential von Dauerwiesen. In: Schweizerische Landwirtschaftliche Monatshefte, S. 241-262.
- Duttweiler, R., Ammann, H., Hilty, R., Näf, E., 1988: Der Einfluss der Kuhherdengrösse auf die Kosten der Milchproduktion. Landwirtschaft Schweiz, Heft 4, 239-245.
- ECETOC, 1994: Ammonia emissions to air in western Europe. Technical Report No. 62, European Centre for Ecotoxocology and Toxicology of Chemicals, Brüssel.
- EMEP, 1995: European Transboundary Acidifying Airpollution: Ten years calculated fields and budgets to the end of the first Sulfur Protocol. Co-operative Programme for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe, EMEP/MSC-W Report 1/1995, Norwegian Meteorological Institute, Oslo.

- FAG, 1994: Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. Eidg. Forschungsanstalt für viehwirtschaftliche Produktion (FAG), Posieux
- FAP, RAC, FAC, 1994: Grundlagen für die Düngung im Acker- und Futterbau. Landwirtschaftliche Beratungszentrale (LBL), Lindau.
- FAT, 1996: Ergebnisse der Zentralen Auswertung von Buchhaltungsdaten: Bericht über biologisch bewirtschaftete Betriebe 1994, Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon.
- Isermeyer, F., 1988: Produktionsstrukturen, Produktionskosten und Wettbewerbsstellung der Milcherzeugung in Nordamerika, Neuseeland und der EG. Wissenschaftsverlag Vauk, Kiel.
- Keck, M., 1997: Beeinflussung von Raumluftqualität und Ammoniakemissionen aus der Schweinehaltung durch verfahrenstechnische Massnahmen. Diss. am Institut für Agrartechnik, Universität Hohenheim, Stuttgart.
- LBL, 1995: Preiskatalog 1995/96. Landwirtschaftliche Beratungszentrale (LBL), Lindau.
- Malitius, O., 1996: Die Entwicklung landwirtschaftlicher Betriebe im Talgebiet der Schweiz. Diss. ETH Zürich, Schriftenreihe der FAT Nr. 43, Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon.
- Menzi, H., Frick, R., Kaufmann, R., 1997: Die Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Schriftenreihe des IUL, Institut für Umweltschutz und Landwirtschaft, Liebefeld-Bern (in Vorbereitung).
- Näf, E., 1996: Neuer Windows-Arbeitsvoranschlag für Tal- und Bergbetriebe. Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon.
- Neftel, A., 1988: Atmosphärische N-Verbindungen: Formen, Mengen, Umsetzung und Bedeutung. In: FAC-Oktobertagung 1988: Stickstoff in Landwirtschaft, Luft und Umwelt, Schriftenreihe der FAC Nr. 7, S. 1-13, Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC), Liebefeld-Bern.
- Neftel, A., 1994: Verhalten und Wirkung von Ammoniak in der Umwelt. In: Ammoniak in Landwirtschaft und Umwelt, Schriftenreihe der FAC Nr. 19, S. 13-24, Eidg. Forschungsanstalt für Agrikulturchemie und Umwelthygiene (FAC), Liebefeld-Bern.
- Häfliger, M., Keusch, A., Lehmann, B., Thomi, H.-P., Wolf, H.P., 1995: Stickstoffhaushalt Schweiz: Anpassungsschritte landwirtschaftlicher Betriebe zwecks Abbau der N-Emissionen. Technischer Bericht. Institut für Agrarwirtschaft, ETH Zürich.

- Pfefferli, S., Hilty, R., Näf, E., 1994: Milchviehhaltung: Beim Laufstall überwiegen die Vorteile. Agrarforschung 1 (10), 441-444.
- Rhim, B., 1996: Critical Loads of Nitrogen and their exceedances. Bundesamt für Umweltschutz, Wald und Landschaft (BUWAL), Bern.
- SBV, 1995: Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung. Schweizerischer Bauernverband (SBV), Brugg.
- Spieck, E., Sand, W., Bock, E., 1990: Wirkungen von Ammoniak auf Bauwerke. In: KTBL (Hrsg): Ammoniak in der Umwelt, Beitrag Nr. 15, Darmstadt.
- Stadelmann, F.X., Achermann, B., Lehmann, H.-J., Menzi, H., Pfefferli, S., Sieber, U., Zimmermann, A., 1996: Ammoniak-Emissionen Schweiz: Stand, Entwicklung, technische und betriebswirtschaftliche Möglichkeiten zur Reduktion, Empfehlungen. Bericht der Projektgruppe. Institut für Umweltschutz und Landwirtschaft (IUL), Liebefeld-Bern und Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon.
- Staffelbach, T., Neftel, A., 1995: Ozon Die Landwirtschaft im Zwiespalt? Agrarforschung 2(6), 213-216.
- Trunk, W., 1995: Ökonomische Beurteilung von Strategien zur Vermeidung von Schadgasemissionen bei der Milcherzeugung - dargestellt für Allgäuer Futterbaubetriebe. Diss. Universität Hohenheim, Verlag Dr. Kovac, Hamburg.

Anhang A: Wichtigste Modellgleichungen zur Abbildung der N-Flüsse

Im folgenden werden die wichtigsten Modellgleichungen, die zur Berechnung der Ammoniak-Emissionen nötig sind, aufgeführt. Die Stickstoffflüsse sind entsprechend dem Vorgehen in Menzi et al. (1997) so abgebildet, dass die N-Flüsse in den verschiedenen Bereichen von der Fütterung bis zur Hofdüngeranwendung miteinander verbunden sind. Massnahmen in einem bestimmten Bereich haben somit auch Auswirkungen auf die nachfolgenden Bereiche. Zur besseren Übersicht sind die Aktivitäten unterstrichen. Sie werden, falls sie nicht fixiert sind, endogen im Modell bestimmt. Die nicht unterstrichenen Abkürzungen stellen die vorgegebenen Koeffizienten dar, mit denen die Aktivitäten multipliziert werden.

Die N-Ausscheidung der einzelnen Tierkategorien wird im Modell über eine Bilanzgleichung bestimmt (1). Sie ergibt sich aus der N-Aufnahme über die Futtermittel abzüglich der N-Bindung durch Wachstum und Produktion. Unterschieden wird zwischen der Ausscheidung während der Sommer- und Winterfütterung. Für jede Tierkategorie und die beiden Fütterungsperioden wird eine Gleichung folgender Art aufgestellt:

 $\frac{NANF}{NANF} = \sum (NGEH_n * FUTT_n) - NBIN * TIER$ (1)

Berechnung des N-Anfalls (für eine Tierkategorie und Fütte-

rungsperiode)

NANE = N-Anfall

___ = im Modell bestimmte Aktivität

 $NGEH_n = N$ -Gehalt pro Einheit Futtermittel (Futtermittel n)

 $FUTT_n = Menge des Futtermittels (Futtermittel n)$

NBIN = N-Bindung pro Tier und Periode durch Wachstum und Produktion

TIER = Anzahl Tiere

Zusätzlich wird für jede Tierkategorie und Fütterungsperiode die Differenz zur Norm-Ausscheidung gemäss Richtwerten (FAP, RAC, FAC 1994) berechnet. Diese Differenz hat beim Rindvieh einen Einfluss auf den Anteil an verlustgefährdetem Stickstoff (vgl. Gleichung 3) und fliesst, da bei der Hofdüngeranwendung mit Normgehalten gerechnet wird, als Korrektur in die Düngungsbilanzen ein (vgl. Gleichung 17). Die Differenz ergibt sich aus dem berechneten N-Anfall (Gleichung 1) abzüglich des N-Anfalls nach Norm. Pro Tierkategorie stehen verschiedene Tiertypen zur Auswahl, die sich unter anderem bezüglich Leistung (und damit auch bezüglich Normausscheidung pro Tier) unterscheiden. In der Gleichung wird deshalb über eine Summierung der gesamte Normanfall der Tierkategorie bestimmt. Weil die so bestimmte Differenz bei einer Reduktion des N-Anfalls durch Fütterungsmassnahmen einen negativen Wert annehmen würde, was für die Aktivitäten im LP-Modell nicht möglich ist, wird sie mittels Subtraktion um einen fixen Korrekturfaktor modellintern erhöht. Dieser Korrekturfaktor muss auch bei den weiteren Gleichungen mit dieser Aktivität abgezogen werden.

```
\underline{NDIF} - \underline{NKOR} = \underline{NANF} - \sum (NORM_n * \underline{TTYP}_n)  (2)
```

Berechnung der N-Ausscheidungsdifferenz (für eine Tierkategorie und Fütterungsperiode)

NDIF - NKOR = Differenz zwischen der N-Ausscheidung im Modell und nach Norm

NKOR = fixer Korrekturfaktor, erlaubt die Abbildung negativer Differenzen

 $NORM_n = N$ -Ausscheidung pro Tier nach Norm (Tiertyp n)

 $\underline{\text{TTYP}}_n$ = Anzahl Tiere (Tiertyp n)

Neben der N-Ausscheidung wird ebenfalls für jede Tierkategorie und Fütterungsperiode die Ausscheidung an verlustgefährdetem N berechnet. Dieser Anteil entspricht etwa dem Anteil des über den Harn ausgeschiedenen Stickstoffs bzw. den löslichen N-Verbindungen in den Hofdüngern (N_{lösl}). Für die Schweinehaltung beträgt dieser Gehalt bei Vollgülle 75 % der N-Ausscheidung. Beim Rindvieh erreicht er in Vollgülle 60 %, wird aber bei einer fütterungsbedingten Reduktion der N-Ausscheidung überproportional reduziert (Menzi et al. 1997). Der mengenmässige Anfall an NH₄ ergibt sich in diesem Fall aus einem Normwert abzüglich einer Korrektur für N-Ausscheidungen unter der Norm. Die Formulierung würde bei einer N-Ausscheidung über der Norm fälschlicherweise einen überproportional erhöhten NH₄-Anfall ergeben, was sich aber nicht auswirkt, da nur die Reduktion der N-Ausscheidung untersucht wird.

 $\underline{\text{NLOS}} = \sum (\text{NOLO}_n * \underline{\text{TTYP}}_n) + \text{KLOS} * \underline{\text{NDIF}} - \text{KLOS} * \underline{\text{NKOR}}$ (3)

Berechnung der N_{lösl}-Ausscheidung (für eine Tierkategorie und Fütterungsperiode)

NLÖS = Ausscheidung an N_{lösl}

 $NOLO_n = Norm-Ausscheidung an N_{lost}$ (Tiertyp n)

KLÖS = Anteil des abzuziehenden N_{losi} bei einer Ausscheidung unter der Norm

In der Sommerperiode wird für jede Tierkategorie mit Weidehaltung die N-Ausscheidung auf der Weide als Anteil an der gesamten N-Ausscheidung berechnet. Diese vom gewählten Stalltyp abhängigen Weideanteile können als Koeffizienten an die Aktivität "N-Anfall" gebunden werden. Dazu müsste für jeden Stalltyp einer Tierkategorie eine Gleichung aufgestellt werden. Zur Vereinfachung werden im Modell die rekursiven Werte dieser Anteile auf der anderen Seite der Gleichung eingesetzt. Auf diese Weise können die Weideanteile aller Stalltypen pro Tierkategorie in einer einzigen Gleichung mit dem N-Anfall verknüpft werden. Die dem Stalltyp zugeordneten Hilfsaktivitäten, die den N-Anfall auf der Weide angeben, werden anschliessend zu einer gesamten Aktivität summiert. In separaten Gleichungen wird sichergestellt, dass die einem Stalltyp zugehörige Hilfsaktivität nur aktiviert werden kann, wenn der entsprechende Typ vorliegt. Dazu können die Integervariablen der Stalltypen verwendet werden, die zum Beispiel auch zur Berechnung des Arbeitszeitbedarfs oder der Kosten sowieso notwendig sind. Ist ein Stalltyp nicht ausgewählt und damit die entsprechende Integervariable auf Null gesetzt, so muss auch die Hilfsaktivität des N-Anfalls auf der Weide Null sein. Bei einer Wahl des Stalltyps erhält die Integervariable den Wert 1, so dass multipliziert mit einem ausreichend hohen Faktor

(z.B. 1000) auch die Hilfsaktivität einen Wert grösser als Null annehmen kann. Pro Tierkategorie ist die Summe dieser Integervariablen auf 1 begrenzt, das heisst es kann nur ein Stalltyp auf einmal gewählt werden. Dieselbe Berechnung erfolgt für die Menge an N_{iost}, das auf der Weide ausgeschieden wird.

 $\sum (AWEI_n * NWEI_n) = NANF$ $NWEI = \sum (NWEI_n)$ $NWEI_n \le 1000 * STYPI_n$ (4)

Berechnung der N-Ausscheidung auf der Weide (für eine Tierkategorie)

AWEIn = Rekursiver Wert des Anteils des auf der Weide anfallenden N (Stalltyp n)

NWELD = N-Ausscheidung auf der Weide (Stalltyp n)

NWEI = N-Ausscheidung auf der Weide

STYPI, = Integervariable zum Stalltyp n (0 oder 1)

Die Ammoniak-Emissionen einer Tierkategorie während der Weide betragen 5 % der N-Ausscheidung auf der Weide.

<u>EWEI</u> = 0,05 * <u>NWEI</u> (5) <u>EWEI</u> = NH₃-Emissionen der Weidehaltung Emissionen der Weidehaltung (für eine Tierkategorie)

Ausgehend von der im Modell resultierenden N-Ausscheidung werden für jede Tierkategorie die Emissionen im Stallbereich berechnet. Die fütterungsbedingete Differenz zwischen der N-Ausscheidung nach Norm und dem N-Anfall im Modell wird dabei zur Hälfte wieder mitberücksichtigt, weil die Emissionen bei unveränderter Verschmutzungsfläche nicht im selben Ausmass zurückgehen. Der Anteil des als Ammoniak entweichenden Stickstoffs ist abhängig vom Stalltyp. Weil der Stalltyp auch einen definierten Weideanteil beinhaltet, kann im entsprechenden Emissionskoeffizienten neben dem Stallsystem auch eine verminderte Emission während der Stallabwesenheit berücksichtigt werden. Die prozentuale Verminderung entspricht aber nicht voll dem im Stall tieferen N-Anfall (vgl. S. 26). Analog wie in Gleichung 4 werden die unterschiedlichen Emissionskoeffizienten der verschiedenen Stalltypen einer Tierkategorie als rekursive Werte in die Gleichung eingesetzt.

 $\sum (ASTA_n * ESTO_n) = NANF - 0.5 * (NDIF-NKOR)$ $ESTO = \sum (ESTO_n)$ $ESTO_n \le 1000 * STYPI_n$ (6)

Emissionen im Stall (für eine Tierkategorie und Fütterungsperiode)

ASTA_n = Rekursiver Wert des Anteil des entweichenden NH₃ (Stalltyp n)

 $ESTO_n = NH_3$ -Emissionen im Stall ohne Massnahmen (Stalltyp n)

ESTO = NH₃-Emissionen im Stall ohne Massnahmen

Bei bestimmten Tierkategorien können die NH₃-Emissionen im Stall mit baulichen Massnahmen reduziert werden. Diese Reduktionen werden dem Modellbetrieb angeboten (Formulierung analog Gleichung 4). Sie sind über eine Integervariable an die entsprechenden Kosten gebunden.

 $\sum (AMAS_n * EMAS_n) = ESTO$ (7). $EMAS = \sum (EMAS_n)$ $EMAS_n \le 1000 * MASSI_n$ ESTA = ESTO - EMAS

Berechnung der Emissionsreduktion im Stall (für eine Tier-Kategorie und Fütterungsperiode)

Aufteilung des N auf die Hofdün-

gerarten (für einen Stalltyp und

eine Fütterungsperiode)

AMAS_n = Rekursiver Wert des Anteils der eingesparten NH₃-Emission (Massnahme n)

 $\underline{\mathsf{EMAS}}_{\mathsf{n}} = \mathsf{Reduktion} \ \mathsf{der} \ \mathsf{NH}_{\mathsf{3}}\text{-}\mathsf{Emission} \ \mathsf{im} \ \mathsf{Stall} \ (\mathsf{Massnahme} \ \mathsf{n})$

EMAS = Reduktion der NH₃-Emission im Stall

 $\underline{\mathsf{MASSI}}_{\mathsf{n}} = \mathsf{Integer variable} \; \mathsf{zur} \; \mathsf{Massnahme} \; \mathsf{n} \; (0 \; \mathsf{oder} \; 1)$

ESTA ≐ NH₃-Emission im Stall

Der N-Anfall nach dem Stall (abzüglich Weide-N und NH₃-Emissionen) wird für jeden Stalltyp auf die Hofdüngerarten Gülle, Mist und Laufstallmist verteilt. Dasselbe erfolgt für den löslichen Stickstoff, wobei auch diese Menge um die gesamten NH₃-Emissionen reduziert wird.

AGUE * $\underline{\text{NGUE}} = \underline{\text{NANF}} - \underline{\text{NWEI}} - \underline{\text{ESTA}}$ (8)

AMIS * NMIS = NANF - NWEI - ESTA

ALMI * NLMI = NANE - NWEI - ESTA

AGUE = Rekursiver Wert des Anteils des N in der Gülle

NGUE = N in der Gülle

AMIS = Rekursiver Wert des Antéils des N im Stapelmist

<u>мміз</u> = N im Stapelmist

ALMI = Rekursiver Wert des Anteils des N im Laufstallmist

<u>NLMI</u> = N im Laufstallmist

Die bei den einzelnen Stallsystemen nach dem Stall anfallenden Stickstoffmengen werden je für das Rindvieh und die Schweine summiert, getrennt nach Hofdüngerarten. Während der Laufstallmist nicht ausserhalb des Stalles gelagert wird, entweichen bei Gülle und Stapelmist weitere NH₃-Emissionen in Abhängigkeit von der Lagerungsart. Die Emissionen bei der Güllelagerung unterscheiden sich bei offenen und geschlossenen Behältern. Sie steigen linear mit zunehmender Oberfläche an, das heisst in Abhängigkeit des Volumens ist ein abnehmender Zuwachs festzustellen. Für die Abbildung im Modell wird einfachheitshalber eine angenäherte lineare Beziehung zum Volumen berechnet. Das minimale Lagerungsvolumen auf dem Betrieb ist abhängig vom Gülleanfall und wird modellintern bestimmt. Es kann dem Betriebstyp aber auch vorgegeben werden. Die bei offenen Güllebehältern möglichen Reduktionsmassnahmen werden ebenfalls auf einen Kubikmeter Lagerraum bezogen. Dem Modell ist es somit theoretisch möglich, eine Massnahme nur bei einem Teil des Lagers durchzuführen. Es kann auch ein Betriebstyp definiert werden, dessen Güllelager einer durchschnittlichen Situation

entsprechend nur teilweise geschlossen ist. Die tatsächlich im Güllebehälter vorhandene Güllemenge wird bei der Berechnung der Emissionen nicht berücksichtigt, das heisst die Emissionen sind gleich hoch bei vollem wie bei nur teilweise gefülltem Behälter.

 $EGLA = \sum (ELAG_n * GLAG_n) - \sum (LRED_m * LMAS_m)$

Emissionen der Güllelagerung (für Rindvieh- bzw. Schweine-

EGLA = Emissionen der Güllelagerung

ELAG_n = NH₃-Emission pro Kubikmeter Güllelager und Jahr (Lagerungsart n)

GLAG, = Kubikmeter des Güllelagers n

LRED_m = Reduktion der Emission pro Kubikmeter Lager bei Massnahme m

LMAS_m = Lagerungsmassnahme m in Kubikmetern

Die Emissionen während der Mistlagerung sind nicht wie bei der Gülle an den Lagerraum gebunden, sondern an den Niosi-Gehalt des Mistes.

EMLA = EMIS * MLÖS

Emissionen der Mistlagerung (für Rindvieh- bzw. Schweine-

= Emissionen der Mistlagerung

= Anteil der NH₃-Emissionen am N_{lost}-Gehalt des Mistes

= Menge N_{lösl} im Mist <u>MLÖS</u>

Die nach der Lagerung noch in den Hofdüngern enthaltene Menge N_{iosl} wird gesamthaft für alle Hofdüngerarten, für Rindvieh und Schweine zusammen und für das ganze Jahr berechnet. Sie entspricht den Mengen N_{lost} in den Hofdüngern nach dem Stall abzüglich der Emissionen während der Lagerung.

(11) $\underline{\text{LÖST}} = \sum (\underline{\text{LÖSM}}_{nmp}) - \sum (\underline{\text{ELAG}}_{l})$

Berechnung der Menge N iosi nach der Lagerung (Gesamtbetrieb)

LÖST = Gesamte Menge N_{lösl} nach der Lagerung

 $LOSM_{nmp}$ = Menge N_{lost} nach dem Stall (Hofdüngerart n, Tierart m, Fütterungsperiode p)

ELAG, = NH₃-Emission Lagerung (Hofdüngerlagers I)

Neben der Bilanz der Stickstoffflüsse bis Ende Lagerung wird im Modell auch der mengenmässige Anfall an Gülle, Mist und Laufstallmist berechnet. Dies erfolgt periodenweise und getrennt nach Schweine- und Rindvieh-Hofdungern. Für die bei bestimmten Rindvieh-Stallsystemen anfallende Harngülle wird einfachheitshalber eine Verdünnung angenommen, bei welcher der pflanzenverfügbare Stickstoff pro Mengeneinheit Gülle genau demjenigen in der Vollgülle entspricht.

```
\underline{GUEL} = \sum (\underline{GUEL_{nm}} * \underline{TIER_{nm}}) \qquad (12)
```

Berechnung der anfallenden Güllemenge (für Rindvieh/Schweine und eine Arbeitsperiode)

GUEL = Gülleanfall (analog: Mist, Laufstallmist)

GUEL_{nm} = Anfall an Gülle pro Tier (Tierkategorie n, Stalltyp m)

TIER_{nm} = Anzahl Tiere (Tierkategorie n, Stalltyp m)

Weil sowohl die Hofdüngermengen als auch die Stickstoffflüsse im Modell bestimmt werden, können die beiden Grössen nicht miteinander verbunden werden. Das heisst es ist nicht möglich, einen Teil der Hofdüngermenge auf einer Parzelle auszubringen und dieser gleichzeitig einen proportionalen Anteil des berechneten Stickstoffanfalls zuzuteilen. Die Hofdüngerwirtschaft wird deshalb mit Normgehalten abgebildet. Die dabei entstehende Differenz zu den exakten Stickstoffflüssen wird gesamtbetrieblich in den Düngungsbilanzen korrigiert.

Die NH₃-Émissionen bei der Hofdüngeranwendung werden als Anteil des N_{lösl}-Gehaltes der Hofdünger angegeben. Im Modell stehen verschiedene Ausbringungsarten zur Auswahl. Sie sind mengenmässig begrenzt, abgeleitet aus den gesamtschweizerischen Anwendungspotentialen (vgl. S. 42 ff.). Weil die Kosten der Ausbringung vollständig auf die Mengeneinheiten bezogen sind, kann eine durchschnittliche Situation abgebildet werden, bei der verschiedene Techniken nebeneinander eingesetzt werden. Für die Gülle ist gleichzeitig eine Verdünnung möglich, wobei über eine Integervariable verlangt wird, dass jeweils die gesamte Gülle der Winter- bzw. Sommerperiode verdünnt werden muss. Die Ausbringungsaktivitäten werden zusätzlich bezüglich der Arbeitsperiode unterteilt, da sie neben den Kosten auch mit dem Arbeitsbedarf verbunden sind, der periodenweise bilanziert wird. So kann zudem für jede Arbeitsperiode die Menge der in den Lagern noch vorhandenen Hofdüngermengen berechnet werden.

$$\underline{\text{NH3R}} = \sum (\text{EAUS}_{\text{nm}} * \underline{\text{MAUS}}_{\text{nm}}) . \quad (13)$$

Emissionen der Hofdüngerausbringung

 $\underline{NH3R}$ = NH_3 -Emissionen der Hofdüngerausbringung nach Richtwerten

EAUS_{nm} = NH₃-Emission pro Einheit bei Normgehalt (Ausbringtechnik n, Hofdüngerart m)

MAUS_{nm}= Ausgebrachte Menge (Ausbringtechnik n, Hofdüngerart m)

Um die exakten Emissionen zu bestimmen, wird gesamtbetrieblich die Differenz zwischen der im Modell erhaltenen Menge N_{lösl} nach der Lagerung (Gleichung 11) und der bei durchschnittlichen Hofdüngergehalten zu erwartenden Menge N_{lösl} (Berechnung analog Gleichung 13) bestimmt. Negative Differenzen könnten mit einer fixen Korrekturaktivität berücksichtigt werden, analog dem Vorgehen zur Abbildung negativer Differenzen der N-Ausscheidung im Vergleich zur Norm (Gleichung 2). Im Modell wird aber als zweite Variante eine fixe Right-Hand-Side (RHS) eingesetzt, um welche eine allfällige negative Differenz erhöht wird. Diese RHS muss auch in den weiteren Gleichungen berücksichtigt werden, in denen die um diesen Wert erhöhte Aktivität vorkommt. In den folgenden Gleichungen ist einfachheitshalber nur die Möglichkeit einer positiven Differenz dargestellt.

Berechnung der N_{lösi}-Differenz zur Norm nach der Lagerung

```
\underline{LOSR} = \sum (LOSG_n * \underline{MAUS}_n)  (14)
\underline{DLOS} = \underline{NH4T} - \underline{NH4R}
```

<u>LÖSR</u> = Gesamte Menge N_{lösi} der Hofdünger nach der Lagerung gemäss Richtwerten

 $L\ddot{O}SG_n = N_{lost}$ -Gehalt pro Hofdüngereinheit (Hofdüngerart n)

MAUS, = Ausgebrachte Menge (Hofdüngerart n)

<u>DLÖS</u> = Differenz zwischen der berechneten Menge N_{lösi} und der Menge gemäss Richtwerten

Für die NH₃-Emissionen dieser Differenz muss nun die durchschnittliche, im Modell aufgrund der Richtwerte hervorgegangenen Emission pro Mengeneinheit N_{losi} herangezogen werden. Diese kann während der Modelloptimierung nicht direkt berechnet werden, weil sowohl die NH₃-Emission als auch die Menge N_{losi} modellintern bestimmt wird. Mit einer Hilfskonstruktion wird die durchschnittliche Emission näherungsweise ermittelt. Dazu wird die im Modell nach Richtwerten erhaltene Menge Niosi einer von mehreren Hilfsvariablen zugeordnet, die für einen festgelegten Bereich einer prozentualen NH3-Emission stehen. Gleichzeitig bewirken zwei weitere Gleichungen, dass genau diejenige Hilfsvariable ausgewählt wird, in derem zugehörigen Bereich die nach Richtwerten erhaltene NH3-Emission liegt. Mit Integervariablen wird sichergestellt, dass nur eine der Hilfsvariablen aktiviert werden kann. Weil von der auf diese Weise ausgewählten Hilfsvariablen bekannt ist, für welchen prozentualen Bereich der NH₃-Emission sie steht, kann die NH₃-Emission der Differenz bestimmt werden. Dazu wird für jede der Hilfsvariablen je eine nach oben bzw. unten begrenzende Ungleichung aufgestellt, die nur wirksam wird, wenn die Integervariable zur entsprechenden Hilfsvariable den Wert 1 einnimmt. Ist dies der Fall, so wird für die N_{lösi}-Differenz (Gleichung 14) die NH₃-Emission gemäss der definierten prozentualen Emission der Hilfsvariable (Mittelwert des Bereichs) berechnet. Zusammen mit der Summe der Emissionen nach Richtwerten ergibt sich die gesamte Emission bei der Ausbringung.

```
\begin{split} &\sum (\text{L\"{O}SH}_n) = \text{L\"{O}SR} & \text{(15)} \\ &\sum (\text{NH3H}_n * \text{L\"{O}SH}_n) \leq \text{AUSR} \\ &\sum (\text{NH3H}_{n+1} * \text{L\"{O}SH}_n) \geq \text{AUSR} \\ &\underline{\text{L\"{O}SH}}_n \leq 1 \; 000 \; * \; \underline{\text{L\"{O}SHI}}_n \\ &\sum (\text{L\"{O}SH}_n) \leq 1 \\ &\underline{\text{DNH3}} - 10 \; 000 \; * \; \underline{\text{L\"{O}SHI}}_n \geq (\text{NH3H}_n + \text{NH3H}_{n+1})/2 \; * \; \underline{\text{DL\"{O}S}} \; -10 \; 000 \\ &\underline{\text{DNH3}} + 10 \; 000 \; * \; \underline{\text{L\"{O}SHI}}_n \leq (\text{NH3H}_n + \text{NH3H}_{n+1})/2 \; * \; \underline{\text{DL\"{O}S}} \; +10 \; 000 \\ &\underline{\text{EAUS}} = \; \underline{\text{NH3R}} + \underline{\text{DNH3}} \end{split}
```

Bestimmung der Hilfsvariable, deren definierte NH₃-Emission der mittleren Emission im Modell am nächsten liegt, und der gesamten NH₃-Emission der Ausbringung

 $L\ddot{O}SH_n$ = Hilfsvariable der Menge N_{lost} mit definierter prozentualer NH_3 -Emission (Emission n)

 $NH3H_n$ = Definierte prozentuale NH_3 -Emission (Emission n)

LÖSHIn = Integervariable zur Hilfsvariable n (0 oder 1)

DNH3 = NH₃-Emission der N_{losi}-Differenz zur Norm

Die gesamten Emissionen des Betriebes lassen sich berechnen aus den Emissionen in den einzelnen Bereichen.

ETOT' = EWEI + ESTA + ELAG + EAUS (16)

Berechnung der gesamten NH₃-Emissionen

Die NH₃-Emissionen bei der Hofdüngeranwendung werden wie dargestellt im ersten Schritt mit Normgehalten der Hofdünger bestimmt. Dasselbe erfolgt bei deren Düngungswirkung. Die Pflanzenverfügbarkeit des Stickstoffs wird vorerst ohne Berücksichtigung verminderter NH₃-Emissionen gemäss Richtwerten festgelegt. Sie ist abhängig von der Hofdüngerart, vom Ausbringungszeitpunkt (Periode) und von der Vegetation (Acker-/Futterbau). Der pflanzenverfügbare Stickstoff fliesst so in die entsprechenden Nährstoffbilanzen ein. Durch die Massnahmen zur Emissionsminderung werden die N-Gehalte der Hofdünger aber verändert. Dabei reduzieren Massnahmen bei der Fütterung den Gehalt, Massnahmen bei der Aufstallung, Lagerung und Ausbringung dagegen erhöhen ihn, Diese Auswirkungen werden einfachheitshalber gesamtbetrieblich berücksichtigt. Verminderte N-Ausscheidungen, gewichtet mit einer durchschnittlichen Pflanzenverfügbarkeit, verringern die verfügbare N-Menge, eingesparte Emissionen in den nachfolgenden Bereichen erhöhen sie. Aufgrund der dem Modellbetrieb vorgegebenen Flächenverhältnisse (Acker/Naturwiesen) wird die berechnete Korrekturmenge anschliessend auf die einzelnen Düngungsbilanzen aufgeteilt.

 $\frac{\text{NPOS} - \text{NNEG}}{\text{NPOS}} = -\sum (\text{ANTV} * (\text{NDIF}_n - \text{NKOR}_n)) + \sum (\text{ENOR}_m) - \underline{\text{ETOT}}$ (17) Korrektur N-Verfügbarkeit

NPOS = In den Düngungsbilanzen zusätzlich verfügbare Menge N, inkl. Korrekturfaktor

NNEG = Fixer Korrekturfaktor (zum Auffangen einer negativen Korrektur)

ANTV = Durchschnittlicher Anteil pflanzenverfügbarer Stickstoff an der N-Ausscheidung

NDIF_n = Differenz der N-Ausscheidung zur Norm (Tierkategorie n), inkl. Korrekturfaktor

 $NKOR_n = Fixer Korrekturfaktor (Tierkategorie n)$

ENOR_m = Norm-NH₃-Emission ohne Massnahmen (Tierkategorie m)

Anhang B: Kosten der baulichen Massnahmen im Stallbereich

Die Tabellen B1 bis B13 enthalten die Kosten der Minderungsmassnahmen im Stallbereich. Die Zahlen beziehen sich auf das Jahr 2002, was aber nur für die Betriebskosten eine Bedeutung hat, da die Gebäudekosten gemäss Annahmen im Vergleich zu 1994 unverändert bleiben. Angegeben sind zu den einzelnen Elementen jeweils die erforderlichen Mengeneinheiten für drei Stallgrössen, der Neupreis pro Einheit, die auf diesen Preis bezogenen Zinsansätze für die Jahreskosten bzw. die Betriebskosten sowie die Jahreskosten der einzelnen Elemente für die drei Stallgrössen. Zuerst sind immer diejenigen Elemente aufgeführt, die sowohl beim Neu- als auch beim Einbau zu berücksichtigen sind, und die als Zwischensumme die Mehrkosten beim Neubau ergeben. Anschliessend werden die Elemente dazugezählt, die beim Einbau in einen bestehenden Stall Kosten verursachen, die beim Neubau entweder gar nicht oder sonst in jedem Fall auch ohne Durchführung der Massnahme anfallen. In einer zusätzlichen Zeile ist der Investitionsbedarf angegeben (= Anz. Einheiten * Preis pro Einheit).

Die Berechnung der Jahreskosten in den Tabellen B1 bis B13 erfolgt nach der Gleichung:

Jahreskosten = (Anz. E.) * (Preis pro E.) * (Z + A + R + V) + (Anz. E.) * (B.k.)

Anz. E. = Anzahl Einheiten
Z = Zins (Zinsfuss 6,0 % des Neuwertes,

im Durchschnitt 60 % gebunden)

A = Abschreibung (in % des Neuwertes)

R = Reparaturen (in % des Neuwertes)

V = Versicherung (in % des Neuwertés)

B.k. = Betriebskosten

Massnahmen Boxenlaufstall:

Tabelle B1: Optimiertes Schiebersystem

Tabelle B2: Optimiertes Schiebersystem mit Sprayer

Tabelle B3: Fütterungsbuchten

Massnahmen Mastschweinestall:

Tabelle B4: Buchtengestaltung

Tabelle B5: Spülsystem

Tabelle B6: Schiebersystem 、

Tabelle B7: Biowäscher

Tabelle B8: Impulsarme Zuluftführung

Massnahmen Zuchtschweinestall:

Tabelle B9: Spülsystem

Tabelle B10: Schiebersystem

Tabelle B11: Reduzierte Güllefläche im Kanal

Tabelle B12: Biowäscher

Tabelle B13: Impulsarme Zuluftführung

In den Tabellen B14 bis B16 werden für die Modellrechnungen lineare Beziehungen zwischen der Stallgrösse und den Kosten der Massnahmen berechnet.

Linearisierung der Kosten:

Tabelle B14: Boxenlaufstall

Tabelle B15: Mastschweinestall
Tabelle B16: Zuchtschweinestall

Tabelle B1. Massnahmen Boxenlaufstall: Optimiertes Schiebersystem

Elemente/Arbeit ¹⁾	Emis-	E.	Α	nz.	E. .	Preis	Jar	resk	oster	n Ans	ätze	Jah	reskost	en
,	sions- redukt.		20 Pl.	40. Pl.		pro E. (Fr.)	Z (%)	A (%)	,R (%)	V (%)	B.k. (Fr.)	20 PI. (Fr.)	40 PI. (Fr.)	60 Pl. (Fr.)
Ebener Boden	5 %								·	•	•			
Zeitschaltuhr, Photozelle <u>Total bei Neu-/Einbau</u>		St.	1	1	. 1	3 000	3,6	10,0	4,5	0,2		549 <u>549</u>	549 <u>549</u>	549 549
Investitionsbedarf bei Neu	ı-/Einbaı	J .						· · ·		-		3 000	3 000	3 000
Geneigter Boden	15 %						-,	•	,			·		
Zeitschaltuhr, Photozelle		St.	1	1	1	3 000	3,6	10,Ò	4,5	.0,2		549	549	549
Total Kosten bei Neubau					٠,				·	•		549	<u>549</u>	<u>549</u>
Spalten entfernen		m²	84	168	252	20	3,6	2,0	0,0	0,0		94	188	282
Kanäle auffüllen 0,8m		m²	84	168	252	60	3,6	2,0		-		307	615	922
Harnrinne erstellen		m '	30	60	90	120	3,6	2,0	0,4	0,1		220	439	659
Geneigter Betonboden 10	cm	m ²	84	168	252	72	3,6	2;0	0,4	0,1		369	738	1 107
Gussasphalt		m²	84	168	252	62	3,6	2,0	0,4	0,1		318	635	953
Schieber-Antrieb		St.	1	1	1	9 114	3,6	5,0	4,5	0,2		√ 1 212°	`1 212	1 212
Schieber	,	St.	. 2 ⁻	2	2	1 329	3,6	5,Ò	4,5	0,2		354	354	354
Seil für Schieber		m	30	60	90	42	3,6	5,0	4,5	0,2	-	168	335	503
Total Kosten bei Einbau				,				,				<u>3 591</u>	<u>5 065</u>	<u>6 541</u>
Investitionsbedarf bei Neu				•							,	3 000	3 000	3.000
Investitionsbedarf bei Eint	oau									,		' 37 608	60 444	83 280

Beim Neubau wird von einem Festboden ausgegangen, beim Einbau ebenfalls von einem Festboden (Variante ebener Boden) bzw. von einem Spaltenboden (Variante geneigter Boden).

Tabelle B2. Massnahmen Boxenlaufstall: Optimiertes Schiebersystem mit Sprayer

Elemente/Arbeit ¹⁾ Emis-	E.	A	nz.	E. ·	Preis	Jah	resko	oster	Ans	sätze	Jah	reskost	en
sions- redukt	1	20 Pl.	l i		pro E. (Fr.)	Z (%)	A (%)	R (%)	-	B.k. (Fr.)	20 Pl. (Fr.)	40 Pl. (Fr.)	60 Pl. (Fr.)
Ebener Boden 20 %	1							<u>-</u>			,		•
Autodungschieber 0,25 kW	St.	2	2	2	16 600	3,6	8,3	3,0	0,2		5 013	5 013	5 013
Elektroanschluss	St.	2	2	2	. 980	3,6	8,3	3,0	0,2		296.	'	296
Elektroverteilung	m ·	.30	60	90	100	3,6	8,3	3,0	·0,2		453	906	1 359
Wasseranschluss	St.	2	2	2	300	3,6	8,3	3,0	0,2		91	91	91
Wasserverteilung	m	30	60	90	. 100	3,6	8,3	3,0	0,2	1	453	906	1 359
Sprayer	St.	2	2	2	120	3,6	8,3	3,0	0,2		36	36	36
Wasser: 50 m³ pro Kuh/Tag	PI.	20	40	60			,			16,64	333	. 666	999
Strom: 0,25 KW, 3 Min./Kuh/Tag	PI.	20	40	-60						0,88	. 18	35	53
Total Kosten bei Neubau							•				<u>6 693</u>	<u>7 949</u>	. <u>9 206</u>
Schieber entfernen	St.	1	1	· 1	500	3,6	2,0	0,0	0,0		28	28	28
<u>Total Kosten bei Einbau</u>		,					, i			İ	<u>6 721</u>	<u>7 977</u>	9 234
Zusätzlicher Güllelagerraum		_					r		3	 '	120 m³	240 m ³	360 m ³
Investitionsbedarf bei Neubau				,							42 000	48,000	54 000
Investitionsbedarf bei Einbau											42 500	48 500	54 500

¹⁾ Beim Neubau wird von einem Festboden ausgegangen, beim Einbau ebenfalls von einem Festboden (Variante ebener Boden) bzw. von einem Spaltenboden (Variante geneigter Boden).

Tabelle B2 (Fortsetzung)

Elemente/Arbeit	Emis-	È.	.A	ńz. [Ξ.	Preis	Jal	resk	osten	Ansa	ätze	Jah	reskoste	en
,	sions-		20	40	60	pro E.	Z	À	R	٧	B.k.	20 Pl.	40 Pl.	60 PÍ.
	redukt.		Pl.	PI.	PI.	(Fr.)	(%)	(%)	(%)	(%)	(Fr.)	(Fr.)	(Fr.)	` (Fr.)
Geneigter Boden	30 %						. 1					,		
(Kosten Neubau siehe ob	en)			1	Ì	`,'				1				1
Total Kosten bei Neubau						·				•		<u>6 693</u>	7 949	9 206
Schieber entfernen	1	m²	84	168	252	- 20	3,6	2,0	0,0	0,0	-	.94	188	282
Kanäle auffüllen 0,8m	`.	m ²	84	168	252	60	3,6	2,0	∙0,4	0,1		- 307	615	922
Harnrinne erstellen	1	m.	30.	60	90	120				0,1		220	439	659
Geneigter Betonboden 10	cm	m ²	84	168	252	72	3,6		0,4	0,1	•	369	738	1. 107
Gussasphalt		m²	84	168	252	62	3,6	2,0	0,4	0,1		318	635	953
Total Kosten bei Einbau						;						<u>8 001</u>	<u>10 564</u>	<u>13 129</u>
Zusätzlicher Güllelagerrau	um				`,						•	120 m ³	240 m ³	360 m ³
Investitionsbedarf bei Neu	ıbau											42 000	48 000	54 000
Investitionsbedarf bei Einl	bau							<u> </u>				63 576	91 152	118 728

Tabelle B3. Massnahmen Boxenlaufstall: Fütterungsbuchten

Elemente/Arbeit	Emis-	E.	Α	nz.	Ė.	Preis	Jah	resko	oster	ı Ans	ätze	Jah	reskost	en
<u> </u>	sions- redukt.		20 Pl.	40 Pl.	1	pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	20 Pl. (Fr.)	40 Pl. (Fr.)	60 Pl. (Fr.)
	10 %					•							ŕ	
Blenden 80 cm	,	St.	19	39	59	70	3,6	5,0	4,5	0,2		177	363	549
Total Kosten bei Neubau			ļ	•							*	<u>177</u>	<u> 363</u>	<u>549</u>
Balken 10x15cm		m	15	30	45	.60	3,6	5,0	4,5	0,2		120	239	359
Schieberanpassungen		St.	1	. 1	1	3 000	3,6	5,0	4,5	0,2		399	399	399
Total Kosten bei Einbau												<u>696</u>	<u>1 001</u>	1 307
Zusätzlicher Arbeitsbedar	f			,			,					2.2 h	4.4 h	6.6 h
Investitionsbedarf bei Neu	ıbau									-		1 330	2 730	4 130
Investitionsbedarf bei Ein							<u>. </u>					5 230	7 530	9 830

Tabelle B4. Massnahmen Mastschweinestall: Buchtengestaltung

Elemente/Àrbeit E	mis-	E.	A	nz. I	Ξ.΄	Preis	Jah	resko	ster	Ans	ätze	Jah	reskost	en
	sions- edukt.	,	1	120 Pl.	1	pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	60 Pl. (Fr.)	120 Pl. (Fr.)	480 Pl. (Fr.)
Voll- zu Teilspalten	25 %			i.						•				·
Lüftung (Anpassungen)		PI.	60	120	480	5Ô	3,6	8,7	1,0	0,1		402	804	3 216
Buchtenabtrennungen (An	pass.)	Pl.	60	120	480	, 20	3,6	8,7	1,0	0,1		161	-322	1 286
Bodenabdeckung isoliert		m²	28	55	220	80	3,6	8,7	1,0	0,1		295	590	2 358
<u>Total Kosten bei Einbau</u>					1				, `			<u>858</u>	<u>1.716</u>	<u>6 860</u>
Zusätzlicher Platzbedarf		l	:									25 %	25 %	25 %
Zusätzlicher Arbeitsbedarf	` `			•		1		٨		1		5,1 h	10,2 h	40,9 h
Investitionsbedarf bei Einb	au						i	-				6 400	12 800	51 200

Tabelle B5. Massnahmen Mastschweinestall: Spülsystem

Elemente/Arbeit Emis-	E.	Α	nz.	Ē.	Preis	Jal	resk	oster	An	sätze	Jal	reskosi	en
sions- redukt	1	1	120 Pl.		pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	60 Pl. (Fr.)	120 Pl. (Fr.)	480 Ál. (Fr.)
Vollspaltenboden 30 %	1		L		(* * * *)	()	(,,,	(,,,	(70)	(, ,,	(, , ,		1.1.1.7
Vórgrube/Absetzbecken (klein)	m ³	10			700	3,6	2,0	0.4	0.0	•	420		. '
(mittel)	m ³	''	20		550						420	660	
(gross)	m ³		20	50	400	1					•	000	. 1 200
Pumpe 11 kW mit Elektroanschl.	St.	1	1		12 100		-		0,0		2 105	2 105	. 1 200
18 kW mit Elektroanschl.	St.	, i	•	1	16 665				-		2,100	2 100	2 900
Strom: 11 kW	Min	60	80		,	-,-	,.	0,0	٠,ــ	12,97	778	1 037	2 000
18 kW	Min			120						21,22			2 547
Umspülleitung inkl. Bauarbeiten	m	18	36	144	99	3,6	6,7	2,5	0,2		232	463	
Dreiweghahn elektron. gesteuert	St.		` 1	1	3.000	3,6	10,0					549	549
Schaltkasten mit Zeitsteuerung	St.	1	1	. 1	800		10,0				146	146	146
Total Kosten bei Ein-/Neubau							-			-	<u>3 681</u>	<u>4 960</u>	<u>9 195</u>
Investitionsbedarf bei Ein-/Neuba	u						,		,		21 682	30 464	54 721
Teilspaltenboden 30 %								,		٠.		,	
Kosten bei Vollspaltenboden				.							3 681	4 960	9 195
Strom: 11 kW, kürzere Laufzeit	Min	-45	-60		· -11					12,97	-584	-778	
18 kW, kürzere Laufzeit	Min		٠	-90	-18					21,22			-1 910
Total Kosten bei Ein-/Neubau										•	<u>3 098</u>	4 182	
Investitionsbedarf bei Ein-/Neuba	u			1							21 682	30 464	54 721

Tabelle B6. Massnahmen Mastschweinestall: Schiebersystem

Elemente/Arbeit Emis-	E.	Α	nz. l	Ε.	Preis	Jah	resk	osten	Ans	ätze	Jah	reskost	en
sions- redukt.	1	60 Pl.	120 Pl.		pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	60 Pl. (Fr.)	120 Pl. (Fr.) -	480 Pl. . (Fr.)
Vollspaltenboden 35 %				<u></u>		•	-	<u> </u>	. ,	• ,			, (* ,
Kanalbeschichtung Epoxy	m²	33	66	264	88	3,6	10,0	1,0	0,2		430	860	3 438
Schieber-Antrieb	St.	1	2	2	9 114	3,6	5,0	4,5	0,2	•	1 212	2 424	2 424
Flachschieber	St.	, 2	4	. 4	1 329	3,6	5,0	4,5	0,2		354	707	707
Seil	m	18	72	288	28	3,6	5,0	4,5	0,2		67	268	1 073
Schaltkasten mit Zeitsteuerung	St.	1	2	. 2	800	3,6	10,0	4,5	0,2		146	293	293
Strom: 0,5 kW	Min	30	60	240				,		0,59	18	35	141
Total Kosten bei Neubau					` .						<u>2 227</u>	<u>4 587</u>	8.076
Anpassung Güllekanäle	PI.	60	120	480	. 20	3,6	5,0	1,0	0,1		116	233	931
<u>Total Kosten bei Einbau</u>				′ .	•				٠.		<u>2 343</u>	<u>4 820</u>	9 007
Investitionsbedarf bei Neubau		,							^		15 980	32 968	56 440
Investitiónsbedarf bei Einbau			<u>.</u>			•					17-180	35.368	66 040

Tabelle B6 (Fortsetzung)

Elemente/Arbeit Emis-	Ę.	Ar	ız. E	.	Preis	Jai	resko	sten	Ansa	atze	Jah	reskoste	en
sions-		60	120	180	pro E.	Z	A	R	Λ;	B.k.	60 Pl.	120 Pl.	480 PI.
redukt.	3	Ρl.	PI.	PI.	(Fr.)	(%)	(%)	(%)	(%)	(Fr.)	(Fr.)	(Fr.)	(Fr.)
Voll- zu Teilspalten 35 %							•				, ,		,
Kanalbeschichtung Epoxy	m²	·17	33 1	132	-88	. 3,6	10,0	1,0	0,2		215	430	1 719
Schieber-Antrieb	St.	1	1	`,1	9 114	3,6	5,0	4,5	0,2		1 212	1 212	1 212
Flachschieber	St.	, 1 .	2	2	1 329	3,6	5,0	4,5	0,2		177	354	354
Seil	m	18	72'2	288	· 28	3,6	5,0	4,5	0,2		67	268	
Schaltkasten mit Zeitsteuerung	St.	1	2	2	800	3,6	10,0	4,5	0,2		146	293	293
Strom: 0,5 kW	Min	30	602	240						0,59	18	35	141
Anpassung Güllekanäle	PI.	60	1204	480	. 20	3,6	5,0	1,0	0,1		116	· 233	·
Bodenabdeckung isoliert	m ²	28	55 2	220	.` (:80	3,6	8,7	1,0	0,1		295	590	2 358
Total Kosten bei Einbau					· '		•				2 246	<u>3 415</u>	<u>8 081</u>
Zusätzlicher Platzbedarf			1			•			•		· 25 %	25 %	25 %
Zusätzlicher Arbeitsbedarf					,						5,1 h	10,2 h	40,9 h
Investitionsbedarf bei Einbau				,	·	•	r				16 599	25 092	60 252
Teilspaltenboden 35 %											,	,	
Kanalbeschichtung Epoxy	m ²	11	22	88	88	3,6	10,0	1,0	0,2		143	287	
Schieber-Antrieb	St.	1	· 1	1	9 114	3,6	5,0	4,5	0,2		1 212	1 212	
Flachschieber	St.	1	2	.2	1 329	3;6					177	354	
Seil	m	18	72	288	28	1 '		4,5			. 67	. 268	
Schaltkasten mit Zeitsteuerung	St.	1	2	2	800	3,6	10,0	4,5	0,2		146		
Strom: 0,5 kW	Min	30	60	240						0,59	18		
Total Kosten bei Neubau	1										1.763	<u>2 448</u>	
Anpassung Güllekanäle	PI.	44	88	352	5	3,6	5,0	1,0	0,1		21	43	
Total Kosten bei Einbau							. •				<u>1 784</u>	<u>2 491</u>	4 390
Investitionsbedarf bei Neubau		,				,		,			12 715	17 324	29 180
Investitionsbedarf bei Einbau											12 935	17 764	30 940

Tabelle B7. Massnahmen Mastschweinestall: Biowäscher

Elemente/Arbeit Emis-	E.	A	nz.	Ξ.	Preis	Jah	resko	oster	Ans	ätze	Jah	reskost	en
sions		60	120	480	pro E.	Z	Α	R	٧	B.k.	60 PI.	120 Pl.	480 Pl.
redukt		Pl.	PI.	PI.	(Fr.)	(%)	(%)	(%)	(%)	(Fr.)	(Fr.)	(Fr.)	(Fr.)
30 %								•			r		I
Biowäscher (60 MSP)	St.	1			7 800	3,6	10,0	4,5	` 0,2		. 1 427		-
Biowäscher (120 MSP)	St,		1		12 000	3,6	10,0	4,5	0,2			2 196	
Biowäscher (480 MSP)	St.			1	36 000	3,6	10,0	4,5	0,2				6,588
Betriebskosten	PI.	60	120	480			٠,		•	` 20	1 200	2 400	,
Total Kosten bei Neubau					•	ļ					2 627	<u>4 596</u>	<u>16 188</u>
Neue Stallüftung (60 MSP)	St.	1			4 800	3,6	5,0	1,0	- 0,1		466		
Neue Stallüftung (120 MSP)	St.		1		8 400	3,6	5,0	1,0	0,1			815	•
Neue Stallüftung (480 MSP)	St.			1	28 800	3,6	5,0	1,0	0,1				. 2794
Total Kosten bei Einbau											3 093	<u>5 411</u>	18 982
Investitionsbedarf bei Neubau	_1								,		[*] 7 800	12 000	36 000
Investitionsbedarf bei Einbau			`	. ,			٠,	*.		•	12 600	20 400	64 800

Tabelle B8. Massnahmen Mastschweinestall: Impulsarme Zuluftführung

Elemente/Arbeit	Emis-	E.	A	nz.	E.	Preis	Jah	resk	oster	n Ans	ätze	Jah	reskost	en
	sions- redukt.		60 Pl.	120 Pl.		pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	60 Pl. (Fr.)	120 Pl. (Fr.)	480 PI (Fr.)
,	20.%					,		,			,		·	,
Total Kosten bei Neubau				·								0	0	. (
Zuluftlochplatten	Ì	m²	19	38	154	70	3,6	5,0	1,0	0,1		130	261	1 043
Wanddurchbrüche		St.	1	2	8	100	3,6	5,0	1,0	0,1		10	19	78
Ventilator-Anpassungen		Pi.	60	120	480	30	3,6	5,0	1,0	0,1		175	349	1 397
Total Kosten bei Einbau				_						•		<u>315</u>	<u>629</u>	2 518
Investitionsbedarf bei Ein	bau		,									3 244	6 488	25 952

Tabelle B9. Massnahmen Zuchtschweinestall: Spülsystem

Elemente/Arbeit Emis-	E.		۸ńż. I		Preis	Jah	ıresk	oste	n An	sätze	Jal	reskos	ten
sions-		15	30	120	pro E.	Z	Α	R	٧	B.k.	15 PI.	30 Pl.	120 PI.
redukt.	<u> </u>	PI.	PI.	PI.	(Fr.)	(%)	(%)	(%)	(%)	(Fr.)	(Fr.)	(Fr.)	(Fr.)
, 23 %			•							•	` ` `		
Vorgrube/Absetzbecken (klein)	·m³	7,5			700	3,6	2,0	0,4	0,0		315		*
(mittel)	m³		15	` .	550	3,6	2,0	0,4	0,0			495	~
(gross)	m ³			37,5	400	3,6	2,0	0,4	0,0		•		900
Pumpe 11 kW, Elektroanschl.	St.	2	2		12 100	3,6	10,0	3,6	0,2		4 211	,4 211	•
18 kW, Elektroanschl.	St.			2	16 665	3,6	10;0	3,6	0;2			•	5 799
Strom: 11 kW	Min	60	80	,					-	12,97	778	1 037	
18 kW	Min			120						21,22	•		2 547
Umspülleitung inkl. Bauarbeit	m	23,1	46,1	184	99	3,6	6,7	2,5	0,2		297	593	2 373
Dreiweghahn elektr. gesteuert	St.		1	1	3 000	3,6	10,0	4,5	0,2		4	549	549
Schaltkasten mit Zeitsteuerung	St.	1	1	1	800	3,6	10,0	4,5	0,2	` .	146.	146	146
Total Kosten bei Ein-/Neubau				<u> </u>	,						<u>5 747</u>	<u>7 031</u>	<u>12 314</u>
Investitionsbedarf bei Ein-/Neut	au	٠.							,		32 532	40 814	70 386

Tabelle B10. Massnahmen Zuchtschweinestall: Schiebersystem

Elemente/Arbeit Emis-	E.	Ä	Anz. E		Preis	Jah	resk	oste	n An	sätze	Jai	reskosi	ten
sions- redukt.		15 Pl.	30 Pl.	120 Pl.	pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	15 Pl. (Fr.)	30 PI. (Fr.)	120 Pl. (Fr.)
35 %				Í									
Kanalbeschichtung Epoxy	m²	39,5	79	316	88	3,6	10,0	1,0	0;2	,	514	1 029	4 116
Schieber-Antrieb	St.	3	3	3	9 114	3,6	5,0	4,5	0,2		3 636	3 636	3 636
Flachschieber	St.	` 3	4	4	1 329		5,0				530	707	707
Seil	m	26,2	52,3	209	.28	3,6	5,0	4,5	0,2		97	195	779
Schaltkasten mit Zeitsteuerung	St.	3	4	4	800	3,6	10,0	4,5	0,2		439	→ 586	586
Strom: 0,5 kW	Min	30	60	240						0,59	18	35	141
Total Kosten bei Ein-/Neubau		,	,				1,			,	<u>5 234</u>	<u>6 188</u>	9 965
Investitionsbedarf bei Ein-/Neul	oaų									,	37 937	44 274	69 524

Tabelle B11. Massnahmen Zuchtschweinestall: Reduzierte Güllefläche im Kanal

Elemente/Arbeit Emis-	E,	Α	nz. E		Preis	Jah	resk	ostei	n An	sätze	Jah	reskost	en
sions- redukt.		15	30	120	pro E.	Z	Á	R	٧	B.k.	15 Pl.	30 Pl.	120 Pl.
redukt.	<u> </u>	PI.	PI.	Pl.	(Fr.)	(%)	(%)	(%)	(%)	(Fr.)	(Fr.)	(Fr.)	(Fr.)
30 %	:			Ì			٠.						. •
Vorgrube/Absetzbecken (gross)	m³	5	10	25	400	3,6	2,0	0,4	0,0		120	240	600
Pumpe 18 kW mit El.anschluss	St.	1	1	1	16 665	3,6	10,0	3,6	0,2		2.900	2 900	2 900
Strom: 18 kW	Min	56,3	75	113						21,22	1 194	1 592	2 387
Umspülleitung inkl. Bauarbeit	m	34,5	69	264	· 99	3,6	6,7	2,5	0,2		444	888	3 398
Dreiweghahn elektr. gesteuert	St.		, 3	3	3 000	3,6	10,0	4,5	0,2		Ó	1 647	1 647
Schaltkasten mit Zeitsteuerung	St.	1	1	, 1 ⁻	-800	3,6	1.0,0	4,5	0,2		146	. 146	146
Chromstahlblech 0,5 mm	m²	39,5	79	316	120	3,6	6,7	2,5	0,2		616	1 232	
Total Kosten bei Neubau	-										<u>5 420</u>	<u>8 645</u>	` <u>16 008</u>
Anpassung Güllekanäle	Pl.	90	180	720	20	3,6	5,0	1,0	0,1		175	349	1 397
Total Kosten bei Einbau							٠.				<u>5 595</u>	<u>8 994</u>	<u>17 405</u>
Investitionsbedarf bei Neubau	1	<u>'</u>			,	-,					27 621	46 776	100 521
Investitionsbedarf bei Einbau	_										29 421	50 376	114 921

Tabelle B12. Massnahmen Zuchtschweinestall: Biowäscher

Elemente/Arbeit I	Emis-	E.	Ä	nz. E		Preis	Jạh	resk	ostei	n An	şätze	Jah	reskost	en
ii ii	sions- redukt.		15 Pl.	30 Pl.	120 Pl.	pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	15 Pl. (Fr.)	30 Pl. (Fr.)	120 Pl. (Fr.)
•	30 %				•								•	
Biowäscher (Zucht)		Sţ.	1.			6 760	3,6	5,0	1,0	0,1		656	i	
Biowäscher (Zucht)		St.		1		10 400	3,6	5,0	1,0	0,1			1 009	
Biowäscher (Zucht)		St.			1	31 200	3,6	5,0	1,0	0,1			•	3 026
Betriebskosten (Zucht)		PI.	15	30	120						62	923	1 847	7 387
Total Kosten bei Neubau	<u>u</u>								•			<u>1 579</u>	<u>2 856</u>	<u>10 413</u>
Neue Stallüftung (Zucht))	m²	82,9			120	3,6	6,7	2,5	0,2	,	1 293		
Neue Stallüftung (Zucht)		m ²		145		120	3,6	6,7	2,5	0,2		,	2 262	
Neue Stallüftung (Zucht	•	m²			497	120	3,6	6,7	2,5	0,2	,			7 755
Total Kosten bei Einbau			*									<u>2 872</u>	<u>5 118</u>	<u>18 168</u>
Investitionsbedarf bei N	eubau	·		,				,	*		,	6 760	10 400	31 200
Investitionsbedarf bei E							•			`		16 703	27 800	90 857

Tabelle B13. Massnahmen Zuchtschweinestall: Impulsarme Zuluftführung

Elemente/Arbeit	Emis-	E.	А	nz. E	:.	Preis	Jah	ŗesk	oste	n An	sätze	Jar	reskost	en
	sions- redukt.		15 Pl.	30 Pl.	120 Pl.	pro E. (Fr.)	Z (%)	A (%)	R (%)	V (%)	B.k. (Fr.)	15 Pl. (Fr.)	30 Pl. (Fr.)	120 Pl. (Fr.)
	20 %													
Zuluftlochplatten	,	m²	23,5	47	188	70	3,6	5,0	1,0	0,1		160	319	1 277
Wanddurchbrüche	*	St.	2	4	16	100	3,6	5,0	1;0	0,1	•	19	39	155
Ventilator-Anpassung	gen (Zucht)	PI.	15	30	120	80	3,6	5,0	1,0	0,1		116	233	931
Total Kosten bei Ein			,								,	<u>295</u>	<u>591</u>	<u>2 363</u>
Investitionsbedarf be	ei Einbau					1					•	3 045	6 090	24,360

In den Tabellen B14 bis B16 werden für die Kosten der Massnahmen die am besten angenäherten linearen Beziehungen zu den Stallgrössen bestimmt (vgl. Abb. B1). Dazu werden ein Fixfaktor pro Stall und ein variabler Faktor pro Platz ermittelt. Diese Werte werden in den Modellrechnungen verwendet, so dass innerhalb eines bestimmten Bereiches beliebige Stallgrössen abgebildet werden können. Zudem sind für die mittlere Bestandesgrösse gemäss den gewichteten Modellbetriebstypen (Jahr 2002) die Kosten pro Platz angegeben.

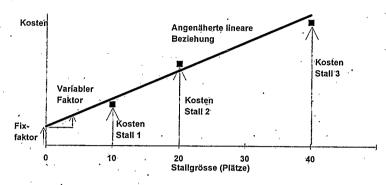


Abb. B1. Linearisierung der Kosten für verschiedene Stallgrössen

Tabelle B14. Linearisierung der Kosten: Boxenlaufstall

Massnahme	Em sio red	ns-	Jah	titioner reskos	ten	Lineari	sierung	Mittle- rer Be- stand	Kosten pro Platz
		٠	20 Pi. (Fr.)	40 PI. (Fr.)	60 PI. (Fr.)	Fixfaktor (Fr./Stall)	Var.Faktor (Fr./Pl.)	(PI.)	(Fr./Pl.)
Optimertes	Ebener Boden 5	5 %	,		•			•	
Schieber-	Investitionen (Neu-/Eint	au)	3 000	3 000	3 000	3 000	,	26,1	115
system	Kosten (Neu-/Ęint	au)	549	549	549	549		26,1	21
	Geneigter Boden 15	5 %							
•	Investitionen (Neut	au)	3 000	3 000	3.000	3.000		26,1	115
	Kosten (Neut	au)	549	549	549	549		26,1	21
	Investitionen (Einb	au)	37 608	60 444	83 280	14 772	1 142	26,1	1 708
	Kosten (Einb	au)	3 591	5 065	6 541	2 116	74	26,1	155
Schieber-	Ebener Boden 20	%				,			
system mit Sprayer	Investitionen (Neut	au)	42 000	48 000	54 000	'36 000°	300	26,1	1 679
	Kosten (Neut	au)	6.693	7 949	9 206	5 436	63	26,1	271
	Investitionen (Einb	au)	42 500	48 500	54 500	36 500	300	26,1	1 698
	Kosten (Einb	au)	6 721	7 977	9 234	5 464	63	26,1	272
	Geneigter Boden 30	%		-				•	r
	Investitionen (Neut	au)	42 000	48 00Ò	54 000	36 000	300	26,1	1 679
	Kosten / (Neub	au)	6 693	7 949	9 206	5 436	63	26,1	271
•	Investitionen (Einb	au)	63 576	91 152	118 728	36 500	1/379	26,1	2 777
•	Kosten (Einb	au)	8 001	10 564	13 129	5 437	128	26,1	336
Fütterungs-	· · · · · · · 10	·%			, .:			*	
buchten	Investitionen (Neub	au)	1 330	2 730	4 130	-70	70.	26,1	67 ,
	Kosten (Neub	au)	177	363	549	-9	9	26,1	121)
	Investitionen (Einb	au)	5 230	7 530	9 830	2 930	115	26,1	227
	Kosten (Einb	au)	696	1 001	1 307	390 -	15	26,1	331)

1) Inkl. Mehrarbeit 0,11 h pro Platz und Jahr (Fr. 2,75)

Tabelle B15. Linearisierung der Kosten: Mastschweinestall

Massnahme	Emis-	-	titionen ireskos	•	Lineari	sierung	Mittle- rer Be-	Kosten pro
	redukt.	60 Pl. (Fr.)	120 Pl. (Fr.)	480 Pl. (Fr.)	Fixfaktor (Fr./Stall)	Var.Faktor (Fr./Pl.)	stand (Pl.)	Platz (Fr./Pl.)
Buchten- gestaltung	Vollspaltenboden 25 % Investitionen (Einbau) Kosten (Einbau)	6 400 858	12 800 1 716	51 200 6 860		107 14	206,6 206,6	107 14
	Vollspaltenboden 30 % Investitionen (Neu-/Einbau) Kosten (Neu-/Einbau)		30 464 4 960	54 721 9 195		75 13	206,6 206,6	168 28
	Teilspaltenboden 30 % Investitionen (Neu-/Einbau) Kosten (Neu-/Einbau)	,		54 721 7 285	1	75 10	24,0 24,0	874 125
Schieber- system	Vollspaltenboden 35 % Investitionen (Neubau) Kosten (Neubau) Investitionen (Einbau) Kosten (Einbau)	2 227 17 180	4 587	8 076 66 040	2:225 16:325	85 12 105 14	206,6 206,6 206,6 206,6	164 23 184 25
	Vollspalten: Umbau 35 %. Investitionen (Einbau) Kosten (Einbau)				1	102 14	206,6 206,6	158 22
	Teilspaltenboden 35 % Investitionen (Neubau) Kosten (Neubau) Investitionen (Einbau) Kosten (Einbau)	1 763 12 935	2 448 17 764	4 219 30 940	1 595 11 596	37 6 41 6	24,0 24,0 24,0 24,0	520 72 524 72
Biowäscher	Vollspaltenboden 30 % Investitionen (Neubau) Kosten (Neubau) Investitionen (Einbau) Kosten (Einbau)	7 800 2 627 12 600	4 596 20 400	64 800	707 5 330	67 33 124 38	206,6 206,6 206,6 206,6	86 36 150,
	Teilspaltenboden 30 % Investitionen (Neubau) Kosten (Neubau) Investitionen (Einbau) Kosten (Einbau)	7 800 2 627 12 600	12 000 4 596 20 400	36 000 3 16 18 3 64 80	0 3 865 8 707 0 5 330	67 33 124 38	24,0 24,0 24,0 24,0	228 62 346 73
Impulsarme Zuluftführung ¹⁾	Vollspaltenboden 20 % Investitionen (Einbau) Kosten (Einbau)	3 244	6 488	3 25 95 9 2 51	1	54 5	206,6 206,6	54
	Teilspaltenboden 20 % Investitionen (Einbau Kosten (Einbau	3 244		3 25 95 9 2 51		54 5		1

¹⁾ Beim Neubau verursacht eine impulsarme Zuluftführung im Vergleich zu einer konv. Lüftung keine Mehrkosten.

Tabelle B16. Linearisierung der Kosten: Zuchtschweinestall

Massnahme		Emis-		stitionen		Lineari	sierung	Mittle-	Kosten
,		sions-		hreskos				rer Be-	pro
,		redukt.	15 PI.	30 PI.			Var Faktor		Platz
		. ,	(Fr.)	(Fr.)	(Fr.)	(Fr./Stall)	(Fr./Pl.)	(PI.)	(Fr./Pl.)
Spülsystem		23 %					·		•
•	Investitionen	(Neu-/Einbau)	32 532	40 814	70 386	28 695	349	9,3	3 434
	Kosten	(Neu-/Einbau)	5 747	7 031	12 314	· 4 998	61	9,3	598
Schieber-	,	35 %		- <u>, , , , , , , , , , , , , , , , , , ,</u>			, ,		
system	Investitionen	(Neu-/Einbau)	37 937	44 274	69 524	34 422	294	9,3	3 995
	Kosten	(Neu-/Einbau)	5 234	6 188	9 965	4 710	44	9,3	550
Reduzierte		30 %						- '	-
Güllefläche	Investitionen	(Neubau)	27 621	46 776	100 521	21 983	660	9,3	3 024
	Kosten	(Neubau)	5 420	8 645	16 008	4 843	94	9,3	615
,	Investitionen	(Einbau)	29 421	50 376	114 921	21 983	780	9,3	3 144
	Kosten	(Éinbau)	5 595	8 994	17 405	4 843	106	9,3	627
Biowäscher	. ,	30 %							
*	Investitionen	(Neubau)	6 760	10 400	31 200	3 350	232	9,3	592
	Kosten	(Néubau)	1 57.9	2 856	10 413	325	8,4	9,3	119
-	Investitionen	(Einbau)	16 703	27 800	90 857	6 385	704	9,3	1 391
	Kosten	(Einbau)	2 872	5 118	18 168	720 .	145	9,3	222
Impulsarme		20 %		•			,	,	·-
Zuluftführung ¹⁾	Investitionen	(Einbau)	3 045	6′090	24 360		203	9,3	203
,	Kosten	(Einbau)	295	591	2 363		20	9,3	20

Beim Neubau verursacht eine impulsarme Zuluftführung im Vergleich zu einer konv. Lüftung keine Mehrkosten.

Anhang C: Einzelbetriebliche Modellergebnisse

Anhang C enthält eine Zusammenstellung der Modellergebnisse für ausgewählte Betriebstypen. Aufgeführt sind die dem Betrieb vorgegebene Ausstattung an Flächen und Stallplätzen für die Jahre 1994 und 2002, die wichtigsten Ergebnisse bezüglich Bodennutzung, Tierbestand und Erfolgsrechnung sowie die Höhe der Ammoniak-Emissionen und die Kombination der vom Betrieb ergriffenen Massnahmen zu deren Reduktion. Bei der Nutzung des Dauergrünlandes ist unterschieden zwischen einer intensiveren Nutzung (mittelintensiv bis intensiv) und einer extensiveren Nutzung (wenig intensiv bis extensiv). Die Minderungsmassnahmen im Jahr 2002 sind angegeben in Prozent ihrer Durchführung, wobei das mögliche Anwendungpotential nicht 100 % betragen muss. Bei den Fütterungsmassnahmen bezeichnen die Werte die Reduktion der N-Ausscheidung bezogen auf die Normausscheidung. Die Stall- und Lagerungsmassnahmen geben den Anteil der entsprechenden Stallplätze bzw. offenen Güllelager an. Die Anwendungsmassnahmen beziehen sich auf die Mist- bzw. Güllemenge (für die Gülleverdünnung getrennt nach Sommer und Winter). Bei den weiteren Massnahmen bedeutet 100 % ein vollständiger Ersatz des Harnstoffdüngers bzw. Abbau des Tierbestandes.

Milchviehbetriebe:

Tabelle	C1.	Milchviehbetrieb	mit Boxenlaufstall in	n Talgebiel	(Betrieb T	⁻ 5, vgl.	Tabelle 41)
---------	-----	------------------	-----------------------	-------------	------------	----------------------	-------------

Tabelle C2. Milchviehbetrieb mit Anbindestall im Talgebiet (Betrieb T6)

Tabelle C3. Milchviehbetrieb mit Boxenlaufstall im Berggebiet (Betrieb B4)

Tabelle C4. Milchviehbetrieb mit Anbindestall im Berggebiet (Betrieb B5)

Schweinehaltungsbetriebe:

Tabelle C5. Mastschweinebetrieb mit Vollspaltenboden im Talgebiet; Konv. (Betrieb T	Tabelle	C5.	Mastschweinebetrieb	⊦mit Voll	spaltenboden iı	m Talgebiet	; Konv.	(Betrieb	T3a	ã');∶
---	---------	-----	---------------------	-----------	-----------------	-------------	---------	----------	-----	-------

Tabelle C6. Mastschweinebetrieb mit Teilspaltenboden im Talgebiet; IP (Betrieb T3d)

Tabelle C7. Mastschweinebetrieb mit Teilspaltenboden im Berggebiet; IP (Betrieb B2d)

Tabelle C8. Zuchtschweinebetrieb im Talgebiet; IP (Betrieb T4b)

Übrige Betriebe:

Tabelle C9. Mutterkuhhaltungsbetrieb mit Tiefstreuelaufstall im Talgebiet (Betrieb T1)

Tabelle C10. Mutterkuhhaltungsbetrieb mit Boxenlaufstall im Berggebiet (Betrieb B1)

Tabelle C11. Rindviehmastbetrieb mit Spaltenboden im Talgebiet (Betrieb T2)

Tabelle C12. Milchvieh-/Rindviehmastbetrieb im Talgebiet (Betrieb T7)

Tabelle C13. Milchvieh-/Schweinehaltungsbetrieb im Berggebiet (Betrieb B8)

Tabelle C1. Milchviehbetrieb mit Boxenlaufstall im Talgebiet (Betrieb T5)

Anzahl Betriebe 1994: 2000 Anzahl Betriebe 2002: 1775	-19	94				<u>,</u> 20	02	· · · · · · · · · · · · · · · · · · ·	1.7	
Annahmen Betriebstyp	Konv.	IP	IP	Redu	ktion der	Ammoni	ak-Emiss	ionen (B	asis 2002) um:
Landw. Nutzfläche (LN) Max. Ackerfläche (AF) Milchkontingent	na 30,00 na 22,00 kg 145 000 VP 29,3	30,00 22,00 145 000 29,3	33,79 24,78 163 341 29,8	10 %	20 %	30 %	40 %	50 %	60 %	70 %
Milchleistung pro Kuh k	g/J. 5 577	5 577	6`185	-	•			*	•	
Bodennutzung und Tiere		*				·	······································			
	na 18,11	16,81	12,84	12,82	12,17	13,27	13,92	15,13	17,88	19,10
Naturwiesen int. (NW)	na 3,89 na 8,00 na	5,19 6,50 1,50	10,29 10,66	10,31 10,66	10,96 10,66	2,80 7,07 10,65	2,14 6,85 10,88	7,70 10,96	5,55 10,36	4,28 10,41
Kühe G Tierbesatz GVE/ha	VE 28,9 LN 0,96	28,9 0,96	29,0 0,86	29,0 0,86	29,0	29,0 0,86	27,0 0,80	23,5 0,70	18,3 0,54	14,0 0,41
Mineraldüngerzukauf ko	N 2138 kg	1902 kg	1108 kg	942 kg	849 kg	785 kg	608 kg	776 kg	924 kg	945 kg
Erfolgsrechnung			, J	,						- ''3
Direktzahlungen 31b F Übrige Beiträge F <u>Gesamtertrag</u> F Direktkosten F	7. 240 7. 21 024 7. 317 921 7. 54 596 7. 144 007	21 236 312 554 49 967	40 243	249 293 40 192	40 210	40 344	42 625	51 866 22 661 234 580 42 742 121 364	57 462 21 865 212 314 39 534 110 622	36-362
Landw. Einkommen F Nebeneinkommen F	r. <u>119 319</u> r. 2 533 r. 121 852	118 678 2 706	90 354 5 124	89 563 5 124 94 686	<u>87 892</u>	84 585 5 145	<u>78,276</u> ,6 123	70.474	62 158 9 297 71 455	
Einkommensverlust F	r. /kg			792 6,50	2 464	5 748	11 079	17 626 28,95	24 023 32,88	30 898 36,25
Ammoniak-Emissionen			: 1			- 1			·	
Anteil Total <u>an der</u> Weide	<u>%</u> 36,7 % % 0,3 %	36,7 % 0,3 %	36,3 % 0,3 %	1 075 kg 33.7 % 0,3 %	957 kg 30.6 % 0,3 %	26,2 % 0,3 %		26,2 % 0,3 %	469 kg 26,6 % 0,3 %	346 kg 25,8 % 0,3 %
schei- Lagerung ^o	% 14,9 % % 1,5 % % 20,0 % 1 N 94 kg	15,0 % 1,6 % 19,8 % 84 kg	15,3 % 1,5 % 19,1 % 49 kg	15,4 % 1,6 % 16,4 %	15,6 % 1,6 % 13,2 %	14,2 % 1,6 % 10,2 %	14,7 % 1,6 % 9,3 %	15,2 % 2,0 % 8,7 %	15,2 % 2,6 % 8,5 %	15,3 % 3,4 % 6,9 %
·	N 1270 kg		_	21 kg 1096 kg	17 kg <u>974 kg</u>	16 kg <u>852 kg</u>	12 kg 731 ka	16 kg ∕ <u>609 kg</u>	18 kg 487 kg	19 kg 365 kg
Massnahmen				7.	· .			· · · · · · · · · · · · · · · · · · ·	· · · ·	-
Fütterung Kühe	nieber+Zeitsc	÷2 %	6 %	6 %	8 %	7.%	13 %	18.%	18 %	18.%
Füi	terungsbucht Izabdeckung			· · · · · · · · · · · · · · · · · · ·	•	100 %	100 %	100 %	100 %	100 %
Str	ohhäcksel			٠.,			100 %	100 %	100%	100 %
	rdünnung 1:2 rdünnung 1:2								100%	1
Ve	rdünnung:1:4 arbeiten oder	Sommer '		3.%	9%	100 % 7 %	100 %	100 % 9 %	11:%	19 %
Scl.	nleppschlauch nleppschuh			5%	1 % 26 %	6 % 13 %	6 % 14 %	8 % 15 %	11 % 25 %	9 %
Gü Inje	lledrill ektion	-1		2 % 8 %	2 % 8 %	' 3.%	3%	2%	11 %	1 % 17 % .
	al Ausbringte sbringungsme		1268	19 % 1268	46 % 1268	29 % 2121	31 % 1951	34 % 1664	58 % 998	95·% 611
Weitere Massnahmen Ve	rzicht auf Har bau Tierbesta	nstoff	1200	92 %	100.%	100%	100.%	100 % 19 %	100 %	100 % 52 %
, Au	ogn ilicinesig	iiu					7 %	13 70	37 %	JZ 70

Tabelle C2. Milchviehbetrieb mit Anbindestall im Talgebiet (Betrieb T6)

Max. Ackerliäche (AF) ha Michkontingent kg V7000 70 000 78 854			,		•		٠,	<u>'</u>				
Landw. Nutzfläche (LN) ha			199)4		;						
Mask Ackerflache (AF) ha Micheistung pro Kuh kg/J. 5 577 5 577 6 185 **Stalplatze Rindvieh.** GVP 20,3 20,3 21,0 Milchiestung pro Kuh kg/J. 5 577 5 577 6 185 **Bodennutzung und Tiere** Offene Ackerfl. (OA) ha 7,54 7,10 4,59 5,00 5,17 5,11 5,48 6,13 6,57 7,2 Kunstwiesen (KW) ha 0,46 0,90 Naturwiesen kt. (WW) ha 7,00 6,25 7,02 6,59 5,80 6,03 4,62 1,33 2,61 2,44 1,80 Kuhe GVE 13,0 13,0 13,2: 13,2 13,2 13,2 13,2 11,4 9,5 7,0 Autreucht GVE 3,5 3,8 4,0 3,9 3,9 3,9 3,8 3,3 2,8 2,0 Tiertessatz GVE/ha LN 1,11 1,11 1,10 1,02 1,01 1,01 1,01 0,07 0,73 7,73 Milchierladingerzukauf kg N 966 kg 879 kg 370 kg 353 kg 299 kg 216 kg 131kg 298 kg 27 kg 452 **Erfolgsrechnung** Direktzahlungen 31b Fr. 0 8 318 2 767 23 261 23 637 24 026 25 070 26 06 26 585 27 3 Milchierladingerzukauf kg N 560 kg 546 52 kg 37 kg 452 **Ermede Strukturkosten Fr. 7 28 49 370 kg 452 **Ermede Strukturkosten Fr. 7 28 49 370 kg 43 18 kg 122 155 122 490 122 019 121 881 15 923 110 229 103 Direktkosten Fr. 3 356 3 372 5254 5318 5324 5347 5413 15 933 110 229 103 Direktkosten Fr. 3 356 3 372 5254 5318 5324 5347 5413 15 843 209 10 18 18 1 **Ermede Strukturkosten Fr. 7 3356 3 372 5254 5318 5324 5347 5413 15 843 209 10 18 18 1 **Ermede Strukturkosten Fr. 7 3356 3 372 5254 5318 5324 5347 5413 15 849 7 385 8 7 **Besamleinkommen Fr. 48,792 49 523 39 439 39 214 38 842 38 248 37 253 38 38 15 3 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3	Annahmen Betriebstyp		Konv.	.IP	IP.	Redul	tion der	Ammonia	ık-Emissi	onen (Ba	sis 2002)	úm:
Mask Ackerflache (AF) ha Micheistung pro Kuh kg/J. 5 577 5 577 6 185 **Stalplatze Rindvieh.** GVP 20,3 20,3 21,0 Milchiestung pro Kuh kg/J. 5 577 5 577 6 185 **Bodennutzung und Tiere** Offene Ackerfl. (OA) ha 7,54 7,10 4,59 5,00 5,17 5,11 5,48 6,13 6,57 7,2 Kunstwiesen (KW) ha 0,46 0,90 Naturwiesen kt. (WW) ha 7,00 6,25 7,02 6,59 5,80 6,03 4,62 1,33 2,61 2,44 1,80 Kuhe GVE 13,0 13,0 13,2: 13,2 13,2 13,2 13,2 11,4 9,5 7,0 Autreucht GVE 3,5 3,8 4,0 3,9 3,9 3,9 3,8 3,3 2,8 2,0 Tiertessatz GVE/ha LN 1,11 1,11 1,10 1,02 1,01 1,01 1,01 0,07 0,73 7,73 Milchierladingerzukauf kg N 966 kg 879 kg 370 kg 353 kg 299 kg 216 kg 131kg 298 kg 27 kg 452 **Erfolgsrechnung** Direktzahlungen 31b Fr. 0 8 318 2 767 23 261 23 637 24 026 25 070 26 06 26 585 27 3 Milchierladingerzukauf kg N 560 kg 546 52 kg 37 kg 452 **Ermede Strukturkosten Fr. 7 28 49 370 kg 452 **Ermede Strukturkosten Fr. 7 28 49 370 kg 43 18 kg 122 155 122 490 122 019 121 881 15 923 110 229 103 Direktkosten Fr. 3 356 3 372 5254 5318 5324 5347 5413 15 933 110 229 103 Direktkosten Fr. 3 356 3 372 5254 5318 5324 5347 5413 15 843 209 10 18 18 1 **Ermede Strukturkosten Fr. 7 3356 3 372 5254 5318 5324 5347 5413 15 843 209 10 18 18 1 **Ermede Strukturkosten Fr. 7 3356 3 372 5254 5318 5324 5347 5413 15 849 7 385 8 7 **Besamleinkommen Fr. 48,792 49 523 39 439 39 214 38 842 38 248 37 253 38 38 15 3 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3	Landw. Nutzfläche (LN)	ha	15.00	15,00	16,90	10 %	20 %	30 % [′]	40 %	50 %	60 %	70 %
Milichkonlingent Kg 70 000 70 000 79 854 Stallplatze Rindvich GVP 20,3 20,3 21,0 Stallplatze Rindvich GVP 20,3 20,3 21,0 Stallplatze Rindvich GVP 5,577 6185 Stallplatze Rindvich GVP 5,577 6185 Stallplatze Rindvick GVP Alba 7,00 6,52 7,02 6,59 5,80 6,03 4,66 1,83 2,61 2,44 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,8 Maturwiesen ext. (NW) 1a 7,00 6,25 5,30					9,01	,			-	•	•	,
Staflipitzize Rindvieh GVP 20.3 20.3 21.0 Milchleistung pro Kuh kg/J 5.577 5.577 6.185	0 -	1				*	*	Q.		/	• • •	·
Milcheleistung pro Kun kg/J 5.577 5.577 6.185									٠.			
Bodennutzung und Tiere							.*,			,		· •
Offene Ackerfi			3 377	3,31-1	0 100		·		`		· · · · · · · · · · · · · · · · · · ·	
Kunstwiesen int, (NW) ha 0,46 0,90 0,63 0,46 1,83 2,61 2,44 1,8 Naturwiesen int, (NW) ha 0,76 5,29 5,30 5,30 5,30 5,30 5,30 5,30 5,33 5,3	Bodennutzung und Tie	re .				· .	, ·				Λ.	
Naturwiesen int. (NW) ha 7,00 6,25 7,02 6,59 5,80 6,03 4,28 2,54 2,06 1,7 Naturwiesen ext. (NW) ha 0,75 5,29 5,30 5,30 5,30 5,30 5,63 5,63 5,63 5,63 5,63 Nühe GVE 13,0 13,0 13,2	Offene Ackerfl. (OA)	j'ha	7,54	7,10	4,59	5,00	• .			1,1		.7,21
Naturwiesen ext. (NW) ha 0,75 5,29 5,30 5,30 5,30 5,63 5,83 5,83 6,1	Kunstwiesen (KW)	ha	0,46	0,90		1 1						1,80
Kühè	Naturwiesen int. (NW)	ha	7,00	·6,25		6,59		•				1,78
Aufzucht GVE 3,6 3,6 4,0 3,9 3,9 3,9 3,8 3,3 2,8 2,0	Naturwiesen ext. (NW)	ha	. 1	0,75	5,29	5,30	5,30	5,30	5,30	5,63	5;83	-6,11
Aufzucht GVE 3,6 3,6 4,0 3,9 3,9 3,9 3,8 3,3 2,8 2,0	Kühè	GVE	13.0	13:0	13.2	13,2	13,2	13,2	13,2	11,4	9,5	7,0
Tierbesatz GVE/ha LN 1,11 1,11 1,02 1,01 1,01 1,01 1,01 0,87 0,73 0,5	33							3,9	3,8	. 3,3	2,8	2,0
Mineraldungerzukauf kg N 966 kg 879 kg 370 kg 353 kg 299 kg 216 kg 131 kg 229 kg 327 kg 452 kg									1,01	0,87	0,73	0,54
Erfolgsrechnung							299 ka				327 kg	452 kg
Direktzahlungen 31b		NS.13	200 (18)	-: - Na.		(13)				· · · · · · · · · · · · · · · · · · · 		
Dirige Beiträge		:	اً ,		20 767	23 364	22 627	34 036	25 070	26.082	26 558	27 393
Casamtertrag Fr. 151 457 150 029 121 980 122 155 122 490 122 019 121 881 115 923 110 229 103 5	I *. *			,								13 643
Direktkosten		•			, ,	•						103 544
Fremde Strukturkosten					7,72							18 112
Landw. Einkommen	18 -											68 064
Nebeneinkommen								-				
Cesamteinkommen					:							8 752
Einkommerisverlust Fr.	[] - · · · · · · · · · · · · · · · · · ·										1.	26 120
Pro kg eingespartes N Fr./kg 3,80 5,05 6,72 9,31 18,81 26,30 32 Ammoniak-Emissionen Emissionen Tierhaltung kg N 550 kg 30,2 % 30,2 % 30,2 % 30,2 % 30,2 % 30,8 % 0,8 %	<u>Gesamteinkommen</u>	<u>Fr.</u>	4 <u>8.792</u>	49 523	39 439	-						
Ammoniak-Emissionen Emissionen Tierhaltung kg N 550 kg 30.2 % 30.2 % 29.8 % 28.4 % 25.2 % 22.1 % 19.6 % 19.0 % 18.5 % 18.7 % 1.5 %	Einkommensverlust	Fr.				,			-			13 320
Emissionen Tierhaltung kg N 550 kg 30.2 % 30.2 % 30.2 % 0.8	Pro kg eingespartes N	Fr./kg			,	3,80	5,05	6,72	9,31	18,81	26,30	32,16
Anteil Total % 30.2 % 0,8 % 0,	Ammoniak-Emissioner	1									. *	
Anteil Total	Emissionen Tierhaltung	kg N	550 kg	552 kg		, -						168 kg
Ander Weide % 0,8 %												18,7.%
N-Aus Stall % 7,0 % 7,0 % 7,1 % 1,5 %		%	0,8 %	0,8 %	0,8 %						-	0,8 %
scheil- Lagerung % 1,5 % 1,5 % 1,5 % 1,5 % 1,5 % 1,5 % 1,7 % 2,0 % 2,8 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 2,0 % 7,5 1,5 %	1 -	%	7,0 %	7,0 %	7,1 %							7,5 %
dung Anwendung % 20,9 % 20,9 % 20,5 % 18,8 % 15,7 % 12,6 % 10,1 % 9,2 % 8,2 % 7,5 Emissionen Min:dünger kg N 43 kg 39 kg 16 kg 7 kg 6 kg 4 kg 3 kg 5 kg 7 kg 9 Emissionen Total kg N 593 kg 590 kg 592 kg 533 kg 473 kg 414 kg 355 kg 296 kg 237 kg 178 Massnahmen Kühe Aufzucht 3 % 7 % 7 % 7 % 10 % 10 % 14 % 16 % Lagerung Gülle offen Holzabdeckung Strohhäcksel 1 % 1 % 1 % 1 % 2 % 3	-, -	´%·	1,5.%	1,5 %								2,8 %
Emissionen Min.dunger kg N 43 kg 590 kg 590 kg 590 kg 592 kg 533 kg 473 kg 414 kg 355 kg 296 kg 237 kg 178	ı —	%	20,9 %									7,5 %
Emissionen Total kg N 593 kg 590 kg 592 kg 533 kg 473 kg 414 kg 355 kg 296 kg 237 kg 178		kg N	43 kg	39 kg	16 kg							9 kg
Fütterung Kühe Aufzucht 3 % 7 % 7 % 7 % 10 % 10 % 14 % 16 % Lagerung Gülle Offen Holzabdeckung Strohhäcksel 1 00 % 1 00	g · · ·		593 kg	590 kg	<u>592 kg</u>	533 kg	473 kg	<u>414 kg</u>	<u>355 kg</u>	296 kg	237 kg	<u>178 kg</u>
Fütterung Kühe Aufzucht 3 % 7 % 7 % 7 % 10 % 10 % 14 % 16 % Lagerung Gülle offen Holzabdeckung Strohhäcksel 1 % 1 % 1 % 1 % 1 % 3 % 100 % <t< td=""><td><u> </u></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	<u> </u>			-								
Aufzucht	7	a . ′			3.%	7.%	7%	7%	10 %	10 %	14 %.	16 %
Lagerung-Gülle offen												3 %
Strohhäcksel 100 % 1			odeckung			<u> </u>	, ,	•	٠, ٠		,	
Verdünnung 1:2 Sommer Verdünnung 1:4 Sommer Einarbeiten oder Hacken Schleppschlauch Schleppschuh Gülledrill Injektion Total Ausbringtechnik Ausbringungsmenge (m³) 100 % 9% 6 % 9 % 3 % 2 % 4 % 8 % 4 % 8 % 9 % 16 6 % 9 % 16 8 % 11 % 12 % 8 % 14 % 14 % 14 % 14 % 14 % 16 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 17 % 18 % 19 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10		Strohl	iäcksel	· · · · · · · · · · · · · · · · · · ·				ξ,,,	100 %	100.%	100 %	100 %
Verdünnung 1:2 Sommer Verdünnung 1:4 Sommer Einarbeiten oder Hacken Schleppschlauch Schleppschuh Gülledrill Injektion Total Ausbringtechnik Ausbringungsmenge (m³) 100 % 9% 6 % 9 % 3 % 2 % 4 % 8 % 4 % 8 % 9 % 16 6 % 9 % 16 8 % 11 % 12 % 8 % 14 % 14 % 14 % 14 % 14 % 16 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 16 % 8 % 17 % 18 % 19 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10	Anwendung Gülle	Verdü	nnung 1:2				. 10/20 4 2 74	/ · * * * * * * * * * * * * * * * * * *	: // ` ` ` `	•	-	
Einarbeiten oder Hacken Schleppschlauch Schleppschuh Schl							100 %	Angles services and an analysis of the services and the services are the services and the services and the services and the services and the services are the services and the services are the services and the services are the services and the services are the services and the services are the	y garasir.	1. 1.21 (W.1).	152.44	400.00
Schleppschlauch Schleppschuh Schleppschuh Gülledrill Injektion Total Ausbringtechnik Ausbringungsmenge (m³) Weitere Massnahmen Verzicht auf Harnstoff Schleppschlauch 7 % 3 % 2 % 4 % 8 % 9 % 16 % 12 % 12 % 8 % 11 % 12 % 12 % 8 % 11 % 12 % 12	. 📗 -				Ϊ.		· Von Agragas			100 %		100 %
Schleppschuh 2% 8% 11% 12 Gülledrill Injektion 1% 2.% 2% 3% 5% 6% 8 Total Ausbringtechnik 14% 14% 10% 14% 21% 32% 35 Ausbringungsmenge (m³) 666 663 872 1259 1366 1161 961 66 Weitere Massnahmen Verzicht auf Harnstoff 97% 100%<												360
Gülledrill Injektion 1.% 2.% 2.% 3.% 5.% 6.% 8 Total Ausbringtechnik 14.% 14.% 10.% 14.% 21.% 32.% 35 Ausbringungsmenge (m³) 666 663 872 1259 1366 1161 961 69 Weitere Massnahmen Verzicht auf Harnstoff 97.% 100.% 100.% 100.% 100.% 100.% 100.%				h . * .	, , ,	7%	3 %	2.%				
Injektion						'		- 1	2 %	8:%		12 %
Total Ausbringtechnik 14 % 14 % 10 % 14 % 21 % 32 % 35 Ausbringungsmenge (m³) 666 663 872 1259 1366 1161 961 69 Weitere Massnahmen Verzicht auf Harnstoff 97 % 100					ľ		. ' 27.27				600	.0.07
Ausbringungsmenge (m³) 666 663 872 1259 1366 1161 961 69 Weitere Massnahmen Verzicht auf Harnstoff 97 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %	(,				1							8 %
Weitere Massnahmen Verzicht auf Harnstoff 97 % 100 % 100 % 100 % 100 % 100 % 100 %												35 %
					666							698
17	Weitere Massnahmen					97 %	100%	100.%				100.%
Abbau Tierbestand 1 % 15 % 29 % 47						<u> </u>			1:1%	15 %	29.%.	47 %

Tabelle C3. Milchviehbetrieb mit Boxenlaufstall im Berggebiet (Betrieb B4)

` <u>``````````</u>		· · · ·		,	•					•	
Anzahl Betriebe 1994: 1000 Anzahl Betriebe 2002: 888		19	94				20	002			. ,
Annahmen Betriebst	ур	Konv.	IP	, IP ,	Redu	ıktion dei	r Ammon	iak-Emis	sionen (B	asis 2002	2) um:
Landw. Nutzfläche (LN		30,48	30,48	34,36	10 %	.20 %	30 %	40 %	*50 %	60 %	70 %
Max. Ackerfläche (AF	•	7,00	7,00	7,89	1 11			-		,	
Milchkontingent	.kg	100.000	1	112 649		,	•		* *		
Stallplätze Rindvieh	GVP	30,2	30,2	31,2		·	-				•
Milchleistung pro Kuh	kg/J.	5 177	5 177	5 785	1	12			• •		
Bodennutzung und T	<u>iere</u>							• .		, , ,	
Offene Ackerfl. (OA) ha'	6,30	7,00	4,60	~ 4,96	5,15	4,37	4,73	4,95	5,26	, 5,80
Kunstwiesen (KW	,	, ,		1,22	0,94	0,75	0,55	0,71	1,05	1,08	
Naturwiesen int. (NW		16,75	16,43	18,24	18,15	18,15	18,28	17,40	16,74	16,30	15,47
Naturwiesen ext. (NW) ha	7,43	7,05	10,31	10,31	10,31	11,16	11,52	11,63	11,72	12,24
Kühe	GVE	20,7 .	20,8	20,4	20,4	20,4	20,4	18,3	14,8	11,7	· 8,6
Aufzucht	GVE	5,6	5,6	5,8	5,8	5,8	5,7	5,16	4,2	3,3	2,4
Tierbesatz GV	E/ha LN	0,86	0,87	0,76	0,76	0,76	0,76	0,68	0,55	0,44	0,32
Mineraldüngerzukauf	kg N	797 kg.	767 kg	649 kg	636 kg	638 kg	570 kg	569 kg	676 kg	803 kg	1023 kg
<u>Erfolgsrechnung</u>	,			,			- j		٠ ،	, ,	
Direktzahlungen 31b	Fr.	5 204	14 275	31 856	32 094	32 174	31 856	32 272	32 518	32:832	33 284
Übrige Beiträge	· Fr.	33 752	33 142	37 320	37 169	36 957	37 180	37 132	37 615	38 063	36 486
<u>Gesamtertrag</u>	<u>Ęr.</u> ,	206 270		<u>187 223</u>	<u>187 777</u>	<u>187 995</u>	-		<u>168 141</u>	<u>159 510</u>	148 860
Direktkosten	Fr.	31 567	27 033	28 296	· 28 889	30 657	29 441		24 481	23 426	22 951
Fremdé Strukturkosten Landw: Éinkommen		100 624	96 218	92.096		92 639	93 37.9	93 490	93 173	93 077	
Nebeneinkommen	<u>Fr.</u> Fr.	74 080 12 303	78 243 11 502	66 831 14 938	66 192 14 958	64 699 15 031	62 437	<u>57 193</u>		143 007	
Gesamteinkommen	Fr.	. <u>86 383</u>	89 745	81 769	81 149	15.021 79.720	15 107 <u>77 544</u>	16 282 73 475	18 271		.21 899 .EE 035
Einkommensverlust		- 55 555	<u>59.7-15</u>	. <u>01,709</u>			, .		68.759		
Pro kg eingespartes N	Fr. Fr./kg				·620· 6;85	2 049 11,32	4 225	8 294	13 011	18 716	· II
Ammoniak-Emissione					0,05	11,32	15,56	22,91	28,75	34,47	42,20
	▼ .	960 1	700 1	:070`1	' 000 test	7441	0001				·
Emissionen Tierhaltung Anteil Total	kg N / <u>%</u>	869 kg 31,9 %	799 kg 31,1 %	876 kg 31,6 %	802 kg	711 kg	622 kg	532 kg	439.kg	346 kg	251 kg
an der Weide	//	1.0 %	1,1 %	1,1 %	29,7 % 1,1 %	27,1 % 1,1 %	24.0 % 1.1 %	23,3 % 1,1 %	23,7 % 1,1 %	24.2 %	25.2 %
N-Aus- Stall	%	13,3 %	13,7 %	13,4 %	13,6 %		13,9 %	13,1 %		1,1 % 13,2 %	1,1 % 13,6 %
schei- Lagerung	%	1,9 %	2,0 %	1,9 %	2,0 %	2,0 %	2.0 %	2.1 %	2,6 %	3,3 %	4,8 %
dung Anwendung	%	15,7 %	14,3 %	15,2 %	13,1 %	10,2 %	7,0 %	7,1 %	7,0 %	6,6 %	5,8 %
Emissionen Min.dünger	kg N	35⋅kg.∕	34 kg	29 kg	13 kg	13 kg	11 kg	11 kg	14 kg	16:kg	20 kg
Emissionen Total	kg N	<u>904 kg</u>	<u>833 kg</u>	905 kg	<u>815 kg</u>	724 kg	<u>634 kg</u>	543 kg	<u>453 kg</u>	362 kg	<u>272 kg</u>
<u>Massnahmen</u>	. ,	,				•	1				-
Fütterung Küh		3 %	10 %	5 %	10 %	11 %	13 %	14.%	14 %	16.%	21 %
	ucht		15%	5 %		5 %	5 %	8 %	9 %	9 %	9 %
Stall Kühe		er+Zeitsch				_			************	I STREET STREET STREET	yes 2, 1
Lagerung Gülle offen		ngsbuchte deckung	:11.		····			100 %	100 %	100 %	100 %
	Strohhä	icksel			, .			100 %	100 %	100 %	100 %
Anwendung Gülle		nung 1:2 \			3	<u> </u>	- 1, -,			4 - KU -	```
		nung 1:2 \$				100 %	errina i i	departus.	entre en la caración	glane marks	ا ا
, =		nung 1:4 S			- 6.82 ···				100 %		100 %
4 4		iten oder l	паскеп	`.	2 % 14 %	1 % 5 %	1 % 2 %	1.%	1.%	0.%	47.67
	Schlep			. , .	14.70	5 % 4 %⊫	2 % 4 %	1 % ·	3 % 5 %	7 % 3 %	11 %
	Gülledri				•• [1 %	1%	1 %	1%	3 % 1 %	1 % 2 %
	Injektion		, [1 .	2 %	1,%	1 %	1%	1%	2 %	2%
		usbringted	hnik	•	17 %	12 %	8.%`	9.%	11 %	14 %	16 %
: 1	Ausbrin	gungsmei	nge (m³)	944:	944	1 332	2 105	1 863	1 463	1 121	798
Weitere Massnahmen		t auf Harn			100 %	100%	100 %	100 %	100 %	100 %	100%
, ,	Abbau [*]	Tierbestar	id j		٠,٠			11 %	27 %	43.%	58 %
				· — — — — — — — — — — — — — — — — — — —							<u></u>]

Tabelle C4. Milchviehbetrieb mit Anbindestall im Berggebiet (Betrieb B5)

			ê.						<u> </u>	
Anzahl Betriebe 1994: 10 000 Anzahl Betriebe 2002: 8 877	19	94			• • • • • • • • • • • • • • • • • • • •	200)2			
Annahmen Betriebstyp	Konv.	ΙP	IΡ	Redu	ction der	Ammonia	ak-Emissi	onen (Ba	sis 2002)	um:
Landw. Nutzfläche (LN) ha	a 15,99	15,99	18,02	10 %	20 %	30 %	40 %	50 %	60.%	70 %
Max. Ackerfläche (AF) h		0,00	0,00	. • • • • •	•	× •		1		, 1
Milchkontingent k		63 000	70 969	• .	,	. ~				
Stallplätze Rindvieh G\		18,7	19,4		•	,	,		• •	
Milchleistung pro Kuh kg	/J. 5 177	5 177	5 785			•			<u></u>	
Bodennutzung und Tiere							•	•		
Naturwiesen int. (NW) h	a 12,26	12,26	12,04	12,03	12,03	12,04	`11,98	11,86	11,29	9,84
Naturwiesen ext. (NW) h	a 3,73	3,73	5,98	5,99	5,99	5,98	6,04	6,16	6,73	8,18
Kühe G\		12,8	12,8	12,8	12,8	12,8 _`	11,7	9,7	7,6	5,5
Aufzucht G\		3,5	3,7	3,7	3,7	3,6	3,3	2,7	2,1	1,5
Tierbesatz GVE/ha	LN 1,02	1,02	0,92	0,92	0,92	0,92	0,83	0,69	0,54	0,39
Mineraldűngerzukauf kg	N 146 kg	146 kg	151 kg	145 kg	137 kg	112 kg	67. kg	95 kg	157.kg	196 kg
Erfolgsrechnung	,								,	-
Direktzáhlungen 31b F	r. 2 608	5 707	16 455	16 458	16 458	16 455	16 479,	16 536	16 790	16 596
Übrige Beiträge F	r. 23 851	· 23 851.	26 156	26.162	26 197	26 201	27 086	26 367	25 450	24 352
	<u>r. 100 004</u>		<u>104 288</u>	<u>104 285</u>		<u>106 262</u>	103 052	<u>93 852</u>	<u>84 469</u>	72 850
Direktkosten F			15 152	15 221	15 281	18 120	18 462	15 454		8 821
	r. 57 487	57 487	58 982	59 172	59.587	59 906	59 941	59.318	58 472	57 658
Landw. Einkommen E		<u>31 021</u>	30 154	29 893 0 707	<u>29 407</u>		24·649	19 080		6 370 15 500
` ·	r 7 330	1 '	8 765	8 767	8 774	8 994	10 100	11 760		15 509 21 880
	r. 35 370	<u>38 145</u>	<u>38 919</u>	<u>38 660</u>	<u>38 181</u>		<u>34 750</u>	30 840	<u>26 599</u>	
	r.		1	259	737	1 688		8 078	-	17 039
Pro kg eingespartes N Fr.	/kg			5,04	7,17	10,95	20,27	31,43	39,94	47,35
Ammoniak-Emissionen		,			. ,					
Emissionen Tierhaltung kg		480 kg	. 507 kg `	456 kg	405 kg	358 kg	307 kg		202 kg	150 kg
Anteil Total	<u>% 27.7 %</u>		<u>27,6 %</u>	25,3 %	22,6 %		<u>20,8 %</u>	21.0.%	21,2 %	<u>21,7 %.</u>
an der Weide		1,0 %	1,0 %	1,0 %	1,0 %	1,0 %	1,0%	1,0 %	1,0 %	1,0 % 6,4 %
	6,0 %	6,0 %	6,0 %	6,0 %	6,0.%	6,2 %	6,4 %	6,4 %	6,4 % 4,5 %	5,4 % 5,4 %
	% 3,9%	3,9 %	3,8 %	3,8 %	3,8 % 11,8 %	3,8 % 10,1 %	3,8·% 9,7 %	4,1 % 9,5 %	9,3 %	8,9 %
	% 16,9 % 1 N 6 kg	16,9 % 6 kg	16,8 % 7 kg	14,4 % 6 kg	6.kg		1: kg	2 kg	3,5 % 3,kg	
	N 6 kg N 487 kg	487 kg	- 7 kg - 514 kg		411 kg		308 kg	257 kg	206 kg	154 kg
	111 301 NU		5.3.19				, , , ,			
<u>Massnahmen</u>	, .			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Amming	: : 10/4/4 67 12
Fütterung Kühe		1	1.05	3 %	4 %	10 %	14%	14 % 3 %	14.% 4.%	14 % 3 %
Aufzuch		1	1.%	-		·	2.70	3,70	4 70	. , , , 70, j
Lagerung Gülle offen Ho Str	ohhäcksel		λ .			, ,	100 %	100%	100 %	100 %
	rdünnung 1:2	Winter						1.5.	-	-, +
Ve	rdünnung 1:2		, '	100 %	g		ar mõnõukil – e sem		* *********	engagasa piyarean
	rdünnung 1:4		1. •		100%	100 %	100,%	100 %	100 %	100 %
	narbeiten ode		.] '				¥.6/	E:0/	. 00/	14 %
	hleppschlauc	h, i	1.		•	3%	4 % 3 %	5 % 3 %	9 % 1 %	14 70
	hleppschuh				^			1%	1%	,
	illedrill	• • •	1			1%	. 1%	1%	1%	2 %
	ektion ı tal Ausbringt	chnik			,	4 %	7 %	9 %	11 %	15 %
	ıtaı Auspringu Isbringungsm		394	552	883	969	849	695	, 560	409
	narbeiten	-1.50 (111.)	1	+			·			
.	ısbringungsm	enge (t)	119	11.9	119	` 118	, 108	89	70	51
	erzicht auf Ha				Jan 19 19	100 %	100 %	100 %	100 %	100 %
	bau Tierbest	and					9%	25.%	41 %	57 %
L					 		 			

Tabelle C5. Mastschweinebetrieb mit Vollspaltenboden im Talgebiet; Konv. (Betr. T3a)

			<u> </u>								•
Anzahl Betriebe 1994: 945 Anzahl Betriebe 2002: 839		19	94	1 / .		2	20	002			
Annahmen Betriebsty		Konv.		Konv.	Redu	ıktion de	r Ammon	iak-Emis	sionen (B	asis 2002	2) um:
Landw. Nutzfläche (LN		13,50		15,21	10 %	20 %	30.%	40 %	50 %	60 %	70 %
Max. Ackerfläche (AF) ha	9,00		10,14				.,,,,,	20,70.	Ģ0 ,70.	1.0 70
Schweinemastplätze	SMP	235	1	256			•	. ^		<	, 3
Maştleiştung Şchweine	g/Tag	·I .	ĺ	710	`.			٠.,	- "		, .
Bodennutzung und T	iere	73.	11	· · · · · ·	 	*	• • • •	, , , ,		•, .	
Offene Ackerfl. (OA	,	1	, .					r			
Kunstwieseń (KW		9,00	1	10,14	10,14	10,14	10,14	10,14	8,45	8,48	8,59
1 '' ' ' '	,		ľ						1,69	1,66	1,55
		3,97	ì	5,07	5,07	4,23	4,23	4,23	2,63	0,74	0,51
Naturwiesen ext. (NW) ha	0,53	ļ .	i		0,84	0,84	0,84	2,44	4,33	4,56
Mastschweine	GVE	40,0		43,5	43,5	43,5.	43,5	43,5	38,3	32,6	22,8
Tierbesatz GV	E/ha LN	2,96		2,86	2,86	2,86	2,86	2,86	2.52	2,15	1,50
Mineraldungerzukauf		٠,			,	,	,,,,	. 5,00	` _,0,2,	4.1	,
	kg N	ř <u>.</u>		7 kg			· ` ;;:		<u> </u>	11 kg	12 kg
Erfolgsrechnung		ŀ . ·		: • •		:					• • • •
Direktzahlungen 31b	Fŕ.	404	-	1 278	1 278	935	935	935	2 927	5 201	10.954
Übrige Beiträge	Fr.	10 385	, ,	11.660	11 660	11 660	11 660	11 660	12 149	12 142	12 110
Rohertrag inkl. Beiträge	<u>Ér.</u>	<u>277 959</u>	ļ. , ,	208 958			217 027		<u>197 801</u>		143 896
Direktkosten	Fr.	102 886	'	72 269	72 328	73 405		76 665	67 936	60 078	A 14
Fremde Strukturkosten	Fr.	. 71 546	. '	71 142	71 945	79 926	• •		82 331	82 583	76 521
Landw. Einkommen	Fr.	<u>103 527</u>		65 546	64 808	63 692				36 383	
Nebeneinkommen	Fr.	8 448		9 673	9 662	9.693		9 693	10 217	10 690	11 633
Gesamteinkommen	<u>Fr.</u>	<u>111 976</u>		75 219	74 470	73 385		67 442	57 751	47 073	35 869
Einkommensverlust	Fr.									•	
Pro kg eingespartes N		*	;		749	1 834	4 -	7,777	F =1		39 350
	Fr./kg		2 2		4,60	5,63	6,87	11,94	21,45	28,81	34,52
Ammoniak-Emissiòne	- ,	ا							•		
Emissionen Tierhaltung		1638 kg		1628 kg			1140 kg		814 kg .	• .	488 kg.
<u>Anteil</u> Total	<u>%</u>	<u>46:7 %</u>	0 %	47.1 %	42.4 %	<u>37,7 %</u>		<u>31,6 %</u>	<u>30,1 %·</u>	28,3 %	- <u>30;3 %</u>
<u>an der</u> Weide	%	0 %	0.%	0.%	0 %	0 %	.0 %	0 %	0 %	` 0%	0 %
<u>N-Aus</u> - Stall	%	15,0 %	0.%;	15,8 %	15,8 %	15,8.%		13,4 %		11,0 %	13,5 %
<u>schei</u> - Lagerung	%	3,2 %	.0 %	3,5 %	3,5 % -	3,5 %	2,9 %	3,2 %	3,2 %	3,8 %	5,4,%
<u>dung</u> Anwendung	%	28,5 %	0.%	27,8 %	23,0 %	18,3 %	14,5 %	14,9 %		13,5 %	11,4 %
Emissionen Min.dünger	kg Ń			. 0 kg	· ·	1		•	, '	0 kg	0 kg
Emissionen Total	kg.N	1638 kg		<u>1628 kg</u>	1466 kg	<u>1303 kg</u>	1140 kg	<u>977 kg</u>	814 kg	651 kg	489 kg
<u>Massnahmen</u>]				, ,			,
	weine		·	. 10 %	10;%	10 %	11.%	19 %	20`%	20 %	20 %
Stáll Mastschweine	Schieb	ersystem			······································	***	~`	***********		100%	
	Ímpulsa	arme Zului	tführung	<u> </u>				100%	100%		100%
Lagerung Gülle offen	Holzab	deckung			,	· · · · · ·		-:		100 %	100 %
	Strohh				11		100.%	100 %		· · · · · · · · · · · · · · · · · · ·	.a. ुर्गाटरा श्राचित्र का.ची. १. १. १. १. १. १. १
Anwendung Gülle		nuṇg 1:2 \			**	· .		:			
		nung 1:2 S				1 1	•		- 1		,
ļ, . :		erdünnung 1:4 Sommer			. 4	100 %	100%	100 %	100 %	100.%	100 %.
		iten oder		Α,	9%.	6 %	6 %	6.%	5 %	6.%	8 %
		oschlauch	,		.11.%	4 %	5 %	7 %	4 %	5 %	9%
	Schlep			, i			5 %	5 %	12 %	14.%	18 %
	Gülledr				1%		annung wit get us an		ar har en mandeur	t Marine des sei Ten marie	
in A	Injektio	ektion			8 %	2 %	3 %	3.%	5.%	6 %	8 %
	Total A	otal Ausbringtechnik			29 %	13 %	18 %	20 %	26.%	30 %	42 %
	Ausbringungsmenge (m³)			1024	1024	1828	2014	1964	1825	1556	1102
Weitere Massnahmen										100%	100 %
		Tierbestar		,			· .	,	12 %	25 %	48 %
			- 1			<u>. </u>		` ` `			

Tabelle C6. Mastschweinebetrieb mit Teilspaltenboden im Talgebiet; IP (T3d)

			· .	` .		407	<u> </u>		<u>:</u>		
Anzahl Betriebe 1994: 105 Anzahl Betriebe 2002: 93		199)4				200	2 .	· · · .		
Annahmen Betriebstyp		Konv.	IP ·	IP	Reduk	tion der	Ammonia	ık-Emissi	onen (Ba	sis 2002)	um:
Landw. Nutzfläche (LN)	hã '	15,00	15,00	16,89	10 %	20 %	30 %	40 %	50 %	60 %	70 % .
Max. Ackerfläche (AF)	ha	10,00	10,00	11,26	· •	_	٠.,	•		11	,
Schweinemastplätze	SMP	176	176	192	, ,	• ` ·				•	
Mastleistung Schweine	g/Tag	. 685	685	710			, - , •		<u>, , , , , , , , , , , , , , , , , , , </u>		
Bodennutzung und Tier	<u>e</u> :	,									
Offene Ackerfl. (OA)	ha	10,00	10,00	11,26	11,26	11,26	11,26	11,26	11,26	9,88	11,26
Kunstwiesen (KW)	ha			ĺ	, '	-	1			,0,87	
Naturwiesen int. (NVV)	ha .	3,50	4,25	3,99	3,99	3,99	4,00	4,00	3,58	1,07	0,56
Naturwiesen ext. (NW)	ha _,	1,50	0,75	1,64	1,64	1,64	1,63	1,63	2,05	5,07	5,07
	GVE	30,0	30,0	32,6	32,6	32,6	32,6	32,6	-	25,0	18,5
Tierbesatz GVE/I	ha LN	2,00	2,00	1,93	1,93	. 1,93	1,93	1,93	1,84.	1,48	1,09
Mineraldüngerzukauf	kg N	252 kg	438 kg	615 kg	510 kg.	424 kg	326 kg	312 kg	390 kg	400 kg	379 kg
Erfolgsrechnung	ı			-							
Direktzahlungen 31b	Fr.	1 500	9 119	20 370	20 370	20 370	20 349	20'349	20 844	23 730	28 610
Übrige Beiträge	Fr.	11 100	11 676	12 461	12 461	12 461	12 461	12 461	12:461	12,860	12 461
Rohertrag inkl. Beiträge	Fr.	<u>241 694</u>	-	<u>195 783</u>	<u>195 783</u>		198 312	-		<u>168.768</u>	
Direktkostèn	Fr.	83 467	82:374	, 60 502	60 358	60 239	60 628	61 180	61 217	50.382	41 487
Fremde Strukturkosten	Fr.	68 205	69 074	69 501	69 990	70 851	73 654	76 015 61 149	78 011 <u>54 924</u>		70 416 35 160
Landw. Einkommen	Fr.	90 022	88 656	65 780 10 030	65 435 10 030	64 692 10 030	64 030 9 992	9 992	10 152	10 934	11 489
	Fr.	8 730 98 752	8 680 <u>97 336</u>		75 465	74 722	74 022	9 992 71 142	65 076	56 437	46 649
Gesamteinkommen	Fr.	90 / 32	97 330	75010				4 668		-	29 161
Einkommensverlust	Fr.				345 2,76	1 088 4 ,36	1 788 4,77	9;35	10 734	25,87	33,37
Pro kg eingespartes N	ŗŗ./Ķg			3	2,10	, 4,30	 	3,00		,	
Ammoniak-Emissionen	l. ·]							_6			
Emissionen Tierhaltung		1228 kg		1221 kg		980 kg		743 kg		491 kg	367 kg
<u>Anteil</u> Total	<u>%</u>	<u>46,7 %</u>	46,7 %	47.1 %	42,5 %			29,4 % 0 %	28,1 % 0 %	27,9 % 0 %	28,2 % 0 %
<u>an der</u> Weide	%	0 %	0 %	0 %	0%	0 % 15,8 %	0 % 15,8 %	12,8 %		11,0 %	11,0 %
<u>N-Aus</u> - Stali	%	15,0 %		15,8 % 3;5 %	15,8 % 3,5 %	3,5 %	3,2 %	2,6 %	3,0 %	3,7 %	5,0 %
schei- Lagerung	% } %	3,2 % 28,5 %	3,2 % 28,5 %	27,8 %	23,1 %	3,5 % 18,4 %	14,4 %		14,1 %	13,2 %	
dung Anwendung Emissionen Min.dünger	kg N	11 kg	19 kg	27 kg	22 kg	19 kg		6 kg	8 kg	8 kg	8 kg
Emissionen Total	kg N	1239 kg			1124 kg	999 kg		749 kg			
Massnahmen.	*******							- ,		,	* '-70
	oine.		, '	10 %	10 %	10.%	10.%	12 %	20 %	20 %	20,%
Fütterung Schw Stall Mastschweine		ersystem	Lie	10.76	1,140.70		.,, 0, 70	,,,,,,	100%	100%	100%
		arme Zuli			,			100%		e endamente min es	
		deckung		 	<u> </u>	2 7 7		100 %	100 %	100 %	100 %
		äcksel.					49 %	\$			· .
Anwendung Gülle	Verdü	nnung 1:2		1		2	, · · · ·				
		nnung 1:2		1		100 %	Santa	200.07	46697	30007	- 100 %
		nnung 1:4]′ .``		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100 %	100 %	100 % 4 %	100 % 6 %	- 100 % - 8:%
		eiten ode		1	10.%	7 % 20 %	5 % 10 %	4 %	4 %	4 %	2 %
		opschlauc	П		10.70		10.70	10 %	10 %.	16 %	24 %
	Gülled	opschuh Irili		,	1%	1		1%	11 %	and the second	
	Injekti				9 %	6%	4 %	4 %	4 %	6%	8.%
		on Ausbringte	chnik	1, , ,	28 %	33 %	18 %	23 %	23 %		41 %
		ingungsm		768	768	~, 989	1503	1553	1500	1112	854
Weitere Massnahmen	Verzio	ht auf Ha	rnstoff	.	-		100%	100 %	100 %	100 %	100 %
	Abbau	ı Tierbest	and .		.] •				5 %	23.%	43.%
	<u> </u>				" 	-i* ;					

Tabelle C7. Mastschweinebetrieb mit Teilspaltenboden im Berggebiet; IP (B2d)

Anzahl Betriebe 1994: :30		·		· ·					- 		
Anzahl Betriebe 2002: 27		19	94			-	20	02	,		
Annahmen Betriebsty					Redu	ktion de	r`Ammoni	ák-Emiss	sionen (B	asis 2002	!) um:
Landw. Nutzfläche (LN)		10,59	11,50	12,97	10 %	20 %	. 30 %	40 %	50 %	60 %	70 %
Max. Ackerfläche (AF)		4,00	4,00	4,51				1		-	
Schweinemastplätze	SMP	118	118	128	,		•				
Mastleistung Schweine		685	685	710			1	<u> </u>			
Bodennutzung und Tie	ere			.*		•				•	
Offene Ackerfl. (OA)	ha	3,09	3,41	2,15	.2,19	2,22	2,55	2,93	3,14	3,02	3,12
Kunstwiesen (KW)	ha		0,59	1,90	2,03	2,05	1,96	1,58	0,74	0,63	0,65
Naturwiesen int. (NW)	.ha`	4,67	6,93	8,27	8,10	8,05	7,81	7,81	6,65	5,43	5,31
Naturwiesen ext. (NW)		2,83	0,58	0,65	0,65	0,65	0,65	0,65	2,45	3,89	3,89
Mastschweine	GVE	20,0	19,5	21,8	21,8	21,8	21,6	21,4	18,2	14,2	10,3
1 '	/ha LN	1,89	1,69	1,68	1,68	1,68	1,67	1,65	. 1,40	1,10	0,80
Mineraldüngerzukauf	kg Ñ	40 kg	78 kg	、97 kg -	58 kg	58 kg	60 kg	57 kg	, 103 kg	82 kg	227 kg
Erfolgsrechnung	* 5	-					,			•	
Direktzahlungen 31b	Fr.	1 978	6 042	11 628	11 664	11 686	11 954	12 268	13 681	14 589	14 661
Übrige Beiträge	Fr.	13 230		15 322	15 312	15 304	15 225	15 135		.15 112	15 088
Rohertrag inkl. Beiträge	<u>Fr.</u>	<u>131 140</u>		<u>111 412</u>	<u>111.485</u>		<u>111 759</u>	<u>111 765</u>	<u>102 795</u>	<u>90·152</u>	<u>78 131</u>
Direktkosten	Fr.	48 847	47 853	32 768	32 734	32 774	32 705	33 758	-29 816	24 155	19 260
Fremde Strukturkosten Landw. Einkommen	Fr.	39 823	41 357	39 817	40 373	41 354		43 628	43 706	42 913	42 785
Nebeneinkommen	<u>Fr.</u> Fr.	42 470 7 764	42 630 6 972	38.826 7 917	38 378 7 007	37 494 7 000	<u>36 631</u>	<u>34 380</u>		23 085	
Gesamteinkommen	Fr.	` <u>50 234</u>	49 602	46.743	7 927 46 305	7 968 <u>45 462</u>	7 973 44 604	7 998 <u>42 378</u>	8.568		9 514
Einkommensverlust	Fr.	<u>50 254</u>	45 002	40143					<u>37 840</u>	•	<u>25 601</u>
łł			. ` `		438 5,35	1 281 7,83	2 139	4 365	8 903	14 481	21 142
Ammoniak-Emissioner			·		3,33	7,00	8,71	13,34	21,76	29,50	36,91
Emissionen Tierhaltung	kg Ni	819 kg	797 kg	04.436	7041	CEO !	F70.1	,		. `	
Anteil Total	% N	46.7 %	46,7 %	814 kg <u>47,1 %</u>	734 kg 42,5 %	652 kg 37,8 %	572 kg 33;3′%		407 kg 31,7 %	326 kg	.241 kg
an der Weide	%	0 %	0 %	0 %	0 %	0 %	0 %		0%	32,4 % 0 %	33.0.% 0 %
N-Aus- Stall •	%	15,0 %	15,0 %	15,8 %	15,8 %	15,8 %	15,8 %	13;3 %	13,5 %	13,5 %	13,5 %
schei- Lagerung	、%	3,2 %	3,3 %	3,5 %	3,5 %	3,5 %	2,9 %	3,2 %	3,4 %	4,4 %	6,0 %
<u>duna</u> Anwendung	%	28,5 %	28,4 %	27,8 %	23,1 %	18,4 %	14,6 %	15,0 %	14,8 %		13,5 %
Emissionen Min.dünger	, -	2 kg	3 kg	4 kg	3 kg		1 kg	1 kg	2 kg	2 kg	5 kg
Emissionen Total	kg N	<u>821 kg</u>	<u>801 kg</u>	818 kg	736 kg.	655.kg	<u>573'kg</u>	<u>491 kg</u>	409 kg	<u>327 kg</u>	245 kg
<u>Massnahmen</u>		,		'			-	.,			
Fütterung Schw				10 %	10 %	10 %	10 %	17 %	20 %	20 %	20 %
		rsystem		,				and the first of the first	Samuel on cars	and a second of the second of the second	e mygne 15 sec
		rmé Zului leckung	πunrung				<u> </u>	100%	100%	100%	100%
μ	Strohhä				•	:	100 %	100 %	100 %	100 %	100 %
		nung 1:2 \	Vinter	```		<u> </u>	· (OO, 70)	300.76			
		nung.1:2`			100 %						
	Verdüni	nung 1:4.8	Sommer,			100 %	100 %	100 %	100 %	100 %	100 %
		inarbeiten oder Hacken			1 %	1%	1,%	1.%	1 %	. 1 %	2 %
}		schlauch	1	٠,	2 %	4%	, and the second second	1,110 10 000 0000 20	1 %	3 %	Salaran and a
(I ·	Schleppschuh				. [3 %	6.%	6.%	6 %	7 %	13 %
	Güllédrill Injektion			-	1%	1 %	1 %	1 %	1 %	1 %	2 %
	Injektion Total Ausbringtechnik			· .	1 % 6 %	1 % 10 %	1% * 8%	1 %	1%	1: %	2 %
' .	Ausbringungsmenge (m³)			514	668	924	1143	8 % 1133	10 % 939	13 % . 700 -	19 % 488
Veitere Massnahmen Verzicht auf Harnstoff			- 514	.000	13 %	100%	100 %	100%	700 <i>·</i>	100 %	
		ierbestar	3	, 1				2 %	16 %	35.%	52.%
			<u>_</u>	<u> </u>				ord political.			==, * ₹. }:

Tabelle C8. Zuchtschweinebetrieb im Talgebiet; IP (Betrieb T4b)

Anzahl Betriebe 1994: 450 Anzahl Betriebe 2002: 399		199	94			• •	200	02	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
Annahmen Betriebstyp		Konv.	IP .	. IP	Redul	tion der	Ammonia	ak-Emissi	ionen (Ba	sis 2002)	um:
Landw. Nutzfläche (LN)	ha	10,50	10,50	11,82	10 %	20,%	30 %	40 %	50 %	60 %	70 %
Max. Ackerfläche (AF)	ha	6,50°	6,50	7,32		**,					.].
Schweinezuchtplätze	SZP	35	35	38							
Bodennutzung und Tie	<u>re</u>		1.		, ,						
Offene Ackerfl. (OA)	ha.	6,50	6,50	7,32	7,32	7,32	7,32	7,32	7,32	7,32	7,32
Kunstwiesen (KW).	. ha		•			*				•	
Naturwiesen int. (NW)	ha	1,12	3,48	3,78	3,78	3,78	3,78	3,78	2,90	1,18	0,95
Naturwiesen ext. (NW)	ha	2,88	0,53	0,72	0,72	0,72 '	0,72	0,72	1,60	3;32	3,55
Zuchtschweine	GVE	20,8	20,8	22,7	22,7	22,7	22,7	22,7	20,7 🐰	2.7	12,2
Tierbesatz GVE	/ha LN	1,98	1,98	1,92	1,92	1,92	1,92	1,92	1,75	1,40	1,03
Mineraldüngerzukauf	kg N	234 kg	568 kg	655 kg	582.kg	521 kg	480 kg	423 kg	523 kg	463 kg	416 kg
Erfolgsrechnung	′			•							
Direktzahlungen 31b	Fr.	2 880	6.835	14 121	14 121	14 121	14 124		15 281	17 408	19 964
Übrige Beiträge	Fr.	9 100	9 663	10 207	10 207	10 207		,10 207		10 207	10 207
Rohertrag inkl. Beiträge	<u>Fr.</u>	<u>189 862</u>	<u>190 481</u>	<u>141 019</u>	<u>140 998</u>	· · · ·	<u>141 163</u>		<u>135 504</u>		107 391
Direktkosten	⊦Fr.	50 637	50 488	.36 767	36 662	36 573		36 475	35 847	30 850	24 820
Fremde Strukturkosten	Fr.	66 038		68 829	69 096	69 517	70 249	71′ 399		70 803	69 210
Landw. Einkommen	<u>Fr.</u>	<u>73 187</u>	<u>71 705</u>	<u>35 422</u>	<u>35 239</u>	<u>34 886</u>	<u>34.335</u>	<u>33 106</u>	<u>28 201</u>	<u>21 310</u>	13,360
Nebeneinkommen	Fr.	.5 867	5.501	5 866	5 879	5.880	5 878	5 880	6 645	8 181	9 631
<u>Gesamteinkommen</u>	<u>Fr.</u>	<u>79 055</u>	<u>77 206</u>	· <u>41.289</u>	. <u>41 118</u>	<u>40 765</u>	<u>40 213</u>		<u>34 846</u>	<u>29 491</u>	<u>22 991</u>
Einkommensverlust	Fr.			,	171	523		2 303	6 442	11.797	18 297
Pro kg eingespartes N	Fr./kg		;·	,	2,16	3,32	4,55	7,31	16,35	24,95	33,17
Ammoniak-Emissioner	<u>n</u> · · · ·					^			` .		
Emissionen Tierhaltung	kg.N	768 kg	768 kg	759 kg	684 kg	608 kg	535 kg		384 kg	306 kg	228 kg
<u>Anteil</u> Total	<u>%</u>	<u>46,3 %</u>	<u>46,3 %.</u>	46.8 %	42.1 %	<u>37,4 %</u>		<u>28.6 %</u>		<u>29.1 %</u>	<u>29,3 %</u>
an der Weide	%	0 %	0 %	0 %	0 %	0 %	., 0%	0 %	0 %	.0 %	0 %
N-Aus- Stall	% '	15,0 %	15,0 %	15,8 %	15,8 %	15,8 %	15,8 %	12,7 %	13,5 %	13,5 %	13,5 %
schei- Lagerung	%	2,4 %	2,4 %	2,6.%	2,6 %	2,6 %	2,6 %	2,1 %	2,3 %	2,9 %	3,9 %
dung Anwendung	%	28,9 %	28,9 %	28,3 %	i .	19,0 %	14,5 %,	13,9 %	13,4 %	12,7 %	11,9 %
Emissionen Min.dunger	kġ N	10 kg	25 kg	29 kg	26 kg	23 kg	17 kg		10 kg	9 kg	8 kg
Emissionen Total	kg N	<u>778 kg</u>	793 kg	788 kg	709 kg	631 kg	<u>552 kg</u>	473 kg	394 kg	315 kg	236 kg
<u>Massnahmen</u>	•						# ### co			n factoration	252.0200 8
	weine			10 %	.10 %	10 %	10 %	10 %.	20 %	20:%	20 %
		arme Zulu			1 1 "	`- ·		100%	100%	100%	. 100%
Lagerung Gülle offen								11,%	100,%	100 %	100`%
		äcksel		0 %				89 %	<u> </u>		
Anwendung Gülle		nnung 1:2		∱ ·		400 0			,		_
		nņung 1:2		k		100 %	100 0/	100 %	100 %	100 %	100 %
		nnung 1:4		-	0.0%	7.07	100 % 5 %	100 %	100 % 5 %	6 %	9:%
		eiten ode			9 %	7 %	7 %	4`70	3/70	4 %	
		opschlauc opschuh	n _t , .		9.%	13 %	9%	14 %	15 %	17 %	30%
	Gülled			ľ	2 %	. 2 %	1 %	1 %	1 %		
	Injekti				9%	6.%	5%	4 %	- 5%	6 %	9 %
		on Ausbringte	echnik	1.	29 %	28 %	27 %	23 % -	26 %	34 %	49.%
-		ingungsm		407	407	536	698	792	702	551	382
Weitere Massnahmen				1	1,		40 %	100 %	100 %	100 %	100 %
Totolo maosilamion	Abbai	ı Tierbest	and	[,	1		e allere a	ye, allalanwas or	9 %	27 %	46 %
					1	 =					

Tabelle C9. Mutterkuhhaltungsbetrieb mit Tiefstreuelaufstall im Talgebiet (Betrieb T1)

Anzahl Betriebe 1994: 560							2	y			·	
Anzahl Betriebe 2002: 497	1 Betriebe 2002: 497				2002							
Annahmen Betriebstyp	<u> </u>	Konv.	IP	IP	Redu	ktion der	Ammoni	ak-Emiss	ionen (B	asis 2002	!) 'um;	
Landw. Nutzfläche (LN)	ha	14,00	14,00	15,77	10 %	20 %	30 %	40 %	50 %	60 %	70 %	
Max. Ackerfläche (AF)	ha	5,00	5,00	5,63								
Stallplätze Rindvieh	GVP	19,8	19,8	22,3	, ,				•		•	
Bodennutzung und Tier	<u>re</u>						•					
Offene Ackerfi. (OA)	ha	5,00	5,00	4,50	4,59	4,69	5,02	5,59	5,63	5,63	5,63	
Kunstwiesen (KW)	ha			1,13	1,04					•		
Naturwiesen int. (NW) Naturwiesen ext. (NW)	ha.	6,77	6,88	4,39	4,04	4,91	4,48	3,83	3,68	3,78	3,82	
1	ha	2,23	2,12	5,75	6,10	6,17	6,26	6,35	6,46	6,36	6,32	
Kühe Aufzucht	GVE GVE	14,0	14,0 1,1	15,8 1,3	15,4	14,3	12,6	10,9	9;1	7,1	5,2	
Mastkälber	GVE.	2,4	2,4	1,3 2,7	1,2 2,6	1,1 2,4	1,0 2,1	0,9 1,8	0,7 1,5	0,6 1,2	0,4	
	/ha LN	1,05	1,05	1,05	2,0 1,02	2, 4 0,95	2, 1 0,84	0,72	0,61`	1,∠ 0,48	0,9 0,35	
Mineraldungerzukauf	kg N	766 kg	749 kg	632 kg	607 kg	603 kg	585 kg	588 ka	618 kg	652 kg	671 kg	
Erfolgsrechnung										002119	,	
Direktzahlungen 31b	Fr.	2 234	9 093	20 624	20 905	21 012	21 823	23 119	23 163	23 231	23 855	
Übrige Beiträge	Fr.	30 859	30 897	34 349	33 795	32 225	29 712	27 166	24 665	21 948	19 227	
Rohertrag inkl. Beiträge	Fr.	<u>97 099</u>	<u>95 509</u>	<u>95 232</u>	94 584	<u>92 555</u>	<u>88 958</u>	86 226	82 784	79 220		
Direktkosten	Fr.	,18 451	16 547	. 19 958	19 681	18 423	16 362	15 237	13 101	11 787	10 945	
Fremde Strukturkosten	Fr.	49 479	47 844	48 907	48,806	48 769	48 372	48 049	48 190	47 80 <u>0</u>		
Landw. Einkommen	Fr.	<u>29 169</u>	31 118	26 367	<u>26 097</u>		<u>24 224</u>	22:940	21 493	<u>19 633</u>	<u>17 113</u>	
Nebeneinkommen Gesamteinkommen	Fr. Er.	5 054 34 223	4 919 36 037	5 683 32 050	5 812 31 909	6 149 <u>31 513</u>	30 906	7 244 30 183	7 778 29 272	8'408	9 065 26 179	
4 :	Fr.	34 223	50_057	<u>52 050</u>					2 <u>9272</u> 2 778			
Einkommensverlust Pro kg eingespartes N	Fr./kg	. 1			140 3,16	537 6,04	1 144 8,58	1 866 10,50	2 778 12,51	4 009 15,04	5 871 18,88	
Ammoniak-Emissionen	- `				3,10	. 0,04	. 0,00	10,50	12,51	15,04	10,00	
,	kg N	375 kg	375 kg	416 kg	388 kg	343 kg	200 tra	055 km	240 km	405 lm	400 1	
Anteil Total	% %	22,1 %	22,1 %	21.9 %	21,1 %	20,1 %	299 kg 19,9 %	255 kg	- 19,3 %	. 165 kg . 19,3 %	120 kg 19,3.%	
an der Weide	%	2,8 %	2,8 %	2,8 %	2,9 %	2,9 %	2,9·%	2.9 %	2,9 %	2,9 %	2,9 %	
N-Aus- Stall	%	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	13,0 %	
<u>schei</u> - Lagerung	%	0%	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	0 %	
dung Anwendung	. %	6,2 %	6,2 %	6,0 %	5,2 %	4,2 %	4,1 %	3,7 %	3,4 %	3,4 %	3,4 %	
E	kg N	34 kg 409 ka	33 kg 408 kg	28 kg 444 kg	12 kg	12 kg	12 kg	12 kg	12 kg	13 kg	-	
	kg N	<u> +∩3 v0</u>	4∩o vâ	Kg	400 kg	355 kg	311 kg	<u>267 kg</u>	222 kg	<u>178 kg</u>	<u>133 kg</u>	
Massnahmen		-				· • • • • • • • • • • • • • • • • • • •	·	1 3 55 11	ىقى		g gar S	
Fütterung Kühe Anwendung Mist E	<u>. </u>	iten	,	1 %	1 % 14 %	1 % 63 %	1 % 68 %	1 % 83 %	1 % 99 %	1 % 100 %	1 %	
		iteri gungsmei	nge (f)	158	154	143	126	ຸວລຸ ‰ 109	99 % 91	71	100 % 52	
Weitere Massnahmen V					100 %	100 %	100 %	100 %	100 %	100 %	100 %	
	Abbau Tierbestand				2 %	9 %	20 %	31 %	42 %	55.%	67 %	

Tabelle C10. Mutterkuhnaltungsbetrieb mit Boxenlaufstall im Berggebiet (Betrieb B1)

Anzahl Betriebe 1994: 465 Anzahl Betriebe 2002: 413		199	94				200)2.			
Annahmen Betriebstyp		Konv.	IP	IP	Redul	tion der	Ammonia	ik-Emissi	onen (Ba	sis 2002)	um:
Landw. Nutzfläche (LN)	ha	14,00	14,00	15,77	10 %	20 %	30 %	~40 %	50 % ·	60 %	70 %
Max. Ackerfläche (AF)	ha	0,50	0,50	0,56				# *		٠	-1
Stallplätze Rindvieh	GVP	17,0	17,0	19,1		• · · · · · · · · · · · · · · · · · · ·).	•), · · ·	
Bodennutzung und Tie	<u>re</u>				. •	•	''	,			
Offene Ackerfl. (OA)	ha	0,50	0,50	0,56	0,51	0,51	0,51	0,51	0,51	0,51	0,51
Kunstwiesen (KW)	ha	. :	* 1		0,05	0,05	0;05	0,05	0;05	0,05	0,05
Naturwiesen int. (NW)	ha '	8,12	8,11	9,32	9,20	9,35	9,28	9,28	. 9,30	8,92	7,68
Naturwiesen ext. (NW)	ha	5,38	5,39	5,89	6,01	5,86	5,93 -	` 5,93	5,91	6,29	7,53
Kühe	GVE	10,3	10,3	11,6	11,6. 1	11,6	11,6	9,9	· 8,0	6,1	4,3
Aufzucht	GVE	0,8	0,8	0,9	0,9		0,9	0,8	0,6	0,5	0,3
Mastkälber	GVE	/1,8	1,8	2,0	2,0,	2,0	2,0	1,7	1,4	1,0	0,7
Tierbėsatz GVE	/ha LN	0,77	0,77	0,77	.0,77	.0,77	0,77	0,66	0,53	0,41	0;29
Mineraldüngerzukauf	kg N	129.kg	110 kg	129 kg	117 kg	67 kg	.86 kg	116 kg	169 kg	267 kg	264 kg
Erfolgsrechnung					•		,				
Direktzahlungen 31b	Fr.	3.472	6 685	15 338	15 425	:15'358.		15 387		15 549	15.343
Übrige Beiträge	Fr.	33 284	33 260	38 017	37 459		37 543	34 628		28 435	25 116
Rohertrag inkl. Beiträge	<u>Fr.</u>	61 643	<u>63.738</u>	72 402	<u>72 028</u>	<u>72 580</u>	<u>72 383</u>	<u>68 347</u>	<u>63 938</u>	<u>59 396</u>	<u>52 944</u>
Direktkosten	Fr.	4 284	4 108	`5 020	8 630		9 823	8 614	7 344	6 276	4 590
Fremde Strukturkosten	Fr.	43 803	43 641	46 367	42 953		43 615	43 546	43 353	43.222	42 309
Landw Einkommen	Fr.	<u>13 556</u>	<u>15 989</u>	<u>21 015</u>	20.444	<u>19 836</u>	<u>18 944</u>	<u>16 187</u>	<u>13 241</u>	9'899	6 045
Nebeneinkommen	.Fr	9 706	9 522	10 579	10 843	10 972	10 980		12 388	13 095	13 995
<u>Gesamteinkommen</u>	<u>Fr.</u>	23 262	. <u>25 511</u>	<u>31 594</u>	<u>31 287</u>	<u>30 809</u>	<u>29 924</u>	<u>27 856</u>	<u>25 629</u>	22 994	20.041
Einkommensverlust	Fr.			,	307	785	1 670		5 965	8.600	11 553
Pro kg eingespartes N	Fr./kg	,			9,49	12,14	17,21	28,89	36,88	44,31	51,03
Ammoniak-Emissioner	<u>í</u> .				,					i,	
Emissionen Tierhaltung	kg N.	282 kg	282.kg	318 kg		257 kg	225 kg	192 kg	158 kg		.92 kg
Anteil Total	<u>, %</u> .	22.5.%	<u>22,5 %</u>	22,5 %	21.3 %			<u>17.1 %</u>	17,4.%	17.9 <u>%</u>	<u>18,7 %</u>
<u>an der</u> Weide	%	2,4 %	2,1 %	2,4 %	2,5 %	2,5 %	2,5 %		2,5 %	2,5 %	2,5 %
N-Aus- Stall	%	8,8 %	8,8 %	8,8 %	8,9 %	8,9 %	8,9 %	8,9 %	8,9 %	8,9 %	8,9 %
schei- Lagerung	% .	1,6 %	1,6 %	1.6 %	1,6 %	1,7 %	1,6 %	1,8 %	2,2 %	2,9 %	4,1 % 3,2 %
<u>dung</u> Anwendung	%	9,8 %	9,8 %	9,8 %	8,3 %	6,4 %	4,0 %	3,9 %	3,8 %	3,6 % 5 kg	
Emissionen Min dünger		6 kg	5 kg	6 kg	4 kg	1 kg	2 kg 226 kg	2 kg 194 kg	3 kg , 162 kg	129 kg	5.kg 97 kg
Emissionen Total	<u>ķg N</u>	288 kg	287 kg	323 kg	291 kg	259 kg	220 Kg	194 Kg	102 Kg	125 KU	<u> 51 kg</u>
<u>Massnahmen</u>		·	<u>.</u>	(· · ·					· · · · · · · · · · · · · · · · · · ·		· . · · Letail ·
Fütterung Kühe	-		<u> </u>		4 %	6 %	6 %	6:%	6%	6.%	6 %
Lagerung Gülle offen						* 1	47 %	100 %	100 %	100 %.	100 %
		äcksel inung 1:2	Mintor					, ijog 70	100,10	7,00,70,	100, 70
Anwendung Gülle		nnung 1:2				100 %				•	
		niung 1.2 nnung 1:4			,	1100.00	100 %	100 %	100 %	100 %.	100 %
				•	1%	1%	1 %	1:%	1 %	2 %	2 %
,		inarbeiten oder Hacken chleppschlauch			1 - 1 - 1 - 1	3 %	1 %	1 %	1 %	1 %	2 %
		chleppschiauch chleppschuh				1 %	5 %	6 %	4 %	3 %	3 %
		chieppschun Gulledrill			1	1%,	1.%	1 %	1 %	2 %	2 %
1.		ullearill jektion			2%	1%	1 %	1 %	.1%	.1%	2 %
		ektion otal Ausbringtechnik			3.%	7%.	8 %	10 %	8 %	9 %	. 11 %
	٤	otal Ausbringtechnik usbringungsmenge (m³)			295	387	660	545	451		233
Weitere Massnahmen	Verzio	ht auf Har	nstoff	295`	24 %.	100 %	100 %	100 %	100 %	100 %	100 %
Trenerie macerialmen		i Tierbesta		.}	A	a a my sy'nisi e s	· . · · · · .	15 %	31 %	48`%	63.%
ii .			2.4	I	.i		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·		

Tabelle C11. Rindviehmastbetrieb mit Spaltenboden im Talgebiet (Betrieb T2)

			' .		. 1			'		, ,
Anzahl Betriebe 1994: 850 Anzahl Betriebe 2002: 755	19	994				. 20	002	7 0		
Annahmen Betriebstyp	Konv.	IP	IP	Redu	ktion de	Ammon	iak-Emiss	sionen (B	asis 2002	2) ùm:
Landw. Nutzfläche (LN) ha	19,00	19,00	21,41	10 %	20 %	30 %		50 %	60 %	70 %
Max. Ackerfläche (AF) ha	18,00	18,00	20,28		-	٠	1	. *		
Stallplätze Rindvieh GVP	34,22	34,22	37,37	.,				,		
Mastleistung Rindvieh g/Tag	1184	1184	1222			1 1			,	
Bodennutzung und Tiere								•, •,		· · · · · · · · · · · · · · · · · ·
Offene Ackerfl. (OA) ha	18,00	17,78	14,82	14,78	14,76	17,70	17,70	14,99	14,99	17,70
Kunstwiesen (KW) ha		0,22			,	1-1			,	,. +
Naturwiesen int. (NW) ha	0,79	0,10	0,17	0,21	0,22	•				
Naturwiesen ext. (NW) ha	0,21	0,90	6,42	6,42	6,42	3,71	3,71	6,42	6,42	3,71
Mastvieh GVE		20,0	21,9	21,7	21,7	20,6	18,4	16;0	12,4	9;6
Tierbesatz GVE/ha LN		1,05	1,02	1,01	1,01	0,96	0,86	0,75	0,58	0,45
Mineraldungerzukauf kg N	1417 kg	1289 kg	395 kg	323 kg	258 kg	475 kg	530 kg	417 kg	489 kg	806 kg
Erfolgsrechnung	'				7.	,				
Direktzahlungen 31b Fr.	207	14 101	38.340	38 745	38 828	39 248	39 325	40 062	41 506	40 324
Übrige Beiträge Fr.	12 617	1	14 458	14 468	14 473	13 623	13 623	14 408	14 408	13 623
Rohertrag inkl. Beiträge Fr.	<u>231 348</u>				<u>170 152</u>		<u>159 345</u>	145 996	135 253	130 075
Direktkosten Fr.	65 168	. ,	51 244	50 478		51 257	43 024	36,089	32 779	
Fremde Strukturkosten Fr.	96 457			86 452	87 459	89:939	88 081	85 881	82 527	82 417
Landw. Einkommen Fr. Nebeneinkommen Fr.	69 722 3 939	69 108 4 343	33 914 5 993			•	<u>28 239</u>	24 026	<u>19 947</u>	
Gesamteinkommen Fr.	73 662	73 451	39 907	6 061 39 416	6 062 38 400	6 062 37 064	6 721 <u>34 961</u>	7 629 31 655	8 584	
1 .	1. 70 002	13431	23 301		,		-		<u>28 531</u>	
Einkommensverlust Fr. Pro kg eingespartes N Fr./kg				6,39	9,80	2 844 12,32	4 947,		11 376	14 406
Ammoniak-Emissionen				. 0,39	9,00	12,34	16,08	21,46	24,65	26,76
	0001			المتعقب						
Emissionen Tierhaltung kg/N Anteil Total <u>%</u>	689 kg 38,6 %	689 kg 38,6 %	752 kg 38,5 %	686 kg	610 kg	529 kg	451 kg	376 kg		215 kg
an der Weide %	0.%	0 %	0 %	35.5 % 0 %	31.6 % 0 %	28,7 %.	<u>28,2 %</u> 0 %	28.4 % 0 %	29,4 % 0 %	26,9 <u>%</u> 0 %
N-Aus- Stall %	15,4 %	15,4 %	15,4 %	15,4 %	15,4 %	15,4 %	15,6 %	15,9 %.	,	15,9 %
schei- Lagerung %	1,8 %	1,8 %	1,7 %	1,7 %	1,7 %	1,8 %	2,0 %	2,5 %	3,2 %	3,7 %
dung Anwendung %	21,4 %	21,4 %	21,4 %	18,4 %	14,5 %	11,6 %	10,6 %	10,0′%	10,1 %	7,3 %
Emissionen Min.dünger kg N	62 kg	57 kg.	17 kg	6 kg	5 kg	9 kg	11 kg	8 kg	10, kg	16 kg
Emissionen Total kg N	751 kg	746 kg	769 kg	692 kg	615 kg	<u>538 kg</u>	461 kg	385 kg	<u>308 kg</u>	231 kg
<u>Massnahmen</u>		` :				•		· · .		
Fütterung Mastvieh			, .	: :			2 %	6:%	8 %.	6 %
Lagerung Gülle offen Holzak	. •	,				•	, .,			
	äcksel	Allmair					. '			100 % ,
	nung 1:2 \ nung 1:2 \			, . · · · · · · · · · · · · · · · · · ·	100.07	•			,	
			. '		100/%	100%	100 %	100 %		,
	Verdünnung 1:4 Sommer Einarbeiten oder Hacken			9%	8 %	5.%	6%	9%	15%	16 %
	Schleppschlauch			7%	14 %	4%	4 %	17.%	22 %	17 %
	chleppschuh			e dan igad noba dan	1 %	in an sindi de see	الدينسانداندانية باختسم. غ	4 %	28 %	48,%
i e	ülledrill			e same sansangaya a nagayar ka a s san		an constitue someone	m tyr ngamenes zm		,	
	njektion Cotal Ausbringtochnik			9 %	5%,	4%	4 %	5.%	15 %	19 %
	Fotal Ausbringtechnik			25.%	29 %	13 %	14 %	36 %	80 %	100 %
	Ausbringungsmenge (m³)			872 100 %	1145 100 %	1681 100 %	1529 100 %	1036 100 %	501. 100 %	387 100 %
	Verzicht auf Harnstoff Abbau Tierbestand			(1141) 70	1111 70		a U.U.57/0	111111111111111111111111111111111111111	1 1 11 11 YA'	11111 70
			٠ ا		T.T. Mill.	6%	16 %	27 %	43 %	56 %

Tabelle C12. Milchvieh-/Rindviehmastbetrieb im Talgebiet (Betrieb T7)

[A		· · · · · · · · · · · · · · · · · · ·				· · ·	•		<u> </u>		•
Anzahl Betriebe 1994: 9000 Anzahl Betriebe 2002: 7989		199	94			, ,	·)2		· · · · · · · · · · · · · · · · · · ·	
Annahmen Betriebstyp	,	Kony.	IP	IP.	Reduk	tion der	47.		onen (Ba		. B.
Landw. Nutzfläche (LN) Max. Ackerfläche (AF) Milchkontingent Stallplätze Rindvieh	ha ha kg GVP	20,00 10,00 106 000 35,38	20,00 10,00 106 000 35,38	22,53 11,26 119 408 36,96	10 %	20 %	30 %	40 %	50 %	60 %	70 %
	kg/J. g/Tag	5 577 1 184	5 577 1 184	6 185 1 222	٠, ,				-		
Bodennutzung und Tier	e				-				, .		
	ha ha ha ha	9,25 0,75 10,00	9,27 0,73 9,00 1,00	6,50 8,61 7,42	6,73 0,65 7,74 7,42	7,25 8,56 6,72	7,28 8,53 6,72	7,94 0,44 7,33 6,82	8,51 1,82 5,06 7,14	9,58 1,68 3,95 7,32	10,99 4,05 7,49
Kühe Aufzucht Mastvieh	GVE GVE GVE ha LN	19,9 5,6 3,9 1,47	19,9 5,6 3,9 1,47	20,2 5,9 4,1 1,34	20,2 5,9 4,0 1,34	19,6 5,8 1,13	19,6 5,8 1,13	19,1 5,6 1,10	17,4 5,1 1,00	15,2 4,4 0,87	12,2 3,6 0,70
Mineraldüngerzukauf	kg N	1018 kg	1010 kg	400 kg	341 kg	441 kg	381 kg	397 kg	402 kg	530 kg	712 kg
Erfolgsrechnung	ζ,	1	•			. ;				, ,	,
Direktzahlungen 31b Übrige Beiträge Rohertrag inkl. Beiträge Direktkosten Fremde Strukturkosten Landw. Einkommen Nebeneinkommen	Fr. Fr. Fr. Fr. Fr. Fr.	0 15 086 <u>223 869</u> 39 415 109 538 <u>74 916</u> 2 255	11 087 16 009 220 503 37 313 108 162 75 028 2 399	38 809 96 836 <u>54 809</u> 3 662	38 666 97 759 <u>54 190</u> 3 696	164 447 25 424 87 110 51 913 5 406	25 397 87 701 <u>51 160</u> 5 411	31 106 17 202 164 871 26 575 89 085 49 211 5 780	26 247 89 864 45 434 6 824	155 952 25 939 90 008 40 005 8 210	25 605 89 811 <u>33 128</u> 10 021
Gesamteinkommen Einkommensverlust	<u>Fr.</u> Fr.	<u>77 170</u>	<u>77 427</u>	<u>58 471</u>	<u>57 887</u> 585	57 319 1 152	1 900	54 991 3 480	<u>52 258</u> 6 214	48 215 10 257	<u>43 149</u> 15 323
Pro kg eingespartes N	Fr _. /kg	,			6,20	6,10	6,71	9,22	13,16	18,11	23,19
Ammoniak-Emissionen	1										•
Emissionen Tierhaltung Anteil Total an der Weide N-Aus- Stall schei- Lagerung dung Anwendung Emissionen Min dünger Emissionen Total	kg N % % % % kg N kg N	933 kg 29,6 % 0,7 % 7,1 % 3,5 % 18,3 % 45 kg 978 kg	915 kg 29.5 % 0,7 % 7,2 % 3,5 % 18,2 % 45 kg 959 kg	926 kg 29,0 % 0,7 % 7,3 % 3,4 % 17,6 % 18 kg 944 kg	842 kg 26.5 % 0,7 % 7,2 % 3,4 % 15,0 % 7 kg 850 kg		653 kg 24,0 % 0,8 % 6,3 % 3,9 % 13,0 % 8 kg 661 kg	0,8 % 6,3 % 3,9 % 10,3 % 8 kg	464 kg 19,9 % 0,8 % 6,4 % 4,1 % 8,6 % 8 kg 472 kg	0,8 % 6,6 % 4,1 % 7,8 % 11 kg	269 kg 18.5 % 0,9 % 6,8 % 4,5 % 6,3 % 14 kg 283 kg
Massnahmen						. /1	,	- 1			
Fütterung Kühe	/Mast	deckupa	2 % 1 %	6%	6 % 1 %	7% 3%	7 % 3 %	9 % 4 %	11 % 4 %	19 % 3 %	24 % 3 %
		näcksel		· `	_,	- 11		<u>.</u> ,		100:%	100 %
	Verdü	nnung 1:2 nnung 1:2	Sommer		,	,	4	100 %	1400 82	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	;
	Einark	nnung 1:4 beiten ode	r Hacken		9%		11 % 17 %	11 % 7 %	100 % 10 % 7 %	100 % 8 % 10 %	23 %
	Schle	ppschlauc ppschuh Irill		,	8.%	9%	2%	26 %	21 % 7 %	23 % 10 %	63 % 2 % 12 %
	Total Ausbr	Ausbringte ingungsm		829	21 % 828	9 % 649	42 % 649	51 % 760	46 % 855	50 % 731	99 % 403
	Einarl Ausbr	oeiten ingungsm	enge (t)	192	57 % 192	187	59 % 187	60 % 182	66 ⁻ % 166	76 % 145	94 ¹ % 116
Weitere Massnahmen		cht auf Ha u Tierbest			95 %	16 %	100 % 16 %	100 %. 18 %	100 % 25 %	100 % 35 %	100 % 48 %

Tabelle C13. Milchvieh-/Schweinehaltungsbetrieb im Berggebiet (Betrieb B8)

		<u></u> .		- "			_				
Anzahl Betriebe 1994: 740 Anzahl Betriebe 2002: 656		19	94			- ,	20	002	-		
Annahmen Betriebst	γp	Konv.	.IP	ΙP	Redu	ıktion de	Ammon	iak-Emis	sionen (B	asis 2002) um:
Landw. Nutzfläche (LN		14,00	14,00	15,77	10 %	20′%	30 %	40 %	50 %	60 %	
Max. Ackerfläche (AF		2,50	2,50	2,82	<u> </u>				, , , ,		3
Milchkontingent Stallplätze Rindvieh	kg GVP	45 000 19,41	45 000	50 692			•	•	` .` -	•	
Schweinemastplätze .	SMP	11,8	19,41 11,8	20,29 12,8			-		•		*
Schweinezuchtplätze	SZP	2,8	2,8	3,1			• .				
Bodennutzung und T				-1:	+				• • • • •	• • • • • • • • • • • • • • • • • • • •	
Offene Ackerfl. (OA		2.50	2.50	0.54	0.50	مذمد	, a) 4 à				
Kunstwiesen (KW		2,50	2,50	2,54 0,28	2,53 0,29	2,49	2,49	2,46	2,57	2;57	
Naturwiesen int. (NW		8,57	8,76	7,12	7,12	7,14	. 0,33 7,08	0,36 6,87	0,25 6,25	0,25 5,62	
Naturwiesen.ext. (NW		2,94	2,75	5,83	5,83	5,81	5,87	6,08	6,70	7,33	
Kühe	GVE	9,4	9,4	9,4	9,4	9,4	9,2	8,2	6,3	4,9	
Aufzucht	, ĠVE	3,5	3,5	2,7	2,7	2,7	2,6	2,3	1,8	1,4	
Mastschweine	GVE	2,0	2,0	2,2`	2,2	2,2	2,2		2,2	1,5	
Zuchtschweine	GVE	1,7	1,7	1,8	1,8	1,8	1,8	1,8	1,8	1,8	٠.
1	E/ha LN	1,19	1,19	1,02	1,02	1,02	1,00	0,92	0,77	0,61	· /
Mineraldüngerzukauf	kg N	202 kg	163 kg	144 kg	111 kg	83 kg	99 kg	114 kg	196 kg	250 kg	
Erfolgsrechnung				** \	1			,			• • • • •
Direktzahlungen 31b	Fr.	2 056	6 896	16 787	16 776	. 16 736	16 767	16 833	17 201	17 480	
Übrige Beiträge	Fr.	21 454	21 779	23 299		23 313	23 187		21 747	20 969	
Rohertrag inkl. Beiträge	<u>Fr.</u>	<u>121 036</u>	120 517	109 885	109 847		110 761	106 926		90 612	
Direktkosten	Fr.	21,443	19 691	18 595	18 553	18 507	20 261	20.180		15 294	٠,
Fremde Strukturkosten		74 782	74.680	. 73 919	74 112		74 713	74 512	74 214	73 785	
Landw. Einkommen	<u>Fr.</u>	<u>24 811</u>	<u>26 146</u>	<u>17 370</u>	17 182	<u>16 804</u>		<u>12 234</u>	<u>6 946</u>	<u>1 532</u>	•
Nebeneinkommen Gesamteinkommen	Fr.	10,811	10 546	13,487	13 488	13 489		14 667	16 263.	17 674	•
Gesamteinkommen	, <u>Er</u>	<u>35 623</u>	<u>36 693</u>	<u>30 858</u>	i	<u>30 293</u>	<u>29 593</u>	V	<u>23 209</u>	<u>19/207</u>	
Einkommensverlust	Fr.			٠.	188	565		3.957	7 649		. , .
Pro kg eingespartes N					3,81	5,74	8,56	20,10	31,09	39,46	
Ammoniak-Emissione			, ,				•	•			,
Emissionen Tierhaltung Anteil Total		516 kg	520 kg	486 kg		391 kg	342 kg	293 kg	242 kg	192 kg	• • • • •
<u>an der</u> Weide	<u>%</u>	30,8 %	30.8 %	30.7 %	27.9 %	24,9 %	22.9 %	<u>22.6 %</u>	<u>23.1 %</u>	<u>23,3 %</u>	٠.
N-Aus- Stall	% %	0,9 [,] % 7,6 %	0,9 % 7,5 %	0,9 % 8,0 %	′′0,8 %	0,8 %	0,9 %	0,8.%	0,8 %	0,8 %	
schei-, Lagerung	%	3,6 %	3,6 %	8,0 % 3,7 %	8,0 % 3,7 %	8,0 % 3,7 %	7,5 % 3,6 %	7,9 % 3,6 %	8,2 % 3,9 %	8,3 % 4,5 %	, ,
dung Anwendung		18,7 %	18,8 %	18,1 %	15,3 %	12,3 %	10,9 %	10,3 %	10,2 %	4,5.% 9,7 %	٠
Emissionen Min.dünge		9 kg	7 kg	6 kg.	3 kg	3 kg.	2 kg	2 kg	4 kg	9,7 % 5 kg	,
Emissionen Total	kg N	<u>525′kg</u>	<u>527 kg</u>	492 kg	443 kg	394 kg	344 kg	295 kg	246 kg		
<u>Massnahmen</u>					, , , ,	•	, ,	*	, , , , ,		,
Fütterung Küh		1 %1		5.%	5%	6 %	11%	14 %	15 %	15 %	
Auf	žucht 🔧		1%	5 %	5%	5 %	3.%	9 %	10 %	10.%	
	weine	`		10/%	10 %	10 %	10%	20 %	20 %	20.%	
Stall Mastschweine		ersystem	aent .		•	, ,			ىدىن ئىلىدىد ئىلاسىدى	ر بد سیمومور پر ده	
Stall Züchtschweine		rme Zulu rme Zulu					100%	100%	100%	100%	
Lagerung Gülle offen	Holzab		inaniaji <u>a</u>		,	 /	100%	100% 29 %	100% 29 %	100% 29 %	· · ·
	Stronha		, '	, 3 t	, ·	:	29 %	71,%	71 %	71 %	
Anwendung Gülle	Verdün	nung:1:2 \		, ,			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		nung 1:2		w. * *	100%	andmore want	, ,	mulde ee	* * * * * * * * * * * * * * * * * * *		
N		nung 1:4			run grunnen i	100 %	100 %	100 %		100 %	
ľ.		iten oder oschlauch			1%	1%	1 %	1 %	1 %	1 %	
4 -	Schlep				4 %	2.%.\	6 %	6 %	8 %	2 % 8 %	
	Gülledr		. [•			1.%	1 %	1%	1%	. '
	Injektio	n		,	1.%	1%	1 %	1.%	1%	1.%	
	Total A	tal Ausbringtechnik			6 %	4 %	8 %	9`%	11%.	14 %	1
		Ausbringungsmenge (m³)			487	763.	823	·754	604_	469	
Anwendung Mişt	g Mist Einarbeiten				3	18 %	18 %	20 %	26 %	34 %	,
Weitere Massachman		gungsme		87	87	87	85	76	58	45	
Weitere Massnahmen		t auf Harr Tierbestar			62 %	52 %	100 %	100 %	100,% 25 %	100 %	
بنب بنب	, whan	· icinesidi	14			5.3	2 %	9:%	20 %	40 %.	· · · ·

Frühere Nummern der Schriftenreihe der FAT

Jahr -	Nr.	Verfasser	Titel
1983	18	Fankhauser J. und Moser A.	Studie über die Eignung von Biogas als Treibstoff für Landwirtschaftstraktoren.
1984	20	Kaufmann R.	Integration von Biogasanlagen in den Landwirtschaftsbetrieb.
1985	23	Wellinger A. et al.	Biogasproduktion und -verbrauch.
.1985	27	Fankhauser J. et al.	Erfahrungen mit Biogas als Treibstoff für Landwirtschaftstraktoren.
1987	28	Jakob P.	Schweinemast im nichtwärmegedämmten Offenfrontstall auf Tiefstreue.
1987	29	Nosal D. und Steiner Th.	Flüssigmistsysteme: Funktion und Schadgaswerte.
1987	30	Steiner Th. und Leimbacher K.	Ziegenhaltung in der Schweiz. Eine Praxiserhebung.
1988	31	Jakob P. et al.	Die Benützung des Liegebereiches im Boxenlaufstall durch Milchkühe.
1988	. 32	Gloor P.	Die Beurteilung der Brustgurtanbindehaltung für leere und tragende Sauen auf ihre Tiergerechtheit unter Verwendung der "Methode Ekesbo" sowie ethologischer Parameter.
1990	33	Mühlebach J, und Näf E.	Die Wettbewerbsfähigkeit des biologischen Landbaus.
1991	34	Götz M. et al.	Mastschweine auf Teilspaltenboden.
1992	35	Minonzio, G. et al.	Der Tretmiststall.
1992	36 ·	Rossier R.	Schweizer Bäuerinnen - Ihre Arbeit im Betrieb.
1992	37	Oswald Th.	Der Kuhtrainer.
1994	.38	Ott A. (Redaktion)	Landwirtschaftliche Forschung zwischen Technik, Ökonomie und Ökologie.
1995	39	Schick M.	Arbeitswirtschaftliche Einordnung zeitgemässer Haltungssysteme für Mastkälber.
- 1995	40	Götz M.	Sauen in Gruppen während der Geburt und Säugezeit.
1996	41	Meier B.	Vergleich landwirtschaftlicher Buchhaltungsdaten der Schweiz und der EU - Methodische Grundlagen.
1996	42	Rossier R.	Arbeitszeitaufwand im bäuerlichen Haushalt.
1996	43	Malitius O.	Die Entwicklung landwirtschaftlicher Betriebe im Talgebiet der Schweiz.

Schriftenreihe der Eidg. Forschungsanstalt für Agrarwirtschaft und Landtechnik

Comptes-rendus de la Station fédérale de recherches en économie et technologie agricoles

CH-8356 Tänikon TG

Ammoniak-Emissionen entstehen in der Landwirtschaft überall dort, wo Hofdünger oder stickstoffhaltige Handelsdünger mit der Luft in Kontakt kommen. Zusammen mit Stickstoff-Emissionen aus anderen Quellen führen sie heute zu problematischen Stickstoff-Depositionen in empfindlichen Ökosystemen wie Wäldern, Mooren oder Magerwiesen. Mit Hilfe der Linearen Programmierung wurden Massnahmenvorschläge zur Reduktion der Ammoniak-Emissionen betriebswirtschaftlich beurteilt.

Unter den angenommenen agrarpolitischen Rahmenbedingungen und Leistungssteigerungen der Nutztiere sinken die gesamtschweizerischen Ammoniak-Emissionen zwischen 1994 und 2002 bereits ohne spezielle Massnahmen um zehn Prozent. Eine weitere Reduktion um maximal fünf Prozent kann ohne Einkommensverluste durch eine vermehrte Beachtung der Witterungsverhältnisse bei der Hofdüngeranwendung erreicht werden. Geringe Einkommensverluste verursachen Fütterungsmassnahmen, emissionsarme Verfahren der Hofdüngeranwendung sowie ein Ersatz der Harnstoffdünger. Ab einer Reduktion um 40 Prozent steigen die Verluste auf über 150 Mio. Franken pro Jahr an, wobei Investitionen im Stall- und Güllelagerungsbereich sowie Reduktionen der Tierbestände notwendig werden.