

Juillet 1992 / 248 W

Station de recherches laitières CH-3097 Liebefeld-Berne

Application de méthodes d'analyse statistique univariée et multivariée à l'étude parallèle de critères chimiques, biochimiques, rhéologiques, microbiologiques et sensoriels du fromage d'emmental au moment de sa taxation

Etude pluridisciplinaire effectuée avec la participation (citée dans l'ordre alphabétique) de:

Dr Jacques Olivier Bosset (responsable de la planification des essais, de l'analyse des composés volatils, de la mesure de la couleur, de l'évaluation des résultats et de la rédaction finale du présent rapport)

Ulrich Bütikofer (assistance technique lors de la mise au net des tableaux)

Dr Marius Collomb (responsable des analyses de l'eau, de la matière grasse, du sel, des fractions azotées et des acides gras volatils)

Dr Pius Eberhard (responsable des analyses rhéologiques),

Roland Gauch (assistance technique pour l'analyse des composés volatils et les mesures de la couleur, ainsi que pour la mise au net des figures)

Marius Grand (responsable des analyses bactériologiques),

Dr Pierre Lavanchy (coresponsable de la planification des essais, responsable de l'analyse des acides aminés libres, des amines biogènes et des peptides ainsi que des analyses sensorielles gustative),

Bruno Nick (responsable de l'analyse de l'acide lactique),

Dr Peter Rüst (assistance scientifique pour la préparation des fichiers en vue du traitement électronique des données),

avec le concours externe de:

Erwin Kaufmann (Union suisse du commerce de fromage SA, Berne: responsable du choix des échantillons ainsi que des analyses sensorielle tactile et visuelle)

Dr Ulrich Kreuter (Consult AG, Liebefeld-Berne: assistance scientifique pour la planification des essais et l'évaluation statistique des résultats)

Application de méthodes d'analyse statistique univariée et multivariée à l'étude parallèle de critères chimiques, biochimiques, rhéologiques, microbiologiques et sensoriels du fromage d'emmental au moment de sa taxation

INTRODUCTION

Au nombre des critères de qualité considérés pour la taxation, il faut citer la saveur et l'odeur du fromage, propriétés organoleptiques regroupées sous le terme générique de flaveur. Celle-ci est elle-même étroitement associée aux propriétés de texture, de structure, de consistance et d'ouverture de la pâte, qui en déterminent à leur tour les caractéristiques rhéologiques d'élasticité, de viscosité et de plasticité. Depuis des décennies, d'innombrables travaux ont déjà été consacrés, tant à la Station fédérale de recherches laitières qu'à l'étranger, à l'étude de la flaveur du fromage, de l'emmental en particulier. Jusqu'ici, la plupart d'entre eux traitaient soit d'analyses dites instrumentales, soit d'analyses sensorielles, mais rarement des relations existant entre ces divers types d'analyses.

L'objectif du présent travail est de tenter une approche pluridisciplinaire de ce domaine en appliquant des méthodes d'analyse statistique multivariée à l'étude parallèle de critères chimiques, biochimiques, rhéologiques, microbiologiques et sensoriels du fromage d'emmental au moment de sa taxation. Une telle étude est d'autant plus actuelle que cette sorte de fromage fait l'objet de critiques toujours plus fréquentes en raison de son manque de flaveur.

PARTIE EXPERIMENTALE

CHOIX, PRELEVEMENT ET TRAITEMENT DES ECHANTILLONS

50 meules d'emmental suisse de première qualité ont été sélectionnées par l'Union suisse du commerce de fromage SA (USF) au moment de leur taxation. Ces meules provenaient de divers affineurs. Vu leur âge de 16 +/- 4 semaines, ces meules doivent pourtant être considérées comme trop jeunes pour la consommation (âge idéal min. 6 mois). Cette sélection a été effectuée sur des fabrications échelonnées entre le début

de mai et la mi-novembre, soit sur une période de près de 6 mois correspondant au régime vert (herbe) et au début du régime sec (foin). Les critères de sélection de ces 5 meules choisies 10 fois de suite à 15 jours d'intervalle (soit 50 meules au total) étaient, dans la mesure du possible, les suivants:

- 1 à 2 (très) bons fromages;
- 3 à 4 fromages présentant quelques défauts légers, aussi caractéristiques que possible (cf. descripteurs sous Analyses sensorielles).

Les meules ont été découpées selon le schéma de la figure 1, afin d'éviter l'influence du talon. La partie représentative du centre a été découpée en parallélépipèdes rectangles (B, C, S, T et Z). Les blocs ainsi obtenus ont été livrés entiers ou râpés, avec ou sans la partie extérieure R (croûte comprise), selon les directives de chaque laboratoire. Toutes les analyses (sensorielles et instrumentales) ont été effectuées sur des échantillons frais, à l'exception de celle par chromatographie gaz/liquide (GC) des composants volatils, pour laquelle les échantillons ont dû préalablement être congelés.

Le **tableau 1** indique l'origine, la date de fabrication et l'âge des meules sélectionnées pour ce travail.

METHODES D'ANALYSE

Les méthodes d'analyse utilisées appartiennent aux deux grands groupes suivants: les **méthodes sensorielles** et les **méthodes instrumentales**.

ANALYSES SENSORIELLES

Analyse gustative

L'analyse sensorielle gustative a été effectuée par un jury mixte entraîné, composé - selon les disponibilités du moment - de 9 à 21 dégustateurs et dégustatrices et d'un taxateur professionnel. Ce dernier était en outre responsable de la sélection des meules par l'USF. Cette analyse a été effectuée sur la base des 3 critères d'appréciation de qualité, de développement de la flaveur et de caractère typique, notés chacun sur une échelle à 5 points, soit respectivement:

- de défaut marqué (note 1) à sans défaut (note 5) pour la qualité;
- de fade (note 1) à piquant (note 5) pour le développement de la flaveur;
- de altéré (note 1) à très typique (note 5) pour le caractère typique du fromage.

En outre, il a été demandé aux dégustateurs de **caractériser**, dans la mesure du possible, **le(s) défaut(s) de goût perçu(s)** à l'aide des termes suivants: *normal*, *doucereux*, *goût de cuit*, *fade*, *amer*, *acide*, *âcre-piquant*, *rance* et *impur*. En fin d'étude, les notes suivantes (échelle à 5 points) ont été attribuées aux vocables effectivement utilisés par les dégustateurs, soit en fonction de la gravité des défauts perçus: *divers* = note 1, *impur* = note 2, *oxydé* = note 3, *amer* = note 4 et *normal* = note 5.

Analyse visuelle

L'analyse sensorielle visuelle a été effectuée uniquement par le taxateur professionnel de l'USF sur la base du critère **ouverture**, noté sur une échelle à 5 points également, s'étendant de *grave défaut* (note 1) à *sans défaut* (note 5). Une photographie en couleur d'une coupe verticale de chaque meule a permis en outre de documenter cette analyse.

Analyse tactile

L'analyse sensorielle tactile a été effectuée uniquement par le taxateur professionnel de l'USF sur la base des 2 critères d'appréciation de **consistance** et de **structure / texture** de la pâte, notés à nouveau sur des échelles à 5 points, soit respectivement:

- de pâte longue (note 1) à courte (note 5) pour la consistance;
- de pâte dure (note 1) à molle/fine (note 5) pour la structure / texture.

On a choisi la température de 15 °C pour toutes les analyses sensorielles afin de permettre une comparaison avec les déterminations rhéologiques instrumentales effectuées à la même température.

ANALYSES INSTRUMENTALES

Dosage de l'eau

La teneur en eau a été déterminée par gravimétrie après séchage à l'étuve pendant 4 heures à 102 °C, d'après le Manuel suisse des denrées alimentaires (01). Les résultats des dosages de l'eau ont été normés par rapport à la matière sèche dégraissée et exprimés en eau dans l'extrait sec dégraissé (EESD).

Dosage de la matière grasse

La teneur en matière grasse (MG) a été déterminée par butyrométrie selon GERBER - van GULIK, d'après le Manuel suisse des denrées alimentaires (02). Les résultats des dosages de la matière grasse ont été normés par rapport à la matière sèche et exprimés en graisse dans l'extrait sec (GdES).

Dosage du chlorure

La teneur en chlorure de sodium (sel) a été déterminée par un titrage argentométrique à l'aide d'une électrode d'argent, d'après une norme FIL/IDF (03).

Dosage de l'azote total

La teneur en protéines a été déterminée sous la forme d'azote total (TN) selon **KJELDAHL** (04).

Dosage de l'azote soluble dans l'eau

La fraction correspondant à l'azote soluble dans l'eau (WLN) a été déterminée d'après COLLOMB et al. (04). On a procédé successivement à la mise en solution mécanique de ladite fraction protéique hydrosoluble (sans ajustement du pH), à sa clarification par centrifugation, à sa minéralisation puis à son analyse selon KJELDAHL comme indiquée précédemment. Les résultats de ces dosages ont été normés en pour-cent de

ceux en TN et exprimés en WLN % (WLNP).

Dosage de l'azote non protéique

La fraction correspondant à l'azote non protéique (NPN), qui contient de l'ammoniaque, de l'urée, des peptides non précipitables et des acides aminés libres, a également été déterminée d'après COLLOMB et al. (04). On a effectué successivement une défécation du précédent extrait (cf. WLN) en milieu trichloroacétique à 12 %, une décantation pendant une nuit, une filtration, une minéralisation et une analyse à nouveau selon KJELDAHL. Les résultats des dosages ont été normés en pour-cent de ceux en WLN et exprimés en NPN % (NPNP).

Dosage de l'ion ammonium

La teneur en ions ammonium (NH3) a été dosée par la méthode photométrique selon MROWETZ (05). Après dispersion du fromage dans de l'eau, défécation des protéines et de la matière grasse à l'aide de sulfate de zinc et filtration, la concentration du filtrat en cet ion a été révélée par le réactif de Nessler et mesurée photométriquement à 425 nm.

Dosage des amines biogènes

Le dosage des amines biogènes histamine, tyramine et 2-phényléthylamine a été effectué selon LAVANCHY et al. (06). Les amines ont été préalablement extraites en milieu trichloroacétique sous la forme d'ions ammonium, en présence d'un standard interne (4-azaheptaméthylènediamine). Une centrifugation suivie d'une ultracentrifugation puis d'une filtration sur membrane (Millipore) a éliminé les composants insolubles, de haut poids moléculaire. Un clean-up ultérieur sur colonne d'aminopropyl-NH2 a encore permis d'éliminer la plus grande partie des acides aminés libres présents dans le filtrat. La séparation chromatographique des amines biogènes d'avec les acides aminés libres résiduels a alors été effectuée sur colonne échangeuse d'ions à l'aide de 2 solutions tampons (citrate de sodium à 1,2 et à 2,8 mol/l, pH = 5.65) comme éluants. La dérivatisation post column à la ninhydrine selon STEIN et MOORE a rendu possible la détection et l'intégration électronique, à l'aide d'un système Nelson, des pics mesurés à 570 nm.

Dosage des acides aminés libres

Les acides aminés (AA) libres suivants ont été analysés: la phosphosérine (pser), l'acide aspartique (asp), la thréonine (thr), la sérine (ser), l'acide glutamique (glu), la glutamine (gln), la proline (pro), la glycine (gly), l'alanine (ala), la citrulline (cit), la valine (val), la méthionine (met), l'isoleucine (ile), la leucine (leu), la tyrosine (tyr), la phénylalanine (phe), l'ornithine (orn), la lysine (lys), l'histidine (his) ainsi que la somme de ces acides aminés (AAT). Leur dosage a été effectué d'après une méthode déjà décrite (07) pour le yoghourt nature, à quelques détails près :

- partie aliquote initiale de 5 g de fromage râpé (au lieu de 20 g pour le yoghourt);
- extraction des acides aminés libres effectuée sur une partie aliquote de 50 mg de poudre de fromage lyophilisé (au lieu de 1 g pour le yoghourt lyophilisé);
- pas d'ultrafiltration finale pour éliminer les protéines et polypeptides résiduels (il y en avait une pour le yoghourt).

Dosage des peptides

Le solde de la solution susmentionnée contenant le WLN a été lyophilisé et stocké. 100 mg de ce lyophilisat ont ensuite été redissous dans 1 ml d'eau milli-Q et filtrés sur acrodisc de 0,45 µm de porosité. La séparation chromatographique des peptides a été effectuée à l'aide d'un Spectra Physics SP8000B dans les conditions suivantes:

Volume injecté: 25 µl

Colonne de séparation: Aquapore RP 300 (4,6 x 250 mm, 10 µm) de Brownlee, art no C03-10A

Eluant à 2 composants: A = solution aqueuse d'acide trifluoroacétique à 5 mmol/l contenant 20 % d'acétonitrile et B = acétonitrile pur (Lichrosolv de Merck)

 Gradient:
 Temps (min)
 % de A
 % de B

 0,0
 90
 10

 0,1-15,0
 65
 35

Température:

35 °C

Débit:

1,0 ml/min

Détection:

à 210 nm

La figure 2 présente un chromatogramme typique des séparations de peptides obtenues. Un seul pic, indiqué par une flèche, s'est avéré significatif pour l'analyse statistique.

Dosage des acides gras volatils

Le dosage des acides gras volatils formique (C1), acétique (C2), propionique (C3), iso-butyrique (i-C4) et n-butyrique (n-C4), isovalérique (i-C5), iso-caproïque (i-C6) et n-caproïque (n-C6) a été effectué selon le Manuel suisse des denrées alimentaires (08). Après entraînement à la vapeur d'eau à ébullition, la somme des acides gras volatils (AGVT) a été titrée avec une solution d'hydroxyde de sodium jusqu'au point de virage de la phénolphtaléine. La composition du mélange d'AGV a ensuite été déterminée par chromatographie gaz/liquide avec détection catharométrique.

Dosage de l'acide lactique

L'acide lactique (L+ et D-) a été dosé par voie enzymatique (09).

Analyse d'autres composants volatils

Préparation des échantillons:

Pour la préparation des échantillons destinés à l'analyse des composants volatils (extraction, concentration et injection) 2 différentes techniques ont été appliquées, soit:

- le piégeage sur de la poudre de graphite puis désorption par four à micro-ondes (analyse de type headspace dynamique selon Rektorik, décrite sous a);
- l'entraînement à la vapeur d'eau à température et pression réduites (analyse de type stripping au rotavapor, décrite sous b).
- a) Analyse par piégeage sur de la poudre de graphite puis désorption/injection par four à micro-ondes en procédant comme suit:

A 20 g de fromage finement râpé dans un bécher de 150 ml, ajouter 1 ml d'une solution aqueuse de 3-chloro-2-butanone ¹(practicum, Fluka no 23'965) à 50 µl/l comme standard interne, puis 49 ml d'eau bidistillée et 0,5 ml d'une solution aqueuse d'hydroxyde de sodium (Merck no 6498) à 5 mol/l. Homogénéiser pendant 1 min (mixer PT 20 00 de Polymetron sur position 3). Mesurer le pH et l'ajuster à 7,50 +/-0,05 au moyen de la solution de soude précitée. Attendre encore 1 min et contrôler la valeur finale du pH. Introduire l'échantillon ainsi préparé dans la cellule de l'équipement proposé à cet effet (10) pour charger de façon répétable et contrôlée les pièges de poudre de graphite (art. no 1-1010 de Rektorik, CH-1202 GENEVE) utilisés avec le four de désorption à micro-ondes (MWS-1 de Rektorik). Le mode opératoire détaillé pour ladite préparation des échantillons est indiqué dans un travail séparé (10).

b) Analyse par extraction au Rotavapor, réextraction à l'éther, concentration sur colonne Dufton et injection en mode split en procédant comme suit:

A 250 g de fromage finement râpé dans un bécher de 1 l, ajouter 10 ml d'une solution aqueuse de 3-chloro-2-butanone (practicum, Fluka no 23'965) à 100 µl/l comme standard interne, puis 240 ml d'eau bidistillée. Homogénéiser pendant 3 min (Polymetron PT 20 00 sur position 4) jusqu'à obtention d'une fine bouillie. Laisser reposer pendant une nuit dans un ballon rond de 2 l à col rodé, fermé.

Monter alors ce ballon sur un Rotavapor (type EL de Büchi AG, CH- 9230 FLAWIL) équipé d'un serpentin-condenseur avec refroidissement en circuit fermé (agrégat réfrigérant type HAAKE F3+K). Entraîner ainsi tous les composants volatils à température réduite (60 +/-1 °C = bain-marie) et pression réduite (trompe à eau: de 45 à 25 mbar en fin d'opération) pendant environ 1 heure, jusqu'à cessation de toute distillation. Pendant cet entraînement, la température du condenseur monte spontanément de -12 °C à -5 °C environ pendant les 30 premières minutes. Elle est ensuite maintenue à +3 °C pendant les 30 dernières minutes pour éviter une perte d'arômes par piégeage sur le serpentin. Recueillir le filtrat (env. 250 ml) dans un ballon maintenu à 0 °C dans un bain de glace (cf. descriptif de l'équipement dans un travail séparé (11)).

Filtrer le distillat sur filtre plissé (Schleicher & Schüll no 595 1/2), alcaliniser jusqu'à pH = 11,5 par addition de carbonate de sodium en granulés (Fluka no 71 350) pour éliminer les acides gras volatils (dosés parallèlement par une autre méthode, cf. ci-avant), qui masqueraient sinon une partie intéressante du chromatogramme. Extraire alors au diéthyléther (Merck no 921) les composants neutres et alcalins du distillat aqueux, à raison de 1 x 50 ml puis 3 x 25 ml à l'aide d'un entonnoir à séparation selon SQUIBB, en agitant chaque fois pendant 60 s. Eliminer l'eau résiduelle soluble dans la phase organique par congélation à -26 °C.

Concentrer sous reflux à 37,5 °C à l'aide d'une colonne DUFTON de 35 cm (env. 1,0 à

¹ce composé, utilisé initialement comme standard interne, s'est révélé instable en milieu alcalin et a été abandonné par la suite

1,5 h) l'extrait organique ainsi obtenu jusqu'à un volume final de 1 ml environ. Réduire encore une fois son volume jusqu'à 200 µl environ par évaporation à l'air libre dans un minivial jaugé, chauffé directement dans la main. Ce concentrat est à nouveau débarrassé de ses traces d'eau éventuelles par congélation à -26 °C, puis stocké à cette température dans un minivial étanche.

Séparation chromatographique :

La séparation par chromatographie capillaire gaz/liquide a été effectuée dans les deux cas (a et b) à l'aide d'un chromatographe de Perkin-Elmer (Sigma 1) équipé d'un détecteur à ionisation de flamme (FID) permettant une quantification comparative par intégration des pics obtenus, les taux d'extraction, les pertes ainsi que les facteurs de réponse au FID étant totalement inconnus.

Les conditions de cette séparation ont été les suivantes:

- Colonne: DB-Wax de J & W de 60 m, diamètre intérieur de 0,25 mm, film de 0,25 µm
- Température de l'injecteur: 200 °C
- Température du détecteur: 300 °C
- Programmation: 13 min à 45 °C (a et b) 2 puis rampe de:

5 °C/min jusqu'à 220 °C (b)2

ou: 10 °C/min jusqu'à 120 °C, 15 °C/min jusqu'à 220 °C (a) 2

et: 10 min à 220 °C (a et b) pour purger la colonne.

- Gaz porteur: He à raison d'env. 0,7 ml/min à 45 °C; 1,5 bar (a et b)2
- Rapport de split : 1 à 28 (a et b)2

Les figures 3 et 4 montrent les chromatogrammes obtenus respectivement avec les 2 méthodes utilisées pour l'extraction, la concentration et l'injection des substances volatiles (arômes) analysées. Elles ont permis d'établir une liste de 44 pics utilisables pour la méthode d'analyse dite par headspace dynamique selon Rektorik et de 41 pics pour celle dite par entraînement à la vapeur d'eau au rotavapor.

N.B.: Lors de l'exécution de ce travail, la FAM ne disposait pas encore de l'équipement nécessaire pour identifier les pics obtenus avec le FID du GC utilisé (sigma 1 de Perkin-Elmer). Un essai d'identification de quelques pics obtenus avec ce GC-FID a néanmoins été tenté a posteriori en comparant ces derniers avec les pics obtenus avec un autre GC (5890 A Hewlett-Packard) acquis ultérieurement, équipé simultanément d'un FID et d'un détecteur à spectrométrie de masse (MSD type 5970). Une telle procédure comporte donc un certain risque d'erreur d'identification des composés analysés avec le premier GC-FID utilisé. Ce risque est d'autant plus grand que les pics comparés sont de taille faible et semblable, de temps de rétention très proche ou, à la limite, non résolus chromatographiquement.

² a) se rapporte à la technique de préparation des échantillons par piègeage/désorption selon Rektorik, (b) à celle recourant à un Rotavapor.

Analyses microbiologiques

Après avoir brisé (et non découpé) le bloc échantillon pour éviter toute contamination accidentelle de la surface, 2 g de fromage ont été prélevés à l'intérieur de la masse à l'aide d'un scalpel stérile et additionnés de 2 ml d'une solution aqueuse de citrate de sodium (Merck no 6448) à 200 g/l et de 16 ml d'une solution d'eau peptonée (cf. composition ³ ci-dessous). Ce mélange a alors été homogénéisé pendant 2 min à l'aide d'un Stomacher 80. La suspension de fromage ainsi obtenue a été diluée (de 10-1 à 10-6) avec de l'eau peptonée physiologique (cf. composition ⁴ ci-dessous) en fonction de sa teneur en micro-organismes.

Germes étrangers

La détermination des germes étrangers a été effectuée sur le milieu de culture Sugar Free Agar (BBL 11'672) après une incubation de 3 jours à 30 °C. Les colonies minuscules (Pin Points) n'ont pas été prises en considération lors du comptage. Les résultats sont exprimés en unités formant des colonies par g de fromage (UFC/g).

Streptocoques du groupe D

La détermination de ces bactéries (entérocoques) a été effectuée sur le milieu de culture Kanamycine Aesculine Azide Agar(Oxid CM 481) après une incubation de 24 h à 38 °C. Les résultats sont également exprimés en UFC/g.

Mesure de la couleur

La couleur a été mesurée à 15 +/- 0,5 °C après un entreposage d'au moins 12 heures à cette température tant des blocs de fromage à analyser que de l'appareil de mesure. Après avoir découpé ces blocs (cf. Choix, prélèvement et traitement des échantillons) à mi-hauteur, parallèlement aux faces des meules d'origine, les déterminations de la couleur ont été effectuées en quadruple, soit en double sur chaque face générée par la coupe à mi-hauteur, en évitant soigneusement les trous. Cette mesure a été effectuée selon une technique déjà décrite par BOSSET et al. (12) dans le système tristimulus selon HUNTER, où:

L= luminance ou brillance (L = 0: noir mat; L = 100: blanc brillant)

a= composante vert - rouge (a < 0: vert; a > 0: rouge)

b= composante bleu - jaune (b < 0: bleu; b > 0: jaune)

Mesures rhéologiques

Les mesures rhéologiques ont été effectuées à l'aide d'un pénétromètre construit au laboratoire pour les déterminations pénétrométriques et au moyen d'un instrument universel INSTRON (modèle de table type 1112) pour celles par compression (déformation et force à la rupture) selon une technique déjà décrite par EBERHARD

³ Composition de l'eau peptonée: solution aqueuse stérilisée contenant 5 g de chlorure de sodium et 10 g de peptones de caséine (Merck no 7213) par litre (pH ajusté à 7,0).

⁴Composition de l'eau peptonée physiologique: solution aqueuse stérilisée contenant 8 g de chlorure de sodium et 1 g de peptones de caséine (Merck no 7213) par litre.

(13, 14). Toutes ces mesures ont également été effectuées à 15 +/- 0,5 °C après un entreposage d'au moins 12 heures à cette température tant des blocs de fromage à analyser que des appareils de mesure. Dans les blocs susmentionnés, découpés à mihauteur pour la mesure de la couleur, ont été prélevés les échantillons destinés à l'Instron. Ces prélèvements ont été effectués juste avant l'analyse, dans la mesure du possible au centre des blocs ou dans son voisinage immédiat, et en évitant les trous. L'axes des contraintes appliquées lors de toutes les déterminations (pénétrométrie et compression) a été choisi normal au plan de coupe à mi-hauteur.

Mesures pénétrométriques

Les mesures de la profondeur de pénétration (mm) dans l'échantillon ont été effectuées à l'aide d'une aiguille droite de 1 mm de diamètre dont l'extrémité est arrondie. La charge appliquée est de 64,5 g-force (= 0,63 N) pendant 5 s. Cette détermination, qui ne nécessite que peu de temps et d'échantillon, permet de caractériser la dureté de la pâte. La profondeur de pénétration dépend néanmoins aussi de la résistance au cisaillement. Une élasticité élevée et un caractère peu cassant peuvent en effet donner de faibles valeurs pénétrométriques, donc indiquer une dureté apparente plus grande de la pâte. Ces mesures ont été effectuées 10 fois par bloc de fromage, soit 5 fois sur chaque face générée par la coupe à mi-hauteur.

Mesures avec l'Instron

Pour les déterminations avec l'Instron, des sondes de forme cylindrique (**g** = 11,8 mm, h = 15 mm) ont été prélevées sur les coupes à mi-hauteur susmentionnées. Toutes ces mesures ont été effectuées en triple.

Contrainte de compression à 33 % de déformation

L'échantillon est d'abord comprimé (écrasé) de 5 mm, soit réduit d'un tiers de sa hauteur initiale de 15 mm. La force (en N) nécessaire, dite contrainte de compression à 33 % de déformation caractérise l'élasticité de la pâte.

Déformation et force à la rupture

L'échantillon est comprimé (écrasé) ensuite jusqu'à sa rupture. La déformation, exprimée en % de la hauteur initiale (15 mm) de l'échantillon, est une mesure de la consistance (caractère cassant) de la pâte. La force maximale (en N) mesurée à la rupture dépend non seulement du caractère cassant susmentionné mais encore de la dureté de la pâte. Cette force à la rupture correspond en fait à peu près à la sensation de dureté éprouvée lors de la mastication.

ANALYSES STATISTIQUES

Une analyse statistique univariée des résultats a d'abord permis de définir les profils de distribution des grandeurs chimiques, biochimiques, microbiologiques, rhéologiques et sensorielles étudiées. Trois types d'analyse statistique multivariée ont ensuite été appliqués:

- l'analyse des corrélations des 165 variables susmentionnées prises 2 à 2, à l'aide du logiciel BMDP 1R (15). Les résultats correspondants ont été imprimés sous la forme d'un tableau matriciel de 13'530 coefficients de corrélation;
- l'analyse dite de régressions linéaires multiples, à l'aide du logiciel BMDP 2R (15);
- l'analyse discriminante, avec le logiciel BMDP 7M (15).

Tous les calculs ont été effectués par batch au centre de calcul de l'Office fédéral pour la statistique grâce à un modem permettant la transmission des données et des résultats entre ce centre et un terminal de la FAM.

Pour les méthodes d'analyses multivariées (régressions linéaires multiples et analyses discriminantes), il n'a techniquement pas été possible de traiter toutes les variables simultanément. On a donc dû procéder par étapes, en regroupant lesdites variables. 5 sous-groupes de variables d'analyses instrumentales ont été constitués (indiqués en chiffres romains dans les tableaux 64 à 70), à savoir:

- I) le sous-groupe des composés chimiques de base, englobant les teneurs en eau et en eau dans l'extrait sec dégraissé (EESD), en matière grasse et en matière grasse dans l'extrait sec (GdES), en diverses fractions azotées (TN, WLN et WLNP, NPN et NPNP, NH3), en sel, en acide lactique (L, D et total) ainsi qu'en acides gras volatils C1 à C6 pris individuellement et en tant que somme (AGVT);
- II) le sous-groupe des composés biochimiques classiques résultant de la protéolyse, englobant les teneurs en un peptide, en acides aminés pris individuellement et en tant que somme (AAT) et en amines biogènes;
- III) le sous-groupe comprenant les résultats des **analyses rhéologiques** (mesures de pénétrométrie, déformation à 33 % de compression, déformation et force à la rupture), les résultats de la **mesure de la couleur selon Hunter** (L, +a, +b) ainsi que les résultats des **analyses microbiologiques**;
- IV) le sous-groupe regroupant les teneurs (= surfaces) des 44 composés volatils analysés par la méthode dite selon Rektorik;
- V) le sous-groupe regroupant les teneurs (= surfaces) des 41 composés volatils analysés par la méthode dite au rotavaporR.

Les analyses multivariées de régressions linéaires multiples ainsi que les analyses discriminantes procèdent par pas. On peut les effectuer soit par adjonction successive d'une nouvelle variable (mode forward), soit par élimination successive d'une variable déjà incluse (mode backward). Sauf indications contraires dans la légende des tableaux, les valeurs critères pour introduire (to enter) ou pour éliminer (to remove) les variables des sous-groupes I à VI ont été choisies pour la présente étude avec les seuils suivants:

To enter // To remove:

Groupes I à V, régressions linéaires multiples, mode forward: 4,15/4,15 // 4.10/4.10 Groupe VI, régressions linéaires multiples, mode backward: 0,10/4,15 // 0,05/4.10 Groupes I à VI, analyses discriminantes, mode backward: 0,10/4,15 // 0,05/4.10

Pour les régressions linéaires multiples, les variables significatives ont été présélectionnées en mode forward dans les 5 sous-groupes susmentionnés (cf. I à V), regroupées

dans un sous-groupe VI (dit de synthèse) et réutilisées pour des analyses multivariées globales tant en mode forward que backward, afin de mettre en évidence d'éventuelles incidences de ces modes sur le résultat final. Les analyses discriminantes des groupes I à VI n'ont été effectuées qu'en mode backward considéré comme plus adéquat. Dans ce type d'analyse, on a recherché les critères analytiques les plus prometteurs pour différencier les 50 fromages étudiés regroupés (selon les critères sensoriels gustatifs) en: a) bons et mauvais; b) normaux et anormaux; c) normaux et autres; d) typiques et atypiques; e) normaux et amers; f) normaux, amers et autres (défauts).

RESULTATS ET DISCUSSION

Les résulats de cette étude sont présentés sous 2 angles différents:

- par composé ou composante du fromage afin de déterminer leur courbe de distribution;
- par méthode analytique (instrumentale ou sensorielle) afin d'évaluer la valeur informative de chacune d'elle.

ANALYSE DES PROFILS ANALYTIQUES DES 50 MEULES CONSIDEREES

Les profils des 50 meules considérées dans ce travail sont définis par leur moyenne (\bar{x}) , leur écart-type (s), leur médiane (\bar{x}) , leurs interquartiles (Q sup. et Q inf.), leurs valeurs extrêmes (Max. et Min.) ainsi que leurs déviations (asymétrie et curtosis) par rapport aux distributions normales. Ils constituent un premier groupe important de résultats (tab. 2 à 4 et 6 à 13).

Les résultats des *analyses sensorielles gustatives* sont rapportés dans les **tableaux 2 à** 5. Pour les distributions légèrement non gaussiennes, les moyennes et les écarts-types formellement calculés sont indiqués entre parenthèses. Pour les déviations plus importantes par rapport à la normalité, les valeurs sont omises.

Viennent ensuite les tableaux caractérisant les analyses des grandeurs instrumentales. Le tableau 6 regroupe les résultats des analyses chimiques de quelques composants principaux tels que eau, matière grasse (MG), chlorure de sodium (sel), fractions azotées (TN, WLN, NPN, ion ammonium), ainsi que de quelques amines biogènes (putrescine, histamine, cadavérine, tyramine et 2-phényléthylamine). Le tableau 7 indique les résultats des dosages des acides aminés libres (AAL). Le tableau 8 présente ceux des acides gras volatils (AGV) et de l'acide lactique. Les tableaux 9 et 10 montrent les teneurs en composés volatils obtenus respectivement selon les méthodes d'analyse par headspace dynamique d'après Rektorik (abrégée RE) et par stripping au rotavapor (abrégée RO). Le tableau 11 donne les résultats des

déterminations microbiologiques. Le **tableau 12** fait apparaître les résultats des **mesures rhéologiques** et de la **couleur** de la pâte des 50 meules considérées.

Les derniers tableaux se rapportent de nouveau à l'analyse sensorielle. Les **tableaux** 13 à 16 contiennent les résultats des *examens sensoriels visuels* (ouverture de la pâte) sur la base d'une photographie archivée **et** des *examens sensoriels tactiles* caractérisant également la texture et la structure de la pâte.

Le **tableau 17** récapitule toutes les *grandeurs mesurées par voies sensorielles et instrumentales* dans le cadre du présent travail. En ce qui concerne les analyses chromatographiques (IEC, HPLC et GC selon deux méthodes différentes), il faut rappeler que chaque pic obtenu (correspondant à un composé donné du fromage) représente donc une grandeur mesurée. Il en résulte un ensemble final de 165 grandeurs ou variables qui feront l'objet des diverses analyses statistiques suivantes.

ANALYSES DE CORRELATION

Prises par couples, les 165 grandeurs définies précédemment permettent de calculer 13'530 coefficients de corrélation r (= 165 x 164 x 0,5). Seules sont rapportées dans ce travail les valeurs significatives à P = 0.99 (partie supérieure de chaque tableau: r > 0.354) et à P = 0.95 (partie inférieure de chaque tableau: r > 0.273) pour les N = 50 échantillons. Ces résultats sont tabulés par valeurs décroissantes de r et par grandeurs mesurables (c.-à-d. par méthodes d'analyse ou par composé considéré) afin d'en faciliter l'interprétation.

Composants principaux

Les tableaux 18, 19 et 20 contiennent respectivement les grandeurs mesurées qui présentent des corrélations significatives avec l'eau (rapportée à l'extrait sec dégraissé: EESD), avec la matière grasse dans l'extrait sec (GdES) et avec le sel de la pâte. Dans les 2 premiers cas, les corrélations les plus intéressantes sont celles établies avec les mesures rhéologiques: la pénétration de l'aiguille de mesure dans la pâte dépend surtout et presque uniquement des teneurs en eau et en matière grasse, et non du degré de la protéolyse. Les grandeurs déformation et force à la rupture ainsi que structure dépendent étroitement de la teneur en eau, mais pas de celle en matière grasse. La teneur en sel (chlorure de sodium) influence aussi la déformation à la rupture et est légèrement perceptible quant au développement de la flaveur.

Composants azotés générés par la protéolyse

Les tableaux 21 à 25 regroupent les corrélations significatives existant entre toutes les grandeurs fréquemment utilisées pour mesurer le degré de protéolyse des caséines, à savoir:

- l'augmentation de la teneur en azote soluble (WLN et WLNP: tableau 21), qui caractérise la protéolyse en largeur sous l'effet des protéases;
- la disparition d'un **peptide** (probablement la somme de plusieurs peptides non résolus chromatographiquement: **tableau 22**);
- l'augmentation de la teneur en azote non protéique (NPN et NPNP: tableau 23) qui

caractérise plus spécifiquement la protéolyse dite en profondeur opérée par des peptidases;

- la formation correspondante d'acides aminés libres (tableau 24) considérés tant individuellement que collectivement sous la forme de leur somme (AAT). Un certain nombre d'entre eux font pourtant exception, leur coefficient de corrélation avec ladite somme n'étant pas significatif à P=99 % (**). Tel est toujours le cas de la phosphosérine (pser) et de l'acide aspartique (asp). Tel est parfois le cas de la sérine (ser), de la citrulline (cit), de la tyrosine (tyr), de la glutamine (gln) ainsi que de l'ornithine (orn): Tel est exceptionnellement le cas de la phénylalanine (phe),de l'histidine (his), de la proline (pro), de l'alanine (ala), de la thréonine (thr), de la lysine (lys) et de la leucine (leu). Les déviations de ces acides aminés libres mesurées par leur coefficient de corrélation avec leur somme (AAT) (tableau 24 bis) s'expliquent vraisemblablement par un métabolisme ou un catabolisme particulier (16,17);
- l'augmentation de la teneur en ion ammonium (NH3: tableau 25) généré par la désamination de certains composants azotés.

Autres composés liés à la protéolyse

Ces précédents critères classiques de mesure de la protéolyse présentent encore des coefficients de corrélation très élevés avec d'autres critères mesurés par voie instrumentale et par voie sensorielle dans le cadre de ce travail. On observe en effet des corrélations significatives avec:

- l'accroissement de la teneur en acide isovalérique (i-C5) qui provient de la dégradation de la leucine et de la valine;
- l'accroissement, dans une moindre mesure, des teneurs en acides n-butyrique (n-C4) et n-caproïque (n-C6);
- les grandeurs rhéologiques telles que la déformation à la rupture, la force à la rupture, voire la contrainte à 33 % de déformation qui dépendent étroitement du degré de protéolyse. Plus celle-ci avance, plus le fromage devient dur, inélastique, cassant et friable. Ces modifications peuvent également être mises en évidence par les mesures sensorielles dites tactiles de la consistance de la pâte qui devient plus courte, éventuellement de sa structure, qui devient plus dure, phénomènes déjà décrits par Eberhard (13-15);
- l'augmentation de la teneur en certains composés volatils analysés avec la méthode dite selon Rektorik (fig. 3). Cette constatation est moins clairement établie pour les substances analysées avec la méthode dite au rotavapor (fig. 4). Les composés les plus significatifs obtenus avec la méthode dite selon Rektorik semblent être les suivants (cf. le problème susmentionné rencontré lors de l'identification effectuée a posteriori avec un GC-MS): une substance présente en trace, non identifiable (pic RE 05), le 2-méthylbutanal (pic RE 07), le 3-méthylbutanal (pic RE 08), l'éthanol (pic RE 09), l'ester éthylique de l'acide propionique (pic RE 11), la 2-heptanone et/ou l'hexanal (pic RE 35), le 3-méthylbutane-1-ol (pic RE 36) ainsi que l'ester éthylique de l'acide caproïque (pic RE 37). Le tableau 26 récapitule les corrélations les plus significatives établies entre les critères les plus classiques de la protéolyse et lesdits composants volatils;
- le critère sensoriel gustatif développement de la flaveur dont les coefficients de corrélation avec les paramètres de protéolyse les plus usuels sont tous plus élevés

que r = 0.35 (P = 0.99).

Amines biogènes

Dans le contexte de la protéolyse, on peut mentionner la formation d'amines biogènes telles que la tyramine (tya: tableau 27) et la 2-phényléthylamine (pea: tableau 28). Outre les corrélations étroites établies à nouveau avec une fraction (NPNP) ou plusieurs des fractions azotées susmentionnées, il faut noter les corrélations hautement significatives de ces amines avec le logarithme naturel du nombre de streptocoques D (ent.), ce qui confirme l'origine microbienne de ces 2 amines biogènes (18-20). Dans le cas de la phényléthylamine, on retrouve à nouveau pratiquement toutes les corrélations discutées ci-avant dans le cadre de la protéolyse (2 acides gras volatils: i-C5 et n-C4), 2 des 3 paramètres rhéologiques ainsi que plusieurs composés volatils (pics RE 08, 35, 36, 37 selon Rektorik et RO 17 au rotavap). Quant à la tyramine, on peut noter son étroite corrélation (négative) avec la tyrosine dont elle est issue par décarboxylation. Si le tableau 29 fait apparaître également la production de l'histamine lors de la dégradation de l'histidine (his -> hia) par décarboxylation, il n'existe en revanche pas de corrélation significative avec les streptocoques D (ent.). D'autres germes doivent donc être responsables de la formation de cette amine. La corrélation étroite et positive de l'histamine avec la teneur en sel (NaCl) est assez surprenante.

Acides gras volatils

En ce qui touche aux divers acides gras volatils (tableaux 30-37)(formique: C1, acétique: C2), on observe plusieurs corrélations négatives, tout particulièrement avec les acides en C1 et C2. Ceci indique donc, d'une façon générale, qu'il y a disparition de ces composants lors de la formation d'autres composés volatils, ou vice versa. La plupart des corrélations significatives sont à mettre à l'actif des acides aminés libres, notamment celles établies avec les acides en C3, n-C4 et i-C5, parfois avec d'autres produits volatils.

Les corrélations très étroites de l'acide formique avec les 2 formes présentes de l'acide lactique (L et D), et par conséquent avec l'acide propionique (C3), sont difficiles à interpréter. Outre sa corrélation négative très élevée (-0,91) avec l'acide lactique dont il est stoechiométriquement issu (loi de Fitz: 3 lactates → 1 acétate + 2 propionates + 1 dioxyde de carbone + 1 eau), ainsi qu'avec la somme des acides gras volatils (AGVT) dont il est le constituant principal, l'acide propionique indique en outre des corrélations relativement étroites avec plusieurs des critères de protéolyse susmentionnés tels que NPNP, acides aminés considérés individuellement, AAT et acide isovalérique. Il s'agit vraisemblablement plutôt d'un parallélisme de réactions de glycolyse et de protéolyse que de relations de cause à effet directes.

On peut aussi noter la corrélation étroite existant entre les acides n-butyrique (n-C4) et n-caproïque (n-C6), due plus probablement à une protéolyse en profondeur (NPNP, AAT, peptide, tya) qu'à une lipolyse. On constate également une corrélation étroite du premier cité (n-C4) avec son ester éthylique (pic RE 21) et avec la tyramine (tya), tout comme du second (n-C6) avec son ester éthylique (pic RE 37) et avec l'histamine. Dans

les 2 cas (n-C4 et n-C6), on constate encore des corrélations étroites avec le pic RE 42, mais cette substance n'a pas pu être identifiée jusqu'ici par comparaison avec le chromatogramme obtenu ultérieurement par GC-MS (pic trop petit).

Pour clore, on remarque que la somme des acides gras volatils (AGVT) corrèle avec ses constituants principaux (C3 et C2, i-C5), avec le lactate, avec l'ester propylique ou butylique de l'acide propionique (pic RE 23) et avec quelques critères typiques de protéolyse (NPNP, AAT, pea). Elle est en revanche négativement correlée avec l'acide formique (C1) dont la biosynthèse pourrait donc suivre une autre voie métabolique.

Autres composés volatils

Plusieurs des composés volatils analysés tant avec la méthode dite selon Rektorik, notamment les pics RE 05 (substance non identifiée: tableau 38), RE 07 (2-méthylbutanal: tableau 39), RE 08 (3-méthylbutanal: tableau 40), RE 09 (éthanol: tableau 41), RE 11 (ester éthylique de l'acide propionique: tableau 42), RE 35 (2-heptanone et/ou heptenal: tableau 43), RE 36 (3-méthylbutane-1-ol: tableau 44), RE 37 (ester éthylique de l'acide caproïque: tableau 45), RE 38 (styrène: tableau 46) qu'avec celle dite au rotavapor, tel le pic RO 17 (2-heptanone ou / et 3-méthylbutane-1-ol: tableau 47), présentent des coefficients de corrélations significatifs avec les critères usuels de la protéolyse (tableau 26), qui ont déjà fait l'objet d'une discussion détaillée. Le tableau 26 bis indique les corrélations significatives existant entre ces composés volatils. Les pics RO 25 et RO 29 (non identifiés) apparaissent pourtant comme moins étroitement et moins fréquemment correlés avec les autres pics considérés. Ils sont donc probablement moins associés à la protéolyse.

Critères rhéologiques

Parmi les critères rhéologiques mesurés, seule la profondeur de pénétration (tableau 48) dépend simultanément des teneurs en eau dans l'extrait sec dégraissé (EESD), en matière grasse dans l'extrait sec (GdES) et en protéines totales (TN) et de la structure de la pâte. La profondeur de pénétration est également correlée (négativement) avec la contrainte à 33 % de déformation et avec la force à la rupture, mais elle est indépendante de la déformation à la rupture et de la consistance de la pâte.

La contrainte à 33 % de déformation (tableau 49) dépend réciproquement de la profondeur de pénétration, de la force et de la déformation à la rupture. Elle est étroitement correlée avec la teneur en eau (EESD, eau) et avec les modifications de la dureté et de l'élasticité qu'engendre la protéolyse dite en profondeur (AA, AAT, NH3, NPN, NPNP), donc avec la structure. En revanche, elle n'est correlée ni avec les teneurs en matière grasse, en protéines totales et en sel, ni avec la consistance.

La **déformation à la rupture** (tableau 50) n'est correlée avec aucun des constituants de base du fromage (eau, matière grasse, protéines), mais uniquement avec sa teneur en sel. Elle est en outre fortement influencée par la protéolyse tant en profondeur (AAT, NPN, NPNP) qu'en largeur (WLN, WLNP). Elle est liée cette fois-ci aux 3 autres grandeurs mesurées sensoriellement que sont la consistance, la structure et le développement de la flaveur, probablement en raison même de la protéolyse du

fromage. La déformation à la rupture et la force à la rupture sont aussi étroitement correlées.

La force à la rupture (tableau 51) représente en quelque sorte un moyen terme des grandeurs rhéologiques précédentes. Elle dépend des teneurs en eau (eau, EESD) et en protéines totales (TN), mais pas de celles en matière grasse et en sel. Elle est également très sensible à la protéolyse tant en profondeur (NH3, NPN, NPNP) qu'en largeur (WLN, WLNP). De plus, elle est correlée avec les critères sensoriels gustatifs de développement de la flaveur et de caractère typique, mais pas avec celui de qualité. La force à la rupture est en outre correlée avec les critères sensoriels tactiles de structure et de consistance.

Critères microbiologiques

Le nombre de germes étrangers (NGE: tableau 52) est correlé avec toute une série de composés volatils analysés avec la méthode dite au rotavapor, mais paradoxalement avec 3 composés volatils seulement analysés selon Rektorik (RE 01, 27 et 40), ce qui rend les premières corrélations (RO) assez peu crédibles. On constate également des coefficients de corrélation significatifs, mais non expliqués, avec l'acide D-lactique (D-la: 0,46), avec la couleur jaune (+b: -0,32), avec l'ouverture de la pâte (ouv.: 0,27) et avec la profondeur de pénétration (0,27).

Quant au **nombre de streptocoques du groupe D** (ent.: **tableau 53**) - indiqué par son logarithme naturel -, les corrélations les plus intéressantes sont celles existant avec la formation de la tyramine (tya: +0,58) à partir de la tyrosine (tyr: -0,57), avec la formation de phényléthylamine (pea: +0,33), avec le caractère typique du fromage (typ.: 0,33), avec le développement de la flaveur (flav.: 0,28) ainsi qu'avec certains composés volatils (RE 25: pentane-2,3-dione, RE 41: év. 1-hexanol, RE 43: non indentifié, RE 36: 3-méthyl-butane-1-ol, et RO 22, RO 24, RO 19, RO 17, RO 09: pics non identifiés).

Critères sensoriels

Le **critère de qualité**(**tableau 54**) révèle des coefficients de corrélation hautement significatifs avec le caractère typique (0,91), avec le développement de la flaveur (0,57), avec les divers défauts de goût (0,54) ainsi qu'avec la structure de la pâte (0,34), mais pratiquement pas avec les grandeurs mesurées par voie instrumentale. Les quelques rares coefficients de corrélation significatifs se situent d'ailleurs tous dans la partie inférieure du tableau (0,95 < P < 0,99 du point de vue du seuil de confiance), donc assez peu fiables. Bien que regrettable, ce constat est capital pour l'interprétation des résultats des analyses instrumentales.

Inversement, le **critère de développement de la flaveur** (**tableau 55**) présente de nombreux coefficients de corrélation hautement significatifs avec les critères usuels de la protéolyse tant en profondeur (AAT, 16 AA, NH3, NPN, NPNP, peptide) qu'en largeur (WLN, WLNP) et avec maints composés volatils (RE 35: 2-heptanone et/ou 2 heptanal, RE 07: 2-méthyl-butanal, RE 36: 3-méthyl-butane-1-ol, RE 09: éthanol, RE 11: ester éthylique de l'acide propionique et RO 17 = RE 35 ou 36). Ces composés sont plus ou moins directement liés à la protéolyse (**tableaux 26** et **26 bis**) ainsi qu'à 2 grandeurs

rhéologiques (déformation et force à la rupture) également dépendantes de cette même protéolyse. On retrouve à nouveau des corrélations significatives avec le caractère typique du fromage, avec les critères de qualité, de consistance et de structure (mais pas avec l'ouverture), avec la teneur en sel et avec la couleur jaune (+b) ainsi qu'avec la teneur en entérocoques.

Le caractère typique (tableau 56) du fromage est également conditionné par la protéolyse, surtout en profondeur (AAT, NH3, NPNP, peptide, pic RE 35: 2-heptanone et/ou 2 heptanal et force à la rupture). On retrouve approximativement le même tableau de coefficients que précédemment, mais allégé. Seules y subsistent les variables les plus significatives.

Le **tableau 57** spécifiant les divers **défauts de goût** observés ne montre aucune corrélation positive, sauf avec la qualité et le caractère typique évidemment. Il ne donne en revanche aucun renseignement supplémentaire quant aux analyses instrumentales utilisables pour dépister de tels défauts.

La consistance de la pâte, longue ou courte, (tableau 58) est elle aussi sensible à la protéolyse (AAT, NH3, NPN, WLNP) et à ses corollaires (pic RE 35: 2-heptanone et/ou 2 heptanal, RE 37: ester éthylique de l'acide caproïque et év. RO 25). Elle est réciproquement correlée avec la déformation et la force à la rupture, mais ne dépend d'aucun des composants de base tels que eau, matière grasse ou protéines totales. Il évolue parallèlement au développement de la flaveur.

Inversement, la **structure** (**tableau 59**) dépend des teneurs en eau (eau, EESD) et en protéines totales (TN), mais pas de celle en matière grasse. La structure est quasi insensible à la protéolyse (seule exception: WLNP avec 0,30). Elle est pourtant correlée avec le développement de la flaveur, avec le caractère typique et avec le critère de qualité. Elle est étroitement associée à des variables rhéologiques telles que force à la rupture (-0,74), profondeur de pénétration (0,60) et, dans une moindre mesure, à celles de contrainte à 33 %, de déformation (-0,49) et de déformation à la rupture (-0,37).

L'ouverture de la pâte (tableau 60) n'est pratiquement correlée avec aucun des précédents critères analytiques considérés, sauf très faiblement avec l'ornithine (orn) et avec 2 amines biogènes (pea: -0,39 et tya: -0,36) et avec le nombre de germes étrangers (0,27). La protéolyse ne semble jouer aucun rôle particulier pour la formation des trous, dus presque exclusivement à la dégradation du lactate.

Des 3 composantes de la couleur selon Hunter, soit la luminance L (tableau 61 pratiquement exempt de corrélations), la composante rouge +a (tableau 62) et la composante jaune +b (tableau 63), seule cette dernière semble dépendre (négativement) de la protéolyse (AAT, NPNP, peptide; NGE). Bien qu'assez lâches, les corrélations de la composante jaune avec le développement de la flaveur (-0,32), le caractère typique(-0,30) et la qualité (-0,28) pourraient suggérer une légère influence saisonnière.

ANALYSE DE REGRESSIONS LINEAIRES MULTIPLES

Comme l'indique le chapitre précédent (Partie expérimentale: Analyses statistiques), l'analyse de régressions linéaires multiples a été effectuée en mode forward dans le cadre des sous-groupes I à V. Seul le sous-groupe dit de synthèse VI a été traité en modes forward et backward afin de comparer les résultats de ces deux modes de calcul.

L'ensemble des résultats est présenté de façon synoptique pour les critères de l'analyse sensorielle gustative (qualité, développement de la flaveur et caractère typique) dans le tableau 64 et pour ceux des analyses sensorielles visuelle et tactile ouverture, consistance et structure) dans le tableau 65. Il en ressort un certain nombre de grandeurs qui sont toutes plus ou moins liées à la protéolyse, surtout en profondeur, soit: les teneurs en ammoniaque, en phényléthylamine et en acides aminés libres (principalement val, ile, lys, leu, cit, pser), en quelques composés volatils, notamment le pic RE 35 (= RO 17 (?): la 2-heptanone et/ou l'heptanal), qui jouera un rôle clé dans l'analyse discriminante, ainsi que les pics RO 12, RO 17 (= RE 36 ou 37), RO 21, RO 26, RO 32 et RO 41, pics non identifiés). On y trouve encore 3 des 4 grandeurs rhéologiques, soit la force à la rupture, la déformation à la rupture et la contrainte à 33 % de déformation) ainsi que la composante jaune (+b). La plupart de ces variables réapparaîtront comme régresseurs dominants dans les analyses discriminantes qui vont suivre. Bien que donnant des résultats assez différents, les calculs en mode forward et backward testés dans le cadre du sous-groupe VI indiquent néanmoins quelques régresseurs communs, mais qui apparaissent dans un autre ordre hiérarchique lorsqu'on les ordonne par valeurs décroissantes de F to remove.

ANALYSES DISCRIMINANTES

Comme son nom l'indique, ce type d'analyse statistique multivariée a pour objectif de sélectionner les variables les plus appropriées pour distinguer (ou discriminer) un ou plusieurs caractères ou caractéristiques des fromages étudiés. Les tableaux 66 à 70 mettent successivement en évidence le pouvoir discriminant des variables regroupées dans les sous-groupes I à III (composés chimiques de base et biochimiques, propriétés rhéologiques et couleur ainsi qu'analyses microbiologiques: tableau 66), le sous-groupe IV (analyse des composés volatils selon Rektorik: tableau 67), le sous-groupe V (analyse des mêmes composés mais avec le rotavapor: tableau 68) et le sous-groupe VI (synthèse avec les meilleures variables ou régresseurs extraits des précédents sous-groupes: tableau 69). Le tableau 70 donne quelques indications supplémentaires telles que valeurs de F correspondantes, taux de classification correcte selon les critères sensoriels choisis (les sous-groupes a à f définis dans le chapitre précédent) et coefficients de corrélation canonique.

Afin de faciliter la comparaison du pouvoir discriminant des critères étudiés, on a renoncé à ordonner verticalement ces derniers par valeurs décroissantes de F, au profit d'une bonne lisibilité horizontale. On constate (tableau 66) que l'ammoniaque (NH3) et

quelques acides gras volatils (isovalérique, iso-caproïque, AGVT), plusieurs acides aminés dont surtout l'histidine, l'isoleucine et la leucine (pour les critères sensoriels a à d et f), l'acide glutamique et la lysine (pour l'amertume: e), un peptide et dans une moindre mesure les amines biogènes (histamine et tyramine) sont de bons régresseurs pour les analyses discriminantes. A cette liste, il faut encore ajouter 3 des 4 paramètres rhéologiques, soit la force à la rupture et la déformation à la rupture, de même que la contrainte à 33 % de déformation. Il s'agit à nouveau de grandeurs étroitement dépendantes de la protéolyse, comme l'a déjà montré l'étude des coefficients de corrélation. Comme autres régresseurs, on trouve en outre la teneur en acide D-lactique (D-la) et la composante jaune (+b) de la pâte. Ce dernier régresseur pourrait éventuellement indiquer une différence de fabrication saisonnière (été / hiver).

Les **tableaux 67** et **68** mettent également en évidence quelques composés volatils qui pourraient être des discriminants du critère de qualité. On y trouve le pic RE 31 (2-pentanol) presque omniprésent comme régresseur (sauf pour f), le pic RE 26 (non identifié, pour les sous-groupes c, d, e), les pics RE 04 et RE 25 (pentane-2,3-dione pour l'amertume = sous-groupe e), ainsi que les pics RO 18 (régresseur universel pour les sous-groupes a - f), RO 25 (pour les sous-groupes c, d, e) ainsi que les pics RO 06, 09 et 27 pour divers types de défauts. La plupart de ces composés n'ont hélas pas pu être identifiés a posteriori. Le **tableau 69** montre l'importance de ces mêmes régresseurs dans le sous-groupe VI (synthèse).

A titre d'exemple, la figure 5 illustre une application de l'analyse discriminante au sous-groupe f (tableaux 69 et 70) pour discriminer des fromages normaux (N), amers (B) ou présentant d'autres défauts de goût (A) à l'aide d'une combinaison linéaire de 11 régresseurs.

CONCLUSION

Le présent travail permet de tirer diverses conclusions selon les plans considérés.

Sur un plan purement analytique, on peut constater que cette étude a été entreprise, à l'époque, avec des méthodes de dosage qui ont entre-temps été modifiées et perfectionnées. Tel est le cas de l'analyse des arômes volatils. Cette dernière a été considérablement améliorée par la suite grâce à l'acquisition d'un chromatographe en phase gazeuse disposant non seulement d'un détecteur à ionisation de flamme, mais encore d'un spectromètre de masse (GC-FID+MS). Un tel équipement permet en effet d'effectuer des analyses non seulement quantitatives mais aussi qualitatives, donc une identification des composés volatils extraits des fromages. Une seconde amélioration notable apportée entre-temps à cet analyseur est l'emploi d'un système de préparation des échantillons de type Purge and Trap: Ce système permet d'effectuer des analyses dynamiques d'espace de tête en une seule étape, avec une sensibilité et une répétabilité bien meilleures et des limites de détection beaucoup plus basses que celles que garantissent les systèmes selon Rektorik (RE) et au Rotavapor (RO).

Une des conséquences pratiques de cette situation est que certaines substances correspondant aux pics les plus significatifs (régresseurs) des analyses statistiques multivariées n'ont pu être identifiées dès le début du travail. Une tentative d'identification des substances clés a été effectuée a posteriori à l'aide d'un GC-MS, en cherchant à reproduire des conditions d'analyse aussi comparables que possible à celles d'origine. Un tel procédé n'est pas usuel, et surtout n'est pas exempt de risques quant à l'interprétation des chromatogrammes d'origine obtenus avec le détecteur de type FID. Ces risques sont d'autant plus grands que les pics comparés sont de taille faible et semblable, de temps de rétention très proche ou, à la limite, non résolus chromatographiquement.

Cette remarque d'ordre analytique est également valable pour d'autres dosages tels que celui des amines biogènes et surtout celui des peptides (notamment amers), dosages qui ont aussi été améliorés entre-temps par l'introduction de nouvelles méthodes par RP-HPLC. L'ensemble de ces développements analytiques a d'ailleurs fait l'objet d'une récente publication (21). Tout travail pluridisciplinaire de ce genre implique ipso facto un compromis entre le degré de développement des diverses méthodes de dosage utilisées, chacune sujette à perfectionnement, et la nécessité de les appliquer concrètement - à un moment donné - à une étude à caractère essentiellement technologique. En dépit de telles limites, le présent travail permet de tirer maintes informations et conclusions utiles pour la pratique fromagère.

Sur le plan du choix des échantillons, on peut regretter l'âge quelque peu jeune des échantillons choisis par l'Union suisse du commerce de fromage SA, soit de 16 +/- 4 semaines, ce qui correspond à la période de taxation. De tels fromages étaient en effet loin d'avoir acquis un degré d'affinage suffisant du point de vue du développement de leur arôme et étaient relativement peu typés quant à leurs qualités et leurs défauts. La présente étude montre en effet de façon indubitable que la préférence du jury de dégustation - censé représenter les consommateurs eux-mêmes - est étroitement correlée avec le degré de protéolyse de la pâte. Le parallélisme des résultats établis sur la base des 3 critères retenus pour l'analyse sensorielle gustative - la qualité, le caractère typique et le développement de la flaveur - le prouve (tableau 71).

Sur le plan de le technologie fromagère en général et de l'affinage en particulier, l'analyse de corrélation indique que ces 3 critères sont plus étroitement liés aux grandeurs de mesure instrumentale de la protéolyse en profondeur (teneurs en NPN et en NPNP, en ammoniaque, en acides aminés libres totaux), due aux peptidases, qu'à celles de la protéolyse en largeur (teneurs en WLN et en WLNP), due aux protéases. Correlés avec ces critères de développement de la flaveur, on peut citer encore quelques acides gras volatils (isovalérique et, dans une moindre mesure, n-butyrique) issus de la dégradation d'acides aminés libérés par cette protéolyse, ainsi que quelques autres substances volatiles analysées selon la méthode dite de Rektorik: un composé non identifié présent en trace (pic RE 05), le 2-méthylbutanal (pic RE 07), le 3-méthylbutanal (pic RE 08), l'éthanol (pic RE 09), l'ester éthylique de l'acide propionique (pic RE 11), la 2-heptanone et/ou l'heptanal (pic RE 35), le 3-méthylbutane-1-ol (pic RE

36) ainsi que l'ester éthylique de l'acide caproïque (pic RE 37).

L'analyse de régressions linéaires multiples met aussi en évidence le rôle clé que jouent certains acides aminés libérés par la protéolyse en profondeur tels que la valine, l'isoleucine, la leucine, la citrulline et la phosphosérine, de même que quelques substances volatiles dont la 2-heptanone (pic RE 35) et celles correspondant aux pics RO 12, RO 17 (= RE 35 ou 36), RO 21, RO 26, RO 32 et RO 41 selon la numérotation adoptée pour la méthode dite au rotavapor (pics non identifiés).

L'analyse discriminante permet également de reconnaître l'importance de certains constituants du fromage dont l'ammoniaque, quelques acides gras volatils (isovalérique, iso-caproïque et la somme des acides gras volatils de C1 à C6), certains acides aminés libres tels que l'histidine, l'isoleucine, la leucine, l'acide glutamique et la lysine ainsi que, dans une moindre mesure, l'histidine, la tyramine et l'acide d-lactique. Quant aux constituants volatils obtenus avec la méthode dite selon Rektorik, on peut citer le 2-pentanol (RE 31), les pics RE 26 et RE 04 (non identifiés) et la 2,3-pentanedione (RE 25).

Quelle que soit l'analyse statistique considérée, on remarque encore que 3 grandeurs rhéologiques - la déformation et la force à la rupture ainsi que, dans une moindre mesure, la contrainte à 33 % de déformation - sont également de très bons indicateurs (régresseurs) de la protéolyse. Plus cette dernière avance, plus le fromage devient dur, inélastique et friable. Ces diverses modifications peuvent également être mises en évidence par les mesures sensorielles dites tactiles de la consistance de la pâte qui devient plus courte, éventuellement de sa structure qui devient plus dure.

Dans le cadre de la protéolyse et des souches microbiennes qui la génèrent, une remarque importante pour la fabrication fromagère doit être formulée: on constate que les streptocoques du groupe D (les entérocoques) contribuent favorablement au développement de la flaveur, mais corrèlent aussi avec la formation d'amines biogènes telles que la tyramine et la 2-phényléthylamine, constituants non souhaités dans le fromage en raison d'éventuels effets physiologiques indésirables.

La composante jaune de la couleur selon Hunter (+b) intervient comme régresseur systématique dans toutes les analyses statistiques effectuées. On peut en déduire que la saison de la fabrication des fromages peut jouer aussi un certain rôle pour les critères et les variables considérés.

Pour conclure, on peut dire que la plupart des facteurs qui influencent favorablement le développement de la flaveur, le caractère typique et, de façon générale, la qualité de l'emmental étudié dans ce travail - âgé de 3 à 5 mois - sont liés de près ou de loin à la protéolyse de la pâte: plus l'affinage est long et soigné, meilleur est le fromage. Il est évident qu'un affinage plus conséquent occasionne également des coûts d'entreposage supplémentaires et peut accroître le risque d'apparition de défauts susceptibles de déprécier la meule lors de la taxation, mais ces inconvénients doivent être comparés avec les avantages et les gains considérables que l'on est en droit d'attendre

d'emmentals plus mûrs.

Il est enfin intéressant de constater que la notion même de qualité est très relative. Autant il est évident que le critère de développement de la flaveur est bien défini, corrélable et discriminable avec des grandeurs mesurables par voie instrumentale, autant le critère d'analyse sensorielle dit de qualité est difficile à caractériser à l'aide de telles analyses. Le présent travail montre par là même les limites de l'application de méthodes d'analyse statistique multivariée à une étude pluridisciplinaire du fromage, notamment la réelle difficulté d'expliquer l'appréciation sensorielle fort complexe de qualité par les seules grandeurs mesurables en analyse instrumentale.

Erratum: Remplacer intrumentales par instrumentales dans les titres des tableaux 18 à 25 et 27 à 63

Remerciements: La gratitude de l'auteur s'adresse à toutes les collaboratrices et à tous les collaborateurs de la FAM qui ont participé à ce travail. Elle va également à l'Union suisse du commerce de fromage SA à Berne, et à Monsieur E. Kaufmann en particulier, pour son assistance technique ainsi que pour la mise à disposition, à titre gracieux, de tous les échantillons utilisés.

RESUME

La présente étude pluridisciplinaire du fromage d'emmental suisse tend à établir les relations existant entre les grandeurs mesurées par voies instrumentales telles qu'analyses chimiques, biochimiques, rhéologiques et bactériologiques et celles mesurées par voies sensorielles telles qu'analyses gustative, tactile et visuelle. A cette fin, 50 meules d'emmental ont été sélectionnées lors de leur taxation à environ 4 mois pour leurs qualités diverses et soumises à 165 analyses différentes, dont 6 sensorielles. Les analyses instrumentales comprennent les dosages de l'eau, de la matière grasse, du sel, des acides gras volatils, de l'acide lactique (L et D), de fractions azotées (TN, WLN, NPN), de l'ammoniaque, des acides aminés libres, des amines biogènes, d'un peptide et des composés volatils. Pour l'analyse de ces derniers, deux méthodes différentes ont été appliquées. Ces analyses instrumentales ont encore été complétées par deux dosages microbiologiques (germes étrangers et streptocoques du groupe D), ainsi que par la mesure de quatre grandeurs rhéologiques (pénétrométrie, contrainte à 33 % de déformation, déformation et force à la rupture) et par celle des trois composantes de la couleur selon Hunter. Les analyses qustatives ont permis de déterminer le développement de la flaveur, le caractère typique et le critère de qualité de ces fromages, les analyses tactiles, leur texture, leur structure et leur consistance, et l'analyse visuelle, l'ouverture des trous dans la pâte. Toutes ces données analytiques ont été traitées par ordinateur selon des méthodes d'analyse tant univariée (analyse des profils de distribution) que multivariée telles qu'analyses de corrélation, régressions linéaires multiples et analyses discriminantes en mode, "forward" et/ou "backward". Il ressort de cette étude que l'acceptabilité des fromages étudiés est d'autant meilleure que leur affinage est important. Si le développement de la flaveur peut objectivement être estimé par les paramètres chimiques, biochimiques et rhéologiques de la protéolyse ainsi que par quelques composés volatils qui en découlent, il est en revanche beaucoup plus difficile, voire impossible de rendre compte du caractère typique et surtout du critère de qualité des fromages - notions essentiellement subjectives - à l'aide des seules analyses instrumentales. Les analyses sensorielles tactiles corrèlent étroitement avec les diverses analyses rhéologiques. L'ouverture des trous estimée de visu ne semble en revanche ne dépendre d'aucune des grandeurs susmentionnées. Une corrélation étroite existe en outre entre la teneur en certaines amines biogènes non souhaitées et celle en streptocoques du groupe D ("les entérocoques").

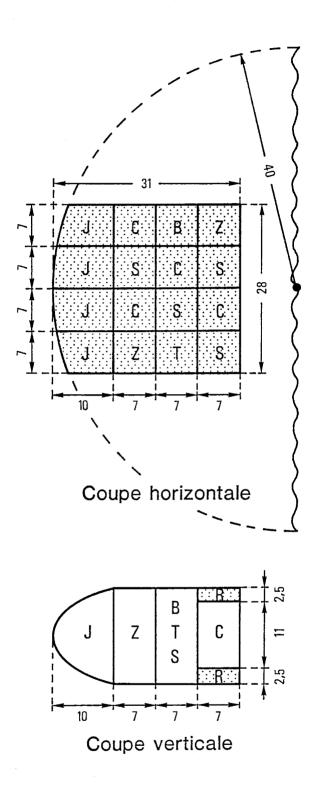
Anwendung von univariaten und multivariaten statistischen Methoden für die vergleichende Analyse von chemischen, biochemischen, rheologischen, mikrobiologischen und sensorischen Kriterien von Emmentalerkäse bei der Taxation

Zusammenfassung

In dieser multidisziplinären Arbeit werden apparativ gemessene Werte aus chemischen. biochemischen, rheologischen und bakteriologischen Untersuchungen mit den Resultaten sensorischer Bewertung des Geschmackes sowie taktiler und visueller Eigenschaften von Schweizer Emmentalerkäse zueinander in Beziehung gesetzt. Zu diesem Zweck wurden bei der Taxation im Alter von ca. 4 Monaten 50 Emmentaler Laibe unterschiedlicher Qualität ausgewählt und 165 verschiedenen Analysen unterzogen; davon waren sechs sensorische Bewertungen. Instrumental wurden folgende Bestandteile quantitativ bestimmt: Wasser, Fett, Salz, flüchtige Fettsäuren, Milchsäure (L und D). Stickstofffraktionen (TN, WLN, NPN), Ammoniak, freie Aminosäuren, biogene Amine. ein Peptid und flüchtige Komponenten. Für letztere kamen zwei verschiedene Methoden in Anwendung. Außerdem wurden zwei mikrobiologische Analysen durchgeführt (Fremdkeime und Streptokokken der Gruppe D), vier rheologische Parameter gemessen (Eindringtiefe, Druckspannung bei Kompression mit 33%iger Reduktion der Probenhöhe, Deformation und Kraft bei Stauchbruch) und drei Farbkomponenten nach Hunter bestimmt. Mit der Geschmacksbeurteilung wurde die Entwicklung des Käsearomas, der sortentypische Geschmack und die Qualität bestimmt, mit der taktilen Bewertung wurden die Textur, Struktur und Konsistenz charakterisiert und mit der visuellen Beurteilung die Lochung im Teig. Die Ergebnisse wurden computerunterstützt ausgewertet, und zwar mit einer univariaten Methode (Verteilungen) und mit multivariaten Methoden wie Korrelationsanalysen, mehrfach lineare Regressionen und Diskriminanzanalysen ("forward" und/oder "backward"). Die Analysen haben ergeben, dass sich die Akzeptanz der Käse mit fortschreitender Reifung verbessert. Die Geschmacksentwicklung kann mit den chemischen, biochemischen und rheologischen Parametern der Proteolyse und mit einigen dabei entstehenden flüchtigen Komponenten objektiv bestimmt werden. Dagegen ist es bedeutend schwieriger wenn nicht unmöglich, mit nur apparativen Mitteln den typischen Charakter und vor allem die Qualität des Käses zu analysieren. Dies sind vorwiegend subjektive Kriterien. Die Resultate der taktilen sensorischen Beurteilung korrelieren sehr gut mit den rheologischen Analysen. Hingegen scheint keine Beziehung zwischen der visuell beurteilten Lochung und den entsprechenden instrumentalen Messwerten zu bestehen. Eine enge Korrelation wurde zwischen der Konzentration einzelner unerwünschter biogener Amine und dem Gehalt an Streptokokken der Gruppe D (Enterokokken) festgestellt.

Application of univariate and multivariate statistical methods for comparative analysis of chemical, biochemical, rheological, microbiological and sensoric criteria of Emmental cheese at taxation

Abstract


This multidisciplinary study of Swiss Emmental cheese relates values determined by chemical, biochemical, rheological and bacteriological analyses to those obtained by sensoric analysis of taste as well as tactile and visual properties. To this effect, 50 four months old Emmental loaves of different qualities were chosen at their taxation and submitted to 165 analyses; six of these analyses were sensoric evaluations. The instrumental analyses included quantitative determination of water, fat, salt, volatile fatty acids, lactic acid (L and D), nitrogen fractions (TN, WSN, NPN), ammonia, free amino acids, biogenic amines, one peptide and volatile components. The latter were analyzed with two different methods. Moreover two microbiological analyses were carried out (non lactic acid bacteria and streptoococci of group D), four rheological measurements (penetrion depth, stress at 33% deformation, compression rate and stress at peak stress point) and determination of three colour components according to Hunter. The sensoric taste analysis permitted us to evaluate the flavour development, the typical character and the quality of the cheese. The tactile analysis enabled us to characterize the texture, structure and consistency and the visual evaluation to examine the eyes of the cheese body. The results were subjected to computer assisted statistical analyses using a univariate method (distributions) and multivariate methods (such as correlation analyses, multiple linear regressions and discriminant analyses forward and/or backward). Our results demonstrate that ripe cheese meets with better acceptance. It is possible to determine objectively the flavour development by means of chemical. biochemical and rheological parameters of proteolysis and some volatile proteolytic components. It is much more difficult or even impossible to characterize the typical properties and particularly the quality of cheese by instrumental measurements because these criteria are essentially subjective. The results of tactile sensoric evaluation correlate well with those of the rheological analyses. On the other hand, no relation seems to exist between the visually assessed cheese holes and the instrumental measurements. There was a close correlation between the content of certain undesirable biogenic amines and the amount of streptococci of group D (enterococci).

Références

- 01) Schweiz. Lebensmittelbuch, 2. Band, 5. Auflage, Methode 5/02. Eidg. Drucksachenund Materialzentrale, Bern 1970
- 02) Schweiz. Lebensmittelbuch, 2. Band, 5. Auflage, Methode 5/03. Eidg. Drucksachenund Materialzentrale, Bern 1970
- 03) Norme FIL/IDF 88: 1979. Fromages et fromages fondus Détermination de la teneur en chlorures. Méthode par titrage potentiométrique
- 04) Collomb, M., Spahni, M. et Steiger G.: Dosage de la teneur en azote selon Kjeldahl de produits laitiers et de certaines fractions azotées à l'aide d'un système automatisé. Trav. chim. aliment. hyg. <u>81</u>, 499-509 (1990)
- 05) Mrowetz, G.: Kolorimetrische Bestimmung des Ammoniumgehaltes von Käsen. Milchwissenschaft <u>34</u>, 593-597 (1979)
- 06) Lavanchy, P., Bühlmann, Ch. et Steiger, G.: Détermination des amines biogènes de quelques fromages fabriqués en Suisse. Schweiz. Milchw. Forsch. <u>14</u> (3), 3-6 (1985)
- 07) Bosset, J.O., Daget, N., Desarzens, C., Dieffenbacher, A., Flückiger, E., Lavanchy, P., Nick, B., Pauchard, J.-P. et Tagliaferri, E.:Influence de la translucidité et de la perméabilité aux gaz de différents matériaux d'emballage sur la qualité du yoghourt nature en cours de stockage, Lebensm.- Wiss. u -Technol. 19, 104-116 (1986)
- 08) Schweiz. Lebensmittelbuch, 2. Band, 5. Auflage, Methode 5/15. Eidg. Drucksachenund Materialzentrale, Bern 1970
- 09) Steffen, Ch.: Konzentration und Konfiguration der Milchsäure im reifenden Emmentalerkäse. Diss. Nr. 4630 ETH Zürich (1971)
- Bosset, J.-O. und Gauch, R.: Einfache Probenvorbereitung zur quantitativen Multiple Headspace- Bestimmung flüchtiger Komponenten mit Hilfe von Adsorptionspatronen. J. Chromatogr. <u>456</u>, 417-420 (1988)
- 11) Imhof, R. und Bosset, J.-O.: Einfache quantitative photometrische Bestimmung von Gesamt-Carbonylkomponenten in biologischen Medien. Mitt. Gebiete Lebensm. Hyg. <u>88</u>, 409-419 (1989)
- 12) Bosset, J.O., Rüegg, M. et Blanc, B.: La couleur du fromage et sa mesure: essai de détermination par photométrie de réflexion. Schweiz. Milchw. Forschung <u>6</u>, 1-6 (1977)

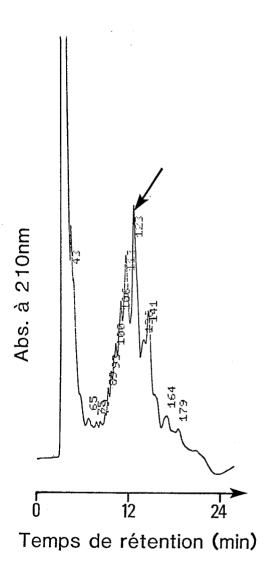

- 13) Eberhard, P.: Rheologische Eigenschaften ausgewählter Käsesorten. 1. Emmentalerkäse. Milchw. Forschung <u>14</u> (4) 3-8 (1985)
- 14) Eberhard, P.: Rheologische Eigenschaften ausgewählter Käsesorten. Diss. Nr. 7836 ETH Zürich (1985)
- 15) Anon.: BMDP Statistical Software, W.J. Dixon (Chief ed.), University of California Press, Berkeley (1985)
- 16) Lavanchy, P., Bühlmann, C. und Blanc, B.: Vergleichende Untersuchungen in Emmentaler käsen mit und ohne Nachgärung. Schweiz. Milchw. Forsch., <u>8</u> (1), 9-14 (1979)
- 17) Jager, H.H.: Eiweissabbau im Emmentaler. Milchw. Berichte (Wolfpassing & Rotholz) Hf. 61, 293-298 (1979)
- 18) Gallmann, P. und Puhan, Z.: ß-Caseinhydrolyse durch Proteasen ausgewählter Mikroorganismen der Rohmilchflora. Milchwissenschaft, <u>37</u>, 396-400 (1982)
- 19) Gallmann, P. und Puhan, Z.: Beeinflussung der Käsequalität durch ausgewählte Mikroorganismen der Rohmilchflora. Schweiz. Milchw. Forsch., 11, 64-69 (1982)
- 20) Gallmann, P. und Puhan, Z.: Die Rohmilchflora im Raclette-Käse aus nicht erhitzter Milch: Entwicklung und Bedeutung während der Fabrikation und Reifung. Schweiz. Milchw. Forsch., 11, 64-69 (1982)
- 21a) Bosset, J.O. et Lavanchy, P.: La recherche sur les arômes à la Station de recherches laitières: base, développement et objectifs. Trav. chim. aliment. hyg. <u>82</u>, 199-222 (1991)
- 21b) Bosset, J.O. et Lavanchy, P.: Aromaforschung an der Eidgenössischen Forschungsanstalt für Milchwirtschaft: Rückschau, Tendenzen und Ausblick. Lebensm.-Technol. 24, 190-202 (1991)

Figure 1: Découpage des meules d'Emmental sélectionnées pour cette étude

<u>Légende</u>: Cette figure indique la taille (en cm) et la disposition des blocs découpés et distribués pour les diverses analyses effectuées: B (= bactériologiques), C (= chimiques et biochimiques), T (= rhéologiques et mesure de la couleur), S (= sensorielles). Les blocs J (= talon) et Z (= réserve) ont été conservés en vue d'éventuelles autres analyses ultérieures. La zone R (= bord, croûte inclue) a été découpée et éliminée avant l'analyse par les laboraroires eux-mêmes, selon leurs directives propres.

Figure 2: Chromatogramme des peptides analysés par chromatographie liquide/liquide à hautes performances (HPLC avec détection à 210 nm)

<u>Légende</u>: Seul le pic repéré par la flèche s'est révélé significatif lors de l'analyse statistique.

Figure 3: Chromatogramme des composés volatils analysés par chromatographie gaz/liquide (GC avec détection par FID) selon la méthode dite de Rektorik (abrégée RE, cf. texte)

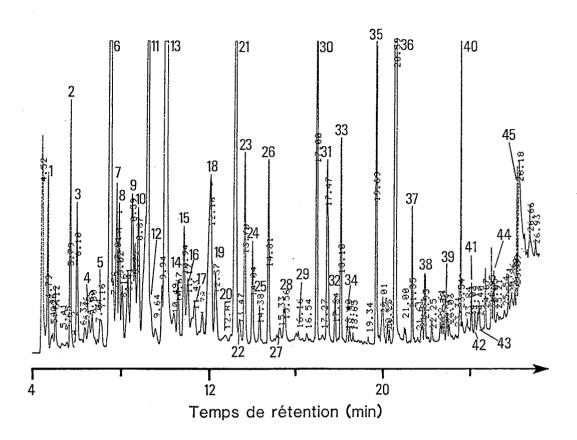
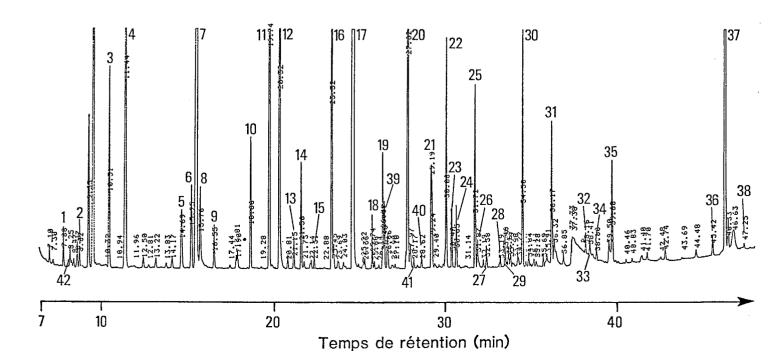
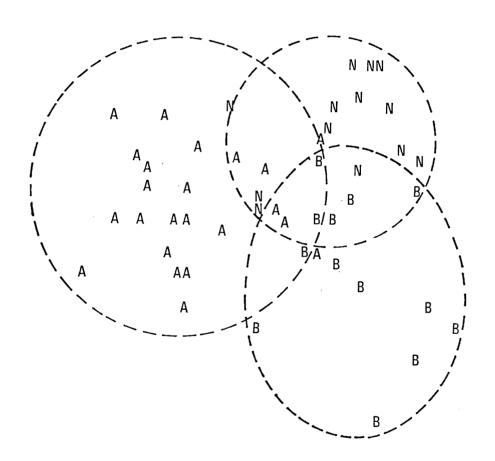




Figure 4: Chromatogramme des composés volatils analysés par chromatographie gaz/liquide (GC avec détection par FID) selon la méthode dite au Rotavapor (abrégée RO, cf. texte)

Tentative d'identification des composés	n des composés volatils	Composé	Composé (ou régresseur) apparaissant dans:	sant dans:
No du pic selon Rektorik (=RE)	Nom probable	les analyses	les analyses de	les analyses
ou au Rotavapor (=RO)	du composé volatil	de corrélation	régress. lin. multiples	discriminantes
RE 01	hexane			
RE 02	octane			
RE 03	propanone			
RE 06	2-butanone			
RE 07	2-métyl-butanal	protéolyse		
RE 08	3-métyl-butanal	protéolyse		
RE 09	éthanol	protéolyse		
RE 11	ester éthylique de l'acide propionique	protéolyse		
RE 13	2-pentanone (et/ou pentanal)			
RE 17	4-méthyl-pentan-2-one			
RE 18	3-méthyl-pentan-2-one			
RE 21	ester éthylique de l'acide butyrique et/ou toluène		*	
RE 23	ester propylique de l'acide propionique			
RE 24	3-hexanone			
RE 25	pentan-2,3-dione			*
RE 28	2-hexanone (et/on hexanal)			
RE 31	2-pentanol			*
RE 32	1,4-diméthylbenzène			
RE 33	1,3-diméthylbenzène			
RE 34	1-butanol			
RE 35 = RO 17 (?)	2-heptanone (et/ou heptanal)	protéolyse	*	
RE 36 = RO 17 (?)	3-méthyl-butanea-ol	protéolyse		
RE 37	ester éthylique de l'acide caproïque		*	
RE 38	styrène			
RE 39	acétoine			
RE 40	2-heptanol			
RE 41 = RO 25 (?)	1-hexanol			*
RE 44	nonanal (et/ou 2-nonanone)			

Figure 5: Classement des 50 fromages en "normaux" (N), "amers"(B) et "autres défauts" (A) (analyse sensorielle gustative) par une analyse statistique multivariée de type discriminant sur la base de 11 régresseurs d'analyses instrumentales*\(^\text{déterminés parallèlement}\)

^{*\}Légende: Ordonnés par valeurs de F décroissantes, ces 11 régresseurs sont l'soleucine (ile), l'histidine (his), l'azote total (TN), la phosphosérine (pser), l'histamine (his), la 2-butanone (le pic RE 06), la force à la rupture, la sérine (ser) ainsi que 3 composés volatils non identifiés (les pics RE 22, RO 15 et RO 42). Cette figure illustre les résultats présentés par le tableau 69, sous-groupe f.

Tableau 1: Origine, date de fabrication et âge des 50 meules d'Emmental sélectionnées pour cette étude

Numéro de la meule	Fromagerie	Date de fabri- cation	Age de la meule (semaine)	Numéro de la meule	Fromagerie	Date de fabri- cation	Age de la meule (semaine)	
101		1 5 05	10.1	1.51	. ,	2.7.05	10.1	
101	Rüti bei Büren	1.5.85	18.1	151	Uebeschi	3.7.85	19.1	
102	Ins	5.5.85	17.6	152	Heitenried	17.7.85	17.1	
103	Thöri: gen	13.5.85	16.4	153	Kerzers	18.7.85	17.0	
104	Römerswil	4.5.85	17.7	154	Etzelkofen	12.7.85	17.9	
105	Nennigkofen	7.6.85	12.9	155	Horiberg	21.7.85	16.6	
111	Graltshausen	2.6.85	15.6	161	Steinebrunn	5.8.85	16.4	
112	Ried bei Kerzers	10.6.85	14.4	162	Hüttenswil	3.8.85	16.7	
113	Schönenberg	25.6.85	12.3	163	Uettligen	7.8.85	16.1	
114	Kesswil	20.6.85	13.0	164	Buchackern/Erlen	24.8.85	13.7	
115	Wetzikon	6.6.85	15.0	165	Vorderrinderbach	12.8.85	15.4	
	Netzikon			103,	Voldellindelbacii	12.0.03	13.4	
121	Friesenberg	10.6.85	16.4	171	Zauggenried	29.8.85	15.0	
122	Bangerten-Scheunen	10.6.85	16.4	172	Riken	31.8.85	14.7	
123	Kefikon	10.6.85	16.4	173	Dieterswil	10.9.85	13.3	
124	Meikirch	10.6.85	16.4	174	Schlattingen	27.8.85	15.3	
125	Koppigen-Willadingen	10.6.85	16.4	175	Bennewil	3.9.85	14.3	
								
131	Oberlindach	18.6.85	17.3	181	Lignières	12.9.85	18.0	
132	Lyssach	12.7.85	13.9	182	Friesenberg	23.9.85	16.4	
133	Rüti bei Büren	24.7.85	12.1	183	Meikirch	16.9.85	17.4	
134	Hüttenswil	3.7.85	15.1	184	Wileroltigen	11.9.85	18.1	
135	Römerswil	29.6.85	15.7	185	Buchs	5.9.85	19.0	
141	Winikon	10.11.85	14.6	191	Leuzigen	3.10.85	17.0	
142	Luthern-Dorf	10.11.85	14.6	192	Rüegsbach	20.9.85	18.9	
143	Graltshausen	10.11.85	14.6	193	Buchackern/Erlen	24.9.85	18.3	
144	Aeschbach	10.11.85	14.6	194	Berikon	27.9.85	17.9	
145	Schlattingen	10.11.85	14.6	195	Kreuzweg/Hindelbank	27.9.85	17.9	

Tableau 2a: Appréciation du critère "qualité" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "grave défaut" à 5 = "sans défaut") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

J			-				
55	Kurtosis	- 1.10 (ns) - 0.683 (ns) - 0.444 (ns) - 1.70 (ns)	1	- 0.938 (ns) - 1.31 (ns) - 0.101 (ns) - 0.996 (ns)	0.482	- 0.850 (ns) - 1.63 (ns) - 1.44 (ns) - 1.61 (ns) - 1.94 (ns)	- 0.968 (ns) - 0.988 (ns) + 0.270 (ng) - 0.555 (ns) - 0.494 (ns)
	Asymétrie	- 0.070 (ns) + 0.144 (ns) - 0.299 (ns) + 0.188 (ns)	+ 0.579 (ns)	- 0.207 (ns) + 0.103 (ns) + 0.964 *	0.533	+ 0.757 (ns) + 0.346 (ns) + 0.371 (ns) - 0.130 (ns) + 0.182 (ns)	+ 0.092 (ns) - 0.186 (ns) + 1.13 * - 0.675 (ns) + 0.382 (ns)
u l é	æ	1.0 0.8 0.8 1.2	0.8	1.1	0.8	1.1 0.8 1.1 1.1	1.2 0.9 (1.2) 1.0
calc	; 5×	- 0.5 + 0.3 - 0.2 + 0.3	+ 0.7	+ 0.2 + 0.3 (- 0.2)		- 0.1 - 0.2 + 0.3 - 0.2 - 0.1	- 0.3 - 0.4 (- 0.1) - 0.1
dues	Q inf.	3.0 3.0 2.0 3.0	2.0	2.0 2.0 1.0	2.0	2.0 2.0 2.8 3.0 2.0	2.0 3.0 1.0 2.8
isti	۲×	4.0 3.0 3.0 4.0	2.0	3.0 3.0 2.0	3.0	3.0 3.0 3.0 4.0 3.0	3.0 4.0 2.0 3.0
stat	odns o	4.0 4.0 4.0	3.0	4.0 2.0	3.0	3.3 3.3 4.3 5.0 4.0	3.3 4.0 2.3 4.0 3.0
r e s	Min.	2 2 2 2	2	7 7 7 7	7	00000	
amèt	s - x	2.6 2.5 3.0 2.0	1.9	2.2 2.3 (0.9)	2.1	1.8 1.9 2.2 2.7 2.7	1.5 2.7 (0.7) 2.0 1.6
Par	۱×	3.5 3.3 3.81	2.71	3.2 3.3 (1.81)	3.0	2.9 2.84 3.3 3.87 2.9	2.7 3.61 (1.91) 2.9 2.6
	S + X		3.5	4.3 4.4 (2.8)	3.8	3.9 3.6 4.5 3.8	3.9 4.6 (3.1) 3.9 3.7
	Max.	ດວວວ	4	დ ი 4 ო	5	24 52 4	ი ი ი 4 ი
Nombre	jurés	19 19 19 19	19	22 22	22	66666	17 17 17 17 17
Numéro	meule	101 102 103 104	105	111 112 113	115	121 122 123 124 124	131 132 133 134 135

Légende: x = moyenne; s = écart-type; x = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 2b: Appréciation du critère "qualité" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "grave défaut" à 5 = "sans défaut") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

-	-	_ 	~ ~	<u> </u>		~	=	_ _	<u> </u>	<u>-</u>	<u> </u>	=		<u> </u>		<u> </u>		<u> </u>	-	-	-
	Kurtosis	- 0.804 (ns	_	- 0.450 (na	- 1.13 (ng	_	- 0.374 (ns	_	- 1.20 (ns	- 1.19 (ns	- 0.914 (ns	- 1.39 (ng	- 0.579 (ns)	- 1.29 (ns	- 1.17 (ns)	- 0.396 (ng	- 1.50 (ng		- 0.329 (ns	- 0.292 (ns	- 0.760 (ns
al de . de	Asymétrie	- 0.438 (ns)	_	727 (+ 0.284 (ns)	+ 0.653 (ns)	- 0.717 (ns)	+ 0.074 (ns)	- 0.180 (ns)	0.000 (ns)	- 0.072 (ns)	+ 0.114 (ng)	+ 0.263 (ns)	- 0.497 (ns)	+ 0.391 (ns)	- 0.190 (ns)	0.000 (ns)		+ 0.516 (ng)	- 0.209 (ng)	- 0.310 (ns)
ulés	ω	0.9	8.0	1.0	0.7	8.0	6.0	8.0	1.2	0.7	6.0	6.0	0.7	(0.8)	1.0	0.7	0.8	(0.0)	1.1	1.0	6.0
calc	× - \$×	- 0.4	- 0.1	9.0 +	- 0.2	9.0 +	+ 0.1	- 0.1	+ 0.1	0.0	- 0.1	- 0.2	+ 0.5	(+ 0.3)	+ 0.5	- 0.3	0.0	(+ 0.5)	+ 0.5	- 0.1	- 0.1
dnes	Q inf.	3.0	2.0	2.0	1.0	2.0	3.0	2.0	2.0	2.5	3.0	2.0	2.0	3.0	2.0	3.0	2.0	2.0	2.0	2.5	3.0
isti	۶×	4.0	3.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.5	3.0	2.0	3.0	2.0	4.0	3.0	2.0	2.0	3.0	4.0
stat	osno.	4.0	3.8	3.0	2.0	3.0	4.0	3.5	4.0	3.5	4.0	4.0	3.0	4.0	3,3	4.0	4.0	3.0	3.0	3.5	4.5
res	Min.	2	7			7	_	7	-	7	2	-	-	2		7	2				7
amèt	- x	2.7	2.2	1.6	1.1	1.9	2.3	2.2	6.1	2.3	2.6	1.8	1.8	(2.5)	1.5	2.9	2.2	(1.6)	1.4	2.0	3.0
Par	Į×	3.61	5.9	2. 6	1.81	2.6	3.1	2.91	3.1	3.0	3.41	2.8	2.54	(3.3)	2.51	3.71	3.0	(2.51)	2.51	2.9	3.91
	× + ×	•	•	3.6		• :	4.0	3.7	4.3	3.7	4.3	3.7	3.3	(4.1)	3.5	4.4	3.8	(3.4)	3.6	3.9	4.8
	Max.	2	4	S	3	4	4	4	ر ا	4	2	4	4	4 2	4	ري 	4	ς.	2	5	2
Nombre	jurés	19	19	1.9	19	19.	20	70	20	20	20	21	21	21	21	21	20	20	20	20	20
Numero	meule	141	142	143	144	145	151	152	153	1.54	155	191	162	163	164	165		172	173	174	175

Légende: x = moyenne; s = écart-type; x = nédiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 2c: Appréciation du critère "qualité" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "grave défaut" à 5 = "sans défaut") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

	rie Kurtosis	(ns) - 0.392	(ns) - 0.965 (ns)	(ns) = 0.046 (ns) = 0.446	(ns) - 0.535 (ns) (ns) - 0.446 (ns)	(ns) - 0.512	* + 0.286 (ns)	(ns) - 0.940 (ns)	(ns) - 0.420 (ns)
és	Asymétrie	7 - 0.266	+ +	+	9 - 0.465 0 + 0.838	+	1) + 1.06	0.356	53 - 0.382 (ns)
calculé	× × ×	- 0.4 0.7 + 0.1 0.8			- 0.3 0.9 - 0.1 1.0		(+ 0.2) (1.1	- 0.4 1.0	+ 0.04 0.53
igues	Q inf.	3.0			3.0		_		5 2.68
tatistique	x dn	0 4.0 8 3.0			0 4.0	_		 -	3.36 2.95
e s	Min. Q sup.	2 4.0			2 4.0 1 2.0			2 4.	3.
Paramètr		2.9	2.6	8.	2.9	1.7	(1.0)	2.7	2.46
Paı	x	3.61			3.71		_		2 2.99
 	Max. x +	5 4.3			5 4.6	5 3.7	5 (3.3)	5 4.6	3.52
Nombre	jurés M	19			19 19 1				Tous
<u> </u>	meule	181 182	183	185	191 192	193	194	195	Toutes To

Légende: x = moyenne; s = écart-type; X = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale
ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 3a: Appréciation du critère "développement de la flaveur" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "fade" à 5 = "piquant") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

Numero	Nombre			Par	amèt	res	stat	ist	iques	calc	u 1 é	82	
meule	jurés	Мах.	* + *	۱×	5 - ×	Min.	dns 7	×۶	Q inf.		ß	Asymétrie	Kurtosis
101	19	4	3.7	3.17	2.5	2	3.0	3.0	3.0	+ 0.1	9.0	+ 0.043 (ns)	- 0.176 (ng)
102	19	~	3.1	2.5	1.9		3.0	3.0	2.0	- 0.5	9.0	- 0.783 (ns)	
103	19	m	(3.0)	(2.5)	(2.0)	7	3.0	3.0	2.0	(- 0.5)	(0.2)	_	- 2.09 *
	19	e	(3.0)	(2.5)	(2.0)	7	3.0	3.0	2.0	(- 0.5)	(0.2)	- 0.097 (ns)	- 2.09 *
105	19	က	2.5	1.81	1.2		2.0	2.0	1.0	- 0.2	0.7	+ 0.180 (ns)	- 1.03 (ns)
111	22	4	3.5	2.91	2.3	2	3.0	3.0	3.0	- 0.1	9.0	+ 0.030 (ng)	- 0.486 (ng)
112	22	4	3.4	2.6	1.8		3.0	3.0	2.0	- 0.4	0.8		
1113	22	٣	2.6	1.9	1.2	7	2.0	2.0	1.0	- 0.1	0.7	_	_
114	22	4	3.1	2.3	1.5	-	3.0	2.0	1 2.0	+ 0.3	0.8	_	
115	22	4	2.6	1.81	6.0	-	2.0	2.0	1.0	- 0.2	6.0	_	
121	6	3	3.0	2.3	1.6		3.0	2.0	2.0	+ 0.3	0.7	- 0.419 (pg)	-1.22 (ng)
122	6	3	3.0	2.41	1.9	7	3.0	2.0	2.0	+ 0.4	0.5		2.17
123	6	D	3.5	2.2	6.0	. 	3.0	2.0	1.0	+ 0.2	1.3		- 0.408 (ns)
124	6	4	3.2	2.2	1.3	 i	3.0	2.0	1.8	+ 0.2	1.0	+ 0.347 (ns)	_
125	6	3	2.9	2.14	1.3	-	3.0	2.0	1.8	+ 0.1	0.8	- 0.149 (ns)	- 1.54 (ns)
131	17	5	3.4	2.4	1.4		3.0	2.0	2.0	+ 0.4	1.0	+ 0.925 (ns)	+ 0.474 (ng)
132	17	4	2.9	2.1	1.3	نسب	2.3	2.0	2.0	+ 0.1	0.8	558	+ 0.010 (ns)
133	17	7	(1.3)	(11.1)	(0.8)		1.0	1.0	1.0	(+ 0.1)	(0.2)	+ 3.42 **	+ 10.3 **
134	17	4	3.4	2.51	1.7	-	3.0	3.0	2.0	- 0.5	0.9	- 0.084 (ns)	- 0.876 (ns)
135	17	e	2.7	2.1	1.5	 !	2.3	2.0	1 2.0	+ 0.1	0.6	- 0.017 (ns)	- 0.486 (ns)

Légende: \bar{x} = moyenne; s = écart-type; \bar{x} = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur; Max., Min. = valeurs extremes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 3b: Appréciation du critère "développement de la flaveur" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "fade" à 5 = "piquant") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1'expert professionnel en taxation.

1-	-	!-	_																		
	Kurtosis	- 0 551 (20)	- 1 12 (ng)	CT. T	1 060		i		+ 1.54 (ng)	_	(su) 869.0 -	1 28 (22)		0.279	_	- 1.06 (ns)	- 2.06 *	- 0.854 (ng)	-		_
	Asymétrie	- 0.783 (ng)	0.284	400 U	+ 0.992 (ng)	0.267	1 788 (201	_	- 1.05 *	0.00 (ng)					+ 0.929 (ng)		+ 0.186 (ng)		920	357	854
u 1 é	Ø	0.6	0.7	8		0.7	- 6 0	5	(0.7)	9.0	9.0	0.5	0.7	9.0	9.0	0.7	(0.5)	9.0	0.7	0.7	0.7
calc	× × ×	1 - 0.5	- 0.2	4 0 +		- 0.3	+ 0.4				- 0.5	- 0.3	- 0.2	0.0	+ 0.4	- 0.1	(+ 0.4)	- 0.3	+ 0.5	- 0.3	- 0.4
dues	Q inf.	2.0	1.0	2.0	0.1	1.0	2.0	0.1	2.5	2.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0	1.0	0.1	1.0	2.0
isti	۲×	3.0	2.0	2.0	1.0	2.0	2.0	2.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	3.0	2.0	2.0	1.0	2.0	3.0
stat	odns ö	3.0	2.0	3.0	1.8	2.0	3.0	2.5	3.0	2.0	3.0	3.0	2.0	2.0	3.0	3.0	3.0	2.0	2.0	2.0	3.0
r e s	Min.	1	,1	-	· 1		1	_	_			2	,	i	2	5	2	_	- -	-	
ramèt	X	1.9	1.1	1.7	8.0	1.1	1.6	(1.1)	(3.0)	1.4	1.9	2.3	1.1	1.4	1.8	2.2	(1.9)	1.1	0.8	1.0	1.9
Par	İ×	2.51	1.8	2.4	1.34	1.7	2.4	(2.1)	(2.71)	2.01	2.5	2.7	1.81	2.0	2.4	2.91	(2.4)	1.8	1.54	1.8	2.61
	×	3.1	2.5	3.2	1.7	2.4	3.3	(3.0)	(3.4)	2.6	3.1	3.2	2.6	2.5	3.0	3.6	(3.0)	2.4	2.2	2.5	3.4
 	Max.	3	က	4	7	ဗ	5	വ	4	ຕ	က	3	က	3	4	4	Э	m	Ċ	m	4
Nombre	jurés	19	19	19	19	19	20	70	20	70	20	21	21	21	21	21	20	70	20	70	20
Numéro de la	meule	141	142	143	144	145	151	152	153	154	155	161	162	163	164	165	171	172	173	174	175

 \bar{x} = moyenne; s = écart-type; \bar{x} = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur; Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99 Légende:

Tableau 3c: Appréciation du critère "développement de la flaveur" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "fade" à 5 = "piquant") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

	sis	8 (ns)	1 (ns) {	(su) 9	(ng)	4 (ns)		2 (ns)	7 (ns) {	5 (ng)	* *	(su) 6	0.216 (ns)
	Kurtosis	- 0.158	- 0.841	- 0.496	+ 1.82	- 0.804		- 0.392	- 0.797	+ 0.125	+ 3,56	-0.419	- 0.21
S	Asymétrie	+ 0.000 (ns)	+ 0.089 (ns)	+ 0.088 (ns)	+ 1.02 (ns)	- 0.438 (ns)		- 0.266 (ns)	+ 0.034 (ns)	+ 0.652 (ns)	+ 1.87 **	- 0.229 (ns)	- 0.479 (ns)
	w	9.0	0.7	0.7	0.7	0.0		0.7	1.1	1.0	(1.0)	0.7	0.45
calculé	Q inf. x - x	0.0	- 0.1	+ 0.5	+ 0.1	- 0.4		- 0.4	- 0.2	+ 0.4	(+ 0.7)	- 0.3	 - 0.15
gues	Q inf.	3.0	1.3	2.0	2.0	2.0		2.0	2.0	2.0	1.0	2.0	1.91
isti	} ×	3.0	2.0	2.0	2.0	3.0		3.0	3.0	2.0	1.0	3.0	2.42
statistique	·dns ð	3.0	2.0	3.0	2.0	3.0		3.0	3.8	3.0	2.0	3.0	2.53
res	Min.	7	-	Н	-		1	-	Т	-	 1	-	
ametr	: : : : :	2.4	1.2	1.8	1.4	1.7		1.9	1.8	1.4	(0.7)	1.9	1.82
Par	1×	3.01	1.9	2.5	2.1	2.6	1	2.6	2.81	2.4	(1.74)	2.7	2.27
	ω +	3.6	2.6	3.2	2.8	3.5		3.3	3.9	3.4	(2.7)	3.4	2.71
	Max.	4	3	4	4	4		4	2	5	ည	4	
Nombre	jurés	61	19	19.	19	19		1.9	19	19	19	19	 Tous
Numero	meule	181	185	183	184	185		191	192	193	194	195	Toutes

Légende: x = moyenne; s = écart-type; X = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et Kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 4a: Appréciation du caractère "typique" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "totalement étranger" à 5 = "particulièrement typique") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

-		! -															-			_	-
	Kurtosis	- 0.293 (ng)	-	_	- 0.683 (ns)		- 1.25 (ng)	- 0.293 (ng)	_	~		- 1.81 (ng)	- 1.54 (ns)	•	_	- 1.81 (ns)	- 1.31 (ns)	- 0.924 (ns)	- 1.27 (ns)	- 1.31 (ns)	- 0.353 (ns)
	Asymétrie	- 1.31 *	-0.147 (ng)	_	+ 0.144 (ns)	- 0.022 (ns)	- 0.459 (ns)	_	- 0.030 (ns)	- 0.475 (ns)	_	+ 0.593 (ns)	149 (+ 0.149 (ns)	- 0.187 (ns)		+ 0.082 (ns)	-0.434 (ns)	+ 0.492 (ns)	- 0.082 (ns)	- 0.615 (ns)
u 1 é s	ß	(0.4)	9.0	(0.2)	8.0	9.0	0.8	0.7	1.0	0.7	9.0	0.5	8.0	8.0	0.5	6.0	0.7	9.0	0.8	0.7	0.8
calc	₹ - ×	(- 0.2)	+ 0.2	(- 0.5)	+ 0.3	+ 0.1	+ 0.3	+ 0.3	- 0.1	+ 0.4	- 0.2	+ 0.3	+ 0.1	- 0.1	- 0.4	0.0	- 0.1	+ 0.4	- 0.3	+ 0.1	- 0.3
d n e s	Q inf.	4.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	2.8	2.0	3.0	2.0	2.0	3.0	1.0	2.8	2.0
isti	₹×	4.0	3.0	4.0	3.0	3.0	3.0	3.0	2.5	3.0	3.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0	2.0	3.0	3.0
stat	·dns ð	4.0	4.0	4.0	4.0	3.0	4.0	4.0	3.0	4.0	3.0	4.0	4.0	3.3	4.0	4.0	3.3	4.0	2.0	4.0	3.0
r e s	Min.	3	7	က	7	2	2	7	Н	7	7	3	7	~	က	7	2	7	-	7	-
amèt	×	(3.4)	2.6	(3.0)	2.5	2.4	2.5	2.6	1.4	2.7	2.2	2.8	2.3	2.1	3.0	2.1	2.2	2.8	0.9	2.3	1.9
Par	۱×	(3.81)	3.2	(3.5)	3,3	3.14	3,3	•	2.4	3.41	2.8	3.3	3.1	2.91	3.61	3.0	2.9	3.41	1.71	3.1	2.7
	s +	(4.2)	3.8	(4.0)	4.1	3.7	4.0	4.0	3.4	4.0	3.4	3.8	3.9	3.7	4.1	3.9	3.7	4.0	2.5	3.8	3.6
	Max.	4	4	4	2	4	4	ນ	4	4	4	4	マ	4	4	4	4	ব	n	4	4
Nombre	jurés	19	19	19	19	19	22	22	22	22	22	6	6	6	6	6	17	17	17	17	17 (
Numéro	meule	101	102	103	104	105	1111	112	113	114	115	121	122	123	124	125	131	132	133	134	135

 \overline{x} = moyenne; s = écart-type; \overline{x} = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur; Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99 Légende:

Tableau 4b: Appréciation du caractère "typique" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "totalement étranger" à 5 = "particulièrement typique") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

	Kurtosis	0.372 (ng)	0.920	_	0,362 (ng)	829 (; -		0.834 (ng)	0.234 (ns)	_	1.06 (ng)	0.832		_	0.596 (ns)	0.493 (ns)		0.894 (ns)		
and the side will the side of	-	- (su)	_	(ns)	_	_	(ns)		(ng)		_	(ng)		_			(ns)		- (su)	(ng)	
on	Asymétrie	- 0.597	+ 0.267	+ 0.146	-0.194	900.0 +	- 0.596	- 0.074	+ 0.093	+ 0.251	- 0.336	- 0.114	+ 0.125	- 0.497	-0.239	- 0.742	- 0.920	+ 0.357	+ 0.214	- 0.214	(
ulé	S S	0.8	0.7	0.7	0.5	8.0	0.7	0.8	1.0	0.5	9.0	0.7	0.7	0.8	8.0	9.0	0.7	0.7	0.9	0.9	(
calc	\ \ \ \ \	- 0.4	- 0.3	- 0.1	- 0.2	- 0.3	- 0.1	+ 0.1	- 0.1	+ 0.2	+ 0.4	+ 0.1	- 0.1	1 0.3	- 0.2	- 0.5	- 0.5	- 0.3	+ 0.5	- 0.4	
dues	Q inf.	3.0	2.0	2.0	1.3	2.0	3.0	2.5	2.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	3.0	2.0	2.0	2.0	,
istı	٤×	4.0	3.0	3.0	2.0	3.0	3.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.0	4.0	3.0	2.0	3.0	•
stat	Q sup.	4.0	3.0	3.0	2.0	3.0	4.0	4.0	4.0	3.5	4.0	4.0	3.0	4.0	3.0	4.0	4.0	3.0	3.0	3.0	•
res	Min.	2	7	7	-	-	2	2		7	2	2	. 5	2	-	7	2	7	-	-	,
a m è t	- x	2.8	2.1	2.2	1.3	1.9	2.6	2.3	2.0	2.7	2.8	2.4	2.5	2.5	2.0	2.9	2.8	2.0	1.6	1.8	
Par	l×	3.61	2.7	2.9	1.81	2.7	3.41	3,1	2.91	3.2	3.41	3.1	2.9	3.3	2.81	3.51		•	2.51	•	
	- ×	4.3	3.4	3.6	2.3	3.5	4.1	3.8	3.9	3.7	4.0	3.8	3.5	4.1	3.5	4.1	4.2	3.5	3.4	3.5	-
	Max.	2	ಶ	4	m	4	4	4	Ŋ	4	4	4	4	4	4	4	4	4	4	4	Ľ
Nombre	jurés	19	19	19	19	19	20	20	20	20	20	21	21	21	21	21	20	20	70	20	ے ح
Numero	meule	141	142	143	144	145	151	152	153	154	155	161	162	163	164	165	171	172	173	174	175

Légende: X = moyenne; s = écart-type; X = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale
ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 4c: Appréciation du caractère "typique" de chacune des 50 meules d'Emmental sélectionnées pour cette étude.

Légende: Chaque meule est notée sur une échelle à 5 points (1 = "totalement étranger" à 5 = "particulièrement typique") par l'ensemble d'un jury composé de 9 à 21 dégustateurs entraînés et de 1 expert professionnel en taxation.

Numero				Par	amèt	res	stat	tisti	stiques	calculé			
meule	jurés	Max.	₩ +	j×	×	Min.	Q sup.	٤×	Q inf.	× S×	ß	Asymétrie	Kurtosis
181	19	ۍ.	4 4	2 71	7 0 7	,	0 7						
182	10	> <	, 0		2 0	4 (4.0	4.0	3.0	- 0.3	0.7	- 0.648 (ns)	+ 0.182 (ns)
100	70	7 -	0.0	7.5.	2.3	7	3°8	3.0	3.0	+ 0.1	0.7	- 0.062 (ns)	
TOT	61	7	4.1	3.4	2.7	7	4.0	4.0	3.0	9.0 -	0.7	_	
184	19	4	3.5	2.81	2.1	7	3.0	3.0	2.0	- 0 2	, ,	70000	
185	19	4	3.6	2,81	2 1	٠ د	200			1 0		_	
)		7.7	1	0.0	3.0	7.0	7.0 -	a.0	+ 0.243 (ng)	- 1.35 (ng)
191	19	ıc.	4.4	2 81	3.3	3			, ,				
192	10	. <) (7.	٠ ٠	0.7	4.0	5.3	7.0 -	9.0		-0.551 (ng)
700	1.0	.	5.5	7.7	1.4	-	3.0	2.0	2.0	+ 0.4	1.0		
193	13	4	3.5	2.7	1.9	-	3.0	3.0	2.0	- 0.3	0.8	- 0.144 (ng)	
194	19	4	3.1	2.31	1.5		3.0	2.0	2.0	~ · · · ·	3 0		2000
195	19	'n	4.4	3.4	7	c			1		0 ;		_
		1	. !		?	4)	4.	٥٠٠	9.0 -	1.0		- 1.16 (ns)
Toutes	Tons	1	(3 5)	(3.05)				! (1			
			170.01	100.61	160.7)	[[]	3.40	3.06	2.76	(00.0)	(0.47)	× 999°0 -	+ 0.523 (ng)
									_		_		

Légende: \bar{x} = moyenne; s = écart-type; \bar{x} = médiane; ϱ sup., ϱ inf. = Quartile supérieur, resp. inférieur; Max., Min. = valeurs extremes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à p = 0.95; ** = significatif à p = 0.99

Tableau 5: Classification des 50 meules d'Emmental sélectionnées pour cette étude sur la base d'un examen gustatif (critères "qualité" et "typique")

			Vombre	, numéro	Nombre, numéro et notes moyennes des meules classées selon les termes de:	noyenn	es des m	eules cla	ssées s	elon les	termes de			
Norma	Normal (N = 14)		Amer (Amer (N = 13)		Oxydé (N = 5)	(N = 5)		Impur (Impur (N = 10)		"Divers	"Divers" (N = 8)	
8	Note pou	Note pour critères	9	Note pou	Note pour critères	2	Note pour critères	rcritères	9 8	Note pou	Note pour critères	8 8	Note pour critères	critères
menle	Qualité	Typique	menle	Qualité	Typique	menle	Qualité	Typique	meule	Qualité	Typique	menle	Qualité	Typique
101	3,5	3,8	113*	1,8	2,4	111	3,2	3,3	102	3,3	3,2	125	2,9	3,0
103	3,8	3,5	115	3,0	2,8	133*	1,9	1,7	104	3,3	3,3	142	2,9	2,7
114	3,4	3,4	121	2,9	3,3	152	2,9	3,1	105	2,7	3,1	143	2,6	2,9
124	3,8	3,6	122	2,8	3,1	191	2,8	3,1	112	3,3	3,3	144	1,8	1,8
132	3,6	3,4	123	3,3	2,9	194	2,2	2,3	134	2,9	3,1	145	2,6	2,7
141	3,6	3,6	131	2,7	2,9				154	3,0	3,2	153	3,1	2,9
155	3,4	3,4	135	2,6	2,7				171	3,0	3,5	164	2,5	2,8
163	3,3	3,3	151	3,1	3,4				184	2,7	2,8	193	2,7	2,7
165	3,7	3,5	162	2,5	2,9				185	2,7	2,8			
175*	3,9	3,9	172	2,5	2,8				192	1,9	2,4			
181	3,6	3,7	173	2,5	2,5									
183	3,5	3,4	174	2,9	2,6									
191	3,7	3,8	182	3,1	3,1									
195	3,6	3,4												

*) Particulièrement marqué

NH3) et en amines (putrécine = put; histamine = hia; cadavérine = cad; tyramine = tya et 2-phényléthylamine = pea) des 50 meules d'Emmental sélectionnées pour cette étude Tableau 6 : Teneur en eau, en matière grasse (MG), en chlorure de sodium (NaCl), en diverses fractions azotées (TN, WLN, NPN,

Composant	sant			Par	Paramètr	r e s	stati		stiques	calo	alculés		
,		мах.	# + •	! ×	- x	Min.	Q sup.	۲×	Q inf.		83	Asymétrie	Kurtosis
Eau	(g/kg)	381	369.3	362.1	354.8	348	365.0	362.5	357.0	- 0.4	7.2	+ 0.296 (ns)	- 0.108 (ns)
MG S	(g/kg)	335	326.2	314.8	303.3	286	322.0	317.0	307.0	- 2.2	11.4	- 0.640 (ns)	- 0.195 (ng)
NaCl	NaCl (mmol/kg)	108	92.4	79.9	67.4	45	86.0	81.0	74.0	- 1.1	12.5	- 0.378 (ns)	+ 0.699 (ns)
E N	(mol/kg) (mol/kg)	3.41	(3.250)	(3.250) (3.149) (3.049) (0.791) (0.728)	(3.049)	2.73 0.58	3.210	3.145	3.100	(0.004)	(0.101)	- 0.846 * + 0.812 *	+ 4.82 ** + 1.15 (ns)
NPN NH3	(mol/kg) (mnol/kg)	0.59 83	0.498	0.431 51.6	0.363	0.28	0.460 58.0	0.430 51.0	0.390 45.0	0.001	0.067	+ 0.274 (ns) + 0.234 (ns)	90 60
put hia cad	(mmol/kg) (mmol/kg) (mmol/kg)	0.2 1.4 0.2	ns ns ns	ns ns ns	ns ns	0.0	0.00	0.00	0.00	ns ns ns	ns su su	+ 2.56 ** + 2.35 ** + 2.73 **	+ 6.14 ** + 4.85 ** + 6.21 **
tya	(mmol/kg) {	4.5	su	Si Si	su us		1.80	1.10	0.20	su	su		~
	6	3	2	<u> </u>	2		07:0	00.0	00.0	su -	eu su	+ 2.35 **	+ 4.69 **

Légende: X = moyenne; s = écart-type; X = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

glutamique, glutamine, proline, glycine, alanine, citrulline, acide ∝-aminobutyrique; ∝AB, valine, méthionine, Tableau 7 : Teneur en acides aminés libres (phosphosérine*pser, acide aspartique, thréonine, sérine, asparagine, acide isoleucine, leucine, tyrosine, phénylalanine, acide γ -aminobutyrique: γAB , ornithine, lysine, histidine et arginine) des 50 meules d'Emmental sélectionnées pour cette étude.

an free free free free free free free fre			Par	amètı	r e s	stat	isti	d n e s	calc	u lés			
analyse (mmol/kg)	Max.	×	1×	1×	Min.	Q sup.	/×	Q inf.	× - -	ď	Asymétrie	Kurtosis	
pser	15.2	(8.50)	(5.46)	(2.43)	•	7.22	4.90	3.26	(0.56)	(3.03)	+ 1.26 **		*
asp	4.2	ns	ns	ns	•	1.43	69.0	00.0	su	ns	+ 1.15 **		(su)
thr	10.7	(7.14)	(5.22)	(3.29)	•	60.9	5.04	4.19	(0.18)	(1.93)	+ 0,317 **	+ 0.471 ((us)
ser	15.1	(6.54)	(4.34)	(2.15)	1.3	5.00	3.90	3.43	(0.443)	(2.19)	+ 2.53 **	_	*
asn	4.1	ns	ns	ns	•	00.00	00.00	00.0	ns	ns	+ 3.92 **		*
glu	55.5	(35.94)	(26.91)	(17.88)	•	32.38	25.20	21.36	(1.71)	(6.03)	* 09.70 +	+ 1.15 ((us)
gln	5.9	ns	(1.89)	ns	•	2.30	1.83	1.18	(90.0)	ns	+ 1.02	+ 1.64 *	
pro	39.6	(24.43)	(17.80)	(11.17)	•	20.93	17.36	14.30	(0.44)	(6.63)	_	+ 1.56 *	
gly	10.1	7.19	5.30	3.41	•	6.31	5.04	4.04	0.26	1.89	+ 0.494 (ns)	_	(us)
ala	14.7	(10.01)	(7.94)	(5.87)	2.9	8.99	7.76	96.9	(0.19)	(2.02)	+ 0.305 (ng)	+ 1.30 *	
cit	6.9	(4.29)	(2.88)	(1.46)	•	3.43	2.61	1.86	(0.27)	(1.41)	+ 0.749 *		(su)
∞ A B	2.6	su	ns	su	0.0	00.00	0.00	00.0	ns	ns	+ 1.97 **	+ 2.73 *	*
val	24.3	17.11	13.30	9.49	4.7	15.19	13.18	11.05	0.12	3.81	+ 0.383 (ns)		(su)
met	0.9	4.54	3.45	2.37	1.2	4.08	3.41	2.74	0.05	1.08	+ 0.275 (ns)	- 0.061 ((ns)
ile	12.5	(7.81)	(5,48)	(3.15)	1.5	6.32	5.22	3.97	(0.27)	(2.33)	+ 1.13 **	+ 1.53 *	
leu	38.4	29.36	24.19	19.03	11.4	26.83	23.56	21.46	0.64	5.17	+ 0.055 (ng)	~	(ns)
tyr	5.5	(4.04)	(2.36)	(0.68)	0.0	3.82	2.23	0.95	(0.13)	(1.68)	+ 0.131 (ns)	_	(su)
bhe	13.0	10.61	8.70	6.79	•	9.88	8.43	7.29	0.27	1.91		~	(ng)
γAB	1.6	ns.	ns	ns	•	00.0	00.0	0.00	ns	su		-	*
orn	9.6	7.64	6.02	4.39	•	6.93	5.98	5.15	0.04	1.63	- 0.045 (ns)	- 0.193 ((ng)
lys	32.1	(21.23)	(15,93)	(10.64)	5.0	18.45	14.97	13.30	(96.0)	(5.30)	+ 0.715 *		(us)
his	8.2	(4.58)	(3.09)	(1.60)	•	3.78	2.83	2.21	(0.27)	(1.49)	+ 1.31 **		*
arg	1.9	ns	su	ns		0.19	00.0	00.0	su	su	+ 2.25 **	+ 5.79 *	*
Total (AAT)	3.84	2.759	2.166	1.572	0.90	2.408	2.099	1.866	0.067	0.594	+ 0.404 ns	+ 0.683 ((su)
(g/kg)													

Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale ns = non significatif; * = significatif à p = 0.95; * * = significatif à p = 0.99 Légende: X = moyenne; s = écart-type; X = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;

Tableau 8: Teneur en acides gras volatils (AGV) et en acide lactique des 50 meules d'Emmental sélectionnées pour cette étude

Acide analysé					aram	Paramètres statistiques calculés	statie	stique	s calc	ulés		
(mmol/kg)	Мах.	s + ×	ı×	s-×	Min.	dns D	٤×	Q inf.	×-×	S	Asymétrie	Kurtosis
Formique (C ₁)	3	SU	ns	SU	0	1,3	9'0	0,3	ns	SU	+ 1,06 **	+ 0,437 (ns)
Acétique (C2)	26	49,4	42,5	35,6	27	46,8	43,1	37,7	9'0 -	6,9	- 0,184 (ns)	- 0,557 (ns)
Propionique (C3)	107	87,0	70,4	53,8	22	80,1	72,1	57,1	- 1,7	16,6	- 0,071 (ns)	+ 0, 198 (ns)
n-Butyrique (n-C4)	9	SU	ns	ns	0	6'0	0,7	0,5	us	us	+ 4,34 **	+21,0 **
i-Valérique (i-C ₅)	1	us	ns	ns	0	0,2	0,1	0,1	us	us	+2,79 **	+ 8,97 **
Caproique (n-C ₆)	1	ns	us	ns	0	6,0	0,2	0,2	ns	ns	+ 5,39 **	+ 2,77 **
AGVT (= total)	152	134,1	115,2	36,2	55	128,5	113,6	102,5	+ 1,6	18,9	- 0,386 (ns)	+ 0,560 (ns)
Lactique Lactique L (+) Lactique D (-)	110 53 69	62,4 (26,5) (38,9)	39,1 (15,5) (23,6)	15,9 (4,5) (8,4)	8	53,8 22,5 28,4	36,9 14,5 22,8	25,8 6,5 12,8	+ 2,2 (+ 1,0) (+ 0,9)	23,3 (11,0) (15,2)	+ 0,566 (ns) + 0,823 * + 1,02 **	+ 0,386 (ns) + 0,863 (ns) + 1,32 *

 x = moyenne; s = écart-type; x = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur; Max., Min. = valeurs extrêmes;
 Asymétrie et kurtosis = déviations par rapport à la distribution normale; ns = non significatif; * = significatif à P = 0,95; ** = significatif à P = 0,99 **L**égende:

Tableau 9: Teneur en quelques composants volatils des 50 meules d'Emmental sélectionnées pour cette étude (unité: arbitraire)

(AM)	Max.	Z Z	G sub.	}×	Q inf.	No pic	Мах.	Min.	Q snb.	×	Q inf.
1	5,74	0,27	2,44	1,69	0,73	24	0,25	0,01	60'0	90'0	0,03
0	1,52	0,07	0,59	0,38	0,23	22	0,58	20'0	0,26	0,17	0,13
m	2,64	0,26	1,02	99'0	0,49	56	0,46	0,01	0,15	0,07	0,03
4	0,56	0,16	0,34	0,30	0,24	27	0,13	00'0	0,05	0,03	0,00
5	0,93	0,18	09'0	0,45	0,34	28	0,48	0,11	0,27	0,20	0,17
9	16,16	1,84	6,68	4,78	3,49	59	96'0	0,03	0,15	0,10	20'0
	2,50	0,35	1,11	0,91	0,71	30	2,66	1,99	4,33	3,88	3,15
89	0,64	00'0	0,37	0,24	0,16	31	2,48	0,14	0,84	0,50	0,32
6	1,07	0,12	0,52	0,44	0,34	32	0,13	0,02	20'0	0,05	0,03
10	26'0	0,41	0,80	0,64	0,54	33	0,57	0,05	0,16	0,11	0,08
11	4,97	0,87	3,75	3,07	2,46	34	0,94	0,05	0,17	0,11	20'0
12	6,01	0,00	0,89	0,23	0,01	35	1,48	0,41	1,02	0,91	92'0
13	27,62	1,39	7,91	5,43	3,37	36	5,93	0,88	3,71	2,72	2,27
47	0,16	0,02	0,10	0,07	0,04	37	0,45	0,02	0,13	0,08	90'0
15	0,29	00'0	0,08	0,04	0,02	38	0,18	0,03	0,12	20'0	0,05
91	0,73	0,11	0,33	0,23	0,20	39	0,33	0,04	0,18	0,11	0,08
17	0,37	90'0	0,20	0,17	0,11	40	0,70	0,01	0,29	0,10	0,05
18	0,79	0,20	0,42	0,33	0,28	41	0,53	00'0	0,16	0,11	20'0
19	0,29	0,01	0,10	0,07	0,04	42	0,15	0,02	0,05	0,04	0,03
20	4,37	00'0	0,16	0,09	0,05	43	0,22	0,03	0,11	0,07	0,05
21	2,96	0,63	1,97	1,68	1,52	44	2,18	90'0	0,87	0,36	0,13
22	92'0	0,07	0,27	0,24	0,15	45	1,79	00'0	0,33	0,20	0,12
23	1,07	0,16	0,59	0,37	0,26						

Légende: Moyenne de 3 déterminations effectuées selon la méthode dite de "headspace" dynamique d'après Rektorik.

Tableau 10: Teneur en quelques composants volatils des 50 meules d'Emmental sélectionnées pour cette étude (unité: arbitraire)

4	Min.	Q sup	ì×	Q inf	No pic	Мах.	Min.	Q snb.	₹×	Q inf.
C,	60	0,22	0,19	0,15	22	10,4	0,48	3,79	2,39	1,40
0	<u> </u>	0,11	0,10	0,08	23	0,88	0,09	0,28	0,22	0,15
C,	16	1,15	0,81	0,44	24	1,86	0,18	0,93	0,61	0,42
\mathcal{C}	,59	2,41	1,63	1,38	25	1,44	0,35	1,01	0,87	0,74
()	,05	09'0	0,26	0,14	56	0,69	0,07	0,18	0,15	0,11
	21,12	0,91	29'0	0,44	27	1,00	0,04	0,22	0,14	0,10
	1,99	7,48	6,16	3,91	28	1,56	90'0	0,31	0,18	0,11
	00,00	0,33	0,26	0,14	29	0,74	00'0	0,11	0,08	0,05
_	3,08	0,31	0,22	0,15	30	2,30	0,03	0,35	0,21	0,14
\sim	2,14	0,52	0,35	0,23	31	2,17	0,25	0,91	0,74	0,51
\sim	3,05	2,34	1,48	0,58	32	2,75	0,14	09'0	0,45	0,30
$\mathbf{\mathcal{I}}$	3,36	1,71	0,98	0,63	33	1,33	0,01	0,25	0,19	0,10
\sim	2,05	0,18	0,14	0,11	34	0,56	0,00	0,22	0,17	0,12
\sim	7,11	0,64	0,42	0,21	35	4,48	0,28	99'0	0,52	0,39
\sim	7,01	0,14	60'0	90'0	36	1,53	0,09	0,35	0,21	0,17
\sim	7,65	2,01	1,72	1,36	37*)	82,6	20,1	53,2	41,6	29,9
	1,43	13,0	10,5	6,61	38	2,61	0,03	0,31	0,18	60'0
_	90,0	0,40	0,18	0,14	39	2,06	0,11	0,32	0,27	0,23
	7,15	0,37	0,31	0,27	40	1,07	0,01	0,22	0,10	0,05
	1,99	2,60	5,42	3,92	41	0,38	0,01	0,04	0,03	0,02
_	7,25	0,64	0,53	0,41	42	4,41	0,02	0,18	0,12	0,08

<u>Légende:</u> Moyenne de 2 déterminations effectuées selon la méthode dite au "Rotavapor" (entraînement à la vapeur d'eau) *) Divers standard internes (cf. texte)

Tableau 11 : Détermination des germes étrangers (NGE) et des streptocoques du groupe D ("ent") des 50 meules d'Emmental sélectionnées pour cette étude.

Bactéries			Par	Paramètre	r e s	stat	isti	statistiques	calc	calculés			-
(UFC/g)	Max.	x + x	l×	- x - 1×	Min.	Min. Q sup.	۲×	Q inf. x - x	!× 	s	Asymétrie	Kurtosis	-
Germes étrangers	2 300	su	s C	su ———	5	70	20	10	su	su		!	1
En log ₁₀	3.36	8	ns	su	0.70	1.85	1.30	1.00	- su	38	+ 0.779 +	+ 0.775	
Streptocoques			:					:					
du groupe D	34°10 ⁶	su	su	- usu	40	2.4.106/(0.6°10 ⁶	$2.4^{\circ}10^{6} 0.6^{\circ}10^{6} 0.1^{\circ}10^{6} $	su	su	t I	! ! !	
En log ₁₀	7.53	si	<u>s</u>	su	1.60	6.38	5.78	5.04	su	su su	- 1.25 **	+ 1.56 *	
													_

Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale Légende: x = moyenne; s = écart-type; x = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur; ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 12: Résultats de diverses mesures rhéologiques et de la couleur (L, a, b selon Hunter) des 50 meules d'Emmental sélectionnées pour cette étude.

Grandeur			Par	Paramètr	res	stat	statistiques	dues	calo	c u 1 é s			. —
	Max.	∞ + ×	l×	X	Min.	dns ö	٤×	Q inf. x - x	× - 5×	Ø	Asymétrie	Kurtosis	1 -
Pénétrométrie (mm)	14.7	12.79	11.14	9.49	7.8	12.10	11.15	9.70	- 0.01	1.65	+ 0.256 (ns)	- 0.669 (ns)	1
Déformation à la rupture(%h)	73	70.2	65.3	60.4	54	69.3	66.3	60.7	- 1.0	4.9	- 0.403 (ns)	- 0.855 (ns)	
Force (N) à la rupture	72	52.8	40.4	28.0	18	46.0	40.1	30.7	0.3	12.4	+ 0.572 (ns)	- 0.126 (ns)	
Force (N) à 33 % de la compression	16.1	12.84	10.57	8.30	6.5	11.70	10.40	9.00	0.17	2.27	+ 0.359 (ns)	- 0.457 (ns)	<u> </u>
L ()	70.6	68.22	65.99	63.77	61.9	67.50	66.30	64.20	- 0.31	2.22	- 0.102 (ns)	- 1.03 (ns)	
a ()	- 0.3	(-2.12)	(-2.12) (-2.76) (-3.41)	(-3.41)	- 4.0	- 2.70	- 2.90	- 3.10	(0.14)	(0.65)	+ 1.81 **	+ 3.88 **	
()	21.8	20.72	19.71	18.69	17.3	20.30	19.75	19.00	- 0.04	1.01	- 0.273 (ns)	- 0.552 (ns)	

Légende: x = moyenne; s = écart-type; x = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale
ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

Tableau 13 : "Ouverture" (ouv), "consistance" (cons) et structure (stru) des 50 meules d'Émmental sélectionnées pour cette étude.

Légende : Appréciation sensorielle par un expert professionnel en taxation sur des échelles à 5 points (Ouverture : 1 = grave défaut à 5 = sans défaut; consistance : 1 = pâte longue à 5 = pâte courte; structure : 1 = pâte dure à 5 = pâte molle/fine)

Critère,			Par	Paramètre	r e s	stat	isti	statistiques	calculé	ulés		
(note)	Мах.	Max. x + s	×	×	Min.	Min. Q sup.	1	\tilde{x} Q inf. $\tilde{x} - \tilde{x}$	× ×	50	Asymétrie	Kurtosis
Ouverture	വ	3.6	2.4	1.2	Ti	3.0	2.0	2.0 1.0	+ 0.4 1.2	1.2	+ 0.504 (ns)	- 0.607 (ns)
Consistance	5	(3.7)	(3.7) (3.0) (2.3)	(2.3)	-	3.0	3.0	3.0	0.0	0.7	0.000 (ns)	+ 1.56 *
Structure	5	(3.6)	(3.6) (2.9) (2.2)	(2.2)	1	3.0	3.0	3.0	- 0.1 0.7	0.7	+ 0.116 (ns)	+ 1.40 *

Idgende: x = moyenne; s = deart-type; x = médiane; Q sup., Q inf. = Quartile supérieur, resp. inférieur;
Max., Min. = valeurs extrêmes; Biais et kurtosis = déviations par rapport à la distribution normale
ns = non significatif; * = significatif à P = 0.95; ** = significatif à P = 0.99

<u>Tableau 14:</u> Classification des 50 meules d'Emmental sélectionnées pour cette étude selon le critère "visuel" d'ouverture utilisé par l'USF pour le marché indigène.

Sans défaut = Note 5	Défaut minime = Note 4	Défaut léger = Note 3	Défaut marqué = Note 2	Défaut grave = Note 1
(N = 3)	(N = 5)	(N = 14)	(N = 14)	(N = 14)
102	103	101	105	111
115	154	104	121	112
132	164	113	123	114
	183	122	131	124
	185	125	134	133
		142	135	143
		145	141	144
		161	151	152
		163	165	153
		171	172	155
	·	175	173	162
		181	182	174
		184	194	192
		191	195	193

<u>Tableau 15:</u> Classification des 50 meules d'Emmental sélectionnées pour cette étude d'après le critère tactile de pâte "longue" ou "courte".

Nombre, numéro	o et note des meul Ion	es classée gue" ou "p			sistance": "pâte
Longue	Mi-longue	Norn		Mi-courte	Courte
= Note 1	= Note 2	= No	te 3	= Note 4	= Note 5
(N = 1)	(N = 7)	(N =	34)	(N = 7)	(N = 1)
123	121	102	152	112	101
	144	102	154	131	
	145	104	155	133	
	172	105	162	143	
	173	111	163	153	
	183	113	164	161	
	194	114	171	165	-
		115	174		
		122	175		, i
		124	181		<u> </u>
		125	182		
		132	184		
		134	185		
		135	191		
		141	192		
		142	193		
		151	195		

<u>Tableau 16:</u> Classification des 50 meules d'Emmental sélectionnées pour cette étude d'après le critère tactile de pâte "dure" ou "molle".

Nombre, numé		ules classé dure" ou "¡	•	es le critère de "stru e/fine".	ucture/texture"
Dure	Mi-dure	Norn	·····	Mi-molle/fine	Molle/fine
= Note 1	= Note 2	= No	te 3	= Note 4	= Note 5
(N = 1)	(N = 10)	(N =	33)	(N = 5)	(N = 1)
144	101	102	155	104	111
	122	103	161	114	
	123	105	163	125	
	133	112	164	153	
	152	113	165	181	
	154	115	171		
	162	121	173		
	172	124	174		
	185	131	175		
	193	132	182		
		134	183		
		135	184		
		141	191		
		142	192		
		143	194		
		145	195		
		151			

Tableau 17: Récapitulatif des analyses sensorielles et instrumentales effectuées dans cette étude

							/	/	/	/		ANALYSES STATISTIQUES	a) des distributions & profils	b) des corrélations	c) par régr. lin. multiples	d) discriminantes	K	\	\	\	\	-						
	sans défaut	= bon	piquant	très typique	= typique	normal	= normal	= normal	sans défaut	courte	molle /fine	5				g/kg	mmol/kg	mmol/kg	mol/kg	mmol/kg	mmol/kg	mmol/kg	unité arbitr.	UFC/g	upture.	unité Hunter	unité arbitr.	unité arbitr.
SPONDANTS	d. indéfinissable	=	corsé	typique	(A) =	amer	= amer		léger défaut	assez courte	assez molle/fine	4	3.3.		S	de sodium (sel)							-		nation et force à la r			
ET DESCRIPTEURS CORRESPONDANTS	défaut léger		aromatique	peu typique		oxydé		= anormal	d. admissible	normale	normale	3	6)		ANALYSES INSTRUMENTALES	S) et du chlorure	GVT)		on, NPNP)		(S)				33 % déf., déforn			
	d. perceptible	= mauvais	xnop	atypique	= atypique	impur	= autres (défauts		déf. marqué	assez longue	assez dure	2			ANALYSES IN	ière grasse (GdE	e C1 à n-C6 & A		WLN, WLNP, NI		of. liste ci-dessous)	ste ci-dessous)			rie, contrainte à 🤅	n Hunter	n Rektorik (RE)	otavapor (RO)
ANAL YSES SENSORIELLES	déf. marqué		fade	altéré		divers			défaut grave	enguol	dure	-				ESD), de la mat	gras volatils (d	lactiques L et D	is azotées (TN,	iiac (NH3)	aminés libres (c	biogènes (cf. li	(s)	sanbigo	ies: pénétrométi	ur L, a et b selor	sés volatils selo	sés volatils au r
ANALYSES S	Crit. "qualité":	(regroupement)	Dével, flaveur:	Caract. typique	(regroupement)	Critère "goût"	(regroupement)	(region perment)	Crit. "ouverture"	Consistance pâte	"Struct./Texture	Note sur 5 échelle à 5 points:	cut point" pour discriminer:			Dosage de l'eau (EESD), de la matière grasse (GdES) et du chlorure de sodium (sel)	Dosage des acides gras volatils (de C1 à n-C6 & AGVT)	Dosage des acides lactiques L et D	Dosage des fractions azotées (TN, WLN, WLNP, NPN, NPNP)	Dosage de l'ammoniac (NH3)	Dosage des acides aminés libres (cf.	Dosage des amines biogènes (cf. list	Analyse de peptide(s)	Analyses microbiologiques	Mesures rhéologiques: pénétrométrie, contrainte à 33 % déf., déformation et force à la rupture	Mesure de la couleur L, a et b selon	Analyse des composés volatils selon	Analyse des composés volatils au rot
	GUSTATIVE		GUSTATIVE	GUSTATIVE		GUSTATIVE			VISUELLE	TACTILE	TACTILE	Note sur 5	"cut poin			Groupe I					Groupe II			Groupe III	***** <u>*</u>		Groupe IV	Groupe V

WLNP azote soluble dans l'eau en % du TN

azote total

NPNP azote non protéique en % du WLN

azote non protéique

NPN

ammoniaque

Fraction azotées

phényléthylamine

pea

histamine

Amines biogènes

tyramine

WLN azote soluble dans l'eau

Produ	Produits non volatils de la protéolyse	Produ	Produits volatils divers	Critère	Critères sensoriels
Acides	Acides aminés	Acides	gras volatils		
p-ser	phospho-sérine	C1	acide formique	flav	développement de la flaveur
asb	acide aspartique	C2	acide acétique	goût	classement par défaut
thr	thréonine	C3	acide propionique	qual	qualité du fromage
ser	sérine	i-C4	acide i-butyrique	typ	caractère typique
glu	acide glutamique	n-C4	acide n-butyrique	cons	consistance de la pâte
aln	glutamine	i-C5	acide i-valérique	stru	structure de la pâte
pro	proline	9 <u>)-</u> i	acide i-caproïque	onv	ouverture de la pâte (trous)
gly	glycine	n-C6	acide n-caproïque		
ala	alanine	AGVT	Acides gras volatils total		
cit	citrulline				
val	valine	Grand	eurs bactériologiques	Autres	Autres composés ou grandeurs
met	méthionine				
ile	isoleucine	ent	In(streptocoques D)	sel	chlorure de sodium
len	leucine	NGE	nombres de germes étrangers	láct	lactate total
ţ	tyrosine			L-la	L-lactate
phe	phénylalanine			D-la	D-lactate
orn	ornithe			GdES	GdES graisse dans l'extrait sec
lys	lysine			EESD	EESD eau dans l'extrait sec dégraissée
his	histidine				luminance selon Hunter
AAT	somme des acides aminés (total)			+ *	composante rouge selon Hunter
				q+	composante jaune selon Hunter

et "corrélées" avec la teneur en eau rapportée à l'extrait sec dégraissé (EESD) de 14 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes) Tableau 18:

	Autres	composés	ou grandeurs																		
	Critères	sensoriels				stru: 0.53															
	Grandeurs	bactério-	sənbibol																		
	Se	Force	à la rupture						-0.47												
	rhéologiqu	Déforma-	tion à la rupture				07.0	-0.48					·								
élées"	Grandeurs rhéologiques	Contrainte	à 33% de déformation																		
Grandeurs "corrélées"		Т	métrie		0.0	0.02															
<u> Srandeu</u>	livere	S IN CO.	Methode "Rotavap"	/ 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								41: 0.43						02: -0.30		40: 0.27	
	olitology	ls volatilis	Methode Methode "Rektorik" "Rotavap" "Andu pic) (no du pic)	למול מה מווי						77.0	Z1. U.44		32.0.36	20: 0:00			17: -0.31		030 30		
	# Post	Flodu	Acides gras	VOIGILIES																	
		eolyse	Fractions azotées		±N: -0.69																
		s de la prot	Amines biogènes																		
		Produits non volatils de la proteolyse	Acides aminés	libres											asp: -0.34						_
		Produits	Peptide (1 pic)													-0.33					_
			seuil confi-	ance	Ξď	%66	ш		1						=d	05%	9/ 66				

Tableau 19: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 22 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en matière grasse dans l'extrait sec (GdES)

								_										_				_		- 1		_
	Autres	composés	8	grandeurs																					+a: -0.29	
	Critères	sensoriels composés																								
			logiques																			-				
	3S	Force	à <u>a</u>	rupture											٠,											
	rhéologique	Déforma-	tion à la	rupture																						
elées"	Grandeurs rhéologiques	_	a 33% de	déformation																						
Grandeurs "corrélées")	Pénétro-	métrie	0						0.35																
Srandeu	ivers	Méthode	"Rotavap"	no du pic)				32: -0.36										05: 0.32	40: 0.31	42: 0.30						
U	s volatils divers	Méthode	"Rektorik" "Rotavap"	(no du pic) (no du pic)	38: 0.49	18: -0.46	40: 0.39		36: 0.36		20: 0.35	27: 0.35	43: -0.35	22: 0.34	35: 0.34	33: 0.32	13: -0.32				03: -0.30	32: 0.30				24: 0.28
	Produits	Acides		S																						
	olyse	Fractions	azotées																				WLN: -0.29			
	de la prote	Amines	biogènes)																						
	Produits non volatils de la protéolyse	Acides	aminés	libres																						
	Produits	Peptide	(1 pic)																					-0.29		
		lines	-jjuoo	ance	F.	%66					P=	95%														

Tableau 20: Coefficients de corre

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 19 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en chlorure de sodium

							Grandeurs "corrélées"	ırs "corr	élées"					
	Produits	non volati	Produits non volatils de la protéolyse	téolyse	Produits	volatils	divers		Grandeurs rhéologiques	rhéologiqu	Se	Grandeurs	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensorieis composés	composés
-jjuoo	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik" "Rotavap"	"Rotavap"	métrie	· à 33% de	tion à la	à la	logiques		ъ
ance		libres				(no du pic) (no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
-d			hia: 0.41											
%66							42: -0.41							
						20: -0.38								
						44: -0.37								
		gln: 0.36												
=d							05: -0.34							
%56						40: 0.34								
		ser: 0.33												
										-0.32				
	-0.31													
							25: 0.30							
							27: 0.30							
		pro: 0.29												
				NPNP: 0.29										
		lys: 0.28												
						28: -0.28								
						11: -0.28						,		
							24: 0.28							
													flav: 0.28	

et "corrélées" avec la teneur en azote soluble dans l'eau rapporté à l'azote total (WLNP ou WLN %) de 37 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes) Tableau 21:

	Autres	secomposés	ou grandeurs																											4					0			eau: 0.29	
	Critères	sensoriels																									flav: 0.36			cons: 0.34					stru: 0.30				
	Grandeurs	bactério-	logiques																																				
	Se	Force	à la rupture														-0.46																						
	Grandeurs rhéologiques	Déforma-	tion à la rupture		-0.55																																		
"corrélées"	Grandeurs	Contrainte	à 33% de déformation																																				
		Pénétro-	métrie																																				
Grandeurs	livers	Méthode	"Rotavap" (no du pic)																										41: 0.34		12: 0.33	17: 0.32							39. 0.9R
	its volatils divers	Méthode	"Rektorik" (no du pic)				35: 0.51																33: 0.40	36: 0.40	08: 0.38	11: 0.37							05: 0.31	06: 0:30		31: 0.30			
	Produit	Acides	gras volatils																																				
	éolyse	Fractions	azotées	NPN: 0.61												NH3: 0.46																							
	s de la prot	Amines	biogènes																		tya: 0.43																		pea: 0.28
	Produits non volatils de la protéolyse	Acides	aminés libres		•	lys: 0.52		met:0.51	ile: 0.50	val: 0.49	pro: 0.49	gly: 0.48	thr: 0.47	ala: 0.47	AAT: 0.47			his: 0.44	glu: 0.43	orn: 0.43		leu: 0.41						phe: 0.35									ser: 0.29		
	Produits	Peptide	(1 pic)																																				
		senil	confi- ance	<u>=</u>	%66		۷			l		<u> </u>	<u>'</u>	<u></u>		<u> </u>	1_		<u></u>	<u> </u>			L	L	L	L			<u>Б</u> =	%56	<u>i</u>	<u> </u>	<u> </u>	ш.	ــــــــــــــــــــــــــــــــــــــ	L	I		

mesurées par voies sensorielles et intrumentales et "corrélées avec la teneur en "peptide" Coefficients de corrélation r (tabulés par valeurs décroissantes) de 37 grandeurs (non identifié) ou en plusieurs peptides non résolus chromatographiquement Tableau 22:

							Grandeurs	Irs "corr	"corrélées"					
	Produits	non volatii	Produits non volatils de la protéolyse	téolyse	Produi	ts volatils	divers		Grandeurs	rhéologiques	es	Grandeurs	Critères	Autres
seuil confi-	Peptide (1 pic)	Acides aminés	Amines biogènes	Fractions azotées	Acides gras	Methode "Rektorik"	Methode "Rotavap"	Pénetro- métrie	Contrainte à 33% de	Deforma- tion à la	Force à la	bactério- logiques	sensoriels	composés ou
ance		libres	•		volatils		(no du pic)		déformation	rupture	rupture	-		grandeurs
<u>=</u> d		thr: -0.53												
36%		met: -0.51												
		val: -0.51												
				NPNP: -0.50										
		gly: -0.49												
		gln: -0.48												
•		ile: -0.48												
•				NH3: -0,47										
		AAT: -0,46												
													flav: -0.46	
		leu: -0.45												
		lys: -0.45												
				NPN: -0.45										
											0.42			
		glu: -0.42												
										0.42				
		his: -0.41						-						
		pro: -0.38												
1		phe: -0.38												
		cit: -0.36												
					I-C5:-0.35									
] <u>=</u> d						09: -0.35								
]%56		ala: -0.34												
		ser: -0.34												
					n- C4: -0.33	0								
						07: -0.33								L CO 0 000
														EESU: -0.33
														+D: 0.32
1						36: -0.32								
														sel: -0.31
						34: -0.31	0							
'							04: 0.30							
							14: -0.30							
						29: -0.29								000
							900							GdES: -0.29
						38. U 28	28: -0.28							
1						20: 20:50								

Tableau 23: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 44 grandeurs mesurées par voies sensorielles et intrumentales

et "corrélées" avec la teneur en azote non protéique rapporté à l'azote soluble dans l'eau (NPNP ou NPN %)

Tourisa in votation of the protocol of the p	Penetro-métrie	Contrainte Deformate à 33% de tion à la rupture rupture rupture contrainte déformation rupture contrainte cont	Force bacterio- a la la logiques rupture	es sensoriels sensoriels and a sensoriels se	grandeurs grandeurs
Acides Metrode Metrode Well (no du pic) (n	métrie défi	tion a ruptu	a la nupture		8 5
i-C5: 0.48 AGVT: 0.45 AGVT: 0.45 C3: 0.41 C3: 0.41 16: 0.33 07: 0.33 08: 0.32	<u> </u>			flav: 0.58	
i-C5: 0.48 AGVT: 0.45 AGVT: 0.45 AGVT: 0.33 07: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
i-C5: 0.48 AGVT: 0.45 C3: 0.41 C3: 0.41 16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	<u> </u>
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0,58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0,58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0.58	
16: 0.33 07: 0.33 08: 0.32	0.38			flav: 0,58	<u> </u>
16: 0.33 07: 0.33 08: 0.32	0.38			00.0. (Val)	
16: 0.33 07: 0.33 08: 0.32	0.38				l -la: -0.49
16: 0.33 07: 0.33 08: 0.32	0.38				1-la:-0.49
16: 0.33 07: 0.33 08: 0.32	0.38				
16: 0.33 07: 0.33 08: 0.32	0.38				
16: 0.33 07: 0.33 08: 0.32	0.38	.,	_		
16: 0.33 07: 0.33 08: 0.32	0.38	0.43			
16: 0.33 07: 0.33 08: 0.32	0.38				
			66.0		
			76.0		+b: -0.34
n-C4: 0.32					
					1901-1030
				bvn: 0.30	
				20:0 :36	sel: 0.29
10:0.29					
41: 0.29					
10: 0.28	0.28				
C1: -0.28	00.0				
14.0.98	0.20				

Tableau 24:

et "corrélées" avec la teneur en acides aminés libres totaux (AAT)* (P = 0.99) de 19 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes)

				,		7		7	:			T				····	- 1		. ,	-					
	Autres	sesodwoo	ou grandeurs	,																					
	Critères	sensoriels									flav: 0.70 [f]													cons: 0.40 [r] (0.36-0.42)	
	Grandeurs	bactério-	senbloo						7.											•	·				
	38	Force	à fa rupture																-0.43 [m] -(0.37-0.51)		-				
	rhéologique	Déforma-	tion à la rupture				•			-0.72 [e] -(0.49-0.80)															
élées"	Grandeurs rhéologiques	Contrainte	à 33% de déformation											0.50 [h] (0.36-0.55)											
Grandeurs "corrélées")	Pénétro-	métrie																						
irandeu	ivers	Méthode	"Rotavap" (no du pic)				•														Pic 17: 0.43 [o] (0.37-0.47)				
0	s volatils divers	Méthode	"Rektorik" (no du pic)												Plc 35: 0.49 [i] (0.38-0.54)		Pic 8: 0.48 [k] (0.37-0.59)			Plc 7: 0.43 [n] (0.39-0.46)		Pic 11: 0.42 [p]	Pic 36: 0.41 [q] (0.37-0.46)		
	Produits	Acides	gras volatils								•		:												l-C5: 0.36 [s] (0.40-0.44)
	Solyse	Fractions	azotées		NH3: 0.94 [b]	(0.40-0.95)	NPN: 0.86 [c]	(U.30U.91)	(0.38 - 0.80)			WLN: 0.50 [a]	(0.40-0.56)					WLNP: 0.47 [i] (0.35-0.52)							
	de la prote	Amines	seuegoiq						_							tya: 0.48 [[] (0.39-0.58)									
	Produits non volatils de la protéolyse	Acides	aminés libres	chaque AA [a] (0.55 - 0.98)					٠																
	Produits	Peptide	(1 plc)					1																	

• Les valeurs indiquées entre parenthèses correspondent aux différents acides arninés libres pris isolément qui "corrèlent" tous avec les grandeurs considérées pour P= 0,99 à quelques exceptions près (cf. lettres en parenthèses carrées) indiquées dans le נבל לביסאה לאל ביסאה און ביסאה באל היסאה באל היסאה ווא מיינים ביסאה באל היסאה בל היסאה באל
Tableau 24 bis: Liste des acides aminés dont les coefficients de corrélation ne sont pas significatifs à P = 0.99 (=liste des exceptions)

S	0.01	0.01	0.22	-0.03	0.00		0.33	0.29	0.31					
-	0.17	-0.01	0.23		0.12	0.24			0.04		(0.33*)	(0.26*)		(0.34*)
Ь	0.04	0.01	(0.29*)	0.20	-0.13	0.14		(0.34*)	0.25	(0.33*)				
ф	0.03	-0.09	0.19	0.24	0.15	0.10			0.20		(0.31*)	(0.30*)	(0.32*)	
0	0.04	0.14	(0.31*)	0.20	-0.17	0.14			(0.30*)					
ш	-0.09	0.02		(0.30°)	0.17	(0.31*)		(0.31*)	60'0					
Ε	0.03	0.21	-0.25	(-0.32*)	-0.02	(-0:30*)			-0.17	(0.32*)	(-0.34*)	(-0.25^{*})		
_	0.05	-0.13	(0.29*)	90.0	-0.02	0.26								
¥	-0.08	0.08	0.26	0.20	0.19	(0.32*)			(0.34*)					
	0.20	0.20	0.25	0.04		0.15								
	0.29	-0.05	(0.33*)	(0.29*)	0.14	(0.29*)			0.19					
h	0.19	0.12	(0.28*) (0.33*)	0.16					(0.28*)					
g	0.05	-0.08	(0.28*)	0.05	0.03	(0.27*)								
f	0.26	0.05			0.15				(0.28*)					
ө	-0.03	0.15	(0.33*)	(0.32*)	-0.27									
q	0.13	0.05												
С	0.12	-0.01		(0.32*)	(0.32*)									
b	0.08	0.15			0.20									
В					0.24									
a.a.:	p-ser	asp	ser	cit	tyr	gln	len	phe	om	his	pro	ala	thr	lys

Tableau 25: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 43 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en ion ammonium ("NH3")

	Autres	semposés	no ·	grandeurs																																							L-la: -0.31		
	Critères	sensoriels composés		<u>)</u>																	flav: 0.64																				0006.033	00113. 0.32		typ: 0.31	
	Grandeurs	bactério-	logiques																																										
	es	Force	<u>a</u>	rupture																					-0.47																				
	rhéologiqu	Déforma-	tion à la	rupture															-0.75																										
"corrélées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																						47.0	0.47																		
		Pénétro-	métrie																																										
Grandeurs	livers	Méthode	"Rotavap"	(no du pic)																									17:045							38.0.38	2	25.0.94	40.0.04	30.032	30, 0.02				29: 0.28
	Produits volatils divers	Méthode	torik"	(no du pic)																				08: 0:20						36: 0.45	35: 0.44	11: 0.44			05: 0.37	07:0.37	39.035	30.00	27.032	37.0.32		09.00	70.0.0		
	Produi	Acides		volatils																														I-C5: 0.39											
	ś olyse	Fractions	azotées															NPNP: 0.79									1	AN NID- 0 AR	WEINT . 0.40																
	de la prote	Amines	biogènes																				tya: 0.52																						
	Produits non volatils de la protéolyse	Acides		libres	gly: 0.95	val: 0.95	AAT: 0.94	leu: 0.93	lys: 0.93	glu: 0.92	ile: 0.91	met: 0.90	pro: 0.88	phe: 0.85	his: 0.85	ala: 0.84	thr: 0.79			огп: 0.67		gln: 0.58		1			27	ser: 0.47					cit: 0.40												
	Produits	Peptide	(1 pic)																						1, 0	-0.47	\dagger											1			1				
	<u>!</u>	senil	-juoo	ance		%66																!	- 1							1_		L					d	ا ک	%CS			1	<u> </u>		

Tableau 26:

Composés volatils (correspondant à des pics GC obtenus avec les méthodes dites selon "Rektorik" = RE et au "rotavapor" = RO) présentant des coefficients de corrélation r significatifs à P = 0.99, resp. à P = 0.95 avec quelques critéres usuels de protéolyse (peptide, WLNP, NPNP et NH3)

GC) corréles avec les critères de protéolyse	"NPNP"	Rotavapor Rektorik Rotavapor	no pic r no pic r no pic r		90	0.33*		11 0 441				25		29 0.28*					36 0.45**	37 0.32*	38	1 3 0 0 V
lation des pics (GC) corré	"WLNP"	Rektorik Rotavapor	no pic r no pic r		05 0.31*		.00 0 00	11 0.37**	12 0.33*		17 0.32*		,			33 0.40**		35 0.51**	36 0 40**			*VE. U
Numéro et coefficient de corrélation des pics (6	"Peptide"	Rektorik Rotavapor	no pic r no pic r	0.30*		07 .0.33*	09 .0.35*			14 -0.30*				29 -0.29*			34 -0.31*		36 .0.32*		38 -0.28*	

 *)P = 0.95 (*)

Corrélations significatives entre les pics RE (Rektorik) et RO (Rotavapor) inventoriés le tableau 26 Tableau 26 bis:

29) RO 30				0.35 0.54							0.29	0.37	.37	0.49	2						
(RO 29)	_												^								
RO 28	0 0	315		0.39	3				0	0.30	0.56										
(RO 25)		1						0 42						0 34	0.01						
RO 17			0.31	0 34	2.5			0.32	1000	0.90						0.31				07.0) -
RE 38	00.0	0.20	0.34					0 54	5	0.32									0.37		
RE 37				000	0.30		0.37			-							01.0	0.50		00.0	187.V
RE 36			0.37	3	0.39		0.29	76.0	0.0 4				0.32	30,0	0.90		3	0.30			-
RE 35			0.29			0.36				0.34			0.54		0.32	0.42					_
RE 11		0.68	0.30	3 3	0.34					0.29	100	0.37								†	
RF 09	200	0.33	0.62	3,5				100	0.36								1				
BC 크립	20 71	0.28					0.34			0 39		0.38			0.31			0.39	0 25	33.5	700
DE 07	N- 01	0.37				0.62	030	3	0.29	0.37			76.0	10.0	0.31						
מה חם	CO JA		760	70.0	0.28	0.33	88.0	30.5					000	0.40		+		0.29			
-		RF 05	20 70	KE U/	RE 08	RF 09	DC 44		RE 35	DE 36	25	RE 37	100	20	RO 17	120 000	(KO 20)	RO 28	100 00,	(KC CR)	000

Tableau 27: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 43 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en tyramine (tya)

	Autres	composés	OU																																							
	Critères	sensoriels composés										İ														flav: 0.38			ouv: -0.36													cons: 0.28
	Grandeurs	bactério-	logiques		ent: 0.58																																					
	88	Force	à la moture	O Incides	-																						-0.38															
	Grandeurs rhéologiques	Déforma-	tion à la	O ID VALOR																	-0.44																					
"corrélées"	Grandeurs	Contrainte	à 33% de																	,																						
ırs "corr		Pénétro-	métrie																																							
Grandeurs	livers	Méthode	"Rotavap"	למום ממ מיוו														17: 0.49												28: 0.36	41.0.00								22: 0.29		10 0 20	13. 0.40
	its volatils divers	Méthode	"Rektorik" "Rotavap"	Zand and and										36.0 50	30.00									33: 0.41							27.035	21. 0.00		35: 0.33		43: 0.32	19: 0:30	8: 0.29		32: 0.29	37:0.29	
	Produ	Acides	gras	T																				01.0	I-C5: 0.40							n-C4: 0.35										
	éolyse	Fractions	azotées										NH3: 0.52							NPN: 0.45			WLNP: 0.42										NPNP: 0.34		WLN: 0.32							
	s de la prot	Amines	biogènes	69 0 :000	Dea. 0.00																																					
	Produits non volatils de la protéolyse	Acides	aminés	200		tyr: -0.58	ala: 0.55	lle: 0.54	orn: 0.54	glu: 0.54	leu: 0.53	val: 0.52	0.1	AIS: U.52	pro: 0.50	gly: 0.49	lys: 0.49		AAT: 0.48			met: 0.43			phe. 0.30	DIG. CO		thr: 0.37													1	
	Produits	Peptide	(1 pic)	1																																					†	
		seuii	-jjuo	3	- %66 - 66	:	1									1	-												<u>ب</u>		å) 	8	1		_	_					

Tableau 28: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 22 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en 2-phényléthylamine (pea)

							Grandeurs "corrélées"	ırs "corr	élées"					
	Produits	s non volati	Produits non volatils de la protéolyse	téolyse	Produi	ilts volatils divers	divers		Grandeurs	Grandeurs rhéologiques	9S	Grandeurs	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode		Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels	sensoriels composés
confi-		aminés	biogènes	azotées	gras	"Rektorik" (no du nic)	"Rektorik" "Rotavap"	métrie	à 33% de déformation	tion à la	à la rupture	logiques		ou orandeurs
D = Q		201	tva: 0.63			200								
- 80		tvr0 55												
9		31:										ent: 0.45		
						25: 0.43								
														L: 0.43
							22: 0.42							
													ouv: -0.39	
		ala: 0.38												
						43: 0.38								
		orn: 0.35												
₽≡		asp: 0.35												
95%						41: 0.34								
														D-la: -0.33
														lact: -0.32
							09: 0.31							
						05: -0.31								
							24: 0.31							
				TN: -0.31										
						33: 0.30								
							17: 0.28							
				NPNP: 0.28										
					AGVT: 0.28									

Tableau 29:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 12 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en histamine (hia)

	.es	osés	_	eurs	sel: 0.41				٦							
	Autres	dwoo	8	grandeurs	sel:											
٠	Critères	sensoriels composés														
	Grandeurs		logiques													
	es	Force	à la	rupture												
	Grandeurs rhéologiques	Déforma-	tion à la	rupture												
élées"	Grandeurs	Contrainte Déforma-	à 33% de	déformation												
Irs "corr		Pénétro-	métrie													
Grandeurs "corrélées"	divers	Méthode Méthode	Rektorik" "Rotavap"	(no du pic)		07: 0.39			10: 0.37		18: 0.32		12: 0.31	06: 0:30	02: 0.30	
	Produits volatils divers	Méthode	"Rektorik"	(no du pic) (no du pic)			28: -0.38					22: 0.31				42: 0.27
	Produ	Acides	gras	volatils				n-C6: 0.37								
	téolyse	Fractions	azotées													
	s de la pro	Amines	biogènes)												
	Produits non volatils de la protéolyse	Acides	aminés	libres						his: -0.33						
	Produits	Peptide														
		seuil	confi-	ance	P=	%66				P=	82%					

Tableau 30: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 22 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la concentration en acide formique (C1)

	Autres	sesoduo	ou arandeurs			lact: 0.57	L-la: 0.57	D-la: 0.47																		
	Critères	sensoriels composés																						typ: -0.28		
	_		senbibol													ent: -0.32		3.								
	88	Force	a la ruoture																							
	rhéologiqu	Déforma-	tion a la	2 12 12 12																				,		
élées"	Grandeurs rhéologiques	Contrainte	a 33% de déformation																							
Grandeurs "corrélées"		Pénétro-	metrie																							
Brande	livers	Méthode	"Rotavap"	foud an out					24: -0.45	22: -0.40				17: -0.32						09: -0.30	05: 0.29					
	its volatils divers	Méthode	"Rektorik" "Rotavap" (no du nic) (no du nic)	לוום מת לווו)									05: 0.35		11: 0.32		43: -0.31		41: -0.31				39: -0.28		20: 0.27	25: -0.27
	Produi	Acides	gras		C3: -0.59						AGVT: -0.39															
	éolyse	Fractions	azotées																			NPNP: -0.28				
	s de la prot	Amines	biogènes																							
	Produits non volatils de la protéolyse	Acides	aminés	20101								ala: -0.38						pser: -0.31								
	Produits	Peptide	(1 pic)																							
		senil	confi-	alice	P≕	%66		•	- Lu		•		Б=	95%												

Tableau 31: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 24 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la concentration en acide acétique (C2)

	Autres	composés	5	grandeurs																				eau: -0.29			
	Critères	sensoriels composés																									
	Grandeurs	bactério-	logiques											NGE: -0.36													
	es	Force	<u>a</u>	rupture																							
	rhéologiqu	Déforma-	tion à la	rupture																							
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																							
Grandeurs "corrélées"		Pénétro-	métrie																			-0.31					
3randeu	livers	Méthode	"Rotavap"	no du pic) (no du pic)		27: -0.46			31: -0.43	36: -0.42	26: -0.42	39: -0.39	29: -037			03: 0.34		08: 0.34	15: -0.33		28: -0.32				02: 0.29		
	ts volatils divers	Méthode	"Rektorik"	(no du pic)			27: -0.45	21: -0.44							29: -0.36		39: -0.34			40: -0.32			01: -0.31			32: -0.28	
	Produit	Acides	gras	volatils	AGVT: 0.51																						
	éolyse	Fractions	azotées																								
	s de la prot	Amines	biogènes)																							
	Produits non volatils de la protéolyse	Acides	aminés	libres																		ser. 0.31					orn: 0.27
	Produits	Pantida	(1 pic)																								
		ii o	-juo	ance	ä	%00	3									ď	- 84	97.56									

Tableau 32: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 45 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en acide propionique (C3)

	Autres	composés	no no	o position R	lact: -0.91	D-la: -0.83	L-la: -0.78																																						
	Critères	sensorieis																																											
	Grandeurs	bactério-	senbigoj																																										
	98	Force	à la runfure																																										
	rhéologiqu	Déforma-	tion à la rupture																																										
"corrélées"	Grandeurs rhéologiques	Contrainte	à 33% de déformation																																								1		
		Pénétro-	métrie																																								1		
Grandeurs	Jivers	Méthode	"Rotavap" (no du pic)						1000	22: 0.40	24. 0.73			24: 0.46								32: 0.36			17: 0.33				08: 0.32	05: -0.31									21: -0.29				1	23: 0 32	230.21
	its volatils divers	Méthode	"Rektorik" (no du pic)								19: 0.48		05: - 0.46		43: 0.46	25: 0.46	41: 0.46	02: 0.45		23: 0.39	26: 0.37						14: 0.32				03: 0.31	13. 0.31	15: 0:30		20: -0:30		18: 0.30	42: - 0.30			33: 0.29	- 000	06: 0.29	1	32: 0.27
	Produi	Acides	gras	AGVT: 0.93				C1: -0.59	1-03: 0.34																																			1	
	éolyse	Fractions	azotées																NPNP: 0.41					NPN: 0.34																				1	
	s de la prot	Amines	plogènes													1																											+		
	Produits non volatils de la protéolyse	Acides	aminés libres									ala: 0.47										25 O 25	pro. 0.30		300	ser: 0.32		glu: 0.32		1				lys: 0.30		met: 0.30				AAT: 0.29		thr: 0.29	00.0.10.	val: 0.28	
	Produits	Peptide	(1 pic)																				1	+					1													+			
		ines	confl- ance	-d	%66			<u>.</u>	_	_	1									_1_			,	1 8	.L % S				_1	1		<u>'</u>	_	<u></u>		<u> </u>		Ш	<u> </u>					<u>_</u>	

Tableau 33: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 27 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la concentration en acide n-butyrique (n-C4)

	Autres	sensorieis composes	grandeurs																						2						
	Critères	sensoriels																						00000	CO18. 0.4						
	Grandeurs	bactério-	senbiboi																									_			-
	es	Force	à la rupture																												
	Grandeurs rhéologiques	Déforma-	tion à la rupture																								-0.28				
élées"	Grandeurs	Contrainte	à 33% de deformation																												
Irs "corr		Penetro-	métrie																												
Grandeurs "corrélées"	livers	Methode	"Rotavap" (no du pic)		18: 0.69		23: 0.59		14: 0.49	28: 0.47												17: 0.29							31: 0.28		
	Produits volatils divers	Methode	"Rektorik" "Rotavap"	37: 0.74				42: 0.58			21: 0.43								34: 0.31							36: 0.29				24: 0.28	
	Produ	Acides				n-C6: 0.65																									
	eolvse	Fractions	azotées														NPNP: 0.32											NPN: 0.28			
	de la prot	Amines	biogènes									1473. A 25	1ya. 0.00																		
	Produits non volatils de la protéolyse	Acides	aminés	SEIGH											val: 0.33	thr: 0.32		ile: 0.31	2	000015	glu. 0.30	919. 0.00	AAT: 0.29	leu: 0.29							met: 0.28
	Droduite	Deptide	(1 pic)										000	-0.33																	
	1		confi-	auce	1 8	% 86 86	_ <u></u>			_		ļ	֓֞֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	82%					_											_	

Tableau 34: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 41 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en acide isovalérique (i-C5)

	Autres	sesodmo	8	grandeurs									- Pr. 0.43	L-180.43																	lact: -0.34												
	Critères	sensoriels composés		<u> </u>																																							
	Grandeurs	bactério-	logiques																																								
	88	Force	à a	rupture																	-																						
	rhéologiqu	Déforma-	tion à la	rupture																										-0.34													
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																																							
Grandeurs "corrélées"		Pénétro-	métrie																																								
3rande u	Jivers	Méthode	"Rotavap"	(no du pic)						17: 0.44							30: 0.40											41.0.35	10: 0.34														
)	its volatils divers	Méthode	"Rektorik"	(no du pic) (no du pic)		36: 0.52					33: 0.44										38: 0.38						17: 0.35					40: 0.33	19: 0.33		32: 0.32	07:0.32	02: 0.31		14: 0.30		29: 0:30	23.0.20	10-10-10-10-10-10-10-10-10-10-10-10-10-1
	Produits	Acides		volatils	C3: 0.54				AGTV: 0.48																																		
	éolyse	Fractions	azotées				NPN: 0.50	NPNP: 0.48												NH3: 0.39																							
	s de la prot	Amines	biogènes																tya: 0.40																								
	Produits non volatils de la protéolyse	Acides	<u>~</u>	libres								met. 0.44	lys: 0.43	val: 0.41	oln: 0.41	ala: 0.41		ile: 0.40				his. 0.37	pro: 0.37	gly: 0.37	thr: 0.37	AA1: 0.36								leu: 0.33				orn: 0.31		gln: 0.30		phe: 0.29	
	Produits	Peptide	(1 pic)																							-0.35																	
		seuil	-jjuoo	ance	=d	%66										-						_					_	<u>-</u> -	82%													_	

Tableau 35: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 9 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la concentration en acide isocaproïque (i-C6)

	Autres	composes	50	grandeurs													
	Grandeurs Critères	sensoriels composes							04011.0	Stru. 0.33							
	Grandeurs	bactério-	logiques														
	es	Force	<u> </u>	rupture												-0.28	
	rhéologiqu	Déforma-	tion à la	rupture													
élées"	Grandeurs rhéologiques	Donotro. Contrainte Déforma-	A 23% do 1ion à la	déformation													
Grandeurs "corrélées"				allielli													
Granden	livers	MAthodo	Methode Methode	Rektorik" "Kotavap"	ליום מם ליוו												
	volatils	100	Methode	"Rektorik"	לוום מח לווו	33: 0.40	32: 0.40	0, 0	40: 0.40			14.033	200	16: 0.31			
	Produits		Acides	gras	voiatiis												
	Aniveo	201)20	Fractions	azotées							TN: -0.37						
	torio or op	o de la piot	Amines	biogènes													
	Sit of City	Produits non volatile de la protectife	Acides	aminés	libres											ala: -0.30	
		Produits	Peptide	(1 pic)													
			seuil	-jjuoo	ance	å	L	% 66					Ъ	%	% CR		

Tableau 36: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 10 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la concentration en acide n-caproïque (n-C6)

				,			Grandeurs "corrélées"	irs "corr	'élées"					
	Produits	s non volati	Produits non volatils de la protéolyse	téolyse	Produ	Produits volatils divers	divers		Grandeurs	Grandeurs rhéologiques	88	Grandeurs	Grandeurs Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode Méthode		Pénétro- Contrainte Déforma-	Déforma-	Force		sensoriels composés	composés
confi-	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik"	Rektorik" "Rotavap"	métrie	à 33% de tion à la	tion à la	<u>a</u>	logiques		no
ance		libres			volatils	(no du pic)	no du pic) (no du pic)		déformation	rupture	rupture			grandeurs
₽≕						37: 0.72								
%66							18: 0.71							
						42: 0.67								
					n-C4: 0.65									
							23: 0.56							
							06: 0.48							
			hia: 0.37											
							28: 0.35							
=d		asp: 0.32												
82%		thr: 0.27											-	

Tableau 37: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 41 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la teneur en acides gras volatils "totaux" (AGVT)

	Autres	composés	8	grandeurs		lact: -0.87	D-la: -0.81	L-la: -0.73																																				
	Critères	sensoriels composés																																										
	Grandeurs	bactério-	logiques												:									NGE: -0.36																				
	es	Force	à la	rupture																									,															
	Grandeurs rhéologiques	Déforma-	tion à la	rupture																																								
élées"	Grandeurs	Contrainte	à 33% de	déformation																																								
Grandeurs "corrélées"		Pénétro-	métrie								-																																	
Grander	divers	Méthode	"Rotavap"	(no du pic)						09: 0.48						08: 0.39									22: 0.35					39: -0.32	17: 0.32		04.000	24: 0.30		21: -0.30			28: -0.30					
	its volatils divers	Méthode	"Rektorik"	(no du pic) (no du pic)									23: 0.42				19: 0.39	02: 0.38	43: 0.38			05: -0.36	25: 0.36						41: 0.32									17: 0.30		07: 0.28			21: -0.28	18: 0.27
	Produi	Acides	gras	volatils	C3: 0.93				C2: 0.51		I-C5: 0.48				C1: -0.39																													
	éolyse	Fractions	azotées									NIDNID: 0.45	Ct.O. JAJ								NPN: 0.37																							
	s de la prot	Amines	biogènes																																							pea: 0.28		
	Produits non volatils de la protéolyse	Acides	aminés	libres								ala: 0.46		ser: 0.40						pro: 0.37						AAT: 0.32	val: 0.32	lys: 0.32				leu: 0.32	met: 0.31		thr: 0.30		asp: 0.30				phe: 0.28			
	Produits	Peptide	(1 pic)																																									
		seuil	confi-	ance	=d	%66								_	_										Ę,	82%														_				

Tableau 38: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 47 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 05 (méthode "Rektorik")

	Autres	composés	ъ	grandeurs		D-la: 0.53		lact: 0.48																															1 -le: 0 28	L-19. 0.20	
	Critères	sensoriels																																							
	Grandeurs	bactério-	logiques																																						
	es	Force	à la	rupture																																					
	rhéologiques	Déforma-	tion à la	rupture							-0.41																														
élées"	Grandeurs	Contrainte	à 33% de	déformation																	0.34																				
Grandeurs "corrélées"		Pénétro-	métrie																																						
3 randeu	divers	Méthode	"Rotavap"	(no du pic)			12: 0.50		0	US: -U.44		22. 0.38	250.00							29.0.34	30.00	24: -0.34											33: 0.30			000	20. U.C.	21: 0.28			34: 0.27
	ts volatils c	Méthode	"Rektorik"	(no du pic)	11: 0.68	31: 0.54						12: 0.39			07: 0.37		43: -0.36							20.033	09: 0.33		25: -0.32	04.0.3		28: 0.31					39: -0.29	41: -0.29	40.0.20	10. 0.40	08: 0.28	00.00	30. V.£U
	Produi	Acides		volatils					C3: -0.46						AGVT: -0.36	200.		C1: 0.35																							
	solyse	Fractions	azotées											NH3: 0.37		WI N: 0.36	2000											WI NP: 0 31			NPN: 0.31										
	de la prote	Amines	biogènes																									1	pea: -0.31												
	Produits non volatils de la protéolyse	Acides	aminés	libres			1			alv: 0.44			le: 0.37						glu: 0.35	met: 0.35			val: 0.33	lys: 0.33		his: 0.32					A A T. O 20	AA1.0.30		leu: 0:30			1				
	Produits	Peptide	(1 pic)																																						
	J	seuil	-juoo	ance	<u>=</u>	- %66			11		1			لب				PE	92%					_!										_	_						

Tableau 39: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 36 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 07 (méthode "Rektorik")

36: 0.37
NPNP: 0.33 H-C5: 0.32

Tableau 40: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 51 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 08 (méthode "Rektorik")

						•	Grandeurs	ırs "corr	"corrélées"					
	Produits	non volatil	Produits non volatils de la protéolyse	téolyse	Produi	ts volatils	divers		Grandeurs	Grandeurs rhéologiques	les	Grandeurs	Critères	Autres
seuil P	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels composés	composés
confi-	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik"	"Rotavap"	métrie	à 33% de	tion à la	à a	logiques		50
ance		libres			volatils	(no du pic)	no du pic) (no du pic)		déformation	rupture	rupture			grandeurs
ı ž		116: 0.59					P3 0 -0E							
		vs: 0.53					500							
		gly: 0.53												
Ц		his: 0.51												
		pro: 0.50												
		OV U. IGN		NH3: 0.50										
		mel: 0.49												
		AAT: 0.48												
Ц		37 0 -34												O-la: 0.4/
		UE. C.43							0.43					
Ц		glu: 0.42												
				NPN: 0.41						180				
		leu: 0.41												
Ц						06: -0.40								
						36: 0.39	28: N 30							
						03: -0.38								
Ш				WLNP: 0.38										
						37: 0.38								
							10: 0.37							
Ц		phe: 0.37												
\perp		ala: 0.36					24: -0.36							
1						41: 0.36								
Ц						39. 0.36								
Ш						26: -0.35	20.035							
						11: 0.34								
						27: 0.34								
Ц		orn: 0.34												E 0 .6+
							22: -0.33							S S
				NPNP: 0.32										
Ш						13: -0:32								
		gln: 0.32					17:031							
				WLN: 0.31										
П						25: -0.31								
						15: -0.30	08.07.50							
														lact: 0.30
							21: 0.29							
Ц			tya: 0.29			05: 0.28								
													go0f: 0.28	
							12:0-:50							

Tableau 41:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de diverses grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 09 (méthode "Rektorik")

	Autres	composés	no O	grandeurs		+a: -0.52												•									
	Critères	sensoriels composés													flav: 0.33												
	Grandeurs	bactério-	logiques																								
	es	Force	à <u>a</u>	rupture																				-0.30			
	Grandeurs rhéologiques			rupture																							
élées"	Grandeurs	Contrainte	à 33% de	déformation																							
Grandeurs "corrélées"		Pénétro-	métrie				-																				
Grande	divers	Méthode Méthode	"Rotavap"	(no du pic)						34: 0.39																	
	its volatils divers	Méthode	"Rektorik" "Rotavap"	(no du pic) (no du pic)	07: 0.62		17: 0.47	10: 0.44	12: 0.41		35: 0.36					05: 0.33		24: 0.31									
	Produit	Acides	gras	volatils																							
	éolyse	Fractions	azotées									NPN: 0.36					NH3: 0.32					WLNP: 0.30	WLN: 0.30				
	s de la prot	Amines	biogènes																								
	Produits non volatils de la protéolyse	Acides	aminés	libres									met: 0.35						gly: 0.31	glu: 0.31	val: 0.31				AAT: 0.29	thr: 0.29	lys: 0.28
	Produits	Peptide	(1 pic)											-0.35													
		seuil	confi-	ance] =d	%66								=d	%26												

Tableau 42: Coefficients de corrélation r (tabulés par valeurs décroissantes) de diverses grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 11 (méthode "Rektorik")

	Autres	sensoriels composés	no	grandeurs																								4	,										00.0	sel0.20
	Critères	sensoriels																										19V. U 33	-Igv. 0.5											
	Grandeurs	bactério-	logiques																																					
	Se	Force	а <u>а</u>	rupture											***************************************																									
	Grandeurs rhéologiques	Déforma-	tion à la	rupture				-0.51																																
élées"	Grandeurs	Contrainte	à 33% de	déformation											4	0.42																								
Grandeurs "corrélées"		Pénétro-	métrie																																					
Grande	Jivers	Méthode	"Rotavap"	(no du pic)							12: 0.46																	240.33								22: -0.30	06: -0:30		15: -0.28	
	its volatils divers	Méthode	"Rektorik"	(no du pic)	05: 0.68	31: 0.53																	37: 0.37		23. 0.30	22: 0.35	U8: U.34					39: -0.31		29: 0.30	07: 0.30			36: 0.29		
	Produits	Acides	gras	volatils																									68 0 - 63	01.0.0										
	éolyse	Fractions	azotées										NH3: 0.44	NPN: 0.43							WLN: 0.40			WLNP: 0.3/																
	s de la prot	Amines	biogènes																																					
	Produits non volatils de la protéolyse	Acides	aminés	libres			gly: 0.52		ile: 0.46	val: 0.46		glu: 0.45			phe: 0.43		AA1: 0.42	met: 0.42	leu: 0.41	lys: 0.40		his: 0.39								16F. 0.39	nro: 0.31	5	ala: 0.30							
	Produits	Peptide	(1 pic)																																					
		senil	-jjuoo	ance	<u>=</u> d	% 66			•	•		•. •															95%													

Tableau 43:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 67 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 35 (méthode "Rektorik")

	Autres	composés	≅ .	grandeurs																																								4h: 0.28	07:0	
	Critères	sensoriels				18v: 0.52			T						cons: 0.43																		typ: 0.33						0.0	quar: 0.29			stru; 0,28			
	Grandeurs	bactério-	logiques																												-															
	9S	Force	à la	rupture																					26.0	4.5																				
,	rhéologiqu	Déforma-	tion à la	rupture				-0.50																																						
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																																										
Grandeurs "corrélées"		Pénétro-	métrie																																											
Grande	livers	Méthode	"Rotavap"	(no du pic)						05: 0.47						400.42				25: 0.42					42: -0.38			05:40.35							19: 0.32	17.0.30					30:00	39. 0.20				
	its volatils divers	Méthode	"Rektorik"		38: 0.54	24: 0.54					12: 0.47	22: -0.46	13.0.45				10: 0.42	14: 0.42	18: 0.42		33. 6.70	17. 0.40	40: 0.40	20: -0.39		26.0.00	15: 0.36	20.0	36: 0.34		26: 0.34	02:033		03: 0.32	6	19: 0.32	41:032	06: 0.31	27: 0.29		07: 0.29	16: 0.28		44: 0.28	4 5 11 27	
	Produit	Acides	gras	volatils																																										
	éolyse	Fractions	azotées				WLNP: 0.51		NPN: 0.49					NH3: 0.44	4871 81: 18.23	WEIN, U.43														NPNP:0.34																
	s de la prot	Amines	biogènes																													lya. 0.33														
	Produits non volatils de la protéolyse	Acides	aminés	libres					9	AAI : 0.48																																				
	Produits	Peptide	(1 pic)																																											
		senil	confi-	ance	Ed.	% 86			بلب					_			_							_					ä	%96		_		_				_		_						

*corrélations significatives avec tous les acides aminés libres dosés (r compris entre 0.29 (gln) et 0.54 (pro) sauf pour asp, tyr et om.

Tableau 44: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 46 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 36 (méthode "Rektorik")

							Grandeurs		"corrélées"					
	Produit	Produits non volatils de la protéolyse	ls de la prot	éolyse	Produ	iits volatiis divers	divers		Grandeurs	Grandeurs rhéologiques		Grandeurs	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels	composés
confi-	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik"	"Rotavap"	métrie	à 33% de	tion à la	à 12			, no
ance		libres			volatils	(no du pic) (no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
H.							17: 0.90							
% 66				,			10.0.71							
							30.03			29 0				
					I-C5: 0.52					2000				
			tya: 0.50											
						29: 0.49								
		val: 0.46												
				NH3: 0.45										
		alu: 0.43												
		lle: 0.43												
		gly: 0.43												
		pro: 0.42												
		lys: 0.42												
		ala: 0.42												
		AAT: 0.41												
				WLNP: 0.40										
						08: 0.39								
		mot: 0.38				23: 0.39								
		Indt. 0.30												
		lau. 0.30					13: 0.37							
						07: 0.37	100							
		thr: 0.37												
				NPNP: 0.36										
P=		phe: 0.34												
82%						35: 0.34								
							19: 0.33						fla: 0 33	
		hls: 0.33												
	-0.32													
						38: 0.32								
				WLN: 0.31			08.0.86							
						20. 0 30						00 0 - Jud		
						11: 0.29						GIR. • 0.30		
		ser: 0.29												
_							05: -0.29							
						33: 0.29								
					n-C4: 0.29		0.00							
						27: 0.28	23: 0.28							
									0.28					

Tableau 45: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 35 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 37 (méthode "Rektorik")

	Autres	composés	пo	grandeurs																											D-la: 0.30	lact: 0.30					
	Critères	sensoriels composés								cons: 0.41																											
	Grandeurs	bactério-	logiques																																-		
	es	Force	à la	rupture																													-0.29				
	rhéologiqu	Déforma-	tion à la	rupture							-0.40																										
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																																	
irs "corr		Pénétro-	métrie																																		
Grandeurs "corrélées"	ivers	Méthode	"Rotavap"	(no du pic)	18: 0.86			28: 0.56	23: 0.52			09: -0.40		24: -0.39									22: -0.34		12: 0.33											30: 0.29	06: 0.28
	ts volatils divers		"Rektorik"	(no du pic) (no du pic)		42: 0.77					,					08: 0.38	11: 0.37			25: -0.37				31: 0.33		41: -0.33				21: 0.30							
	Produit	Acides		volatils			n-C4: 0.74	n-C6: 0.72																												-	
	éolyse	Fractions	azotées																								NH3: 0.32										
	de la prot	Amines	biogènes																																tya: 0.29		
	Produits non volatils de la protéolyse	Acides	aminés	libres									gly: 0.39		thr: 0.39			glu: 0.37	ile: 0.37		val: 0.34	phe: 0.34						AAT: 0.32	leu: 0.32					met: 0.29			
	Produits	Peptide	(1 pic)																																		
		senil	confi-	ance	 	%66						!									=d	95%	<u>'</u>					.		<u></u>	L		<u>'</u>			<u>니</u> _	

Tableau 46: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 52 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 38 (méthode "Rektorik")

	Autres	composés	8	grandeurs																												+b: -0.35									1-la -0 29	L-1a, -0.E-				
	Critères	sensoriels																																						1	1					
	Grandeurs	bactério-	logiques																																											
	9S	Force	<u>a</u>	rupture																																										
	Grandeurs rhéologiques	Déforma-	tion à la	rupture												44	-0.46					·																								
"corrélées"	Grandeurs	Contrainte	à 33% de	déformation																		0.40																								
irs "corr		Pénétro-	métrie																																										20.0.20	28: 0.27
Grandeurs	Jivers	Méthode	"Rotavap"	(no du pic)														41: 0.45					26: 0.39			06: -0.38			100	78: 0.3/								39: 0.33						07: -0.28	05: 0,28	
	its volatils divers	Méthode	"Rektorik"	(no du pic)	40: 0.74	14: 0.70	16: 0.63	24: 0.55	44: -0.54	35: 0.54	33: 0.53		01: 0.49	20.00	27: 0.48					45: 0.43							06: 0:38		13: 0.38		26: 0.35			02: 0.34		15: 0.34	07: 0.34		36: 0.32	19: 0.32		28: -0.28				
	Produit	Acides	gras	ω.																					LC5: 0.38							-														
	éolyse	Fractions	azotées									NPN: 0.50		NPNP: 0.49																			NH3: 0.35													
	s de la prot	Amines	biogènes																																											
	Produits non volatils de la protéolyse	Acides	aminés	libres												met: 0.48	Nie. O AR	02:0	ile: 0.44		lys: 0.42	val: 0.41		pro: 0.39		86.0	Wr. U.so	glu: 0.38		01v:038					Ber: 0.34						thr: 0.30					
	Produits	Peptide	(1 pic)																																								-0.28			
	-	llnes	-jjuoo	ance	-d	* *	_			_	_			_					•				_				_				Į.	%58	ا		•					_						_

Tableau 47: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 47 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la surface du pic no 17 (méthode "rotavapor")

et "corrélées" avec la grandeur rhéologique "profondeur de pénétration dans la pâte" de 17 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes) Tableau 48:

<u> </u>							Grander	Grandeurs "corrélées"	élées"					
	Produits	non volati	Produits non volatils de la protéolyse	téolyse	Produits	its volatils divers	Jivers		Grandeurs rhéologiques	rhéologiqu		Grandeurs Critères	Critères	Autres
+	Dentide	Acides	Amines	Fractions	Acides	éthode	Méthode	Pénétro-	Contrainte	Déforma-	Force		sensoriels composés	composés
oculi-	(1 pic)	aminés	biogènes		dras	"Rektorik"	"Rotavap"	métrie	à 33% de	tion à la	à a	logiques		ю.
	2	libres			volatils	(no du pic) (no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
2									69'0-					
<u>.</u>														EESD: 0.62
													stru: 0.60	
											-0.54			
<u></u>				TN: -0.51										
<u> </u>						39: 0.49								
<u>L</u>														eau: 0.44
1							31: 0.43							
<u></u>						21: 0.43								
							13: 0.38							
1_						04: 0.36								10 0 01
<u></u>														GGES: U.35
ă					C2: -0.31									
95%						34: 0.29								
							27: 0.29							
							25: 0.29							
<u> </u>							19: 0.27							

Tableau 49:

et "corrélées" avec la grandeur rhéologique "contrainte à 33 % de défomation" de 22 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes)

													_													
	Autres	composés	5	grandeurs			EEDS: -0.49				eau: -0.45															
	Critères	sensoriels composés						stru: -0.49																		
	Grandeurs Critères		logiques																	-						
		Force	à la	rupture																				0.31		
	rhéologique	Déforma-	tion à la	rupture														-0.36								
šlées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation																						
Grandeurs "corrélées"		Pénétro-	métrie	0	69.0-		-																			
3rande u	ivers	Méthode	"Rotavap"	(no du pic)													31: -0.38			12: 0.35						
)	ts volatils divers	Méthode	"Rektorik" "Rotavap"	(no du pic) (no du pic)							-		08: 0.43	39: -0.42	11: 0.42	38: 0.40			17: 0.35		05: 0.34	31: 0.32	21: -0.31		07: 0.29	36: 0.28
	Produits	Acides		volatils (
	éolyse	Fractions	azotées						NH3: 0.47	NPN: 0.46		NPNP: 0.43														
	s de la prot	Amines	biogènes																							
	Produits non volatils de la protéolyse	Acides	aminés	libres		AAT*: 0.50									-											
	Produits	Peptide	(1 pic)																							
		seuil	-juoo	ance	P=	%66			•		,	_							ΡΞ	%56						

*Légende: corrélation comparable avec tous les acides aminés libres dosés, sauf: p-ser (0.19), asp (0.12) et cit (0.16)

Tableau 50: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 42 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la grandeur rhéologique "déformation à la rupture"

	s Autres	sensoriels composés	no	grandeurs					61																	1.37			37							sel: -0.32					
	Critères	sensorie	<u>-</u> .						flav: -0.61																	cons: -0.37			stru: -0.37												
	Grandeurs	bactério-	logiques																																						
	es	Force	à la	rupture			71.0	50																																	
	Grandeurs rhéologiques	Déforma-	tion à la	rupture																																					
"corrélées"	Grandeurs	Contrainte	à 33% de	derormation																										-0.36											
ırs "corr		Pénétro-	métrie																												10: -0.36										
Grandeurs	divers	Méthode	"Rotavap"	(no au pic)									17: -0.50									41: -0.40	12: -0.38	14: -0.38	28: -0.38		25: -0.37								18: -0 33	66.0- 101		09: 0.32		30: -0.31	
	its volatils divers	Méthode	"Rektorik"	(no du pic) (no du pic)							36: -0.52	11: -0.51		35: -0.50	20.00	33: -0.47	38: -0.46	24: -0.42	31: -0.41	080.41	37: -0.40						200	27: -0.37	K8, -0.31			32: -0.35		34: -0.34	200		40: -0.32		07: -0.31	000	10: -0.29
	Produit	Acides		volatiis									.																				I-C5: -0.34								
	éolyse	Fractions	azotées		NPN: -0.77	NH3: -0.75		APNP. 0 66		WLNP: -0.55				0 14 841	WLN: -0.48																										
	s de la prot	Amines	biogènes																																						
٠	Produits non volatils de la protéolyse	Acides	aminés	libres			AAT: -0.72																																		_
	Produits	Peptide	(1 pic)																																						
		seuil	confi-	ance	-d	% 66											_															=d	82%								

Tableau 51: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 32 grandeurs mesurées par voies sensorielles et intrumentales

et "corrélées" avec la grandeur rhéologique "force à la rupture"

Produits non volatilis de la protéclyse								Grandeurs "corrélées"	Irs "corr	élées"					
Peptide (1 pic) Acides infines Anines inchises Fractions Acides Acides Anines Acides Infines Acides Acides Acides Acides Acides Méthode Infines Previour Acides Acides Méthode Infines Previous Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Acides Aci	•	Produits	s non volati	ls de la pro	téolyse	Produ	ts volatils c	Jivers		Grandeurs	rhéologiqu	es	Grandeurs		Autres
Thick Applies Diggers Fektonik' "Rotavap" Mefrica A 33%, de tion à la place A 100 pl	enii	Peptide	Acides	Amines	Fractions	Acides		Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels	composés
MINE 0.47 ANT: 0.48	confl- ance	(1 pic)	aminés libres	biogènes	azotées		"Rektorik" (no du pic)	"Rotavap" (no du pic)	métrie	à 33% de déformation	tion à la	à la rimtire	logiques		ou
MINPLOAT AAT: 0.43 AAT: 0.43 AAT: 0.43 AAT: 0.43 AAT: 0.44 AAT: 0.43 AAT: 0.43 AAT: 0.44 A	=d					Т						O in tal		stru: -0.74	
MANE: 0.47 AAT: 0.48 AAT: 0.49	%6										0.71				
AAT: 0.48 AAT: 0.48														flav: -0.56	
NHS:-0.47 NINE-0.47 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.42 ST:-0.40 ST:-0.4	1								-0.54						
NHN: -0.47															eau: -0.51
AAT: 0.43 WILNE: 0.46 31: 0.42 6 6 7 </td <th></th> <td></td> <td></td> <td></td> <td>NH3: -0.47</td> <td></td>					NH3: -0.47										
AAT: -0.43															EESD: -0.47
AAT:* 0.43 WLNP: 0.46 31:-0.42 1 21:-0.42 41:-0.40 25:-0.40 14:-0.39 14:-0.39 NPNP:-0.37 33:-0.37 17:-0.37 1 17:-0.37 17:-0.37 1 24:-0.38 17:-0.37 1 24:-0.38 17:-0.37 1 09:-0.31 09:-0.30 1 1-C6:-0.28 17:-0.30	1				NPN: -0.47										
MAT: 0.43 AAT: 0.43 AAT: 0.43 AAT: 0.40 AAT: 0.37 AAT: 0.37 AAT: 0.37 AAT: 0.37 AAT: 0.37 AAT: 0.38 AAT: 0.30					WLNP: -0.46										
31:-0.42 21:-0.42 25:-0.40 25:-0.40 25:-0.40 26:-0.40 26:-0.40 26:-0.40 26:-0.40 26:-0.40 26:-0.40 26:-0.40 26:-0.37 26:-0.37 26:-0.37 26:-0.37 26:-0.37 26:-0.37 26:-0.37 24:-0.38 24:-0.38 24:-0.38 27:-0.30 27:-0.30 27:-0.30 27:-0.28 37:-0.29			AAT:* -0.43												
Alichary Alichary								31: -0.42							
A A B A B B B B B B							21: -0.42								
NPNP: 0.37								41: -0.40							
MPNP: 0.37 33: -0.37 28: -0.37 14: -0.39	1							25: -0.40							
NPNP: -0.37 33: -0.37 28: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.37 17: -0.38 17: -0.38 17: -0.38 17: -0.38 17: -0.39 17: -0.39 17: -0.39 17: -0.39 17: -0.39 17: -0.29 17: -0.39 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.29 17: -0.28 17: -0.28 17: -0.28 17: -0.28 17: -0.28 17: -0.28 17: -0.37 17: -0.39 17: -0.29 17: -0.39 17: -0.29 17								14: -0.39							
28: -0.37 28: -0.37 17: -0.37 17: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.37 18: -0.31 18: -0.31 18: -0.31 18: -0.31 18: -0.31 18: -0.30 <t< td=""><th></th><td></td><td></td><td></td><td>NPNP: -0.37</td><td></td><td>33: -0.37</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					NPNP: -0.37		33: -0.37								
TN: 0.36								28: -0.37							
340.36 24: -0.33 36: -0.31 36: -0.31 36: -0.30 1-C6: -0.28							35: -0.37	17: -0.37							
340.36 340.36 6 7 WLN: -0.32 24: -0.33 6 6 36: -0.31 09: -0.30 09: -0.30 6 370.29 1-C6: -0.28 1-C6: -0.28 6					TN: 0.36										
340.36 24: -0.33 6.31<														cons: -0.36	
WLN: -0.32 24: -0.33 96: -0.31 96: -0.30 96: -0.30 96: -0.20 96:	1						340.36								
MLN: -0.32	<u></u>													typ: -0.35	
36: -0.31 27: -0.30 09: -0.30 370.29	_ % 2						24: -0.33								
36: -0.31 27: -0.30 09: -0.30 370.29					WLN: -0.32										
36: -0.31 09: -0.30 370.29	'									0.31					
09: -0.30 370.29							36: -0.31								
								27: -0.30							
	1						06: -0:30								
I-C6: -0.28							370.29								
						I-C6: -0.28									

Légende: Corrélation comparable avec tous les acides aminés libres dosés sauf p-ser (0,03), asp (0,21), ser (-0,25), ala (-0,25), tyr (-0,02) et orn (-0,17)

Tableau 52: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 25 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec le nombre de germes étrangers (NGE)

	Autres	nposés	no	giaildeuis											D-la: 0.46										+b: -0.32				
	_	els con	2	g B	1										۵									-	+				.27
	Critères	sensoriels composés																											ouv: 0.27
	Grandeurs	bactério-	logiques																										
	es	Force	à la	rupture																									
	rhéologiqu	Déforma-	tion à la	rupture																									
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	deformation																									
rs "corre		Pénétro-	métrie																									0.27	
Grandeurs "corrélées"	ivers	Méthode	"Rotavap"	no du pic)	39: 0.85	29: 0.71	19: 0.66	30: 0.59	26: 0.57	28: 0.56	21: 0.56	27: 0.51		15: 0.48		13: 0.46	36: 0.44	31: 0.44	23: 0.41		41: 0.38					10: 0.29	40: 0.29		
	ts volatils divers	Méthode	"Rektorik"	(no du pic) (no du pic)									01: 0.49							27: 0.39		40: 0.37							
	Produit	Acides	gras	volatils (-														C2: -0.36	AGVT: -0.36					
	Solyse	Fractions	azotées																										
	de la prot	Amines	biogènes																										
	Produits non volatils de la protéolyse	Acides	aminés	libres	,																								
	Produits	Peptide	(1 pic)																										
	1	senil	confi-	ance	P=	%66		1	<u> </u>	<u> </u>				!				,L		1	:				ä	95%	3		

et "corrélées" avec le logarithme naturel du nombre de streptocoques du type D "ent" de 17 grandeurs mesurées par voies sensorielles et intrumentales Coefficients de corrélation r (tabulés par valeurs décroissantes) Tableau 53:

							Grander	Grandeurs "corrélées"	élées"					
	Produits	s non volati	Produits non volatils de la protéolyse	téolyse	Produits	iits volatiils (Jivers		Grandeurs rhéologiques	rhéologiqu		Grandeurs Critères	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode Méthode	Méthode	Pénétro-		Déforma-	Force	bactério-	bactério- sensoriels composés	composés
confi-	(1 pic)	aminés	biogènes		gras	"Rektorik"	"Rotavap"	métrie	à 33% de	tion à la	à a	logiques		8
ance		libres)		(1)	(no du pic) (no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
- <u>-</u> -			tya: 0.58											
%66		tyr: -0.57												
							22: 0.48							
						25: 0.47								
			pea: 0.45											
						41: 0.45								
							24: 0.43							
===													typ: 0.33	
95%						43: 0.33								
:					C1: -0.32									
							19: 0.30							
						36: 0.30								
							17: 0.30							
							09: 0.29							
		ala: 0.29	6											
													flav: 0.28	
						45: -0.28								

Tableau 54: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 11 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la qualité gustative ("qual")

			-				Grandeurs "corrélées"	Irs "corr	élées"					
	Produits	non volati	Produits non volatils de la protéolyse	téolyse	Produil	its volatils divers	divers		Grandeurs	Grandeurs rhéologiques		Grandeurs Critères	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode Méthode	Pénétro-	Contrainte Déforma-	Déforma-	Force	bactério-	bactério- sensoriels composés	composés
-juoo		aminés	biogènes		gras	"Rektorik"	"Rektorik" "Rotavap"	métrie	à 33% de	tion à la	à la	senbigol		8
ance		libres			volatils	(no du pic)	(no du pic) (no du pic)		déformation	rupture	rupture			grandeurs
P=													typ: 0.91	
%66													flav: 0.57	
													goût: 0.54	
-1		cit: 0.35												
82%													stru: 034	
:							32: -0.30							
							12: -0.30							
						35: 0.29								
							10: -0.29							
														+b: -0.28
		nser: 0 28												

Tableau 55: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 40 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec le développement de la flaveur ("flav")

	Autres	sensoriels composés	OU																																	+b; -0.32				sel: 0.28
	Critères	sensoriels		7.0	typ: 0.71															qual: 0.57						0	cons: 0.40	Sad. C.SS												
	Grandeurs	bactério-	senbibol																																			ent: 0.28		
	Se	Force	àla	2000	ŕ																-0.56																			
	Grandeurs rhéologiques	Déforma-	tion à la	a mada.												-0 E1	000																							
"corrélées"	Grandeurs	Contrainte	à 33% de																																					
		Pénétro-	métrie																																					_
Grandeurs	Jivers	Méthode	"Rotavap" (no du pic)	,																											17: 0.35						40: -0:30			
	its volatils divers	Méthode	"Rektorik" (no du pic)																					35: 0.52								07: 0.34	36: 0.33	09: 0.33	11: 0.33					
	Produits	Acides	gras	Т																																				_
	éolyse	Fractions	azotées									NH3: 0.64			NPN-0.61			NPNP:0.58												WLNP: 0.36						WI N : 0.31	200			-
	s de la prot	Amines	biogènes																										tya: 0.38											_
	Produits non volatils de la protéolyse	Acides	aminés libres		val: 0.70	AAT: 0.70	glu: 0.70	gly: 0.70	len: 0.68	met: 0.68	thr: 0.66		lys: 0.63	116: 0.62	pile: 0.02		pro: 0.59		his: 0.57			ala: 0.56	cit: 0.55		0,0	ser. 0.42		gln: 0.38											orn: 0.28	
	Produits	Peptide	(1 pic)																					3	-0.46															
		seuil	confi-	=d	%66			<u> </u>		'					<u>-</u>		_	<u></u>			1										=d	%36	1			l	1_	لـــا		

Tableau 56: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 20 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec le caractère typique du fromage ("typ")

Tableau 57:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 13 grandeurs mesurées par voies sensorielles et intrumentales

et "corrélées" avec certains défauts de goût notés: 1 = divers; 2 = impur; 3 = oxydé; 4 = amer et 5 = "normal"

							Grandeurs "corrélées"	ırs "corr	élées"					
	Produits	s non volati	Produits non volatils de la protéolyse	téolyse	Produits	iits volatils divers	divers		Grandeurs	Grandeurs rhéologiques		Grandeurs Critères	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	bactério- sensoriels composés	composés
-juoo		aminés	biogènes	azotées	gras	"Rektorik" "Rotavap"	"Rotavap"	métrie	à 33% de	tion à la	à la	logiques		50
ance		libres		:	volatils	(no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
P=													qual: 0.54	
% 66													typ: 0.51	
٠							14: -0.37							
•							18: -0.36							
P=														+a: -0.34
95%							28: -0.33							
L						34: -0.33								
L							23: -0.31							
L						42: -0.29								
•							21: -0.29							
						08: -0.28								
		asp: -0.28												
							10: -0.28							

Tableau 58: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 29 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la consistance de la pâte ("cons")

							Grandeurs "corrélées"	irs "corr	élées"					
	Produits	Produits non volatils de la protéolyse	ls de la pro	téolyse	Produit	its volatils divers	divers		Grandeurs rhéologiques	rhéologiqu	es	Grandeurs	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels	sensoriels composés
-jJuoo	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik"	"Rektorik" "Rotavap"	métrie	à 33% de	tion à la	à la	logiques		8
ance		libres			volatils	(no du pic)	no du pic) (no du pic)		déformation	rupture	rupture			grandeurs
≡d						35: 0.43								
%66		ile: 0.42												
		gly: 0.42												
						37: 0.41								
		cit: 0.40												
													flav: 0.40	
		AAT: 0.40												
		val: 0.39												
		thr: 0.38												
		his: 0.38												
		glu: 0.37												
										-0.37	٠			
							25: 0.37							
		leu: 0.37												
		phe: 0.37												
											-0.36			
		met: 0.36					,							
=d				NPN: 0.34										
%96				WLNP: 0.34										
		lys: 0.34												
		pro: 0.33												
						27: 0.32								
				NH3: 0.32										
						24: 0.31								
							18: 0.30							
					n-C4: 0.29									
				WLN: 0.28										
			tya: 0.28											
						32: 0.27								

Tableau 59:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 20 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la structure de la pâte ("stru")

	Ι	ęs	_	S	Γ	Ι	ίζ	83	Г	Т	1	Г	Π	Г			Г	Ι	Г	Π		Ι	<u> </u>	
	Autres	compos	no	grandeurs			eau: 0.55	EESD: 0.53																
	Critères	sensoriels	no senbigol									flav: 0.39				typ: 0.36	qual: 0.34							
	Grandeurs Critères	bactério-	logiques	-																				
		Force	a a	rupture	-0.74																			
	rhéologiqu	Déforma-	tion à la	rupture										-0.37										
élées"	Grandeurs rhéologiques	Contrainte	à 33% de	déformation					-0.49															
Grandeurs "corrélées"		Pénétro-	métrie			09.0																		
Grandeu	livers	Méthode	"Rotavap"	(no du pic)															41: 0.31	31: 0.31				
)	its volatils divers	Méthode Méthode	"Rektorik"	(no du pic) (no du pic)						21: 0.45	33: 0.41							32: 0.33			39: 0.31		35: 0.28	
	Produits	Acides		volatils					-				i-C6: 0.39											
	éolyse	Fractions	azotées												TN: -0.36							WLNP: 0.30		
	s de la prot	Amines	biogènes																					
	Produits non volatils de la protéolyse	Acides	aminés	libres							-													asp: -0.28
	Produits	Peptide	(1 pic)																					
		senil	-juoo	auce	F.	%66				!							<u>"</u>	%56						

Tableau 60:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 8 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec l'ouverture de la pâte ("ouv")

Tableau 61: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 6 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la luminance (L)

						_	Grandeurs "corrélées"	irs "corr	élées"					
	Produits	Produits non volatils de la protéolyse	s de la pro	téolyse	Produ	Produits volatils divers	divers		Grandeurs	Grandeurs rhéologiques		Grandeurs Critères	Critères	Autres
seuil	seull Peptide	Acides	Amines	Amines Fractions	Acides	Méthode	Méthode Méthode	Pénétro-	Pénétro- Contrainte Déforma-	Déforma-	Force	bactério-	bactério- sensoriels composés	sesodmoc
confi-	confi- (1 pic)		biogènes	azotées	gras	"Rektorik"	Rektorik" "Rotavap"	métrie	à 33% de	tion à la	<u>a</u>	logiques		8
ance		libres			volatils	(no du pic)	no du pic) (no du pic)		déformation	rupture	rupture			grandeurs
P=														+b: 0.55
			pea: 0.43											
P=							26: -0.35							
95%						24: -0.35								
											0.30			
		tyr: -0.29												

Tableau 62: Coefficients de corrélation r (tabulés par valeurs décroissantes) de 19 grandeurs mesurées par voies sensorielles et intrumentales

et "corrélées" avec la composante "rouge" de la pâte (+a)

							Grandeurs "corrélées"	ırs "corr	élées"					
	Produits	non volati	Produits non volatils de la protéolyse	téolyse	Produits	its volatils divers	divers		Grandeurs	Grandeurs rhéologiques	es	Grandeurs Critères	Critères	Autres
seuil	Peptide	Acides	Amines	Fractions	Acides	Méthode	Méthode Méthode	Pénétro-		Déforma-	Force	bactério-	bactério- sensoriels composés	composés
confi-	(1 pic)	aminés	biogènes	azotées	gras	"Rektorik" "Rotavap"	"Rotavap"	métrie	à 33% de	tion à la	à a	senbigol		no
ance		libres			volatils	(no du pic) (no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
₽≃						09: -0.52								
66						21: -0.45								
-H						04: -0.35								
%56													goût: 0.34	
						08: -0.33								
						06: -0.33								
						02: -0.33								
						10: -0.33								
						03: -0.32								
								-0.31						
						01: -0.31								
						44: 0.31				,				
							06: -0.30							
						17: -0.30						•		
														GdES: -0.29
						24: -0.29								
														+b: 0.28
		asp: 0.27												

Tableau 63:

Coefficients de corrélation r (tabulés par valeurs décroissantes) de 27 grandeurs mesurées par voies sensorielles et intrumentales et "corrélées" avec la compsante "jaune" de la pâte (+b)

Acides Méthode Méthode Pénétro- Contrainte Déforma- Force es gras "Rektorik" "Rotavap" métrie à 33% de tion à la à la volatils (no du pic)	Produite non volatile de la proféctivee	lveo	Produite	volatile	Glariuer	Grandeurs correlees	Grandeire	rhéologions	90	2 ropudoi ire		Autroe
Acides Méthode Méthode Pénétro- Containte Déforma- Force gras "Rektorik" "Rotavap" métrie à 33% de tion à la à la volatils (no du pic) (no du pic) déformation rupture rupture 24: -0.37	_	1	Plodu	f	divers		Grandeurs	rneologiqu	Se	Grandeurs	Criteres	Aurres
gras "Rektorik" "Rotavap" métrie à 33% de tion à la à la k volatils (no du pic) (no du pic) 01: -0.53 24: -0.37 26: -0.40 40: -0.35 38: -0.35 27: -0.34 27: -0.34 38: -0.35 38: -0.35 38: -0.35 38: -0.39		Fractions		Méthode	Méthode	Pénétro-	Contrainte	Déforma-	Force	bactério-	sensoriels composés	composés
volatils (no du pic) (no du pic) déformation rupture 01: -0.53 39: -0.43 126: -0.40 126: -0.40 126: -0.40 126: -0.40 126: -0.40 126: -0.40 126: -0.35 126: -0.35 126: -0.33 126: -0.33 126: -0.33 126: -0.34 126: -0.33 126: -0.36 126: -0.33 126: -0.36		azotées		"Rektorik"	"Rotavap"		à 33% de	tion à la	à la	logiques		5
01: -0.53 24: -0.37 40: -0.35 38: -0.35 270.34 270.34 270.34 270.34 28: -0.33 38: -0.29		-		(no du pic)	(no du pic)		déformation	rupture	rupture			grandeurs
011 - 0.53 38: -0.43 24: -0.37 40: -0.35 38: -0.35 27: -0.34 27: -0.34 28: -0.33 34: -0.29												L: 0.55
39: -0.43 24: -0.37 40: -0.35 38: -0.34 270.34 28: -0.33 34: -0.29				01: -0.53								
24: -0.37 40: -0.35 38: -0.34 270.34 28: -0.33 34: -0.29					39: -0.43							
24: -0.37 40: -0.35 38: -0.35 270.34 270.34 28: -0.33 34: -0.29					26: -0.40							
40: -0.35 38: -0.35 270.34 270.34 28: -0.33 34: -0.29	ŀ			24: -0.37								
40: -0.35 38: -0.35 270.34 28: -0.33 34: -0.29	1											
40: -0.35 38: -0.35 27: -0.34 28: -0.33 28: -0.33 34: -0.29	(
38: -0.35 270.34 28: -0.33 38: -0.34 38: -0.35				40: -0.35								
270.34 28: -0.33 34: -0.29				38: -0.35								
28: -0.33	<u>-</u>	₹P: -0.34										
28: -0.33				270.34								
					28: -0.33							
				·								
	1										flav: -0.32	
34: -0.29	1									NGE: -0.32		
34: -0.29												
34: -0.29												
34: -0.29										,		
34: -0.29											typ: -0.30	
34: -0.29												
34: -0.29												
350 28				34: -0.29								
35.0.38												
34.0.38												
34: 10 28											qual: -0.28	
020-70-50				35: -0.28								
												+a: 0.28

Tableau 64: Récapitulatif des meilleurs régresseurs d'analyse instrumentale (déterminés dans les sous-groupes I à VI par régressions linéaires multiples) pour les 3 critères d'analyse sensorielle gustative: "qualité", "développement de la flaveur" et "caractère typique"

sous-	С	ritère "	qualité	" (qual	.)	Cri	tère de	dével	oppeme	ent	"C	aractèr	e typic	ue" (ty	p.)	Mode de
groupe							de la f	laveur	(flav.)							calcul
(cf.	Régres-	Pente		F to	R2	Régres-	Pente		F to	R2	Régres-	Pente		F to	R2	(cf.
texte)	seur	ß	sß	remove		seur	ß	sß	remove		seur	ß	sß	remove		texte)
						NH3	0.0237	0.0038	38.58		NH3	0.0114	0.0050	5.10	0.10	"forward"
						EESD	0.0100	0.0048	4.33	0.41						
II I	cit	0.1329	0.0508	6.84	0.12	val	0.1818	0.0454	16.06		pser	0.0470	0.0202	5.42		"forward"
						ileu	-0.1689	0.0743	5.17	0.54	leu	0.0258	0.0119	4.72	0.19	
III						déf.	-0.0554	0.0098	32.01		ent.	0.0468	0.0195	5.75		"forward"
						ent.	0.0431	0.0159	7.32	0.45	force	-0.0103	0.0048	4.59		
											+b	-0.1227	0.0583	4.42	0.28	
ΙV	RE 35	0.6954	0.3339	4.34	0.08	RE 35	1.0639	0.2491	18.24	0.28	RE 35	0.6901	0.2890	5.70	0.11	"forward"
٧	RO 32	-0.4352	0.1770	6.04		RO 17	0.0320	0.0123	6.70	0.12						"forward"
	RO 12	-0.1681	0.0689	5.95	0.19					·						
Vi	RO 32	-0.5383	0.1624	10.99		val	0.0667	0.0123	29.62		force	-0.0136	0.0048	8.05		"forward"
	force	-0.0170	0.0052	10.82		force	-0.0125	0.0039	10.45		pser	0.0527	0.0195	7.28	0.24	
	RO 12	-0.1970	0.0615	10.25		RO 32	-0.2778	0.1069	6.75	0.61						
	pser	0.0437	0.0204	4.62	0.40											
VI	RO 41	5.4397	1.0207	28.40		force	-0.0169	0.0033	26.97		RO 26	-2.6643	0.6489	16.86		"backward"
	RO 26	-3.5941	0.6790	28.01		lys	0.0365	0.0076	22.86		déf.	0.1273	0.0329	14.95		
	NH3	0.0477	0.0105	20.70		RO 26	-1.4388	0.3430	17.60		force	-0.0449	0.0119	14.20		
	force	-0.0486	0.0125	15.13		+b	-0.1193	0.0404	8.73		+b	-0.2162	0.0574	14.19		
	déf.	0.1253	0.0344	13.27		pser	0.0361	0.0123	8.63	0.70	NH3	0.0329	0.0103	10.20		
	ile	-0.2335	0.0649	12.94							RO 41	2.9358	0.9228	10.12		
	RO 32	-0.5452	0.1521	12.84							ent.	0.0587	0.0191	9.41		
	ent.	0.0698	0.0204	11.72							pser	0.0520	0.0172	9.09		
	+b	-0.1900	0.0590	10.36							contc	0.1350	0.0556	5.91		
	RO 17	-0.0377	0.0122	9.56							ile	-0.1203	0.0538	5.00		
	contr.	0.1631	0.0551	8.74							pea	-0.4961	0.2247	4.87	0.63	
l	pea	-0.6253	0.2223	7.92												
	pser	0.0464	0.0168	7.62												
	RO 12	-0.1432	0.0556	6.64												
	GdES	-0.0082	0.0034	5.68												
	cit	0.0977	0.0466	4.39	0.78											

Légende:

contr.

= contrainte de compression à 33 % de déformation

déf.

déformation à la rupture

force

= force à la rupture

Pour les autres abbréviations, cf. le légende du tableau 18

Tableau 65: Récapitulatif des meilleurs régresseurs d'analyse instrumentale (déterminés dans les sous-groupes I à VI par régressions linéaires multiples) pour les 3 critères d'analyse sensorielle tactile: "ouverture", "consistance" et "structure"

sous-	Crit	ère d'"	ouvert	ure" (o	uv.)	Critèr	e de "c	onsista	ance" (cons.)	Crit	ère de	struct"	ure" (s	tru.)	Mode de
groupe																calcul
(cf.	Régres-	Pente		F to	R2	Régres-	Pente		F to	R2	Régres-	Pente		F to	R2	(cf.
texte)	seur	ß	sß	remove		seur	ß	sß	remove		seur	ß	sß	remove		texte)
						WLNP	0.1143	0.0461	6.15	0.11	EESD	0.0513	0.0103	24.91		"forward"
											GdES	-0.0155	0.0064	5.80	0.36	
il i	pea	-1.5253	0.5259	8.41	0.39	ile	0.4115	0.1381	8.88							"forward"
						lys	-0.1321	0.0607	4.74	0.25						
111						déf.	-0.0640	0.0183	12.20		force	-0.0355	0.0052	46.66		"forward"
						NGE	0.1614	0.0682	5.60	0.23	contr.	-0.0858	0.0283	9.19	0.62	
IV						RE 35	1.1940	0.3699	10.42		RE 21	0.6700	0.1915	12.24	0.20	"forward"
						RE 37	2.9526	0.9914	8.87	0.32						
٧	RO 26	3.3360	1.3336	6.26	0.12	RO 25	1.0512	0.3787	7.71	0.14	RO 41	3.5469	1.0675	11.04	0.21	"forward"
VI	pea	-1.3129	0.5184	6.41		RE 35	1.1940	0.3699	10.42		force	-0.0523	0.0048	120.91		"forward"
L	RO 26	2.6964	1.2892	4.37	0.22	RE 37	2.9526	0.9914	8.87	0.32	NH3	-0.0192	0.0047	16.98		
			į.								RO 21	-0.6570	0.1922	11.68	0.73	
VI	déf.	0.3040	0.0777	15.29		ile	0.1785	0.0360	24.60		force	-0.0399	0.0061	43.38		"backward"
	force	-0.1123	0.0301	13.91		NGE	0.2429	0.0617	15.52		pea	0.6306	0.1702	13.72		
	contr.	0.3807	0.1250	9.27		RO 21	-1.3139	0.3642	13,02		RO 12	-0.1978	0.0542	13.33		
	pea	-1.3731	0.4632	8.79		RO 12	0.2733	0.0885	9.54		lys	-0.1427	0.0396	13.00		
	RO 26	2.9211	1.1893	6.03	0.43	RO 17	-0.0461	0.0170	7.31		NGE	-0.1358	0.0389	12.21		
						EESD	0.0193	0.0075	6.53		leu	-0.0953	0.0315	9.18		
						RO 31	0.4690	0.2127	4.86		val	0.2040	0.0753	7.35		
						RO 25	0.6661	0.3275	4.14	0.55	i-C6	-2.5757	1.2263	4.41		
											déf.	-0.0486	0.0237	4.21	0.82	

Légende:

contr.

= contrainte de compression à 33 % de déformation

déf. = défe

déformation à la rupture

force

force à la rupture

Pour les autres abbréviations, cf. le légende du tableau 18

Tableau 66: Récapitulatif des régresseurs les plus "discriminants" et des valeurs de F* to remove correspondant aux sous-groupes (I à III) (grandeurs chimiques, biochimiques rhéologiques et microbiologiques)

		sous-groupe a	sous-groupe b	sous-groupe c	sous-groupe d	sous-groupe e	sous-groupe f
sous-	Régresseurs	Bons (N=24)	Normaux (N=14)	Normaux (N=14)	Typiques (N=18)	Normaux (N=14)	Normaux (N=14)
groupe	discriminants	Mauv. (N=26)	Anormaux (N=36)	Autres (N=23)	Atypiques (N=32)	Amers (N=13)	Amers (N=13)
		(cutpoint: 3,3)			(cutpoint: 3,3)		Autres (N=23)
1	D-la					18.8	
	i-C5					4.6	
	i-C6					8.4	
	AGVT					10.9	
	GdES						4.1
	TN						6.0
	NH3	3.5			3.0	29.0	
11	pser						3.6
	asp						4.8
	thr		8.0		10.9		
	ser			11.5			3.5
	glu				6.9	29.3	
	pro			4.1			
	gly				18.8	4.9	
	ala		5.4		8.2		
	met					16.5	
	ile	8.2	24.1	22.7	15.2		6.9
	leu	6.2	12.9	11.6			7.7
	tyr				5.4		4.5
	orn					5.1	
	iys				10.3	20.0	
	his	9.4	14.9	20.7	22.9		10.1
	aab		5.2			5.9	
	tya				4.7		4.5
	hia				5.3		6.8
	pept.	5.4	9.8	6.4		14.7	3.3
111	Contr. 33%		4.4	5.9			
	Déf. rupt.		9.8	11.3			_
,	Force rupt.		9.0	8.0		10.3	3.2
	+b	3.1	6.8	4.7		4.1	
	NGE		4.2	5.2			

^{*)} Valeurs de F obtenues en fixant le critère d'élimination F to remove à 4.10

Tableau 67: Récapitulatif des régresseurs les plus "discriminants" et des valeurs de F* to remove correspondant au sous-groupe IV (composés volatils analysés avec la méthode "selon Rektorik")

		sous-groupe a	sous-groupe b	sous-groupe c	sous-groupe d	sous-groupe e	sous-groupe f
sous-	Régresseurs	Bons (N=24)	Normaux (N=14)	Normaux (N=14)	Typiques (N=18)	Normaux (N=14)	Normaux (N=14)
groupe	discriminants	Mauv. (N=26)	Anormaux (N=36)	Autres (N=23)	Atypiques (N=32)	Amers (N=13)	Amers (N=13)
	(no du pic)	(cutpoint: 3,3)			(cutpoint: 3,3)	, ,	Autres (N=23)
IV	RE 02			17.0	9.6		
	RE 04		[4.1]			68.7	
	RE 06					42.8	3.6
	RE 07					16.1	
	RE 09	5.3					
	RE 10	9.0				14.8	
	RE 12					64.3	
	RE 15			9.5	9.0		
	RE 16			20.3			
	RE 21	16.2					
	RE 22						7.0
	RE 24			11.8		5.4	
	RE 25		[3.7]			89.2	
	RE 26			13.4	9.9	32.0	
	RE 27	9.6		9.0		22.6	
	RE 29			4.4		22.6	
	RE 31	18.1	12.5	24.0	22.2	83.1	
	RE 34						. 4.9
	RE 35			19.0			
	RE 36			7.9			
	RE 38	12.3					
	RE 39	13.9					
	RE 42			8.8			
	RE 43			9.8	12.2	-	
	RE 44					25.8	

^{*)} Valeurs de F obtenues en fixant le critère d'élimination F to remove à 4.10 Les valeurs de F indiquées entre paranthèses ont été obtenues en fixant le critère d'élimination à F = 3.20

Tableau 68: Récapitulatif des régresseurs les plus "discriminants" et des valeurs de F* to remove correspondant au sous-groupe V (composés volatils analysés avec la méthode "au rotavapor")

		sous-groupe a	sous-groupe b	sous-groupe c	sous-groupe d	sous-groupe e	sous-groupe f
sous-	Régresseurs	Bons (N=24)	Normaux (N=14)	Normaux (N=14)	Typiques (N=18)	Normaux (N=14)	Normaux (N=14)
groupe	discriminants	Mauv. (N=26)	Anormaux (N=36)	Autres (N=23)	Atypiques (N=32)	Amers (N=13)	Amers (N=13)
	(no du pic)	(cutpoint: 3,3)	, ,	, ,	(cutpoint: 3,3)		Autres (N=23)
V	RO 04		[4.7]			4.3	13.1
	RO 05		[11.4]	14.6	. 10.1		7.0
	RO 06	6.1	[7.1]			58.4	13.6
	RO 07		[5.2]				5.0
	RO 08		[8.2]			11.0	
	RO 09	15.1				75.0	29.2
	RO 12	6.8		33.6	9.6	4.8	
	RO 13	****	[4.0]			21.9	18.7
	RO 14					11.1	
	RO 15		[13.2]	18.8			6.1
	RO 16		[11.4]				23.5
	RO 18	9.4	15.2	35.7	15.4	33.6	19.2
	RO 21						5.9
	RO 22		[5.3]	50.6	46.0		
	RO 23			33.2	5.9		5.8
	RO 24						15.8
	RO 25			13.3	40.2	100.8	
	RO 26				4.2		
	RO 27		[12.9]	62.6	26.0		
	RO 28	7.7		·			8.7
	RO 29			44.2			
	RO 30	6.2	[5.0]			11.4	4.9
	RO 31			27.9			
	RO 32			10.6	10.0		4.6
	RO 33		[3.5]				
	RO 35			20.5	6.3		
	RO 38			9.9	10.5		
	RO 39				15.6		
	RO 40	6.1	-	12.0			20.4
	RO 41						5.9
	RO 42		[9.6]		6.5		16.5

^{*)} Valeurs de F obtenues en fixant le critère d'élimination F to remove à 4.10 Les valeurs de F indiquées entre paranthèses ont été obtenues en fixant le critère d'élimination à F = 3.20

Tableau 69: Récapitulatif des régresseurs les plus "discriminants" et des valeurs de F* to remove ordonnées par valeurs décroissantes, correspondant au sous-groupe VI ("synthèse" des sous-groupes I à V)

	sous-groupe a	sous-groupe b	sous-groupe c	sous-groupe d	sous-groupe e	sous-groupe f
sous-	Bons (N=24)	Normaux (N=14)	Normaux (N=14)	Typiques (N=18)	Normaux (N=14)	Normaux (N=14)
groupe	Mauv. (N=26)	Anormaux (N=36)	Autres (N=23)	Atypiques (N=32)	Amers (N=13)	Amers (N=13)
	(cutpoint: 3,3)	, .		(cutpoint: 3,3)		Autres (N=23)
Vi	RE 31: 24.6	RO 18: 22.4	RE 31: 27.1	ile: 19.2	i-C6: 131.8	ile: 20.7
	NH3: 21.3	RO 06: 12.5	RE 02: 14.0	gly: 17.9	glu: 106.0	his: 17.1
	RE 21: 15.9	RE 25: 9.8	RE 16: 12.8	RE 31: 14.3	i-C5: 63.0	TN: 11.0
	RO 09: 14.4	RO 15: 9.6	RE 35: 12.5	RO 05: 14.2	RE 10: 56.3	pser: 10.1
	RO 18: 12.5	RO 08: 7.8	RE 26: 9.9	his: 13.7	D-la: 55.8	
	RO 30: 10.8	RO 27: 7.8	NGE: 9.0	RO 27: 13.1	RE 12: 26.4	RE 06: 9.4
	RO 06: 8.5	RO 22: 6.0	RE 24: 8.0	RE 43: 11.8	RO 14: 21.7	force rupt.: 9.0
	RE 10: 8.3	RO 13: 4.6	RE 36: 7.5	RO 25: 10.4	RE 25: 22.1	ser: 6.9
	RE 38: 7.3		RE 42: 7.3	RÓ 42: 8.5	RE 04: 20.0	RE 22: 6.2
	RE 39: 6.5		RE 43: 6.8	RO 32: 7.7	RO 30: 15.8	RO 15: 5.3
			RE 15: 6.4	glu: 7.1		RO 42: 4.7
			RE 29: 4.2	RO 39: 7.0		
				RO 26: 5.1		

^{*)} Valeurs de F obtenues en fixant le critère d'élimination F to remove à 4.10

Tableau 70: Nombre de régresseurs, valeurs de F, taux de classification correcte (selon les critères sensoriels retenus) et coefficients de corrélation canonique correspondant aux tableaux 66 et 69

		sous-groupe a	sous-groupe b	sous-groupe c	sous-groupe d	sous-groupe e	sous-groupe f
sous-		Bons (N=24)	Normaux (N=14)	Normaux (N=14)	Typiques (N=18)	Normaux (N=14)	Normaux (N=14)
groupe		Mauv. (N=26)	Anormaux (N=36)	Autres (N=23)	Atypiques (N=32)	Amers (N=13)	Amers (N=13)
		(cutpoint: 3,3)			(cutpoint: 3,3)		Autres (N=23)
	Nbr. régresseurs:	1	0	0	1	5	2
1	Valeur de F:	F(1,48)= 3.5			F(1,48)= 3.0	F(5,21)= 8.0	F(4,92)= 3.0
	Taux de classif.	"bons": 53 %			"typiques": 53 %	"normaux": 93 %	"normaux": 43 %
	correcte selon	"mauv.": 71 %			"atypiques": 73 %	"amers": 92 %	"amers": 46 %
	les critères:	moyenne: 66 %			moyenne: 66 %	moyenne: 93 %	"autres": 61 %
	Corr. canonique	0.26			0.24	0.81	0.47 et 0.05
	Nbr. régresseurs:	4	7	6	10	7	10
II.	Valeur de F:	F(4,45)= 4.6	F(7,42)= 4.9	F(6,30)= 6.0	F(10,39)= 4.4	F(7,19)= 10.3	F(20,76)= 3.6
	Taux de classif.	"bons": 80 %	"normaux": 93 %	"normaux": 93 %	"typiques": 77 %	"normaux": 100 %	"normaux": 79 %
l	correcte selon	"mauv.": 66 %	"anormaux": 89 %	"autres": 83 %	"atypiques": 91 %	"amers": 100 %	"amers": 85 %
	les critères:	moyenne: 70 %	moyenne: 90 %	moyenne: 87 %	moyenne: 86 %	moyenne: 100 %	"autres": 83 %
	Corr. canonique	0.54	0.67	0.74	0.73	0.89	0.75 et 0.63
-	Nbr. régresseurs:	1	5	5	0	2	1
111	Valeur de F:	F(1,48)= 3.1	F(5,44)= 3.5	F(5,31)= 3.5		F(2,24)= 7.5	F(2,94)= 3.2
<u> </u>	Taux de classif.	"bons": 67 %	"normaux": 71 %	"nomaux": 71 %		"nomaux": 79 %	"nomaux": 36 %
	correcte selon	"mauv.": 74 %	"anormaux": 69 %	"autres": 70 %		"amers": 85 %	*amers*: 69 %
	les critères:	moyenne: 72 %	moyenne: 70 %	moyenne: 70 %	· · · · · · · · · · · · · · · · · · ·	moyenne: 82 %	"autres": 9 %
	Corr. canonique	0.25	0.53	0.60		0.62	0.35
	Nbr. régresseurs:	7	3	12	5	12	3
IV	Valeur de F:	F(7,42)= 5.4	F(3,46)= 4.8	F(12,24)= 5.0	F(5,44)= 6.5	F(12,14)= 31.8	F(6,90)= 4.1
	Taux de classif.	"bons": 87 %	"normaux": 86 %	"normaux": 86 %	"typiques": 82 %	"nomaux": 100 %	"normaux": 79 %
	correcte selon	"mauv.": 86 %	"anormaux": 61 %	"autres": 100 %	"atypiques": 88 %	"amers": 100 %	"amers": 62 %
	les critères:	moyenne: 86 %	moyenne: 68 %	moyenne: 95 %	moyenne: 86 %	moyenne: 100 %	"autres": 44 %
	Corr. canonique	0.69	0.49	0.85	0.65	0.98	0.55 et 0.35
	Nbr. régresseurs:	7	14	14	13	10	18
v	Valeur de F:	F(7,42)= 4.3	F(14,35)= 3.3			F(10,16)= 19.2	F(36,60)= 3.6
•	Taux de classif.	"bons": 93 %	"normaux": 86 %	"normaux": 93 %	"typiques": 100 %	"normaux": 100 %	"normaux": 100 %
l	correcte selon	"mauv.": 74 %	"anormaux": 89 %	"autres": 100 %	"atypiques": 91 %	"amers": 100 %	"amers": 92 %
	les critères:	moyenne: 80 %	moyenne: 88 %	moyenne: 97 %	moyenne: 94 %	moyenne: 100 %	"autres": 87 %
	Corr. canonique	0.65	0.75	0.93	0.83	0.96	0.91 et 0.65
	Nbr. régresseurs:	10	8	12	13	10	11
VI	Valeur de F:	F(10,39)= 8.2	F(8,41)= 4.1		· · · · · · · · · · · · · · · · · · ·		F(22,74)= 4.5
"	Taux de classif.	"bons": 93 %	"normaux": 79 %	"normaux": 93 %	"typiques": 100 %	"normaux":100 %	"normaux": 86 %
1	correcte selon	"mauv.": 91 %	"anomaux": 92 %	"autres": 87 %	"atypiques": 94 %	"amers": 100 %	"amers": 92 %
	les critères:	moyenne: 92 %	moyenne: 88 %	moyenne: 89 %	moyenne: 96 %	moyenne: 100 %	"autres": 91 %
	Corr. canonique	0.82	0.67	0.85	0.85	0.98	0.80 et 0.70
<u> </u>	COIT. CARIOTHQUB	0.02	0.07	0.00	0.00	<u> </u>	

Tableau 71: Corrélations significatives entre les analyses sensorielles gustatives, visuelles et tactiles

	Analys	Analyse sensorielle gustative	tative	visuelle	tactile	le
	Critère "qualité"	Critère "qualité" Critère "dév. de	Caractère	Critère	Critère	Critère
		la flaveur"	typique	"ouverture"	"consistance"	"structure"
Critère "qualité"		0.57**	0.91**			0.34*
Critère "dév de la flaveur"	0.57**	1	0.71**	-	0.40**	0.39**
Caractère typique		0.71**	4.00		-	0.36**
Critère "ouverture"					•	
Critère "consistance"		0.40**		t e		1
Critère "structure"	0.34*	0.39**	0.36**			

*) P = 0.95 **) P = 0.99