

Blätter für Landtechnik

Februar 1976

104

Separatdruck aus FAT-Mitteilungen Nr. 3/76 in der «Schweizer Landtechnik» Nr. 3/76 herausgegeben von der Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik CH 8355 Tänikon

Planen von Heubelüftungsanlagen

F. Zihlmann, J. Baumgartner und A. Schneider

Planen heisst, vorausschauend die verschiedenen Einflussfaktoren richtig erfassen und aufeinander abstimmen, damit die zu schaffende Anlage oder Einrichtung dem gewünschten Zweck dient. Der Zweck einer Heubelüftungsanlage ist: Das auf dem Felde vorgewelkte Futter mit möglichst geringen Verlusten durch Belüften unter Dach nachzutrocknen.

Alle Planungsdaten wurden von dieser Zielfunktion her gesehen, abgeleitet oder auf sie hin ausgerichtet. Von einem reinen Datenkatalog wird daher bewusst. Abstand genommen, weil aus dem Zusammenhang gerissene Daten recht oft falsch verstanden und angewandt werden.

1. Dürrfuttermenge

Die Grösse der Anlage richtet sich nach der Dürrfuttermenge. Der Dürrfutterbedarf hängt von der Anzahl GVE, der Futterration und der Länge der Winterfütterungsperiode ab. Für die Berechnung der Dürrfuttermenge wird von einem täglichen Futterverzehr von 13 kg TS pro GVE ausgegangen. Wird neben Heu anderes Rauhfutter verabreicht, so reduziert sich der TS-Verzehr an Heu entsprechend. Uebliche Dürrfutterrationen sind:

	kg TS Heu / GVE und Tag
reine Dürrfuttergabe	13
bei geringer Silagezugabe	10
bei mittlerer Silagezugabe	7
bei grosser Silagezugabe	. 4

Die Futtermenge in q TS lässt sich graphisch mit dem Nomogramm in Abb. 1, Quadrant A und B, bestimmen. Wir beginnen bei der Anzahl vorhandener GVE, ziehen eine Vertikale zur gewählten Dürrfutterration (kg TS Heu / GVE und Tag); vom Schnittpunkt aus wird eine Horizontale in den Quadranten B bis zur Geraden der Anzahl Winterfuttertage gezogen;

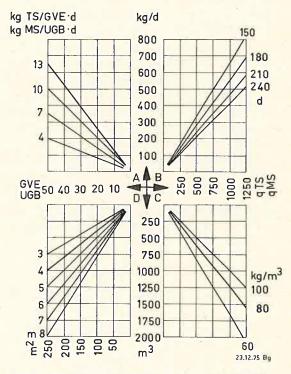


Abb. 1 Nomogramm: Futtermenge - Stockgrösse

Quadrant A:

GVE = Viehbestand in Grossvieheinheiten kg TS/GVE · d = Futterration kg Trockensubstanz

Heu pro Tag

kg/d = Tagesration der Herde

Quadrant B:

d = Anzahl Winterfuttertage q TS = Gesamtfuttermenge in kg

Trockensubstanz

Quadrant C:

kg/m³ = Raumgewicht des Heues in kg

Trockensubstanz

m³ = Heustockvolumen

Quadrant D:

m² = Belüftungsgrundfläche

m = Stockhöhe

das Lot dieses Schnittpunktes auf die Basislinie ergibt den Dürrfutterbedarf in q TS für die ganze Herde. Das Nomogramm kann auch in umgekehrter Richtung gebraucht werden, indem wir ausgehend von der Dürrfuttermenge die Futterration oder Anzahl GVE bestimmen.

2. Stockgrösse und -form

Rein rechnerisch ergibt sich die Stockgrösse, indem die Futtermenge in kg TS durch das Raumgewicht (kg TS/m³) geteilt wird. Die Rechnung kann auch graphisch mit dem Nomogramm in Abbildung 1 erfolgen. Wird das Lot aus dem Quadranten B in den Quadranten C bis zur Geraden des entsprechenden Raumgewichtes weitergeführt und vom Schnittpunkt aus eine Horizontale in Richtung des Quadranten D gezogen, so können auf der Skala zwischen den beiden Quadranten die Kubikmeter Heu abgelesen werden. Quadrant D zeigt die Zusammenhänge zwischen Stockhöhe in m und Grundfläche in m².

2.1 Stockhöhe

Das Trocknungsvermögen einer Anlage ist direkt proportional zur Belüftungsfläche. Folglich kann der Stock nicht ohne Nachteil beliebig hoch gewählt werden. Vom Standpunkt der Belüftung aus gesehen, ist eine Stockhöhe von 4 m günstig, was bei Neubauten, wenn irgendwie möglich, anzustreben ist. Daraus kann die Faustzahl abgeleitet werden:

Heustock-Grundfläche = 7 bis 8 m² pro GVE

2.2 Heustockform

Bei der Gestaltung der Heustockform ist auf die Abladeeinrichtung und die Luftverteilung Rücksicht zu nehmen. Die automatischen Futterverteiler eignen sich für Stockbreiten bis 14 m. Bei Neuplanungen sollte diese Breite ausgenützt werden. Die Investitionskosten für die Futterverteiler nehmen linear mit der Stocklänge zu. Bei einem breiten und kurzen Heustock sind die Anlagekosten je m³ Heu bedeutend geringer als bei einem langen, schmalen Stock. Weiter lässt sich die Luftführung unter dem Rost bei annähernd quadratischem Grundriss leichter lösen als bei langen, schmalen Rechtecken.

2.3 Raumgewicht

Unter Raumgewicht verstehen wir hier die kg TS pro m³ Heuvolumen. Das Raumgewicht hängt nicht, wie erwartet, in erster Linie von der Stockhöhe, sondern viel mehr von der Futterbeschaffenheit ab. Bei unseren Erhebungen wies der niedrigste Stock sogar das höchste Raumgewicht auf. Bei 3 bis 4 m Stockhöhe schwankt das Raumgewicht zwischen 60 und 100 kg TS/m³ mit einem Mittelwert von 70 bis 75 kg TS/m³. Bei Neubauten empfiehlt es sich, mit 60 bis 80 kg TS/m³ zu rechnen, wobei der untere Wert für sperriges und der obere Wert für feines und blattreiches Futter zu wählen ist.

3. Die Einwandung

3.1 Balkenkonstruktion

Die Verhältnisse in der Praxis sind für das Anbringen der Wände derart verschieden, dass sich hier nur einige Richtlinien aufzeigen lassen.

Bekanntlich nimmt der Seitendruck von Oberkant Heustock nach unten zu. Werden Balken mit gleichen Dimensionen benützt, so sind die Abstände der Querbalken gemäss Tabelle 1 nach unten enger zu wählen (Abb. 2).

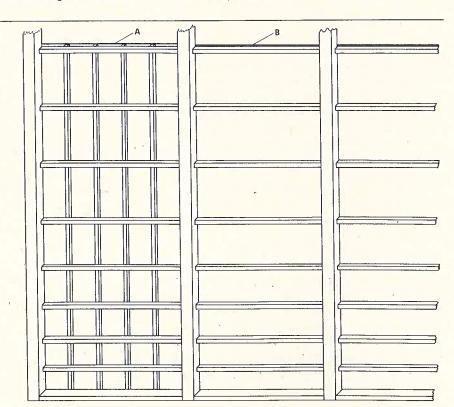


Abb. 2:

Balkenkonstruktion

A = Balkenkonstruktion mit zusätzlichem Rost für Hartfaserplatten

B = Ausführung mit Spanplatten

Tabelle 1: Querbalkenabstände abhängig von der Höhendifferenz zum Wandabschlussbalken

Querbalkenabstand:
Wandabschlussbalken
100 cm
100 cm
100 cm
80 cm
65 cm
60 cm
50 cm
45 cm

Bei landwirtschaftlichen Gebäuden finden wir in der Regel einen Binderabstand von 4,4 oder maximal 5,0 m vor. Wird für die Einwandung eine zusätzliche senkrechte Stütze zwischen die Binder eingesetzt, so reduziert sich die Spannweite für die Querbalken auf die Hâlfte, das heisst maximal 2,5 m. Bis zu 6 m hohen Zusatzstützen sollen dieselben wie folgt dimensioniert werden:

10/26 oder 14/22 cm 12/24 oder 18/20 cm

Aus Tabelle 2 können die Dimensionen für die Querbalken abhängig von der Spannweite entnommen werden.

Tabelle 2: Balkendimensionen abhängig von der Spannweite (Abstand der senkrechten Stützen)

Spannweite in cm		Dimen	sionen	der Qu	erbalke	n in cm	
	8/10	6/12	8/12	14/16	12/18	8/22	10/20
200	Х	X	_			_	_
250	_	X	Х	_	_	_	_
440	_		_	Х	X	Х	Х
500	_		-	_	X	X	Х

3.2 Wandverkleidung

Die Einwandung dient nicht nur zur seitlichen Stützung des Heustockes, sondern soll gleichzeitig möglichst luftdicht sein. Für die Wandverkleidung eignen sich Spanplatten (Novopan, Homoplax) von zirka 16 mm Dicke, oder 5 mm dicke Hartfaserplatten (Pavatex). Um ein Durchbiegen der dünnen Hartfaserplatten zu verhindern, ist ein Rost anzubringen, welcher aus senkrechten Konterlatten (4,8 / 4,8 cm) im Abstand von 50 cm besteht (Abb. 2).

3.3 Oeffnungen für die Futterentnahme

Die Futterentnahme im Winter erfordert Oeffnungen an der Einwandung. Günstige Lösungen ergeben sich bei einem Stützenabstand von 2,20 bis 2,50 m. Die Platten werden auf das Lichtmass der Stützen zugeschnitten und die Querbalken an den Stützen beispielsweise angeschraubt oder an Winkeleisen eingehängt (Abb. 3).

Eine weitere Möglichkeit besteht darin, dass man die Balkenkonstruktion fest stehen lässt und nur die Verkleidungselemente entfernt. Um das Einsetzen und Wegnehmen der Platten zu erleichtern, dürfen die Elemente nicht zu gross gewählt werden.

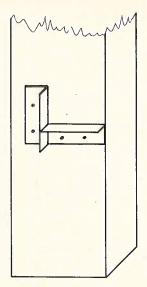


Abb. 3: Winkeleisen zum Einhängen der Querbalken.

Je nach der gewählten Konstruktion kann es sinnvoll sein, am Dach Umlenkrollen zu montieren, damit die unter Druck stehenden Plattenelemente mit Seilzug aus der Verankerung gehoben werden können.

4. Der Ventilator-Standort

Wenn irgendwie möglich, soll der Ventilator auf der Süd- oder Westseite des Gebäudes eingebaut werden, weil dann ein Teil der Abstrahlungswärme des Vorplatzes oder der Scheunenwand ausgenützt werden kann. Im Umkreis von 10 m sollen kein Miststock, keine Bäume und kein offenes Gewässer vorhanden sein.

Ventilator und Luftzufuhrkanal können gemäss den Varianten in Abb. 4 angeordnet werden.

5. Der Zuführkanal

Der Zuführkanal dient zur Ueberleitung der Luft vom Ventilator unter den Rost.

- Zur Bestimmung der Grösse des Zuführkanals kann allgemein mit 0,1 m³/s Luft pro m² Grundfläche gerechnet werden.
- Die mittlere Luftgeschwindigkeit im Zuführkanal soll 5 m/s nicht übersteigen. Die Richtwerte sind in Tabelle 4 zusammengestellt.

Tabelle 4: Richtwerte für die Dimensionierung des Ansaugund Zuführkanals (max. 5 m/s Luftgeschwindigkeit)

			51		
Heustock- grundfläche m²		alquerschnitt m² bzw. x m	Dimension der Balken bei einem Abstand von 50 cm cm		
60	1,2	1,10 x 1,10	6/ 6		
80	1,6	1,27 x 1,27	6/ 6		
100	2,0	1,42 x 1,42	6/8		
120	2,4	1,55 x 1,55	6/8		
140	2,8	1,68 x 1,68	6/10		
160	3,2	1,79 x 1,79	6/10		
180	3,6	1,90 x 1,90	6/10		

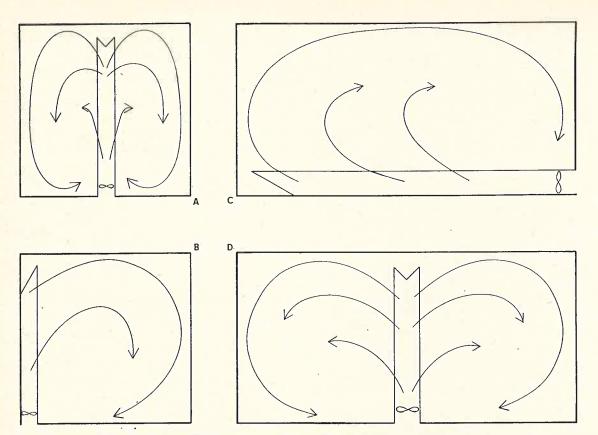


Abb. 4: Anordnung des Ventilators und Zuführkanals je nach Stockform. Für schmale und sehr lange Stöcke (z. B. 5 x 20 m) ist nur Variante C zu empfehlen.

- Die Neigung der schiefen Ebene (Kanaloberseite) soll nicht mehr als 7º betragen. Dies ergibt rund 12 cm Höhendifferenz auf 100 cm Kanallänge.
- Der Zuführkanal wird mit Vorteil aus Spanplatten gefertigt und bleibt seitlich bis zur Oberkante des angrenzenden Rostes offen.
- Die Tragkonstruktion wird aussen angebracht.
 Dimension der Balken bei 50 cm Abstand gemäss
 Tabelle 4.
- Auf der Kanaloberseite werden je m² ungefähr drei Oeffnungen von 8 cm x 30 cm eingesägt.
- Auf die Tragkonstruktion werden oberhalb und seitlich des Zuführkanals Rostlatten angebracht, damit ein Luftpolster für den Uebertritt in den Heustock entsteht (Abb. 5).
- Die Anordnung des Zuführkanals ist in Abb. 4 dargestellt.

6. Der Rost

Um den Luftkreislauf und -ausgleich unter dem Rost zu ermöglichen, wird über der ganzen Grundfläche die Rosthöhe gleich hoch gehalten. Bis zu einer Belüftungsfläche von rund 100 m² genügt eine Rosthöhe von 30 cm. Bei grösseren Belüftungsflächen wird eine Rosthöhe von 35 bis 40 cm gewählt.

Zum Bestimmen der Grösse der Rostelemente wird eine massstäbliche Skizze der Heustockfläche erstellt. In diese tragen wir zunächst die Grundmasse des Zuführkanals ein. Die Luft hat die Tendenz, den Wänden entlang zu entwelchen. Daher wird der Rost längs den Wänden mit 50 bis 60 cm breiten Platten abgedeckt oder ein gleich breiter Streifen ohne Rost belassen. Die verbleibende Rostfläche wird, wenn irgendwie möglich, in gleich grosse, handliche Elemente aufgeteilt. Verlangt eine ungünstige Stock-

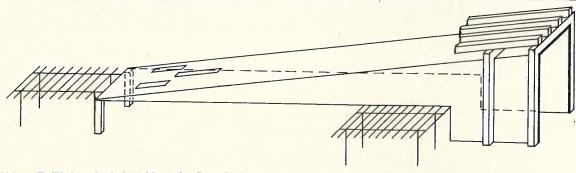


Abb. 5: Zuführkanal mit Anschluss der Rostelemente.

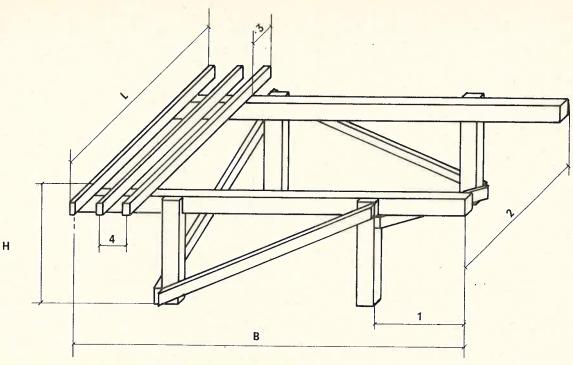


Abb. 6: Bauskizze für Rostelemente (vergleiche Tabelle 5).

form verschieden grosse Rostelemente, so sollen diese gut gekennzeichnet und auf einer Skizze festgehalten werden.

7. Bau der Rostelemente

Die waagrechten Doppellatten als Träger werden zur Hälfte (zirka 3,3 cm) in die Beine eingelassen. So muss nicht die ganze Futterlast von zwei Schrauben getragen werden. Die Dachlatten werden hochkant auf die Träger geschraubt. Somit ist ihre Tragkraft grösser, und die Schrauben verhindern ein Umkippen beim Betreten der Latten. Werden die Dachlatten nur mit Nägeln befestigt, müssen sie zirka 2 cm in die Doppellatte eingelassen werden. Diese Methode verlangt aber einen wesentlich grösseren Arbeitsaufwand. Die Dachlattenabstände werden von Mitte zu Mitte gerechnet. Die äussersten Latten weisen vom Rand der Doppellatte je 5 cm Abstand auf. Als Querverstrebung der Beine werden Dachlatten verwendet.

Tabelle 5: Masstabelle für Rostelemente

B cm	L cm	H	1 cm	2 cm	3 cm	4 cm
100	100		20	70	15	
100	120		20	80	20	
100	150		20	110	20	
120	100		25	70	15	
120	120	•	25	80	20	
120	150	40	25	110	20	1
120	200	4	25	130	35	10
150	100		34	70	15	_
150	120	98	34	80	20	
150	150		34	110	20	
150	200		34	130	35	
200	120		40	80	20	
200	150		40	110	20	
200	200		40	130	35	

8. Kamine (Stöpsel)

Wird mit einer Drucksonde der Druckverlauf im Heustock gemessen, so stellen wir fest, dass von oben nach unten der Druck überproportional zunimmt. Der grösste Druckanstieg tritt unmittelbar über dem Rost auf. Wird diese unterste Schickt durchbrochen, indem man nach dem ersten Schnitt Löcher schrotet oder nachziehbare Stöpsel einsetzt, so kann der Stockwiderstand bzw. Betriebsdruck ganz wesentlich gesenkt werden. Der Betriebsdruck steigt kaum mehr über 40 mm WS.

Wenn Stöpsel eingesetzt werden, sind diese möglichst gleichmässig zu verteilen. Der Abstand zwischen zwei Stöpseln soll rund das 1,5-fache des Abstandes zwischen Stöpsel und Aussenwand betragen. Als Richtwert gilt: ein Stöpsel auf 16 bis 20 m² Grundfläche. Wichtiger als die Einhaltung dieser Richtzahl ist die gleichmässige Verteilung der Stöpsel, so dass verhältnismässig grosse Abweichungen von der Richtzahl zulässig sind.

Bewährt haben sich quadratische Stöpsel mit 80 cm Seitenlänge und einer Höhe von 160 bis 180 cm.

⋖			
	B =	Rostbreite	
	L =	Rostlänge	1
	H =	Rosthöhe	
	1 =	Ueberkragung der Doppellatten	
	2 =	Abstand der Doppellatten	
	3 ==	Ueberkragung der Dachlatten	

Material

matorial			
Doppellatten	66	x 66	mm
Dachlatten	24	x 48	mm
Holzschrauben für die Beine	6	x 60	mm
Holzschrauben für die Dachlatten	5	x 80	mm

4 = Abstand der Dachlatten von Mitte zu Mitte

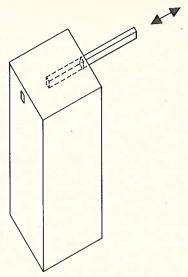


Abb. 7: Stöpsel mit Griff und einschiebbarer Latte.

Um das Hochziehen zu erleichtern, dürfen sie nach unten leicht verjüngt werden. Das Grundgerüst besteht in der Regel aus Dachlatten. Alle Seiten werden mit Holzfaserplatten verkleidet. Oben können Grifflöcher angebracht werden, durch welche für das Hochziehen im Bedarfsfalle eine Latte gestossen werden kann. Der Stöpsel sollte keine herausragenden Teile aufweisen, an welchen sich das Futter beim Abladen verfangen kann (Abb. 7).

9. Ansaugkanal und Schalldämmung

Damit ein Ventilator voll Luft schöpfen kann, wäre es ideal, wenn er einen Meter über dem Boden oder höher direkt an der Aussenwand montiert werden könnte. Dies ist mit Ausnahme von ganz abgelegenen Betrieben wegen der Lärmemission nicht möglich. Aus diesem Grunde werden in der Regel die Heulüfter in das Gebäude hinein verlegt, damit kein schalldämmender Vorbau notwendig wird.

Jede Schalldämmung erfordert einen Vorbau oder Ansaugkanal. Der Querschnitt des Ansaugkanals ist so zu wählen, dass an der engsten Stelle keine grössere mittlere Luftgeschwindigkeit als 5 m/s auftritt (Tabelle 4).

Bei der Planung eines schalldämmenden Ansaugkanals ist nicht nur der Schallpegel in dB, sondern ebenso sehr das Schallspektrum massgebend. Das typische Merkmal des Lärms bei Axialventilatoren ist der grosse Anteil von hohen Frequenzen, bei Radialventilatoren der grosse Anteil von niedrigeren Frequenzen. Die höheren Frequenzen (1000 Hz und mehr) empfinden wir als lästiger als die tieferen. Bei der Schalldämmung ändern sich die Verhältnisse, weil sich die hohen Frequenzen viel leichter dämmen lassen als die niedrigeren, wie es folgende Zusammenhänge aufzeigen:

 Durch eine Wand mit konstantem Flächengewicht werden die h\u00f6heren Frequenzen st\u00e4rker ged\u00e4mmt als tiefe Frequenzen.

- Je höher das Flächengewicht ist, umso grösser ist die Schalldämmung.
- Beim Auftreffen einer Schallwelle auf eine sehr dicke poröse Schicht dringt der grösste Teil der Schallenergie in die Schicht ein und wird in ihr durch Reibung in Wärme umgesetzt. Nur ein kleiner Teil wird von der Schichtoberfläche reflektiert.
- Ein optimaler Schallabsorptionsgrad wird bei einer Schichtdicke von ¼ der Wellenlänge erreicht. Bei einer Tonfrequenz von 1000 Hz beträgt die Wellenlänge rund 35 cm. Die Wanddicke sollte für dieses Beispiel mindestens 9 cm betragen.
- Als Schallschluckmaterial verwendet man mit Vorteil Faserstoffe mit einem Stopfgewicht von 30 bis 120 kg/m³.

Günstige, schallabsorbierende Materialien für die Landwirtschaft sind: Strohballen, Holzwollplatten, Perfekta, Glaswolle, Steinwolle usw. Für die Schalldämmung bei der Heubelüftung ist bei Glas- und Steinwolle zusätzliche Vorsicht am Platz, weil das Material brüchig ist und vom Luftstrom weggetragen werden kann. Daher empfiehlt sich die Mehrschichten-Bauart. (Abb. 8)

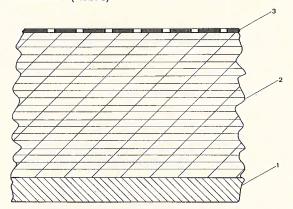


Abb. 8: Mehrschichtige Schallisolation mit Glas- oder Steinwolle.

- 1. Spanplatte
- 2. Glas- oder Steinwolle
- 3. Dünne Lochplatte oder engmaschiges Drahtnetz

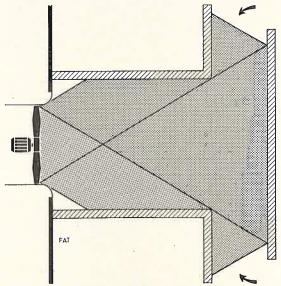


Abb. 9: Schallisolation als Vorbau oder Ansaugkanal.

Abb. 10: Schallisolation bei zweiseitigem Ansaugkanal bei Axialventilator.

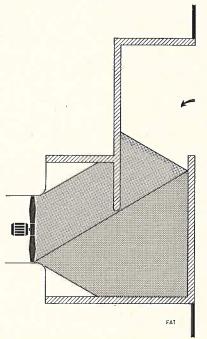


Abb. 11: Schallisolation bei versenktem Ansaugkanal.

In der Regel genügen bei Axialventilatoren Schichtdicken von 8 bis 12 cm, während für den gleichen Schallpegel bei Radialventilatoren ungefähr die doppelte Schichtdicke erforderlich ist.

In den Abbildungen 9–13 sind einige wichtige Lösungsmöglichkeiten für die Gestaltung eines schalldämmenden Ansaugkanals dargestellt. Besonders bei Axialventilatoren ist es wichtig, dass die Luft senkrecht von vorn oder symmetrisch von zwei Seiten zum Ventilator geführt wird. Sind diese Voraussetzungen nicht erfüllt, lohnt es sich, einen Fachmann beizuziehen, weil dann Spezialeinrichtungen notwendig sind.

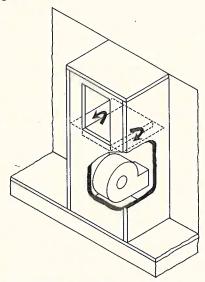


Abb. 13: Schallisolation mit Ansaugkanal von oben.

10. Schluss

Die zusammengestellten Unterlagen richten sich an Bauern, Architekten und Maschinenverkäufer. Damit soll eine Lücke geschlossen werden, die die Ursache von vielen Misserfolgen bei Heubelüftungen war.

Damit eine Anlage befriedigen kann, muss die Grösse, das heisst die Belüftungsfläche und der Ventilator richtig gewählt werden. Eine grosse Bedeutung kommt der fachgerechten Luftführung sowohl saug- als auch druckseitig des Ventilators zu.

Neben der Funktionstüchtigkeit ist heute im Zeichen des Umweltschutzes auf die Lärmemission zu achten. Im Bericht sind Anleitungen für die Praxis enthalten. Auf eine wissenschaftliche Begründung der Zusammenhänge wird verzichtet, da diese Probleme an anderer Stelle behandelt werden.

Nachdruck der ungekürzten Beiträge unter Quellenangabe gestattet.

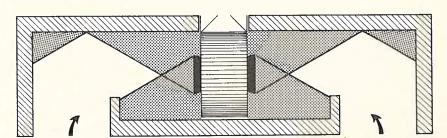


Abb. 12: Schallisolation für zweiseitigen Ansaugkanal bei Radialventilator.