

Futterkonservierung Der Lohnunternehmer ist gefordert

Ueli Wyss

GV Lohnunternehmer

Strickhof Wülflingen, 6. März 2009

Umfeld

- Die landwirtschaftlichen Betriebe und auch die Maschinen werden immer grösser
- Die Landwirte delegieren mehr Arbeiten
- Die Ansprüche an die Lohnunternehmer steigen
- Die Lohnunternehmer müssen mehr Verantwortung übernehmen
- Zeitdruck steigt Alle wollen etwas zur gleichen Zeit
- Konkurrenzdruck steigt
- Qualitätsbewusstsein steigt

Vom Feld bis zum Futtertrog

Ausgangsmaterial

- Wiesenpflege
- Düngung
- Mähen und Bearbeiten

Konservierung

- Silieren
 Ballenpressen
 Häckseln, Einfüllen,
 Verdichten
- Dürrfutterbereitung Ballenpressen Ernte und Befüllung Belüftungsanlage

Lagerung

(Zustand der Lager)

- Silage: Ballen, Hochsilo, Flachsilo
- Dürrfutter: Ballen, Heubelüftung

Entnahme und Verfütterung

 Silogrösse und Tierbestand, tägliche Entnahmemengen

- Der Lohnunternehmer führt nur einzelne Arbeiten aus
 - Zuweisung, wer für Qualitätsmängel zuständig ist, ist teilweise schwierig
- Die Feld- bis Erntearbeiten werden durch den Lohnunternehmer ausgeführt
 - Zuweisung, wer für Qualitätsmängel zuständig ist, ist einfacher.
 Qualitätsbezahlung möglich

Silagequalität

Nährstoff- und Energiegehalt

- Rohasche
- Rohprotein
- Rohfaser
- NEL
- APDE/APDN

Gärqualität von Silagen

- pH-Wert
- Gärsäuren
- Ammoniak
- Ethanol

Unerwünschte Schadstoffe

- Schimmelbefall (Mykotoxine)
- Giftige Inhaltsstoffe
- Kontamination mit Fremdstoffen

Einfluss des Schnittzeitpunktes auf die Silagequalität

Grünfutter	TS %	Rohprotein g/kg TS	Rohfaser g/kg TS	Zucker g/kg TS	NEL MJ/kg TS	APD g/kg TS
30. April	32.1	169	178	146	6.9	110
14. Mai	30.5	162	252	122	6.2	102
28. Mai	28.3	124	303	127	5.6	90
Grassilage	TS	Rohprotein	Rohfaser	Zucker	NEL	APD
	0/	a/ka TC	a/ka TC	a/ka TC	MI/ka TO	a/ka TC

Grassilage	TS	Rohprotein		Zucker	NEL	APD
	%	g/kg TS	g/kg TS	g/kg TS	MJ/kg TS	g/kg TS
30. April 14. Mai 28. Mai	29.6 28.1 25.6	198 190 137	194 274 340	97 9 9	6.8 6.0 5.0	86 78 64

Grassilage	рН	Milch- säure g/kg TS	Essig- säure g/kg TS	Butter- säure g/kg TS	NH ₃ -N N tot.	_Gärgas- verlust %
30. April	4.5	56	12	2	13	5
14. Mai	5.1	57	22	11	19	8
28. Mai	5.9	16	7	34	18	11

Auswirkung der Schnitthöhe auf die Futterverschmutzung und die Gehaltswerte

Auswirkung der Schnitthöhe auf die Futterverschmutzung und die Gehaltswerte

TS: 17.4 %

Rohasche: 145 g/kg TS

Rohprotein: 216 g/kg TS

Rohfaser: 230 g/kg TS

NEL: 6.0 MJ/kg TS

Silage

TS: 16.7 %

Rohasche: 177 g/kg TS

Rohprotein: 224 g/kg TS

Rohfaser: 242 g/kg TS

NEL: 5.6 MJ/kg TS

Rohasche: 237 g/kg TS

Rohprotein: 180 g/kg TS

Rohfaser: 215 g/kg TS

NEL: 5.2 MJ/kg TS

Silage

TS: 16.6 %

Rohasche: 267 g/kg TS

Rohprotein: 183 g/kg TS

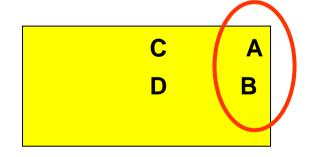
Rohfaser: 231 g/kg TS

NEL: 4.7 MJ/kg TS

V Planung vom Mähen bis zum Einsilieren

Hohe Schlagkraft

Die Maschinen werden im grösser!


Damit die Qualität stimmt, muss die ganze Silierkette auf das schwächste Glied (Einsilieren, Walzen) abgestimmt sein

V Problem Verdichtung

(Daten Praxisbetrieb Fahrsilo)

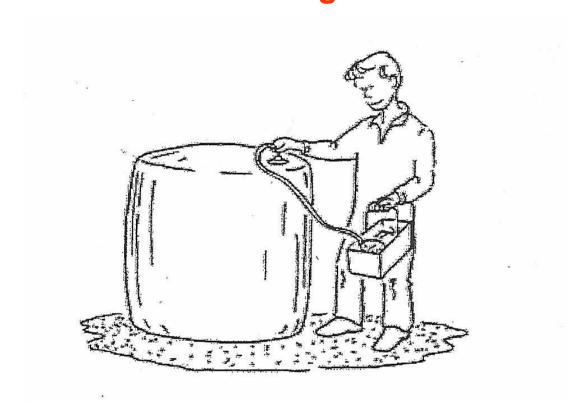
	TS-Gehalt	TS-Dichte	Hefen	Schimmelpilze	
	%	kg/m ³	KBE/g	KBE/g	
Dand about (A)	00.0	455	0010001000	4000	
Rand oben (A)	29.6	155	22'000'000	1000	
Rand Mitte (B)	33.2	226	2'600'000	2500	
Mitte oben (C)	30.3	173	680'000	< 1000	
Mitte Mitte (D)	32.7	235	22'000	< 1000	

KBE: koloniebildende Einheit

Pressen und Wickeln

U

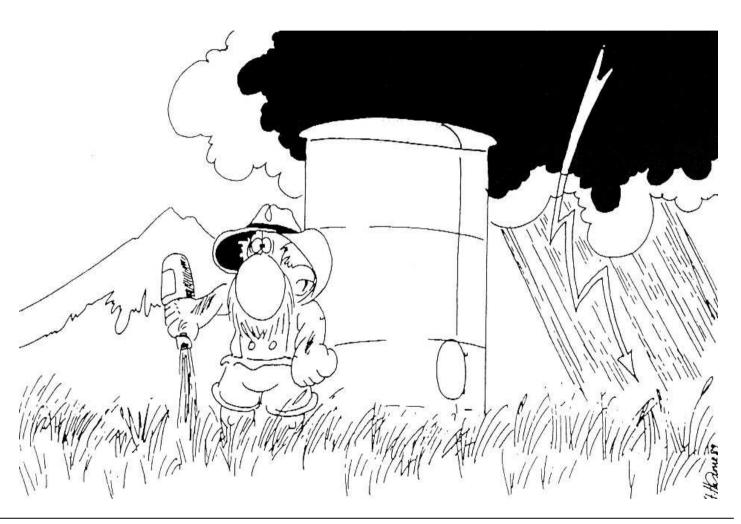
Auswirkungen schlechter Folien


Eindringen Regenwasser

1. Phase: Buttersäuregärung

2. Phase: Schimmelbildung

Dichtigkeitsmessungen von Rundballen mit dem Ekolag Messeimer


www.ekolag.se

U

Ursachen und Folgen von Nachgärungen

Phase	Ursachen	Folgen
Einsilierenungenügende Verdichtungundichte Silosnicht luftdichte Abdeckung	Siliergut + Luft → Hefen entwickeln sich	Aufbau einer Hefepopulation
Lagerung	Keine Luft	Silagen sind stabil
 Entnahme zu geringe Entnahmen- Mengen Auflockerung der Oberfläche 	Silage + Luft → Hefen werden wieder aktiv → Vermehrung weiterer Schadorganismen (z.B. Schimmelpilze)	 Silagen werden warm Nährstoffverluste Silagen verderben Rückgang der Futteraufnahme

Siliermitteleinsatz

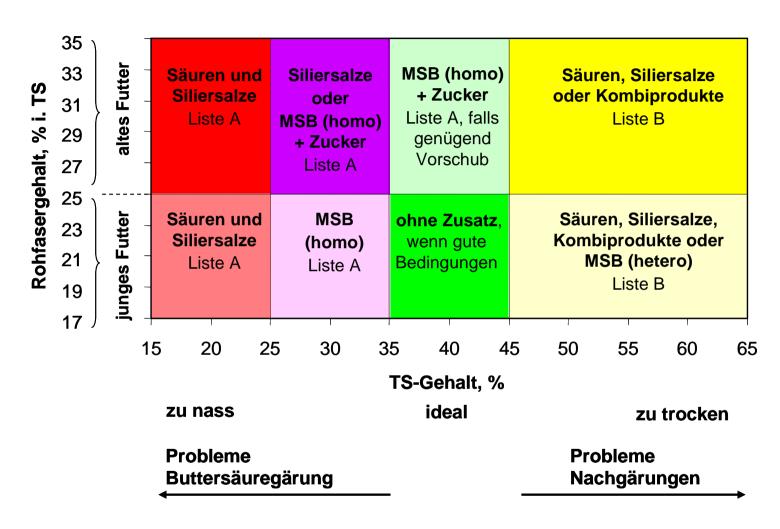
Grundsätzliche Bemerkungen zum Siliermitteleinsatz

- Siliermittel sind keine Wundermittel. Eine schlechte Arbeit und schlechtes Futter kann durch einen Siliermitteleinsatz niemals wettgemacht werden!
- Entscheidend für eine entsprechende Wirksamkeit der Siliermittelist deren exakte Dosierung von Verteilung (Dosiergeräte) in der gesamten Silage.
- Bei der Auswahl der Siliermittel sind auch deren Vor- und Nachteile (Korrosivität, Verätzung, Gase) zu berücksichtigen.

Ziel eines Siliermitteleinsatzes

- Zur Verbesserung des Gärverlaufs und zur Verhinderung von Fehlgärungen
- Zur Verhinderung von Nachgärungen bei der Entnahme
- Für Sonderwirkungen (Leistungsverbesserungen)

O


Listen mit den bewilligten Siliermitteln

Die Listen mit den bewilligten Siliermitteln (Liste A zur Förderung der Milchsäuregärung; Liste B zur Vorbeugung von Nachgärungen) werden jährlich in der Fachpresse publiziert. Sie sind auch auf dem Internet abrufbar (www.alp.admin.ch/de/fuetterung/siliermittel.php)

Zudem werden jährlich die Preise der verschiedenen Siliermittel zusammengestellt und die Listen in der Silozytig publiziert.

Schema zur Siliermittelwahl bei Gras

(modifiziert nach Nussbaum 2004)

Siliermittelwahl

Achtung:

Wenn verschiedene Siliermittel verwendet werden, muss dazwischen das Dosiergerät gründlich gereinigt werden.

Falls Rückstände eines chemischen Siliermittels im Dosiergerät sind und ein anderes chemisches Produkt eingefüllt wird, können chemische Reaktionen auftreten (z.B. Nitrosegasbildung)

Falls Rückstände eines chemischen Siliermittels im Dosiergerät sind und ein biologisches Produkt (Milchsäurebakterien-Präparat) eingefüllt wird, können die Milchsäurebakterien abgetötet werden.

Siliermittel Liste A: Förderung des Gärverlaufs Chemische oder biologische Produkte?

Chemische Produkte

- Hemmung der schädlichen Mikoorganismen
- Förderung der natürlichen Milchsäurebakterien durch pH-Absenkung
- Nachteile: korrosiv und ätzend

Biologische Produkte

(Milchsäurebakterien-Impfzusätze und Enzyme)

- Förderung der Milchsäuregärung durch Bakterienzusatz
- Voraussetzung: genügend Nährsubtrat

Siliermittel Liste A: Förderung des Gärverlaufs

Milchsäurebakterien-Impfzusätze

Flüssige oder trockene Anwendungsform?

Bei flüssiger Anwendungsform in der Regel raschere pH-Absenkung und entsprechend bessere Wirkung

Siliermittel können nur dort wirken, wo sie hingelangen

Mindesthaltbarkeitsdatum und Lagerungsbedingung der Milchsäurebakterien-Impfzusätze (Kühlschrank oder an einem kühlen, trockenen Ort) beachten.

Siliermittel Liste B: Vorbeugung von Nachgärungen

- Einsatz beim Einsilieren als Vorbeugung
- Einsatz beim Aussilieren zur direkter Bekämpfung von Nachgärungen (Feuerwehrübung)

Siliermittel Liste B: Vorbeugung von Nachgärungen

Vor allem chemische Produkte für diesen Zweck bewilligt (Basis Propionsäure)

Silagen behandelt mit einem Milchsäurebakterien-Impfzusatz (homofermentative MSB) sind oft anfälliger für Nachgärungen

Heterofermentative Milchsäurebakterien (Essigsäurebildung)

Siliermitteleffekte

(nach Zusammenstellung DLG)

Kenngrösse	Einheit	Ausmass	
Verdaulichkeit OS	%	+ 1.0 bis + 3.0	
NEL-Gehalt	MJ/kg TS	+ 0.1 bis + 0.3	
Futteraufnahme	%	+ 5 bis + 10	
Milchleistung	kg je Tier und Tag	bis + 1.2	
Mastleistung	g Zunahme pro Tier und Tag	bis + 85	

Obsierung von Siliermitteln

- Dosiergeräte für Granulate oder Pulver
- Flüssigdosier (1 bis 2 Liter pro t Futter)
- ULTRA-LOW Volume-Dosierer (10 bis 20 ml pro t Futter

Obsierung von Siliermitteln

Dosierung von Siliermitteln

Schwad-Applikation von Milchsäurebakterien Ergebnisse: MSB überleben eine zweitägige Lagerung im Schwad

ULTRA-LOW Volume-Dosierer

(10 bis 20 ml pro t Futter)

Q

Kosten Siliermittel (in Fr. pro m³)

Siliermittel Liste A: Förderung des Gärverlaufs (mittelschwer silierbares Futter)

Produktekategorie	n	Mittel	Minimum	Maximum
Siliersalze	2	4.93	4.75	5.10
Milchsäurebakterien				
(homofermentative)				
- trockene Anwendung	8	4.36	2.15	7.25
- flüssige Anwendung	21	2.76	1.55	4.20
Früchtesirup	1	8.55		

Wosten Siliermittel (in Fr. pro m³)

Siliermittel Liste B: Vorbeugung von Nachgärungen

	n	Mittel	Minimum	Maximum
Siliersalze	2	7.50	7.20	7.80
Säuren	6	11.41	10.70	12.25
Milchsäurebakterien				
(heterofermentative)	9	2.98	1.85	3.80
Kombinierte Produkte (chemische K. + homo MSB)	9	4.14	3.60	6.75
Harnstoff	1	1.20		

Seminar "SiloProfi"Organisiert von der DLG

- Silagequalität: Futterwert, Leistung und Wirtschaftlichkeit
- Silierung und g\u00e4rbiologische Grundlagen
- Ernteverfahren bei Gras- und Maissilagen
- Grundlagen der Silobefüllung und -abdeckung
- Beeinflussung des Gärprozesses durch Siliermittel
- Auswahl, Dosierung und Einsatz von Siliermitteln
- Fehlgärungen und Maßnahmen bei Nacherwärmung
- Reklamationsmanagement
- Controlling am Silo

Zusammenfassung

- Die Faktoren, welche die Silagequalität beeinflussen, müssen bekannt sein
- Gutes Ausgangsmaterial und die Einhaltung der Silierregeln sind die Voraussetzung für eine gute Qualität
- Wenn Siliermittel eingesetzt werden, dann muss die Siliermittelwahl, die Einsatzmenge und die Verteilung stimmen

Vielen Dank für Ihre Aufmerksamkeit und viel schönes Wetter

