

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER

Agroscope

Slurry application on grassland – Effects of technique, timing, slurry consistency and sward type

Annett Latsch

AgEng 2014 Zurich

Arbeitsgemeinschaft zur Förderung des Futterbaues

Association pour le développement de la culture fourragère

Associazione per il promovimento della foraggicoltura

Introduction

- gaseous emissions after slurry application as major source of atmospheric ammonia (NH₃)
- ammonia losses influenced by application technique
- conventional method: surface spreading by broadcast
- <u>low emission techniques</u>: reduced surface area and nearground application (reduction compared to broadcast)
 - band-spread (30-60%)
 trailing-shoe (40-70%)
 drill (60-80%)

Introduction

- What are the effects of low emission techniques on
 - forage yield?
 - botanical composition?
 - forage contamination by slurry residues?
- no studies in Switzerland
- studies from Germany with conflicting results (Kiefer et al., 2004, Lorenz & Steffens, 1996)
 - 2 field trials on temporary grassland in the canton Thurgau (Switzerland)

Experimental sites

<u>Tänikon (1)</u>

- 7.9°C, 1124mm
- small-plot scale
- 18 m²
- fully randomized

Arenenberg (2)

- 9.4°C, 956mm
- Iarge-plot scale
- 135 m²
- randomized block design

project duration: 2012-2014

Slurry application technique

Experimental design

Technique:

<u>Timing:</u>

- early (1-3 days)
- late (7-10 days)

Slurry dilution:

Sward type:

Control:

- legume-free plots
- mineral N fertilization
- graduated N level

➡ multifactorial design, 3 replications

Methodology

- Slurry application:
 - 5x / year
 - target value: 30 kg NH₄-N ha⁻¹
 - nutrient content
- Harvest:
 - 5x / year
 - dry matter and nitrogen content
 - forage contamination (pure grass, undiluted slurry)
- Botanical analysis:
 - 1x / year (Daget and Poissonet, 1971)
- Soil analysis:
 - at the start of the experiment

- grass-clover >> pure grass
- in tendency:
 - trailing-shoe / bandspread > broadcast
 - early > late
- thin > normal

grass-clover >> pure grass

in tendency:

- trailing-shoe / bandspread > broadcast
- early > late
- thin > normal

- grass-clover >> pure grass
- in tendency:
 - trailing-shoe / bandspread > broadcast
 - early > late
- thin > normal

Results: Botanical composition

no significant differences after one year of treatment application

Results: Forage contamination

- low values of clostridia spores
- maximum for broadcasted, late applied slurry
- late band-spread application also with higher values

*Determinations were carried out for pure grass stands and viscous slurry only.

Results: Forage contamination

- harvest 1: very high values (22% DM on average!)
- harvest 3+4:
 broadcast > low
 emission technique
- late application higher content of butyric acid

*Determinations were carried out for pure grass stands and viscous slurry only.

Results: Forage contamination

- harvest 1: very high values (22% DM on average!)
- harvest 3+4: broadcast > low emission technique
- late application higher content of butyric acid

*Determinations were carried out for pure grass stands and viscous slurry only.

Conclusions

- yield advantage of grass-clover swards
- no consistent differences between low emission application techniques and broadcasted application
- trend towards increased yield for low emission techniques
- slurry application at an early stage and at a thin consistency positive for dry matter yield
- after one year of treatment application no changes in sward composition
- tendency of increased contamination for broadcasted application, especially when late applied

C Thank you for your attention!

Agroscope good food, healthy environment