Species diversity enhances multifunctionality in sown grasslegume mixtures

Suter M., Huguenin-Elie O. and Lüscher A.

Agroscope, Forage Production and Grassland Systems, 8046 Zürich, Switzerland

Introduction: Legume-based grassland systems provide several key functions for the provision of high quantity and quality forage at low to moderate nitrogen (N) fertilizer input (Lüscher *et al.* 2014). Despite their high agronomic and economic importance, there is no up-to-date evaluation of the diversity-multifunctionality relationship in these systems.

Materials and methods: A diversity experiment was set up with sown monocultures, 2- and 4-species mixtures comprising *Lolium perenne* L., *Dactylis glomerata* L., *Trifolium pratense* L., and *Trifolium repens* L., and was maintained for three years at 150 kg N fertilization ha⁻¹ yr⁻¹. Nine functions were measured that represented (1) production: aboveground biomass yield, between-year temporal yield stability (mean yield/standard deviation), aboveground weed biomass; (2) N cycling: symbiotic N₂ fixation (N_{sym}), N efficiency (N yield/N applied), NO₃ in soil solution; and (3) forage quality: crude protein content (CP), organic matter digestibility (OMD), metabolizable energy content (ME). All functions were jointly regressed on sown species proportions using multivariate linear mixed-effects regression (all stands used).

Results: Across the three years, all functions regarding production and N cycling revealed significantly enhanced performance in the 4-species equi-proportional mixture (used as a reference) compared to averaged monocultures ('overyielding'). Thus, the reference mixture had 62% more biomass yield, a 73% increase in temporal stability, 80% less weed biomass, 99% and 50% higher N_{sym} and N efficiency, respectively, and 85% less NO₃ in the soil solution (Table 1). The reference mixture and averaged monocultures did not significantly differ in CP, OMD (g kg⁻¹ yield), and ME (MJ kg⁻¹ yield) (Table 1). This, however, resulted in significant overyielding between 49% and 68% in all three forage quality functions on a per-hectare basis (kg or MJ ha⁻¹ year⁻¹) (*P*<0.01). Thus, the use of grass-legume mixtures enhanced the performance of all measured functions, without trade-off between them, indicating enhanced multifunctionality in mixtures.

Service	Function	Unit (Ratio)	Targeted direction	Overyielding
Production	Aboveground biomass yield	Mg ha ⁻¹ year ⁻¹	positive	62% ***
	Temporal stability of yield	μ/σ	positive	73% **
	Weed biomass	Mg ha ⁻¹ year ⁻¹	negative	-80% ***
N cycling	Symbiotic N ₂ fixation	kg ha⁻¹ year⁻¹	positive	99% ***
	N efficiency	N yield/N applied	positive	50% ***
	NO ₃ in soil solution	mg liter ⁻¹	negative	-85% *
Forage quality	Crude protein content	g kg ⁻¹ yield	positive	-8% ns
	Organic matter digestibility	g kg ⁻¹ yield	positive	-2% ns
	Metabolizable energy	MJ kg⁻¹ yield	positive	-3% ns

Table 1. Percent overyielding of nine functions representing forage production, N cycling, and forage quality, measured over three experimental years.¹

¹ *μ*: mean, *σ*: standard deviation; *** *P*≤0.001, ** *P*≤0.01, * *P*≤0.05, ns: *P*>0.05.

Conclusions: Sown grass-legume mixtures at moderate N fertilization sustain high multifunctionality and, compared to monocultures, enhance levels of individual functions that jointly promote sustainable forage production.

Lüscher A., Mueller-Harvey I., Soussana J.F., Rees R.M. and Peyraud J.L. (2014) Potential of legume-based grassland-livestock systems in Europe: a review. *Grass and Forage Science* 69, 206-228.