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Abstract
Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their 
antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi 
have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., compe-
tition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert 
their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium 
pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for 
the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, 
but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-
based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful 
opportunities for the development of commercial, yeast-based applications for plant protection exist.

Keywords Biological control · Microbial antagonism · Plant protection · Plant pathogens · Competition · Enzyme 
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Introduction

Despite their relevance as model eukaryotes for biotechno-
logical applications and in medical mycology, the poten-
tial use of antagonistic yeasts as biocontrol agents is still 
underexploited. Only a handful of yeast-based plant pro-
tection products has reached the market and even in fun-
damental research, antifungal yeasts have been neglected 
and poorly investigated with state-of-the-art technology and 

at the molecular level. Nevertheless, yeasts combine strong 
antifungal activities with advantageous properties for an 
application (e.g., strong antagonistic activity, culturabil-
ity, formulatability, applicability, stress resistance) and are 
thereby promising for the development of biological plant 
protection agents. Furthermore, the close relatedness with 
model yeasts, particularly Saccharomyces cerevisiae, ena-
bles taking advantage of the molecular tools and plethora of 
data developed for these organisms for application-oriented 
and basic studies on biocontrol yeasts.

Biocontrol is mostly looked at and studied in a species/
isolate-centric manner: different species/isolates are tested 
against the target plant pathogen and the most active organ-
ism is studied with respect to its potential for biocontrol 
applications. However, for a successful application and 
improvement of biocontrol organisms, we first have to 
understand the biocontrol mechanisms involved and then 
confirm their expression under field conditions (Droby and 
Chalutz 1994; Spadaro and Droby 2016; Wisniewski et al. 
2007). Here, different yeast biocontrol mechanisms are high-
lighted and a comprehensive overview on published work on 
antagonistic mechanisms of biocontrol yeasts is provided in 
Supplementary Table 1.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1127 4-019-2728-4) contains 
supplementary material, which is available to authorized users.
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Advantageous yeast properties for potential 
biocontrol applications

Any organism to be used as the active ingredient in a bio-
control product must be effective against its target disease, 
but secondary properties such as biosafety and registra-
tion issues, production requirements and conditions, for-
mulation options, and the required application equipment 
are just as or even more important. Although the lack of 
invasive, filamentous growth of most yeasts may seem a 
disadvantage, the yeast-like morphology is the reason for 
wieldy culturability in fermentors, advantageous formu-
lation characteristics and ample application options. As 
for bacteria, the single-celled morphology of yeasts also 
favours adhesion and biofilm formation, which directly 
influences environmental persistence, competitiveness 
and thereby improved biocontrol activity (Fanning and 
Mitchell 2012; Pandin et al. 2017; Rossouw et al. 2018; 
Verstrepen and Klis 2006).

While many S. cerevisiae strains contain the high-copy 
2 µm plasmid (i.e., 653 of 1011 sequenced S. cerevisiae 
strains) (Peter et al. 2018), most non-conventional yeasts 
lack plasmids (but can be engineered to maintain foreign, 
extra-chromosomal DNA by designing a plasmid vector 
containing intrinsic autonomously replicating and cen-
tromere sequences) (Cao et al. 2017). Yeasts thus share 
growth characteristics and biocontrol activities with bac-
teria without the risk of taking up or passing on plasmid-
based antibiotic resistance, pathogenicity factors or toxin 
biosynthesis genes. In addition, horizontal gene transfer, 
albeit occurring more frequently in fungi than thought ear-
lier, is significantly less frequent in yeasts, as compared to 
their prokaryotic counterparts, due to their more complex 
genome organisation (Fitzpatrick 2012; Moriguchi et al. 
2013; Richards et al. 2011).

Yeasts have been used for food and beverage produc-
tion for thousands of years, they are consumed directly as 
food supplements, and are widely employed in the food 
industry (Bekatorou et al. 2006; Querol and Fleet 2006). 
In many cases, these “food industry yeasts” belong to the 
same genus or even species as those intended for biocon-
trol (e.g., S. cerevisiae, Candida sake, Metschnikowia 
pulcherrima). This may be the reason why yeasts sensu 
lato are generally regarded as safe and therefore applying 
yeasts in crops and on food products elicits less concern 
than applications of bacteria or filamentous fungi (Euro-
pean Food Safety Authority 2005). Nonetheless, some 
yeasts, such as certain Candida or Cryptococcus spe-
cies, are important fungal human pathogens (Butler et al. 
2009; Miceli et al. 2011; Opulente et al. 2019). Proper-
ties such as dimorphism (e.g., the switch to an invasive 
growth form), growth at high temperatures (e.g., at or 

above 37 °C) and resistance to fungicides are of particu-
lar concern and should be studied and assessed in detail 
before considering new isolates for biocontrol applications 
(Gauthier 2015, 2017; Robert et al. 2015).

Mechanisms underlying the biocontrol 
activity of yeasts

Understanding the mechanisms conferring biocontrol 
activity is the foundation for the informed and successful 
development and application of yeasts as plant protection 
agents (Droby and Chalutz 1994; Spadaro and Droby 2016; 
Wisniewski et al. 2007). For the biocontrol yeasts so far 
studied in detail, multiple mechanisms such as competition 
for nutrients and space, secretion of enzymes, toxin produc-
tion, release of volatile organic compounds (VOCs), myco-
parasitism and induction of resistance in plants are likely 
to be involved in the antagonistic function (Fig. 1) (Droby 
et al. 2009; Punja and Utkhede 2003; Wisniewski and Droby 
2012). In most cases, the mechanisms outlined and discussed 
below have not been fully proven by molecular analyses 
(e.g., by gene deletion and complementation, heterologous 
expression), but rather proposed based on analogies with 
other biological systems. However, the increasing number 
of annotated yeast genomes and the availability of different 
transformation techniques should make it possible to deci-
pher different mechanisms and to unambiguously confirm 
biocontrol mechanisms in future work.

Fig. 1  Multiple mechanisms are involved in preventing plant dis-
eases and conferring biocontrol activity to yeasts. The mechanisms 
studied and highlighted here are competition for nutrients and space, 
secretion of toxins, enzymes and volatile organic compounds, direct 
parasitisation (fungivory) and indirect mechanisms (i.e., induction of 
resistance)
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Competition for nutrients and space

All microorganisms compete with each other and their hosts 
for nutrients and space: this struggle is considered as the 
primary mode of action of biocontrol yeasts (Schaible and 
Kaufmann 2005; Spadaro and Droby 2016; Wisniewski 
et al. 2007). Competition is difficult to study mechanisti-
cally: it is likely more important in natural environments, 
where resources are limited and competitors plentiful. In 
community ecology, niche and nutrient competition have 
been intensely studied as determinants of species diversity. 
In nectar yeasts (e.g., Metschnikowia reukaufii), which are 
closely related to some biocontrol species, efficient resource 
depletion, due to the duplication of nitrogen transporter and 
metabolism genes, causes priority effects (i.e., order of spe-
cies arrival determines community composition) and thus 
acts as a driver of competitiveness among different species 
(Dhami et al. 2016). With respect to competition for space, 
in vitro experiments performed on solid media seem to 
ascribe a minor role to a limitation in space. Although most 
yeasts grow well on agar plates, large differences in their 
antifungal activities were observed (Hilber-Bodmer et al. 
2017). In addition, species-specific inhibition does not seem 
to occur, and a particular yeast is either strongly or weakly 
antagonistic against most fungi (Hilber-Bodmer et al. 2017). 
However, growing under field conditions activates diverse 
survival mechanisms and the competition for the physical 
niche might gain importance in such circumstances.

Most organisms and cells, from humans to bacteria, syn-
thesise iron binding molecules to deprive competing organ-
isms, pathogens or intracellular parasites of this essential 
element (Barber and Elde 2015; Johnson 2008). Also for 
biocontrol yeasts, iron is one of the most sought after nutri-
ents and the competition for iron is recognised as an impor-
tant mode of action (Spadaro and Droby 2016). In Aureoba-
sidium pullulans, a siderophore identified as fusarinine C 
(fusigen) was identified and shown to exhibit antibacterial 
activity (Wang et al. 2009a, b). The peculiar red color of 
M. pulcherrima colonies is due to the formation of a cyclic 
dipeptide, pulcherriminic acid, that complexes iron (Gore-
Lloyd et al. 2019). Pigmentless M. pulcherrima mutants 
were shown to exhibit reduced antifungal activity and iron 
deprivation of the fungal pathogen was suggested as one of 
several mechanisms by which this yeast antagonises plant 
pathogenic fungi (Gore-Lloyd et al. 2019; Sipiczki 2006). 
However, mutants lacking the ability to synthesise pulcher-
riminic acid still inhibited filamentous fungi strongly, sug-
gesting that the antifungal activity was not only due to iron 
deprivation (Gore-Lloyd et al. 2019). The exact contribution 
of iron chelators to yeast biocontrol activity thus remains to 
be elucidated in detail.

Recently, it was shown that Saccharomycopsis schoenii 
lacks several components of the sulfur assimilation pathway 

and thus likely acquires methionine from its prey (Junker 
et al. 2019). Among yeasts, the inability to take up sulfur 
is specific to Saccharomycopsis, but some plant pathogenic 
fungi and Trichoderma species show a similar phenomenon, 
which may indicate that methionine is an important target 
for such organisms and highly competed over (Junker et al. 
2019). Pioneering experiments aimed at evaluating the suit-
ability of an easily transformable Pichia (Ogataea) angusta 
haploid strain to identify biocontrol-minus mutant clones: 
while the wild-type strain proved effective in reducing brown 
rot lesion caused by Monilinia fructicola on apple fruit, its 
derivate leucine-auxotrophic mutant L1 had no significant 
effect in controlling the pathogen. The addition of exogenous 
leucine fully restored the biocontrol capability of mutant L1, 
whereas a leucine stand-alone treatment showed no signifi-
cant biocontrol effect (Fiori et al. 2008).

Biofilm formation may also be considered a specific 
and highly successful strategy to compete for space. Bio-
films are microbial communities that live and grow on sur-
faces and can be comprised of a single species or represent 
multi-species consortia (Costa-Orlandi et al. 2017). Bio-
films may exhibit vastly different properties as compared 
to free-floating cells and are considered a virulence factor 
for pathogenic microbes (Costa-Orlandi et al. 2017; Davey 
and O’Toole 2000; Desai et al. 2014). The development of 
a yeast biofilm starts with the adhesion of individual cells 
to a surface and usually involves cell wall modifications, 
secretion of an extracellular matrix, and often the formation 
of hyphae or pseudohyphae (Cavalheiro and Teixeira 2018; 
Costa-Orlandi et al. 2017). The process has been studied in 
detail and at the molecular level in medically relevant and 
model yeasts (Cabral et al. 2014; Cavalheiro and Teixeira 
2018; d’Enfert and Janbon 2016; Lohse et al. 2018; Reyn-
olds and Fink 2001). In biocontrol yeasts, biofilm formation, 
mainly in the phyllo- and carposphere (i.e., in wounds), is 
now considered an important mode of action and has been 
widely studied. However, the molecular underpinnings of 
the process and the composition of different biofilms (e.g., 
cell differentiation, multispecies biofilms) have only been 
studied in detail for Pichia fermentans. This species proved 
particularly intriguing in this respect, because biofilm forma-
tion in apple wounds protects against postharvest diseases, 
while on peaches P. fermentans switches from the yeast-
like to the hyphal growth form and causes rapid decay of 
inoculated fruits in the absence of a plant pathogen (Fiori 
et al. 2012; Giobbe et al. 2007; Maserti et al. 2015; Sanna 
et al. 2012, 2013). Based on this “Jekyll & Hyde” pathogenic 
behaviour of P. fermentans on peach fruit, the capability 
to differentiate hyphae and pseudohyphae under particular 
growth conditions (e.g., depending on the nitrogen source) 
has been proposed as a potential biohazard factor for bio-
control yeasts (Giobbe et al. 2007). Besides P. fermentans, 
biofilm formation has also been implicated in the protective 
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and biocontrol activities of A. pullulans, Kloeckera apicu-
lata, S. cerevisiae, Pichia kudriavzevii, W. anomalus, and 
M. pulcherrima (Supplementary Table 1) (Chi et al. 2015; 
Klein and Kupper 2018; Ortu et al. 2005; Pu et al. 2014; 
Wachowska et al. 2016). In a S. cerevisiae flor strain, biofilm 
cells were far more efficient than planktonic cells in colonis-
ing the inner surface of apple wounds, thereby controlling 
the development of blue mould caused by P. expansum (Ortu 
et al. 2005; Scherm et al. 2003) (Fig. 2).

Secreted enzymes

The secretion of enzymes degrading cellular components is 
a common feature in all kinds of host–pathogen interactions 
and has been intensively studied. Usually, such enzymes are 
upregulated in nutrient poor conditions and serve the provi-
sion of nutrients (e.g., carbon sources, amino acids) that are 
released from “prey” cells, which may lead to the killing 
of these cells (i.e., mycoparasitism/fungivory; see below). 
Secreted enzymes such as chitinases, glucanases, or pro-
teases are thus regularly reported and highlighted in antago-
nistic yeasts and implicated in their biocontrol activity.

Chitinases

The secretion of chitinolytic enzymes is considered a desir-
able characteristic for biocontrol agents as it allows degrad-
ing fungal cell walls (Zajc et al. 2019). Chitin degrading 
activity has been measured in biocontrol yeasts of the genera 
Aureobasidium, Candida, Debaryomyces, Metschnikowia, 
Meyerozyma, Pichia, Saccharomyces, Tilletiopsis, and Wick-
erhamomyces and in Saccharomycopsis, chitinase expression 

was detected in the presence of prey cells (Supplementary 
Table 1) (Bar-Shimon et al. 2004; Junker et al. 2019; Lopes 
et al. 2015; Pretscher et al. 2018; Saravanakumar et al. 2009; 
Urquhart and Punja 2002; Zajc et al. 2019; Zhang et al. 
2011). So far, the corresponding chitinase-encoding genes 
have not been cloned, deleted or overexpressed to unequivo-
cally link these enzymes to biocontrol activity. However, chi-
tinases from other sources than yeasts (i.e., filamentous fungi 
and bacteria) have demonstrated biocontrol activity against 
plant pathogenic fungi and chitinases are widely studied as 
potential biopesticides, targets for resistance breeding, or 
as transgenes in genetically modified plants (Dahiya et al. 
2006; Herrera-Estrella and Chet 1999; Nagpure et al. 2014). 
Chitinases likely also affect biocontrol activity indirectly, 
because chito-oligosaccharides (CHOS; the results of chitin 
degradation) are potent inducers of plant immune responses 
(Kombrink et al. 2011; Langner and Gohre 2015; Liu et al. 
2012, 2014).

Glucanases

Glucans are major cell wall components in fungi and exog-
lucanases are involved in cell wall modification, cell adhe-
sion, and killer toxin resistance (Adams 2004; Jiang et al. 
1995; Tsai et al. 2011; Xu et al. 2013). A 1,3-β-glucanase 
(CoEXG1) from Candida oleophila was the first gene cloned 
in this organism (Segal et al. 2002). Initial overexpression 
or deletion analyses of CoEXG1 did not significantly affect 
spore germination of Penicillium digitatum (Yehuda et al. 
2003), but later studies documented reduced inhibitory 
activity of the β-exoglucanase deletion mutant as compared 
to the wild type and overexpressing strain (in vitro and in 

Fig. 2  Colonisation a of the inner surface of an apple wound by the 
Saccharomyces cerevisiae flor strain M25. b Penicilllium expansum 
germ tubes grow onto the yeast cells, but contact with the apple tissue 

is prevented by a thick yeast cell layer. The presence of an extracellu-
lar matrix is likely to assure an effective protection of the apple tissue 
(Ortu et al. unpublished)
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fructo), thereby proving the involvement of glucanases 
in yeast biocontrol activity (Bar-Shimon et al. 2004). In 
Wickerhamomyces anomalus (Pichia anomala), the dele-
tion of the two exo-β-glucanases (PaEXG1 and PaEXG2) 
significantly reduced biocontrol activity on fruits against 
Botrytis cinerea (Friel et al. 2007), while the single dele-
tion of PaEXG2 did not reduce biocontrol performance 
(Grevesse et al. 2003). At the transcriptional level, differ-
ential upregulation of two W. anomalus (P. anomala) exog-
lucanase genes was shown during the interaction with plant 
pathogenic fungi on infected fruits or growth with fungal 
cell wall preparations (Parafati et al. 2017a). Exoglucanase 
activity has also been detected in numerous biocontrol yeasts 
(see Supplementary Table 1) (Chan and Tian 2005) and was 
linked to antagonistic activity, but without demonstrating a 
causal involvement. In Rhodotorula glutinis and Cryptococ-
cus laurentii, β-1,3-glucanase activity did not correlate with 
the respective inhibitory activity against B. cinerea (Castoria 
et al. 1997). Six S. cerevisiae isolates exhibiting antifungal 
activity against Colletotrichum acutatum secreted exoglu-
canases, as did a Pichia guilliermondi biocontrol isolate 
(Lopes et al. 2015; Zhang et al. 2011).

Lipases

Lipolytic activity is frequently found when screening for 
extracellular enzymatic activity in yeast and yeast-like 
strains (Arroyo-Lopez et al. 2008; Buzzini and Martini 2002; 
Hernandez et al. 2007). This trait has been related to the con-
sumption of previously accumulated lipids (in the so-called 
‘oleaginous’ yeasts), and to cold tolerance in extremophilic 
yeasts (Białkowska and Turkiewicz 2014; Breuer and Harms 
2006; Papanikolaou and Aggelis 2011; Szczęsna-Antczak 
et al. 2014). Besides this, lipase activity has been detected 
and shown to be involved in the pathogenicity of yeasts such 
as Candida, Cryptococcus, or Malassezia species (Mayer 
et al. 2013; Park et al. 2013; Sommer et al. 2016). Since 
a number of studies have highlighted the role of lipases in 
the biocontrol efficacy of bacteria and fungi against plant 
diseases and pests (Ali et al. 2009; Berto et al. 2001; Beys 
da Silva et al. 2010a, b; Keyhani 2018; Manuel et al. 2012; 
Sánchez-Pérez et al. 2014; Vial et al. 2007; Zha et al. 2014), 
the lipolytic activity of antagonistic yeasts may represent a 
promising target for innovative studies on biological control 
applications.

Proteases

Although proteases are important virulence factors in 
entomopathogenic fungi and filamentous mycoparasites, 
they have been scarcely studied in biocontrol yeasts (Sup-
plementary Table  1). Since protease activity was only 
detected at later growth stages (after 6–8 days of growth in 

nutrient rich medium) in C. oleophila cultures, a minor func-
tion in biocontrol activity was hypothesised (Bar-Shimon 
et al. 2004). In contrast, the alkaline serine protease Alp5 
from A. pullulans reduced spore germination and germ tube 
length of Penicillium expansum, B. cinerea, M. fructicola 
and Alternaria alternata in vitro and exhibited a concentra-
tion-dependent inhibitory effect on these pathogens on apple 
(Banani et al. 2014; Zhang et al. 2012). Protease activity 
has also been reported in the genera Metschnikowia, Pichia, 
and Wickerhamomyces, but not further studied or confirmed 
(Pretscher et al. 2018). Finally, Saccharomycopsis protease 
(and also glucanase) transcripts were significantly enriched 
during predation, but neither functionally investigated (Jun-
ker et al. 2019).

Toxin production

Yeasts are not known as prolific producers of secondary 
metabolites, which is one of the reasons why they often 
raise less biosafety concerns. Consequently, relatively few 
toxic molecules that may contribute to biocontrol activity 
have been described (Supplementary Table 1). Flocculosin 
is a low molecular weight cellobiose lipid produced by the 
biocontrol yeast Pseudozyma flocculosa (Mimee et al. 2005, 
2009; Teichmann et al. 2011). A. pullulans (introduced in 
more detail below) produces diverse polymers (e.g., pul-
lulan, aubasidan-like exopolysaccharide, poly(β-l-malic 
acid)), lipids, volatiles, enzymes, and secondary metabolites. 
Some of these metabolites (e.g., aureobasidins, liamocins, 
2-propylacrylic acid, 2-methylenesuccinic acid) confer 
antagonistic activity against bacteria or fungi (Prasongsuk 
et al. 2018; Price et al. 2013, 2017; Takesako et al. 1991; 
Zain et al. 2009). Toxin production provided a competitive 
advantage to A. pullulans under dry, oligotrophic conditions, 
whereas it had no effect (as compared to yeasts not produc-
ing toxins) on antagonistic activity in more humid environ-
ments (McCormack et al. 1995). The most prominent toxins 
produced by many biocontrol yeast strains are proteinaceous 
killer toxins (Supplementary Table 1) (Bajaj et al. 2013; 
Banjara et al. 2016; Belda et al. 2017; Buzdar et al. 2011; 
Buzzini et al. 2004; Chen et al. 2000; Coelho et al. 2009; 
Comitini and Ciani 2011; Comitini et al. 2004; da Silva et al. 
2008; De Ingeniis et al. 2009; Golubev et al. 2006; Guo 
et al. 2013; Guyard et al. 2002a, b; Hua et al. 2010; Kasa-
hara 1994a, b; Klassen et al. 2004; Marquina et al. 2001; 
Ramirez et al. 2015; Rodriguez-Cousino et al. 2011; Santos 
and Marquina 2004a, b; Santos et al. 2002, 2009; Suzuki 
and Nikkuni 1994; Vepstaite-Monstavice et al. 2018; Wang 
et al. 2007, 2012a; Weiler and Schmitt 2003). These proteins 
were originally identified in S. cerevisiae and seem to mainly 
kill competing yeast species (Luksa et al. 2015; Schmitt and 
Breinig 2006). Yeast killer toxins have thus been mainly 
studied with respect to the control of spoilage yeasts in 
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the beverage and food industry or for medical applications 
(Chessa et al. 2017; Chi et al. 2010; Lowes et al. 2000; Man-
nazzu et al. 2019; Schmitt and Breinig 2002). However, 
several of these toxins also inhibit or kill plant pathogenic 
fungi and were thus proposed for plant protection (Corbaci 
and Ucar 2018; Liu et al. 2015; Marquina et al. 2002; Perez 
et al. 2016). Nevertheless, further investigations to evalu-
ate the specificity of yeast toxins and assess their effects on 
other beneficial microorganisms (e.g., in the phyllosphere, 
in soil microbiota and, in the case of edible commodities, 
the human gut) are required, particularly in the light of a 
possible registration.

Volatile organic compounds

Volatile organic compounds (VOCs) are small (usu-
ally < 300 Da) molecules with low water solubility and 
high vapour pressure. VOCs include a panoply of molecu-
lar classes, including hydrocarbons, alcohols, thioalcohols, 
aldehydes, ketones, thioesters, cyclohexanes, heterocyclic 
compounds, phenols and benzene derivatives (Morath 
et al. 2012). The chemical composition of each blend of 
volatiles (the so-called volatilome) may change depending 
on the producing yeast, the antagonised pathogen and the 
ecological niche where the cross-talking species are grow-
ing (Parafati et al. 2017b). Recent experimental evidence 
has revealed the key role of the yeast volatilome in yeast-
pathogen interactions, including postharvest pathogens, and 
mycotoxin-producing fungi (Supplementary Table 1) (Bruce 
et al. 2003; Lemos Jr 2016; Parafati et al. 2015). Volatiles 
produced by A. pullulans proved efficient in reducing the 
growth and infection by B. cinerea, C. acutatum, P. expan-
sum, P. digitatum and P. italicum both in vitro and in planta 
(Di Francesco et al. 2014). The biocontrol activity of dif-
ferent food yeasts such as W. anomalus, M. pulcherrima, S. 
cerevisiae and A. pullulans against B. cinerea in vitro and on 
table grape berries was largely attributed to the production 
of VOCs (Parafati et al. 2015). Similarly, VOCs released 
by C. sake reduced the incidence of apple rot caused by P. 
expansum and B. cinerea (Arrarte et al. 2017). The inhibi-
tory activity of Sporidiobolus pararoseus on spore germina-
tion and mycelial growth of B. cinerea was mainly attributed 
to 2-ethyl-1-hexanol (Huang et al. 2012), whereas Candida 
intermedia produced 1,3,5,7-cyclooctatetraene, 3-methyl-
1-butanol, 2-nonanone, and phenylethyl alcohol as the 
major components of its volatilome during the interaction 
with this pathogen (Huang et al. 2011). VOCs released by 
P. anomala, Pichia kluyveri, and Hanseniaspora uvarum 
inhibited Aspergillus ochraceus growth and ochratoxin A 
production during processing of coffee (Masoud et al. 2005), 
and 2-phenylethanol was identified as the key component 
of the P. anomala volatilome preventing spore germination, 
mycelial growth and toxin production by Aspergillus flavus 

(Hua et al. 2014). More than twenty different VOCs were 
identified in the volatilomes of selected biocontrol strains 
of Cyberlindnera jadinii, Candida friedrichii, C. intermedia, 
and Lachancea thermotolerans, but 2-phenylethanol was the 
most abundant and responsible for the inhibition of both 
mycelial growth and ochratoxin A production by Aspergillus 
carbonarius and A. ochraceus (Farbo et al. 2018; Fiori et al. 
2014; Tilocca et al. 2019).

Mycoparasitism

Mycoparasitism (or fungivory, i.e., the consumption of one 
fungus by another) is rarely described and poorly studied 
in yeasts. P. guilliermondii was shown to strongly adhere 
to hyphae of the plant pathogen B. cinerea and to cause 
hyphal collapse, presumably due to the secretion of hydro-
lytic enzymes such as glucanases (see above) (Wisniewski 
et al. 1991). Similarly, the yeast-like Ustilaginomycete Pseu-
dozyma aphidis parasitises the powdery mildew pathogen 
Podosphaera xanthii and B. cinerea (Calderon et al. 2019; 
Gafni et al. 2015). The genus Saccharomycopsis, comprising 
predacious yeasts directly feeding on their prey, was studied 
with respect to biocontrol of different Penicillium species as 
well as clinically relevant yeasts (Junker et al. 2017, 2018, 
2019; Lachance and Pang 1997; Pimenta et al. 2008).

Induction of resistance

Plants feature an innate immune system that recognises and 
responds to the presence of microorganisms (Chisholm et al. 
2006; Jones and Dangl 2006). This plant immune response 
can induce resistance systemically and is the basis for the 
application of microorganisms as plant fertilisers and forti-
fiers (Gozzo and Faoro 2013; Pieterse et al. 2014). Biocon-
trol yeasts can elicit systemic resistance of plants against a 
broad range of pathogens (Supplementary Table 1) (Barda 
et al. 2015; Buxdorf et al. 2013a, b; Lee et al. 2017; Liu et al. 
2016) and this activity is suggested to contribute to their 
biocontrol activity. For example, S. cerevisiae, Rhodosporid-
ium paludigenum, Candida saitoana, C. oleophila and 
Metschnikowia species induce an innate immune response 
and eventually cause resistance against phyllosphere patho-
gens in fruits (De Miccolis Angelini et al. 2019; Droby et al. 
2002; El Ghaouth et al. 2003; Hadwiger et al. 2015; Her-
shkovitz et al. 2012; Lu et al. 2013, 2014; Sun et al. 2018). 
In the case of C. oleophila, this induction has been attributed 
to the overproduction of reactive oxygen species in the plant 
(Macarisin et al. 2010), but yeast cell components (from 
dead cells) can also trigger systemic resistance (De Micco-
lis Angelini et al. 2019). Living cells are consequently not 
always required for such induction. In some cases, biocontrol 
yeasts such as C. laurentii, Cryptococcus flavescens, and 
R. glutinis have been used in combination with resistance 
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inducers such as salicylic acid or rhamnolipids (Yan et al. 
2014; Yu and Zheng 2006; Zhang et al. 2007c).

Registered biocontrol yeast species

There is a huge discrepancy between the plethora of “bio-
control yeasts” described in scientific publications and the 
few yeast-based plant protection products that are registered 
and marketed as plant protection products. A range of factors 
(e.g., lack of mechanistic understanding, hurdles/costs of 
registration, lack of partners/consortia with required exper-
tise, little commercial potential) are likely responsible for 
this apparent difficulty to develop yeast-based plant protec-
tion products. Here, we briefly highlight five yeast species 
(C. oleophila, A. pullulans, M. fructicola, C. albidus, and S. 
cerevisiae) that are currently or have been registered as plant 
protection agents.

Candida oleophila

Species of the genus Candida are often isolated from envi-
ronmental samples and many isolates strongly inhibit plant 
pathogens. Representatives are, for example, C. diversa (Li 
et al. 2016; Liu et al. 2017), C. ernobii (Liu et al. 2010), C. 
guillermonidi (McLaughlin et al. 1992; Papon et al. 2013; 
Saligkarias et al. 2002), C. oleophila (Droby et al. 2002; 
Gamagae et al. 2003; Lahlali et al. 2004; Molinu et al. 2011; 
Wang et al. 2012b), C. saitoana (Arras et al. 2006, 2010; 
El-Ghaouth et al. 1998, 2000a, b, c), C. sake (Arrarte et al. 
2017; Calvo-Garrido et al. 2013; Canamas et al. 2008; Carbo 
et al. 2018; McLaughlin et al. 1992; Morales et al. 2008; 
Nunes et al. 2002a, b; Torres et al. 2006; Usall et al. 2000; 
Yehuda et al. 2003), or C. subhashii (Hilber-Bodmer et al. 
2017) that have all been envisioned as biocontrol agents 
against mold and postharvest diseases of pome, stone and 
citrus fruit. In particular for C. sake, a wealth of studies on 
production and formulation have been performed in order to 
render postharvest biocontrol more reliable and efficacious 
(Abadias et al. 2000, 2001a, b, c, 2003; Canamas et al. 2008; 
Carbo et al. 2018; Nunes et al. 2002a, b; Torres et al. 2003, 
2006; Usall et al. 2000).

C. oleophila was the first yeast to be developed into a 
commercial plant protection agent and the fundamental 
research accompanying this initiative has established, for the 
first time, different mechanisms underlying the antifungal 
activity of yeasts in general. Although yeasts are generally 
believed to antagonise plant pathogenic fungi due to their 
competition for nutrients and space, the work on C. oleoph-
ila and other Candida species identified hydrolytic enzymes 
such as proteases, chitinases and glucanases, as well as vol-
atile compounds, that have been implicated in antifungal 
activity (Bar-Shimon et al. 2004; Huang et al. 2011; Segal 

et al. 2002) (also see above and Supplementary Table 1). 
Furthermore, biofilm formation, high osmotolerance, induc-
tion of resistance in the plant/fruit, and direct parasitism of 
hyphae were shown to contribute to the biocontrol activity 
of Candida species (Droby and Chalutz 1994; Droby et al. 
2002; El Ghaouth et al. 2003; Wisniewski et al. 1995, 2007). 
To overcome the inconsistent performance of the initial 
Candida-based biocontrol products (and of early biologi-
cal plant protection products in general), combinations with 
fungicides, different buffers (e.g., calcium chloride, bicar-
bonate), chitosan, or lysozyme were studied (Droby et al. 
1998, 2003a, b; El-Ghaouth and Wilson 2002; Scherm et al. 
2003; Wilson and El-Ghaouth 2002). C. oleophila was also 
transformed, by electroporation and with the hygromycin 
B gene as a marker, to study its mode of antagonism at the 
molecular level (Yehuda et al. 2001).

The C. oleophila strains I-182 and O have been devel-
oped into the biocontrol products  Aspire® and  Nexy®, 
respectively. The latter was the first biocontrol yeast to be 
registered against a postharvest disease (Wisniewski et al. 
2007) and C. oleophila strain O has been approved as a plant 
protection agent in Europe in 2013 (European Commission 
Health & Consumers Directorate-General 2013; European 
Food Safety Authority (EFSA) 2015a).

Aureobasidium pullulans

The saprophytic ascomycete A. pullulans is frequently iso-
lated from leaf, flower or soil samples, occurs worldwide, 
and exhibits a polymorphic appearance. Biocontrol activity 
has been documented for several A. pullulans strains, but 
only DSM 14940 (CF 10) and DSM 14941 (CF 40) are reg-
istered, in mixture, as active ingredients of plant protection 
products against the fireblight disease caused by the bacte-
rium Erwinia amylovora and postharvest diseases (Euro-
pean Food Safety Authority (EFSA) 2013). These two A. 
pullulans strains were selected based on their strong inhibi-
tion towards E. amylovora in co-culture experiments at high 
synthetic nectar concentration (25%) (Seibold et al. 2004). 
The two isolates DSM 14940 (CF 10) and DSM 14941 (CF 
40) also exhibited stronger inhibitory activity, in detached 
flower assays, than other bacterial and yeast antagonists 
(Kunz 2004). The two strains were formulated as a wettable 
powder under the product name Blossom-Protect® and tested 
under field conditions at different sites and over several years 
(Kunz 2004; Kunz and Haug 2006; Kunz et al. 2011; Sei-
bold et al. 2004). The same two A. pullulans strains were 
also developed and registered to control postharvest diseases 
of apple as the product Boni-Protect® (Weiss and Mögel 
2006). Similar applications against storage and rot diseases 
of strawberries, plum and sour cherries are being studied 
(Holb and Kunz 2013; Weiss et al. 2014).
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The two registered products containing A. pullulans as 
an active ingredient are interesting from different points of 
view. Contrary to the large majority of biocontrol products, 
Blossom- and Boni-Protect® contain two different strains, 
albeit belonging to the same species. As for many other 
biocontrol yeasts, the A. pullulans mode of action involves 
competition for space and nutrients, but enzymes such as 
proteases, chitinases or secreted molecules (see above) may 
also be involved. Specific metabolites or enzymes and their 
contribution to the biocontrol activity of DSM 14940 (CF 
10) and DSM 14941 (CF 40) have not been identified and the 
strains do not seem to have been characterised genetically. In 
contrast to most registered plant protection products, includ-
ing biological products, the original Blossom-Protect® has a 
rather limited range of application. The expansion to novel 
indications, beyond fireblight of pome fruit trees, is thus 
certainly also motivated by economic needs.

Metschnikowia fructicola

The genus Metschnikowia comprises species of mainly 
phyllosphere and nectar yeasts that are globally distributed 
(Chappell and Fukami 2018; Lachance et al. 2001; Pozo 
et al. 2012; Slavikova et al. 2007; Vadkertiova et al. 2012). 
Among those, M. fructicola and M. pulcherrima are the 
most studied with respect to biocontrol, are able to inhibit a 
range of postharvest and plant rot diseases, and include the 
most potent antagonistic yeasts that have ever been identified 
(Akgun Karabulut et al. 2003; Hilber-Bodmer et al. 2017; 
Parafati et al. 2015; Piano et al. 1997; Saravanakumar et al. 
2008; Spadaro et al. 2010a, b; Turkel et al. 2014). Complete 
genomes are available for several Metschnikowia species, 
including M. fructicola and M. pulcherrima (Gore-Lloyd 
et al. 2019; Piombo et al. 2018), and transformation proto-
cols have been established and used to express green fluores-
cent protein and complement a naturally occurring mutant 
(Gore-Lloyd et al. 2019; Nigro et al. 1999).

The strong antifungal activity of Metschnikowia species 
is mediated by a range of mechanisms that involve com-
petition for nutrients (e.g.; amino acids, iron), secretion of 
glucanases and chitinases, and the production of volatile 
organic compounds (Banani et al. 2015; Dhami et al. 2016; 
Gore-Lloyd et al. 2019; Hershkovitz et al. 2013; Saravana-
kumar et al. 2008; Sipiczki 2006; Zajc et al. 2019). The 
application of Metschnikowia cells to fruits (e.g., grapefruit) 
also induces an oxidative burst in the plant tissue that even-
tually results in the activation of plant defense responses 
(Hershkovitz et al. 2012; Macarisin et al. 2010).

Originally, M. fructicola, isolate NRRL Y-30752, was 
isolated and discovered in Israel and developed and reg-
istered as a biocontrol product for preventing postharvest 
diseases, particularly in sweet potato and carrot (Eshel et al. 
2009; Kurtzman and Droby 2001; Wisniewski and Droby 

2012). M. fructicola has also been patented as an antagonist 
of plant pathogenic microorganisms (Droby and El-Gerberia 
2006). It seems that over time different companies showed 
interest in developing a biological fungicide based on M. 
fructicola NRRL Y-30752, but the isolate is now pursued by 
Koppert Biological Systems and has recently been approved 
as a plant protection agent against fungal diseases in stone 
fruits, strawberries and grapes by the European Food Safety 
Authority (EFSA) (European Food Safety Authority (EFSA) 
2015c, 2017).

Cryptococcus albidus

Basidiomycetes of the genus Cryptococcus are widespread 
in nature and frequently isolated from water sources, soil 
and decaying plant material. Studied for their potential to 
produce high lipid yields for biodiesel production, strains of 
C. albidus, C. laurentii and C. flavus have also been shown 
to protect peach, cherry, strawberry, tomato, citrus and pome 
fruits against postharvest decay (Elad et al. 1994; Tian et al. 
2004; Zhang et al. 2007a, b). C. albidus was used as a bio-
control agent in the product  Yieldplus®, which was regis-
tered in 1997 and marketed by Anchor Bio-Technologies in 
South Africa. This product was sold for over 15 years, but 
it has now been withdrawn from the market (Mbili 2012). 
 Yieldplus® was formulated for pome and citrus fruits against 
B. cinerea and P. expansum and later shown to be effective 
in the control of Botrytis during post-harvest cold storage of 
strawberries (Kowalska et al. 2012).

Regarding the mode of antagonism, most of the evidence 
points to competition for nutrients and space. Culture fil-
trates do not show any inhibitory activity against B. cinerea 
or P. expansum. However, both pathogens show reduced 
conidial germination and germ tube growth in liquid co-
cultures (Fan and Tian 2001; Helbig 2002). The addition 
of glucose or  NH4NO3 to the medium reduces biocontrol 
ability against P. expansum, but not against B. cinerea (Lutz 
et al. 2013). Beside nutrient competition, little conclusive 
evidence is available to determine a mode of antagonism. C. 
albidus exhibits glucanase, chitinase and protease activity in 
the corresponding substrate media. It also produces unidenti-
fied volatile compounds that inhibit fungal growth and can 
display killer activity against C. glabrata (Lutz et al. 2013). 
However, none of these mechanisms have been directly 
linked to the inhibitory activity of the target plant pathogens.

Saccharomyces cerevisiae

S. cerevisiae is mainly known as a model organism for cell 
biology, its biotechnological usage, and most importantly 
the application in food and beverage production. Envisioning 
S. cerevisiae for biocontrol may be motivated by its percep-
tion as a safe organism that can be more easily registered, 
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but also by its model organism status and the feasibility of 
molecular analyses. Overall, the model S. cerevisiae isolate 
BY4741 exhibited an intermediate antifungal activity against 
filamentous fungi and in comparison to a broad collection of 
wild yeast isolates (Hilber-Bodmer et al. 2017). This labora-
tory strain is thus ideally suited as a model host to express 
genes potentially involved in biocontrol activity and thereby 
improving or weakening its antifungal action.

A number of S. cerevisiae strains (e.g., DISAABA1182, 
RC008, RC009, RC012, and RC016) reduced the growth 
of plant pathogens such as A. carbonarius, A. ochraceus, 
A. parasiticus or Fusarium graminearum and also inhib-
ited mycotoxin (e.g., aflatoxin, ochratoxin A, zearalenone, 
deoxynivalenol) production by these species (Armando et al. 
2012a, 2013; Cubaiu et al. 2012). The mycotoxin-removing 
activity is due to adsorption to S. cerevisiae cell walls, stress 
responses to the toxin (e.g., changes in plasma membrane 
composition following patulin exposure), as well as direct 
transcriptional downregulation of polyketide synthesis 
(Armando et al. 2012b; Cubaiu et al. 2012; Oporto et al. 
2019). Other biocontrol mechanisms employed by S. cer-
evisiae include the secretion of killer activity and hydrolytic 
enzymes as well as organic volatile compounds in yeasts 
that have been described and studied with respect to their 
antifungal activity against C. acutatum on citrus (Lopes 
et al. 2015) (also see Supplementary Table 1). Volatiles in 
general and specific compounds (e.g., alcohols and esters), 
were also identified in S. cerevisiae and implicated in the 
biocontrol activity against the citrus black spot disease 
caused by Guignardia citricarpa or postharvest decay in 
strawberries (Fialho et al. 2010; Oro et al. 2017). Seed, soil 
or foliar applications of a dried, active S. cerevisiae prepara-
tion also had a plant growth promoting effect and showed 
biocontrol activity against soilborne fungal pathogens such 
as Fusarium, Sclerotium or Rhizoctonia (Shalaby and El-
Nady 2008). Finally, comprehensive transcriptome analyses 
have confirmed that the application of a cell wall preparation 
of the S. cerevisiae strain LAS117 (i.e.,  cerevisane®) induces 
the expression of genes involved in the plant response to fun-
gal attack (De Miccolis Angelini et al. 2019). S. cerevisiae 
is therefore considered a promising biocontrol and probi-
otic organism for reducing growth of fungal pathogens and 
mycotoxins in fruit, vegetable and feedstuff (Cubaiu et al. 
2012; Dogi et al. 2011; Pizzolitto et al. 2012; Prado et al. 
2011). However, the only registered, active compound and 
commercial biocontrol application of Brewer’s yeast (S. 
cerevisiae) is the product  Romeo® with  cerevisane® as the 
active ingredient (European Food Safety Authority (EFSA) 
2015b). This preparation is used as a preventive inducer of 
systemic resistance against powdery and downy mildew in 
grapes, fruits and vegetables and thus represents an applica-
tion and plant protection product that differs from other such 
solutions insofar it is not based on active, living cells.

Conclusions and outlook

The disparity between the number of yeast species exerting 
biocontrol activity against specific plant pathogens in labora-
tory assays and the number of yeast that are actually regis-
tered and successfully employed as plant protection products 
is likely caused by the lack of mechanistic understanding, 
the costs of registration, the lack of partners/consortia with 
required expertise, or a limited commercial potential. How-
ever, the general trend towards reduced pesticide use will 
certainly favour and create more incentives for the develop-
ment of alternative plant protection solutions such as bio-
control yeasts. In the environment, these organisms interact 
intraspecifically, as well as with other microbes (including, 
but not exclusively, with plant pathogens) and host plants. 
These complex interactions and interdependencies eventu-
ally determine whether a disease sets in or an antagonistic 
yeast suppresses a pathogen and supports plant health. It is 
impossible to manage—for plant protection applications—
such complex interactions without detailed knowledge of 
the interacting bionts. By studying and identifying modes 
of action in the laboratory, a reductionist approach is thus 
an important first step in the development and successful 
application of biocontrol in general.

Nowadays, the breakthrough achievements in the field of 
system biology, molecular biology and the related compu-
tational tools enable revealing the structural and functional 
peculiarities of any potential biocontrol agent. Exploiting 
these tools for the investigation and prediction of functional 
dynamics occurring between antagonists opens new avenues 
for the design of consortia of microbial antagonists that syn-
ergistically cooperate for the biocontrol of plant pathogens. 
Although strain mixtures for the biocontrol of plant patho-
gens are already available commercially (e.g., Blossom- and 
Boni-Protect®, see above) and described in the literature 
(Heydari and Pessarakli 2010; Lopes et al. 2012; Spadaro 
and Gullino 2005), employment of taxonomically divergent, 
but functionally complementary strains might represent a 
promising approach to follow in the near future in an attempt 
to design a standardised, multi-targeted, efficacious biocon-
trol strategy.

A deep mechanistic insight does not guarantee a success-
ful product development and registration, but we argue that 
fundamental research on biocontrol mechanisms is a key 
aspect for successful biocontrol applications and at the same 
time still a frontier in biocontrol research. Hardly any antag-
onistic mechanism employed by biocontrol yeasts is under-
stood and unequivocally proven by gene deletions and over-
expression. This lack of fundamental understanding is also 
one of the reasons why, so far, little efforts were undertaken 
to improve, either by selection or molecular tools, biocontrol 
yeasts for plant protection. In general, molecular tools (e.g., 
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gene deletion or overexpression, introduction of trans-genes, 
synthetic biology techniques) were rarely used in biocontrol 
yeasts, even though these technologies have the potential to 
empower studying and understanding these organisms at a 
whole new level (Marchand et al. 2007). Probably the first 
“biocontrol engineering example” among yeasts is a S. cer-
evisiae strain expressing the antifungal peptide cecropin A, 
which resulted in complete inhibition of Colletotrichum coc-
codes growth on tomatoes (Jones and Prusky 2002). Cecro-
pin A was also expressed in Pichia pastoris, generating a 
strain controlling apple blue mold caused by P. expansum 
(Ren et al. 2012). A P. pastoris strain was also engineered for 
improved control of P. expansum by expressing the recombi-
nant peach and pea defensins rDFN1 or rPsd1, respectively 
(Janisiewicz et al. 2008; Wisniewski et al. 2003). Besides 
this, only killer toxin activity has been extensively studied 
and transferred to new strains; mainly for biotechnological 
applications (Bajaj and Sharma 2010; Bussey et al. 1988; 
Schmitt and Schernikau 1997). Although the current legisla-
tion forbids the deliberate release of genetically manipulated 
microbials in the environment, model yeasts could also be 
engineered to shed light on the molecular mechanisms gov-
erning their antagonistic capability, their persistence on the 
host plant, or to better understand how to limit their capa-
bility to spread and interbreed (Callaway 2018; Goold et al. 
2018; Klemsdal and Tronsmo 1999; Maselko et al. 2017).

Another frontier for biocontrol yeast research is the 
application in soil, for the protection against soilborne plant 
pathogens. Phyllosphere applications, particularly the use of 
yeasts against postharvest diseases, have been identified as 
the most promising target (Wisniewski et al. 2007). How-
ever, a broad range of yeast species occur predominantly in 
soil, exhibit strong antifungal activity, and could be envi-
sioned as plant protection agents in this environment (Botha 
2011; Hilber-Bodmer et al. 2017; Yurkov 2018). Developing 
yeasts as biocontrol agents against soilborne plant diseases 
is also attractive, because only few control options are avail-
able for the many severe soilborne plant diseases.

The development of a (yeast) biocontrol product depends 
on a chain of activities and disciplines, from science to 
industry and legislation, which have to come together, inter-
act and build upon one another. Strengthening the exchange 
and interaction among these disciplines is thus essential to 
foster the commercialisation of biocontrol products (Usall 
et al. 2016). However, establishing such a virtuous cycle 
is difficult because of the different interests and qualities 
required and can be further hampered by economic con-
straints, commercial interests (and thereby a hesitation to 
share know-how or even material), or a lack of actors with 
complementary expertise. Considering the fact that many 
biocontrol solutions are local endeavours, have a limited 
potential to incur financial gains (in particular in compari-
son to medical applications), and are somehow idealistic in 

nature, commercial interests may actually rather harm than 
benefit the development of commercial biocontrol solutions. 
In particular, governmental research institutions, engaging in 
fundamental and applied research and being less driven by 
commercialisation, may take up a crucial spot for developing 
biocontrol solutions in the future.
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