

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Département fédéral de l'économie, de la formation et de la recherche DEFR

Agroscope

Electrophysiological Assessment of plant outside a Faraday cage using supervised machine learning Machine Learning Workshop

C. Camps GreenHouse Crops

www.agroscope.ch I une bonne alimentation, un environnement sain

Content – General Info

The group GreenHouse Crops

Team - 3.8 ETP + 1 ETP + apprentices and students Facilities - 2000m² greenhouses (soilless & soil) - 3x phytotrons Project (BO, OFAG, INNOSUISSE, EU-project, direct company, etc.)

General Topics of the group

Energy management in greenhouse
Cropping systems (conv. Vs. Organic, soil vs. Soilless)
Pest & diseases in greenhouse
Non-destructive analyses of fruit quality - chemometric
Digitized solutions for Small and Mid-size production

1 - Machine learning last 10 Years –

Application to *Non-destructive analyses of fruit quality*

2 - Electrophysiological **A**ssessment of plant a Faraday cage using supervised machine learning -

Application to *tomato growth in greenhouse*

1 - Machine learning last 10 Years –

Application to *Non-destructive analyses of fruit quality*

«Classic» machine learning

Methods - PLS, PCR, StepWiseR, etc. models (Matlab®)

Training a model Calibration + Cross-validation = Calibration

Validate a model Test set = validation External validation set = validation and improve the model with time

Maintain a model Data sets from production years, sites over the years of the model exploitation ...

3 short Ex. ---

J Sci Food Agric 2014; 94: 1397-1402

Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy

Cédric Camps,^a* Marianne Gérard,^{a,b} Mélanie Quennoz,^b Cécile Brabant,^c Carine Oberson^c and Xavier Simonnet^b

Cédric Camps * @ and Zo-Norosoa Camps

Peeled Tubers

molecules

nstitute for Plant Production Sciences IPS, Agroscope, CH-1964 Conthey, Switzerland; zonoro spondence: cedric.camps@agroscope.admin.ch

Nom de la présentation | Machine Learning Workshop – Tenikon – 12.11.2019 C.Camps

Article Optimized Prediction of Reducing Sugars and Dry Matter of Potato Frying by FT-NIR Spectroscopy on Peeled Tubers

Cédric Camps * and Zo-Norosoa Camps

Institute for Plant Production Sciences IPS, Agroscope, CH-1964 Conthey, Switzerland; zonorosoa@gmail.com * Correspondence: cedric.camps@agroscope.admin.ch

Table 1. Partial least square values of dry matter content prediction. PDTE: entire and unpeeled potatoes, PDTP: entire and peeled potatoes; PDTC: potatoes cut transversally.

Model Beta-Coefficients

Figure 1. Actual vs. predicted values of dry matter content (DMC) (g of dry weight/100 g fresh weight). Calibration (○), validation (▲). (A) Entire and peeled tubers of the three tested varieties, (B) Entire and peeled tubers of Innovator, (C) Entire and peeled tubers of Lady Claire, (D) Entire and peeled tubers of Markies.

Figure 2. Mean spectra and beta-coefficients of the first PLS models latent variable to predict the DMC based on spectral data acquired on entire tubers (red line), peeled tubers (blue line), and cut tubers (green line).

Prediction of raspberries puree quality traits by Fourier transform infrared spectroscopy

Zo-Norosoa Andrianjaka-Camps $^{\rm a,\,*},$ Daniel Baumgartner $^{\rm b},$ Cedric Camps $^{\rm a},$ Elena Guyer $^{\rm b},$ Eva Arrigoni $^{\rm b},$ Christoph Carlen $^{\rm a}$

^a Agroscope, Institute for Plant Production Sciences IPS, CH-1964 Conthey, Switzerland ^b Agroscope, Institute for Food Sciences, CH-8820 Wadenswil, Switzerland

Table 2

Statistical summary of calibration and cross-validation of the FTIR-PLS prediction of quality traits of raspberries.

	Quality traits	LV	Spectral range	R ²	RMSEC	RPD	Slope	Bias
Calibration	pH	9	[2461-1952],[1435-926]	0.98	0.02	7.73	0.98	-4.5 10 ⁻¹²
	TA	8	[5011-4505],[1435-926]	0.99	0.02	12.93	0.99	$2.6 \ 10^{-15}$
	SSC	3	[3992-3487],[1435-926]	0.99	0.12	11.51	0.98	$-1 \ 10^{-14}$
	Glucose	4	[3992-3487],[1435-926]	0.98	0.07	8.67	0.99	7.6 10 ⁻¹⁵
	Fructose	2	[4501-3996],[1435-926]	0.98	0.08	7.41	0.98	$2.1 \ 10^{-15}$
	Sucrose	5	[2461-1952],[1435-926]	0.97	0.12	6.12	0.97	9.7 10 ⁻¹⁶
	Vitamin C	14	[2974-2465],[1435-926]	0.89	1.5	3.14	0.89	$-5.4 10^{-13}$
	Phenolics	12	[2974-2465],[1435-926]	0.82	18	2.4	0.86	$7.7 \ 10^{-12}$
	Anthocyanins	9	[4501-3996],[2461-1952]	0.68	10.7	1.76	0.72	$-2.4 10^{-11}$
Cross-validation	pH	9	[2461-1952],[1435-926]	0.96	0.03	4.94	0.96	$-2.9 \ 10^{-3}$
	TA	8	[5011-4505],[1435-926]	0.99	0.02	9.97	0.98	$2.0 \ 10^{-3}$
	SSC	3	[3992-3487],[1435-926]	0.99	0.14	9.72	0.96	$-4.0\ 10^{-2}$
	Glucose	4	[3992-3487],[1435-926]	0.98	0.08	7.24	0.91	$-1.9 \ 10^{-2}$
	Fructose	2	[4501-3996],[1435-926]	0.98	0.09	7.04	1.01	-7.0 10 ⁻³
	Sucrose	5	[2461-1952],[1435-926]	0.96	0.14	5.22	0.99	$-4.6 \ 10^{-3}$
	Vitamin C	14	[2974-2465],[1435-926]	0.69	2.7	1.78	0.63	0.73
	Phenolics	12	[2974-2465],[1435-926]	0.65	26.01	1.64	0.56	-4.8
	Anthocyanins	9	[4501-3996],[2461-1952]	0.33	15.7	1.16	0.39	-2.6

(E) CrossMark

SSC: soluble solids content; TA: total acid; LV: the number of latent variables introduced in PLS models; R²: the coefficient of determination; RMSEC/CV: the root mean square error of calibration/cross-validation; RPD: the ratio of performance to deviation. SSC is expressed in °Brix; TA in g malic acid equivalent/100 g fw; glucose, fructose and sucrose in g/100 g fw; vitamin C in mg/100 g of fw; phenolics in mg gallic acid equivalent/g of 100 f fw and anthocyanins in mg cyanidin-3-glucoside equivalent/100 g fw. In column Val (validation) 1st and 2nd indicate the first and second validations performed on PLS models.

J Sci Food Agric 2014; 94: 1397-1402

Prediction of essential oil content of oregano by hand-held and Fourier transform NIR spectroscopy

Cédric Camps,^{a+} Marianne Gérard,^{a,b} Mélanie Quennoz,^b Cécile Brabant,^c Carine Oberson^c and Xavier Simonnet^b

Table 1. PLS data of EOC determination (hand-held NIR and FT-NIR)									
		PHAZIR 1018 FT-NIR							
PLS data	Unit	Calibration	Cross-validation	Validation	Calibration	Cross-validation	Validation		
Ν	_	74	74	27	74	74	27		
EOC range	mL per 100 g	0.23-10.1	0.23-10.1	0.4-8.1	0.23-10.1	0.23-10.1	0.4-8.1		
EOC mean value	mL per 100 g	4.8	4.8	4.89	4.8	4.8	4.89		
EOC SD	mL per 100 g	2.61	2.61	2.34	2.61	2.61	2.34		
λ range	nm	939-1797	939-1797	939-1797	1000-2500	1000-2500	1000-2500		
LV	_	3	3	3	6	6	6		
R ²	_	0.92	0.92	0.58	0.93	0.94	0.91		
SE(C/CV/P)	mL per 100 g	0.75	0.77	2.20	0.7	0.68	0.69		
Bias	mL per 100 g	$1.40 imes 10^{-2}$	1.55×10^{-2}	-2.04	4.5×10^{-7}	1.08×10^{-2}	8×10^{-2}		
SE(C/CV/P)c	mL per 100 g	0.75	0.77	0.81	0.7	0.68	0.68		
RSE(C/CV/P)c	Relative %	15	15	18	15	15	14		
CVc	Relative %	15	15	18	15	15	14		
RPDc	_	3.54	3.44	3.51 (1.30) ^a	3.7	3.82	3.24		
RPIQc	_	6.19	6.01	5.03 (1.87) ^a	6.6	6.8	4.55		
RER _c	_	13.17	12.78	9.45 (3.50) ^a	14.04	14.51	11.31		
Spectral treatment		Golay second derivative (step 3)				SNV + detrending			

N, number of samples; EOC, essential oil content; SD, standard deviation; λ range, wavelength range of PLS model; LV, number of latent variables; R^2 , determination coefficient; SE, standard error; RSE, relative standard error of prediction; CV, coefficient of variation; RPD, ratio of performance to deviation; RPIQ, ratio of performance to interquartile; RER, ratio of error to range; subscript 'c' (SE_c, RSE_c, CV_c, RPD_c, RPIQ_c and RER_c), parameters calculated after bias correction; SNV, standard normal variate.

^a Values in parentheses are RPD, RPIQ and RER before correction for bias.

 R^2 (C/CV/P) = 1 - (PRESS/TSS)

$$SE (C/CV/P) = \left[\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 / n\right]^{1/2}$$

$$bias = \sum_{i=1}^{n} (\widehat{y}_i / n) - \sum_{i=1}^{n} (y_i / n) = \overline{\widehat{y}} - \overline{y}$$

$$SE (C/CV/P)_c = \left[\sum_{i=1}^{n} (\widehat{y}_i - bias - y_i)^2 / n\right]^{1/2}$$

$$RSE (C/CV/P)_c (\%) = (100/\overline{y}) \left[\sum_{i=1}^{n} (\widehat{y}_i - bias - y_i)^2 / n\right]^{1/2}$$

where \hat{y}_i is the predicted value, y_i the mean value and y_i the actual value of EOC in the PLS model, n is the number of samples in the PLS model, PRESS is the prediction residual error of the sum of squares, TSS is the total sum of squares and the subscript 'c' indicates that the parameters (SE(C/CV/P) and RSE(C/CV/P)) have been corrected for bias.

The accuracy and robustness of the PLS models are discussed according to the following parameters, all corrected for bias value:

coefficient of variation, CV_c (%) = SEP_c/mean

ratio of performance to deviation, $RPD_c = SD/SEP_c$

where SD is the standard deviation;

ratio of SEP_c to reference data range, RER_c = $(y_{max} - y_{min})/SEP_{c}$

where y_{max} and y_{min} are the maximum and minimum reference values of EOC respectively;

ratio of SEP_cto interquartile,²¹ RPIQ_c = $(Q_3 - Q_1)/SEP_c$

where Q_3 and Q_1 are the values of the third and first quartiles of reference data respectively.

 2 - Electrophysiological assessment of plant a Faraday cage using supervised machine learning -Application to tomato growth in greenhouse

Big Data :

- \rightarrow 24h recording is about 4.3*10⁷ data points /plant
- \rightarrow 1 Month recording is 1.3*10⁹ data points / plant
- \rightarrow 1 Month recording on 8 plants (8 channels Device) is 1.1*10¹⁰ data points

PISA-Project

Digitalization approaches

Plant level

Electrophysiology sensors development

Data modelling

Whole data – features extraction

Spectrogram image analyses

Electrophysiology sensors development

Device

Mono-channel prototype Multi-channels prototype

A recorded signal on plant?

Software

Data

Whole data – features extraction (2D-line vectors)

Spectrogram image analyses (3D-images)

ndexing data by experts

Modelling machine learning approaches Calibration/cross-validation test sets on independent plants

hytlSign Device

Schematic representation of the PhytlSigns composed of an amplifier-voltmeter. Digitized data are logged on a Raspberry Pi.

Enabling electrophysiological recordings in greenhouse Experiments are performed on hydroponic tomatoes grown in greenhouse. The PhytlSigns device allows monitoring of electric signal in 'real' environment without Faraday cage. Electrode is inserted in the tomato petiole at the top of the plant (*bottom*).

Electrophysiology sensors development

A recorded signal on plant?

Whole data – features extraction (2D-line vectors)

ndexing data by experts

Daily electrical potential (EP) variations in a tomato plant growing in soilless conditions.

Electrophysiology sensors development

Whole data – features extraction (2D-line vectors) Indexing data by experts

Library

Collect data to create a library of electrical signal records. A given 24h long signal is composed of about 4.3×10^7 data points.

 $M_{\text{atrix}} [n \ge p]$ n = time duration of the records p = number of plant

Annotations of each recorded signal Extract features from signals - Days vs. Night - Different features (p = 238) - Confort vs. Water stressed plants - Different modalities for extractions - Confort vs. nutritional deficiency plants Confort vs. Spider mites related stress Machine learning Machine learning applied on features. Calibration/cross-validation. **Increase library** By adding new records from new experiments and so on. Model prediction Machine learning applied on features. Test with external plant records.

Water stress

The Generalized Boosted Tree method allowed to classify 95% of plants according to their water status (Comfort or stressed) Daniel <u>Tran</u>, Fabien Dutoit, Elena Najdenovska, Nigel Wallbridge, Carrol Plummer, Marco Mazza, Laura Elena Raileanu and Cédric <u>Camps</u>. Electrophysiological assessment of plant status outside a Faraday cage using supervised machine learning. *Scientific Reports*, 2019.

Models	LR	DL	DT	RF	GBT
Accuracy (%)	73.2	83.5	62.0	61.4	94.6
Precision (%)	75.9	87.4	61.4	61.0	95.4
Recall (%)	81.2	84.8	99.6	99.8	95.6

Light / Night cycles

The Generalized Boosted Tree method allowed to classify 98% of plants according to their reaction to the presence or absence of light at a level of $100\mu mol.m^{-2}.s^{-1}$.

Elena Najdenovska, Fabien Dutoit, Daniel <u>Tran</u>, Carrol Plummer, Nigel Wallbridge, Marco Mazza, Cédric <u>Camps</u> and Laura Elena Raileanu. Insights of plant electrophysiology – Using signal processing techniques and machine learning algorithms to associate tomatoes reaction to external stimuli. **31st Conference of the** *International Biometric Society of the Austro-Swiss Region* <u>https://wp.unil.ch/ibs-roes2019/</u>, Lausanne, 9th-12th of September 2019.

Stimuli	Accuracy	STD	Precision	Recall
Light (100µmol.m ⁻² .s ⁻¹)	97.3	0.0007	98.0	97.0
Water Deficit	97.4	0.0032	97.0	98.0

Spider Mites Detection

Factures subset	#footuroo	Model accuracy	Prediction rate on unseen data			
reatures subset	# leatures	(algorhitm: GBT)	Control (B ch1)	Infested (F ch8)	Average	
All features	238	59+/-0.8%	96%	79%	88%	
Feature Selection (FS)	158	56+/-0.8%	99%	71%	86%	
Non-Correlated (<0.95)	130	72+/-1.6%	96%	80%	88%	
FS (Non-Correlated)	70	70+/-0.8%	97%	77%	87%	
Non-Correlated + Target-correlated (>0.01)	128	72+/-1.9%	94%	82%	88%	
FS (Non-Correlated + Target- correlated)	97	69+/-1.1%	90%	73%	81%	

Next Modelling Approach

PhytlSigns 7575DF Spectrograph Live View

VIELD – Project

Yield Improvement using Electrophysiology Device

Implementation of the Machine learning model in an autonomous system

Merci pour votre attention

Prénom Nom prenom.nom@agroscope.admin.ch

Agroscope une bonne alimentation, un environnement sain www.agroscope.admin.ch

