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ABSTRACT
Background: The use of biomarkers of food intake (BFIs) in blood and urine has shown great promise for assessing

dietary intake and complementing traditional dietary assessment tools whose use is prone to misreporting.

Objectives: Untargeted LC-MS metabolomics was applied to identify candidate BFIs for assessing the intake of milk

and cheese and to explore the metabolic response to the ingestion of these foods.

Methods: A randomized controlled crossover study was conducted in healthy adults [5 women, 6 men; age: 23.6 ±
5.0 y; BMI (kg/m2): 22.1 ± 1.7]. After a single isocaloric intake of milk (600 mL), cheese (100 g), or soy-based drink

(600 mL), serum and urine samples were collected postprandially up to 6 h and after fasting after 24 h. Untargeted

metabolomics was conducted using LC-MS. Discriminant metabolites were selected in serum by multivariate statistical

analysis, and their mass distribution and postprandial kinetics were compared.

Results: Serum metabolites discriminant for cheese intake had a significantly lower mass distribution than metabolites

characterizing milk intake (P = 4.1 × 10−4). Candidate BFIs for milk or cheese included saccharides, a hydroxy acid, amino

acids, amino acid derivatives, and dipeptides. Two serum oligosaccharides, blood group H disaccharide (BGH) and Lewis

A trisaccharide (LeA), specifically reflected milk intake but with high interindividual variability. The 2 oligosaccharides

showed related but opposing trends: subjects showing an increase in either oligosaccharide did not show any increase

in the other oligosaccharide. This result was confirmed in urine.

Conclusions: New candidate BFIs for milk or cheese could be identified in healthy adults, most of which were related to

protein metabolism. The increase in serum of LeA and BGH after cow-milk intake in adults calls for further investigations

considering the beneficial health effects on newborns of such oligosaccharides in maternal milk. The trial is registered

at clinicaltrials.gov as NCT02705560. J Nutr 2020;00:1–10.
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Introduction

The validity of nutritional studies relies on an accurate
assessment of participants’ food intake and dietary exposure.
However, traditional tools of dietary assessment such as 24-h
recalls, food-frequency questionnaires or food records are prone
to under-/overestimation bias as they rely on subjects to self-
report (1–3). Biomarkers of food intake (BFIs) have shown
great promise as a tool for addressing this issue. BFIs are
compounds measured within the body that accurately reflect
the intake of a food or food constituent (4, 5). BFIs can be
considered as unbiased and objective surrogate estimators of
food intake, but also as a tool to evaluate metabolic status and
to highlight associations between diet and metabolic disorders
(2, 6). For the discovery of BFIs, the Joint Programming

Initiative “A Healthy Diet for a Healthy Life” Food Biomarkers
Alliance (FoodBAll) has conducted standardized intervention
studies consisting of postprandial sampling after an acute intake
of a specific test food, completed with 24-h fasting sampling
(6). The consortium opted for an untargeted metabolomics
analysis of urine and serum samples as this method allows the
simultaneous measurement of a large number of low-molecular-
weight metabolites. Using this approach, the consortium
has successfully identified candidate BFIs for several foods,
including cereals (7), fruits (8, 9), meat (10), peas (11),
and milk and cheese (12, 13). These studies highlighted the
importance of the postprandial phase for the detection of
candidate BFIs, as well as the challenges particular to the
validation of BFIs (i.e., the lack of specificity for the tested

Copyright C© The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Manuscript received December 17, 2019. Initial review completed January 3, 2020. Revision accepted January 29, 2020.
First published online 0, 2020; doi: https://doi.org/10.1093/jn/nxaa029. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/advance-article-abstract/doi/10.1093/jn/nxaa029/5781212 by guest on 05 M

arch 2020

http://creativecommons.org/licenses/by/4.0/


food and the confirmation of the observed postprandial trends
in the fasting state), and therefore the necessity to validate
results in cohort studies under free-living conditions (6, 14).
Few nutritional interventions have aimed to identify BFIs for
dairy products despite their prominent place in Western diets
and their widely discussed effects on health. A systematic
review published by members of the FoodBAll consortium listed
and evaluated putative BFIs for dairy, including metabolites
related to lipid (C17:0, C:15:0, C17:1, myristoyl-sphingomyelin
or methyl palmitate), galactose (galactonate), or amino acid
metabolism for cheese intake (15). However, most of the
reviewed studies were not specifically designed for BFI discovery
and the authors recommended further investigation to validate
the proposed biomarkers. Within the framework of the
FoodBAll project, an acute intervention study focused on the
discovery of dairy BFIs. GC-MS and NMR analytical platforms
characterized milk intake by an increase in lactose-derived
compounds (lactose, galactose, galactitol, galactonate, and
galactono-1,5-lactone), while most BFIs for cheese were related
to protein and amino acid metabolism (3-phenyllactic acid,
methionine, proline, leucine, tyrosine, valine, and isoleucine)
(12, 13).

In addition to BFI identification, postprandial untargeted
metabolomics can comprehensively characterize the specific
metabolic response of individuals to the ingestion of a test food.
The interindividual variability observed in the postprandial
phase can be used to 1) estimate the capacity of a subject
to respond to a dietary challenge and thus evaluate overall
metabolic health (16, 17), 2) identify dysregulation of metabolic
pathways that is not necessarily visible in the fasting state (18,
19), and 3) identify metabolic subgroups of subjects according
to their response to the ingestion of a test food and further
investigate these groups in the context of other nutrigenomic
tools (20, 21).

This report presents results obtained from the FoodBAll
nutritional intervention for dairy products for serum and urine
samples analyzed by LC-MS–based metabolomics. By covering
a specific spectrum of the metabolome, LC-MS analysis aimed
to identify new putative BFIs for milk or cheese (compared
with a soy drink as a nondairy control), and therefore
complement the previous results obtained by GC-MS and NMR
(12, 13). By further characterizing the postprandial kinetics
and interindividual variability of BFIs, we evaluated their
potential to reflect not only food intake but also metabolic
phenotypes.

The study was funded by the Swiss National Science Foundation
(40HD40_160618) in the frame of the national research program “Healthy
Nutrition and Sustainable Food Protection” (NRP69) and the European Healthy
Diet for a Healthy Life Joint Programming Initiative “The Food Biomarkers
Alliance” (FoodBAll).
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Supplemental Tables 1–4, Supplemental Figures 1–15, and Supplemental
Methods are available from the “Supplementary data” link the online posting
of the article and from the same link in the online table of contents at https:
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Address correspondence to GV (e-mail: guy.vergeres@agroscope.admin.ch).
Abbreviations used: BFI, biomarker of food intake; BGH, blood group H
disaccharide; CV-ANOVA, ANOVA of the cross-validated residuals; FoodBAll,
Food Biomarkers Alliance; FP, phenylalanyl-proline; FUT, fucosyltransferase;
iAUC, incremental AUC; ILA, indole-3-lactic acid; LeA, Lewis A trisaccharide;
nparLD, nonparametric analysis of longitudinal data; OPLS-DA, orthogonal
projections to latent structures discriminant analysis; PLS-DA, partial least-
square discriminant analysis; VIP, variable importance in projection for the
predictive component; VT, valyl-threonine.

Methods
Study design
The present project was conducted within the framework of the
FoodBAll project. Given the exploratory nature of the untargeted
metabolomics analysis, the desired sample size for the study could not be
calculated a priori and is therefore based on similar published crossover
nutritional studies that used untargeted metabolomics analyses on
postprandial samples. A sample size in the range of 10–15 subjects
has been shown to give sufficient statistical power to identify regulated
metabolites and, in particular, potential BFIs (6, 10, 22, 23). The study
was a controlled, crossover study and conducted in 11 participants
(5 women and 6 men; Supplemental Figure 1). The subjects were regular
consumers of dairy products, aged 19–31 y, and with a BMI (in kg/m2)
ranging between 18 and 30. Details regarding exclusion and inclusion
criteria and characteristics of study population are given by Münger et
al. (12). The study was conducted in accordance with the Declaration
of Helsinki, received ethical approval from the Commission Cantonale
d’Ethique de la Recherche sur l’Etre Humain (Vaud, Switzerland),
and was registered at clinicaltrials.gov as NCT02705560. All subjects
provided written informed consent beforehand.

The study followed the general design defined within the FoodBAll
project (Figure 1). Briefly, the subjects came to the study center
after 12 h of fasting for an intervention day. The 3 foods tested
were 600 mL organic pasteurized full fat milk (3.9% fat, Coop
Naturaplan, Switzerland), 100 g hard cheese (Le Gruyère AOP,
Fromagerie Bullet, Bullet, Switzerland) plus 500 mL of water, and
600 mL soy drink, which was a mixture of soy milk and added
vegetable fat (Soja Line, Migros, Switzerland). All 3 test products were
isocaloric (∼400 kcal); details regarding their composition are given
by Münger et al. (12). Blood samples were taken before (t = 0 h)
and postprandially after the ingestion of 1 of the 3 test products
(t = 1, 2, 4, and 6 h). Urine samples were taken postprandially
during the time intervals 0−1, 1−2, 2−4, and 4−6 h. After the
postprandial phase, urine was collected during the time intervals 6−12
and 12−24 h. The following morning, blood samples were collected
under fasting conditions (t = 24 h). During the 2-d run-in phase, diet was
restricted to non–bovine-, non–dairy-, and non–soy-containing foods. In
addition, participants were given standardized meals the evening before
and during the intervention day. Details regarding blood and urine
sample preparation for LC-MS analysis are given in the Supplemental
Methods.

Untargeted LC-MS–based metabolomics analysis
The UltiMate 3000 HPLC system (Thermo Fisher Scientific), coupled
with the maXis 4G+ quadrupole time-of-flight mass spectrometer
(Bruker Daltonik GmbH) were used for the untargeted metabolomics
analysis. The mass spectrometer electrospray interface was operating
in positive ion mode and spectra were recorded from m/z 75 to m/z
1500. Collision-induced dissociation was performed using energies
from 20 to 70 eV. Detailed serum and urine sample preparation as
well as chromatography and spectrometer settings are given in the
Supplemental Methods.

Data processing and statistical analysis

Reduction and filtering of serum and urine datasets.
Progenesis QI (v.2.3.6198.24128; NonLinear Dynamics Ltd.) was used
for retention time correction, peak-picking, deconvolution, adducts an-
notation, and normalization (default automatic sensitivity and without
minimum peak width). The dataset was corrected to account for signal
drift, and reduced via multiple filtering steps to remove metabolites with
poor repeatability and potential contaminants (Supplemental Methods).
The net incremental AUC (iAUC) was calculated for each metabolite in
the postprandial phase using R (v.3.1.2, MESS R package; R Foundation
for Statistical Computing). After principal components analysis, a group
of samples obtained from one male subject were considered as technical
outliers (outside the Hotelling T2 ellipse with 95% CI) and removed
from the dataset, resulting in ten subjects remaining out of eleven
subjects. The dataset was further reduced by retaining only metabolites
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FIGURE 1 Overview of the controlled, crossover study design. During the intervention day, 11 healthy subjects ingested isocaloric doses of
three test products in random order (A = milk, B = cheese, C = soy drink). Serum and pooled urine samples were collected after an overnight
fast and postprandially, up to 6 h for serum and up to 12 h for urine. The following day after fasting, serum and pooled urine samples were
collected. The participants followed a 2-d restricted diet before the intervention day and consumed a controlled diet composed of standardized
meals during the study.

that presented a significant postprandial response after ≥1 of the three
test foods [nonparametric analysis of longitudinal data (nparLD); R
package; 0.05 as the P-value significance cutoff] (24). Similarly, a paired
Wilcoxon signed-rank test was used to identify and filter for metabolites
presenting a significant change in fasting serum concentrations after
24 h (t = 0 h vs. t = 24 h). The same data-reduction procedure was
used on the dataset from urine samples.

Selection of discriminant metabolites by multivariate

statistical analysis.
Partial least-square discriminant analysis (PLS-DA) was performed
to differentiate serum samples collected after milk, cheese, and soy
drink intake (SIMCA-P software v.14.0; Umetrics). Orthogonal PLS-DA
(OPLS-DA) was carried out for 1 by 2 comparisons (milk vs. cheese/soy
drink, cheese vs. milk/soy drink, and soy drink vs. cheese/milk). The
dataset was scaled using the Pareto method. Validity of the models
was evaluated by the goodness-of-fit parameter (R2Y), the predictive
ability parameter (Q2; calculated by 10-fold cross-validation, Q2 >0.50
as a cutoff value), ANOVA of the cross-validated residuals to confirm
the reliability of the model (CV-ANOVA; P < 0.05 as a significance
threshold) (25), and permutation tests with 999 random permutations
to exclude any random separation of the sample groups (26). Finally,
discriminant metabolites were selected based on variable importance in
projection (VIP) scores (VIP >1.5 as a cutoff value).

Univariate statistical analysis, postprandial kinetics, and

mass distribution of discriminant metabolites.
For the discriminant metabolites selected by multivariate analysis (VIP
score >1.5), the Kruskal-Wallis test was also applied to assess the
effect of test foods, at each time point and on the 6-h postprandial
iAUC (P < 0.05 as the significance threshold). When significant,
the Kruskal-Wallis test was completed by a post-hoc Conover-Iman
pairwise comparison test. The same approach was used to compare
the levels of selected discriminant metabolites in different subgroups of
subjects. Metabolites discriminant for milk, cheese, or soy intake were
clustered according to their postprandial kinetics after the intake of
each of the three foods. Hierarchical clustering analysis was performed
using the R pheatmap package (version 1.0.12) with maximum distance
measure and Ward’s linkage. The mass distributions of discriminant
metabolites for milk and cheese intake (smoothed densities of m/z values
using R) were compared using the Kolmogorov-Smirnov test (P < 0.05
as the significance threshold).

Identification of discriminant metabolites
The Human Metabolome Database (27), the MassBank of North
America (28), and the National Institute of Standards and Technology
database (NIST v14) were used with a 5-ppm mass accuracy
threshold for the identification of discriminant metabolites. Identity
suggestions from databases were then confirmed by MS fragmentation
data (when available) and/or with the injection of pure standards
solutions. The list of standards suppliers is given in the Supplemental
Methods.

The level of identification of each discriminant metabolite is defined
according to the Metabolomics Standards Initiative recommendations
(29), as follows—level 1: compounds were identified by comparison
to a pure reference based on spectral data (molecular weight with
a 5-ppm accuracy threshold, fragmentation pattern when available,
isotopic distribution, and retention time with 10% accuracy threshold);
level 2: without chemical standards, based on spectral data; level 3:
putatively characterized compound classes; and level 4: unknown
compound. Discriminant metabolites were considered as putative
BFIs if they showed an increase in postprandial or fasting serum
collected after the intake of the food of interest. The presence of the
putative BFIs selected in serum was investigated in the filtered urine
dataset.

Results
Serum metabolome postprandial response

Following data filtering, a total of 2988 unique serum
metabolites were detected. A total of 1639 metabolites (55%)
showed a significant postprandial kinetic after the ingestion
of ≥ 1 of the three test foods (nparLD test, nonadjusted P
< 0.05). Interestingly, one-third of the postprandial metabolome
(973 metabolites, 32.6%) showed a postprandial response
specifically after the intake of one of the three foods (382
metabolites showed a dynamic response only after the intake
of milk, 426 only after cheese intake, and 165 only after soy
intake). A total of 430 metabolites (14%) showed a significant
difference in fasting serum 24 h after the intake of ≥1 of the
test foods (Wilcoxon test, nonadjusted P < 0.05). Detailed
numbers of metabolites showing a significant postprandial
response or significant change in fasting serum are given
in Table 1.
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TABLE 1 Serum metabolites presenting a significant postprandial response, or a significant
change in 24 h fasting serum after the ingestion of milk, cheese, or soy in healthy adults1

Significant postprandial
response2

Significant change in 24-h
fasting serum3

Serum metabolites, n % of total Serum metabolites, n % of total

After ≥1 food 1639 54.9 430 14.4
Including milk 901 30.2 184 6.2
Including cheese 1005 33.6 155 5.2
Including soy 736 24.6 220 7.4

After 1 food only 973 32.6 333 11.1
Milk only 382 12.8 102 3.4
Cheese only 426 14.3 96 3.2
Soy only 165 5.5 135 4.5

After ≥2 foods 666 22.3 98 3.3
Milk and cheese 432 14.5 43 1.4
Milk and soy 424 14.2 69 2.3
Cheese and soy 484 16.2 46 1.5

After 2 foods only 329 11.0 68 2.3
Milk and cheese only 95 3.2 13 0.4
Milk and soy only 87 2.9 39 1.3
Cheese and soy only 147 4.9 16 0.5

After all 3 foods 337 11.3 30 1.0

1n = 10 subjects. Serum metabolome measured by LC-MS untargeted metabolomics, 2988 unique metabolites detected.
2Postprandial time effect evaluated by nonparametric longitudinal data analysis (P < 0.05 as the significance threshold).
3Change in fasting serum evaluated by paired Wilcoxon signed-rank test (P < 0.05 as the significance threshold).

Differentiation of serum samples by multivariate
statistical analysis

PLS-DA analysis using the selection of 1639 postprandial serum
metabolites showed a clear separation of serum samples taken
postprandially after milk, cheese, or soy intake (Supplemental
Figure 2). The model showed good fit and predictability
(R2 = 0.88, Q2 = 0.62, CV-ANOVA P = 1.3 × 10−3).

Postprandial 1-by-2 OPLS-DA comparisons indicated that
serum taken after a test food could be differentiated from serum
taken after the 2 other foods (milk vs. soy/cheese, cheese vs.
milk/soy, or soy vs. milk/cheese). The strongest separation was
obtained when comparing serum samples taken after soy drink
intake against nonsoy intake (soy vs. milk/cheese) (R2 = 0.95,
Q2 = 0.78, CV-ANOVA P = 5.3 × 10−8). The lowest pre-
dictability was observed when comparing milk intake against
nonmilk intake (milk vs. cheese/soy) (R2 = 0.88, Q2 = 0.55,
CV-ANOVA P = 3.4 × 10−3) (Supplemental Figures 3–
5). Conversely, PLS-DA analysis using the selection of 430
metabolites could not differentiate serum samples taken under
fasting condition 24 h after the ingestion of milk, cheese, or soy
(R2 = 0.36, Q2 = 0.16, CV-ANOVA P = 3.8 × 10−1; data
not shown). OPLS-DA 1-by-2 comparisons showed that only
soy intake compared with nonsoy intake led to a difference in
24-h fasting serum, the Q2 value reaching almost the cut-
off value of 0.50 (R2 = 0.91, Q2 = 0.45, CV-ANOVA
P = 8.8 × 10−3) (Supplemental Figure 6). Serum samples taken
24 h after milk or cheese intake could not be differentiated from
samples taken after nonmilk and noncheese intake, respectively
(R2 = 0.97, Q2 = 0.37, CV-ANOVA P = 2.1 × 10−1,
and R2 = 0.99, Q2 = 0.31, CV-ANOVA P = 5.8 × 10−1,
respectively; data not shown).

A total of 297 metabolites were considered discriminant (VIP
>1.5): 261 in the postprandial phase, including 65 metabolites
for milk intake (25%); 124 metabolites for cheese intake
(47%); and 72 for soy intake (28%). Forty-five metabolites

were considered discriminant for soy intake in 24-h fasting
serum.

Metabolites discriminant for milk, cheese, and soy
drink intake showed different postprandial kinetics
and mass distributions

The postprandial kinetics of metabolites discriminant for milk,
cheese, or soy drink intake were classified by hierarchical
clustering analyses (Figure 2). Interestingly, heatmaps showed
that metabolites discriminant for milk, cheese, or soy drink
intake present different postprandial kinetics. While metabolites
discriminant for cheese intake (Figure 2B) are mostly metabo-
lites that increased in serum during the early (cluster 1) or late
(cluster 2) postprandial phase, metabolites discriminant for milk
intake (Figure 2A) are essentially metabolites that, compared
with cheese and soy drink intake, remain unchanged (cluster
2) or decreased (cluster 3) postprandially. Only one-third of
the metabolites discriminant for milk intake showed increased
iAUCs compared with cheese and soy intake (cluster 1). Most of
metabolites discriminant for soy drink intake (Figure 2C) either
decreased (cluster 1) or increased only in the late postprandial
phase (cluster 2).

In addition, to further characterize the selected BFIs, and in
particular the influence of the fermentation step, metabolites
discriminant for milk and cheese intake were compared accord-
ing to their mass distribution. This analysis revealed bimodal
distributions of the masses centered at masses (m/z) of ∼300 and
600 Da. However, compared with the response after milk intake,
the relative distribution of these masses was shifted toward the
lower masses after cheese intake. Overall, a statistical analysis
of these distributions showed that metabolites discriminant for
cheese intake had a significantly lower mass distribution than
metabolites discriminant for milk intake (P = 4.1 × 10−4;
Figure 2D).
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FIGURE 2 Postprandial kinetics and mass distributions of metabolites discriminant for milk, cheese, or soy drink intake in serum of healthy
adults (n = 10). Metabolites discriminant for milk (A), cheese (B), and soy drink (C) intake were selected by 1-by-2 OPLS-DA analysis (VIP score
>1.5 as the significance threshold). Hierarchical clustering analysis according to postprandial kinetics after the intake of each of the 3 foods was
performed using Maximum’s distance measure and Ward linkage. The circled numbers 1 to 3 in the figures refer to the cluster numbering. Mass
distribution density plots of discriminant metabolites (D) were compared using the Kolmogorov-Smirnov test. ∗Significant difference between
mass distributions (P < 0.05). OPLS-DA, orthogonal projections to latent structures discriminant analysis; VIP score, variable importance in
projection for the predictive component.

Identification of discriminant metabolites and
selection of putative BFIs

Of the 297 discriminant metabolites that were selected in
postprandial and/or fasting serum, 9 have been identified at level
1, 23 at level 2, and 30 at level 3, and 199 at level 4 remained
unknown. Supplemental Table 1 details all of the discriminant
metabolites.

Among the discriminant metabolites with level 1 identifica-
tion, 8 were considered as putative BFIs (Table 2), with 5 also
being detected in urine. Two BFIs were specific to milk intake:
blood group H disaccharide (2-O-a-L-fucopyranosyl-galactose;
BGH) and Lewis A trisaccharide (3-O-b-D-galactopyranosyl-
4-O-a-L-fucopyranosyl-N-acetyl-D-glucosamine; LeA). The an-
alytical method used could not differentiate galactonic acid
from gluconic acid (stereoisomers) as the standards of both
compounds had identical retention time, but this metabolite
was specific to milk intake. Six discriminant metabolites
were considered as putative BFIs for cheese: aminoadipic
acid, citrulline, valyl-threonine (VT), phenylalanyl-proline (FP),
indole-3-lactic acid (ILA), and proline. The specificity of
aminoadipic acid is, however, limited as it showed a significant
postprandial increase after the intake of each of the 3 foods
(nparLD, P < 0.05). The most important change was observed
after cheese intake, especially after 4 h, resulting in a higher
iAUC (VIP cheese vs. non-cheese = 1.84).

Supplemental Figures 7–15 show the serum and
urine postprandial kinetics of the 8 putative BFIs, and

Supplemental Tables 2 and 3 present the P values for the
Kruskal-Wallis and the Conover-Iman tests at each time
point.

LeA and BGH after milk intake

LeA and BGH were identified as putative BFIs for milk.
Both showed significant postprandial responses (serum nparLD:
P = 1.6 × 10−2 and P = 1.9 × 10−2, respectively), although their
kinetics indicated high interindividual variability (Supplemental
Figures 7 and 8). Interestingly, individual kinetics revealed
that this variability was due to the presence of three distinct
groups of subjects (Figure 3): subjects showing a postprandial
increase for LeA but not for BGH (LeA increase group), subjects
showing a postprandial increase for BGH but not for LeA
(BGH increase group), and subjects who did not show any
increase for either of the two metabolites (No increase group).
The postprandial increase in LeA and BGH reached a peak
at ∼2 h, and returned to baseline after 6 h. In both cases,
no difference was visible in 24-h fasting serum. Interestingly,
the patterns observed in serum for BGH were confirmed in
urine (Figure 3C, F) but not for LeA as it was not detected
in urine. Significant differences were observed between the
three groups of subjects when comparing serum or urine
iAUCs using a Kruskal-Wallis test completed by a Conover-
Iman pairwise comparison test (Figure 3D–F; Supplemental
Table 4).
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TABLE 2 Identified BFIs for milk or cheese selected by 1-by-2 OPLS-DA analysis in serum of healthy adults1

Retention time,
min

Adduct mass,
Da/charge

Neutral mass,
Da Identification HMDB ID Adducts

Identification
level2

Food source
of BFIs3

1.07 349.110 326.121 Blood group H disaccharide∗ HMDB06590 +Na 1 Milk
1.14 530.207 529.200 Lewis A trisaccharide HMDB06582 +H, +Na 1 Milk
1.02 219.047 196.058 Galactonic acid/gluconic acid∗ HMDB00565/HMDB00625 +Na 3 (hydroxy acid) Milk
1.07 162.076 161.068 Aminoadipic acid∗ HMDB00510 +H, +2Na-H, +Na, +H-H2O 1 Cheese
0.99 176.103 175.095 Citrulline HMDB00904 +H, +2Na-H, +Na 1 Cheese
1.18 219.134 218.127 Valyl-threonine HMDB29137 +H, 2M+H 1 Cheese
5.08 263.139 262.131 Phenylalanyl-proline∗ HMDB11177 +H 1 Cheese
6.55 206.081 205.074 Indolelactic acid∗ HMDB00671 +H, +Na, +NH4, +2Na-H 1 Cheese
1.07 116.071 115.063 Proline HMDB00162 +H, +Na, +2Na-H 1 Cheese

1n = 10 subjects. The isomers galactonic acid and gluconic acid could not be differentiated. ∗BFIs also detected in urine. Postprandial kinetics in serum and urine are detailed in
Supplemental Figures 7–15. BFI, biomarker of food intake; HMDB ID, Human Metabolome Database Identification number; OPLS-DA, orthogonal projections to latent
structures discriminant analysis.
2Identification levels: 1, identified by comparison to a pure reference; 3, putatively characterized compound classes.
3Selected as a BFI when VIP score >1.5 in 1-by-2 OPLS-DA analyses.

Discussion
General trends

Using untargeted metabolomics, we observed that the intake
of milk, cheese, or soy leads to distinct postprandial serum
metabolomes. Likely due to the plant origin of the test food,
soy intake results in the most specific response, in accordance
with the observations of Münger et al. (12) and Trimigno et al.
(13). The results show that the majority of metabolites have a

postprandial response that is not specific to the intake of a single
food. In fact, we expect that the fraction of the postprandial
metabolome responding specifically to the intake of a single
food would further decrease as the number of control foods is
increased, rendering the identification of specific BFIs difficult.

The postprandial phase after acute intake showed its
efficiency to identify putative BFIs; however, their validity
was not confirmed in fasting serum 24 h after ingestion, as

FIGURE 3 Interindividual variability in LeA and the BGH after milk intake in healthy adults. Serum LeA (A), serum BGH (B), and urine BGH (C)
measured 6 h postprandially after milk intake in ten healthy subjects. Subjects were separated into three groups according to their postprandial
response: LeA increase (n = 4), BGH increase (n = 4), and no increase (n = 2). Comparison of postprandial responses of the three subject
groups used iAUCs (D–F), IQRs plotted with medians. Means with different superscript letters (a, b, c) denote significant differences using a
Kruskal-Wallis test completed by a Conover-Iman pairwise comparison test ( P < 0.05). A.U., arbitrary units; BGH, blood group H disaccharide;
iAUC, incremental AUC; LeA, Lewis A trisaccharide.
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previously observed (12). As the heatmap of kinetics suggests,
the concentrations of many of the discriminant metabolites
returned to baseline values 6 h after ingestion, in line with the
very nature of nutrition, which is characterized by the repetition
of multiple daily meals across the lifespan. The transient nature
of the postprandial metabolome generally indicates that the
identified metabolites can likely only be used as short-term
BFIs or as markers of the quality of the metabolic response
of the human organism to food intake. Nevertheless, the small
sample size of the study and the single intake tested here may
have prevented confirmation of significant differences in fasting
serum (if any). Therefore, a validation of the postprandial BFIs
in fasting samples from observational cohorts is essential and
may be efficient as such studies provide larger sample sizes and
samples taken after repeated intakes (14, 30, 31).

Heatmaps also reveal that metabolites discriminant for
milk, cheese, or soy drink intake differ in their overall
postprandial kinetics (early or late increase or decrease).
Surprisingly, about one-third of the metabolites discriminant
for milk intake decrease postprandially while increasing after
cheese or soy intake. This observation suggests that milk
intake downregulates endogenous metabolites and pathways.
Conversely, most of metabolites discriminant for cheese intake
increase postprandially and, therefore, are most likely absorbed
exogenous compounds. Interestingly, the BFIs for cheese have
a significant lower mass distribution than the BFIs for milk.
A similar observation was made when comparing milk and
yogurt intake (32). This shift in the postprandial mass
distribution of discriminant metabolites could be indicative of
a “predigestive” effect of fermentation on milk, resulting in
the production and the absorption of specific low-molecular-
weight compounds (e.g., SCFAs, oligonucleotides, or free amino
acids).

Biomarkers of cheese intake

While aminoadipic acid was discriminant for cheese intake, its
use as a BFI is not recommended as increases were also observed
after milk and soy intake. Aminoadipic acid is an intermediate in
lysine metabolism (33), and a significant postprandial increase
in serum lysine was observed after the intake of all three foods
(data not shown). The higher concentrations of aminoadipic
acid in serum after cheese intake could be attributed to higher
amounts in cheese as it has been identified as a product of
fermentation (34, 35). Nevertheless, higher concentrations of
aminoadipic acid have also been reported after meat and fish
intake (36) and after purple grumixama intake (37).

In contrast to aminoadipic acid, citrulline was a clear BFI
for cheese, especially after 1 and 2 h. Citrulline can be produced
from dietary arginine, proline, or glutamine by enterocytes (38),
and consequently its concentration in blood is used by clinicians
to evaluate gut integrity (39). Stanstrup et al. (22) reported
higher serum citrulline concentrations at 2 h postprandially
after whey protein intake compared with casein, gluten, or cod
protein intake, suggesting greater arginine or proline uptake.
Although we did not observe a significant difference in arginine
concentrations (data not shown), we did see higher proline
concentrations after the intake of cheese. The production
of citrulline from arginine by lactic acid bacteria has been
described during soy, cabbage, or milk fermentation (40–42).
It is thus likely that cheese had higher citrulline contents than
milk or soy. The use of this molecule as a BFI for cheese has not
been reported and needs to be further explored.

Two dipeptides with level 1 identification showed a clear
increase after cheese intake. “Predigestion” of milk proteins

by lactic acid bacteria during fermentation might explain the
higher concentrations of peptides in serum after the ingestion
of fermented dairy products compared with after milk intake
(43). VT and FP are both present in milk protein sequences:
β-lactoglobulin (VT), serum albumin (VT and FP), κ-casein
(VT), ɑ-S2-casein (FP), and β-casein (FP) (44). Given that any
dipeptide sequence should appear randomly every 400 amino
acids along proteomes, the specificity of the two dipeptides as
BFIs for cheese is questionable. Their relevance as a BFI has
therefore to be confirmed since they are likely to be found
in other dietary proteins. However, the frequency of valine,
threonine, phenylalanine, and proline in major dairy proteins is
higher compared with that in nondairy proteins (45), suggesting
that the presence in serum or urine of these dipeptides, possibly
in combination with others, might be useful biomarkers to
differentiate nonfermented from fermented dairy consumption.

The release of free amino acids during cheese ripening has
been well described (46) and would directly explain the higher
concentration in serum of free proline after cheese intake [also
observed using NMR (13) and GC-MS (12)]. It could also,
indirectly, explain the increase in serum ILA observed in our
study as ILA is an end-product of tryptophan metabolism via
the indole pathway. Free tryptophan might be metabolized into
ILA either by lactic acid bacteria during cheese ripening (32,
47) or by the host microbiota as intestinal Lactobacilli use
tryptophan as a source of energy in high tryptophan conditions,
notably through the indole pathway (48, 49). A similar increase
in postprandial serum ILA has been described after yogurt
intake compared with non–fermented milk intake, with a
persisting trend in fasting serum after 2 wk of daily consumption
(32). These observations qualify ILA (and potentially other
indole derivatives) as candidate BFIs for fermented dairy
consumption.

Biomarkers of milk intake

The presence of galactonic acid in serum samples is likely
due to the oxidation of serum galactose, which is known
to increase postprandially following the ingestion of a high
quantity of milk (20, 21). Galactonic acid was previously
detected in postprandial serum and urine samples from the
same study using GC-MS (12, 13), confirming its potential use
as a biomarker of milk intake, as proposed by Vionnet et al.
(21) in postprandial samples and Playdon et al. (50) in fasting
serum samples. While measurement using LC-MS could not
differentiate galactonic acid from its isomer gluconic acid, the
above-mentioned literature suggests that the biomarker would
indeed be galactonic acid.

LeA and BGH as biomarkers of milk intake subject to
interindividual variability

The presence of LeA and BGH in serum is particularly
interesting as it demonstrates, for the first time, their appearance
in adults after the ingestion of bovine milk. LeA and BGH
are two fucosylated oligosaccharides composed of galactose-
fucose-N-acetylglucosamine and fucose-galactose, respectively
(Figure 4). Contrary to human milk oligosaccharides, bovine
milk oligosaccharides are not fucosylated (51, 52), or are in a
very limited proportion (<1%) (53); the two compounds might
therefore be of endogenous origin. In humans, fucosylation of
carbohydrates occurs in the epithelial lining of the pulmonary,
urinary, reproductive, and most importantly, gastrointestinal
tract. The resulting fucosylated compounds are then found at
the tissue surface, in the respective mucosal secretions, as well
as in plasma (54, 55). Intestinal fucosylation takes place in

Lewis system oligosaccharides after milk intake 7

D
ow

nloaded from
 https://academ

ic.oup.com
/jn/advance-article-abstract/doi/10.1093/jn/nxaa029/5781212 by guest on 05 M

arch 2020



R R 

FUT3 FUT2 

Lewis A 
trisaccharide 

Blood group H 
disaccharide 

Type 1 
precursor 

Non-secretor 
phenotype 

Galactose N-acetylglucosamine Fucose 

Lewis negative phenotype 

Secretor 
phenotype 

R 

FIGURE 4 Schematic diagram for the formation of BGH or LeA
motives on a type 1 precursor chain, in secretor and nonsecretor
subjects. BGH, blood group H disaccharide; FUT2, fucosyl transferase
2; FUT3, fucosyl transferase 3; LeA, Lewis A trisaccharide.

the brush-border enterocytes and mainly relies on expression
of the fucosyltransferase (FUT) 2 and 3 genes (FUT2, FUT3),
which control the addition of a fucose molecule, respectively,
on the galactose or the N-acetylglucosamine of a type 1
precursor chain (Figure 4) (55). FUT2 and FUT3 enzymes act in
competition, with FUT2 having greater activity. This antigenic
pattern consisting of a fucosylated type 1 precursor is at the
basis of the Lewis antigen system. In humans, three main
Lewis phenotypes have been described due to polymorphisms
on the FUT2 and FUT3 genes: secretor status (FUT2 active,
resulting in fucosylated galactose, ∼72% in Caucasians),
nonsecretor status (FUT2 inactive, FUT3 active, resulting in
fucosylated N-acetylglucosamine, ∼22% in Caucasians), and
Lewis negative (FUT2 and FUT3 both inactive, resulting in
no fucosylation of the precursor chain, ∼6% in Caucasians)
(55). Polymorphism in FUT genes could therefore explain
the interindividual variability observed in our study for the
BGH and LeA response after milk intake and the presence
of three clear groups of subjects: postprandial increase in
BGH (fucosylated galactose), postprandial increase in LeA
(fucosylated N-acetylglucosamine), or no increase.

The biological benefits of milk oligosaccharides and fu-
cosylation have been extensively investigated, in particular
regarding the benefits of human breast milk for newborns
(56–58). Fucosylated oligosaccharides at the intestinal surface
are used as targets by various pathogenic bacteria and viruses
to adhere to the epithelium (59–61). The high concentrations
of free LeA in human milk might thus act as an analog
to inhibit the binding of pathogens in newborns (62). The
link between Lewis antigen phenotype and susceptibility to
various gut infections has been demonstrated in children and
adults. In particular, minor alleles of FUT3 polymorphisms
appear to increase susceptibility to ulcerative colitis (63),
whereas minor alleles of FUT2 polymorphism are associated
with increased susceptibility to celiac disease (64), as well as
increased risks of Escherichia coli (65) and Staphylococcus
aureus (66) infections. On the other hand, the same FUT2
polymorphisms are associated with resistance to norovirus (67–
69) and rotavirus (70) infections and reduced risk of diarrhea
(71). Furthermore, the secretor/nonsecretor status has been
associated with susceptibility to various diseases such as type 1
diabetes (72), asthma (73, 74), and cardiovascular diseases (75).
Finally, intestinal fucosylated glycan structures can be used as a
substrate by specific colonic bacteria such as Bifidobacterium

species or Ruminococcus, Clostridium, and Akkermansia
genera (76, 77). Consequently, the secretor/nonsecretor status
has a key influence on the microbiota composition, in particular
on the Bifidobacteria population (78, 79), an effect that could
be modulated by diet (80).

The limited sample size of our study did not allow for
powerful statistical comparison of the three subject groups
observed here; however, the clear postprandial kinetics with
five consecutive time points and the dichotomic behavior of
the two metabolites, which is in line with current knowledge
on the biochemical pathways and genetic polymorphisms
leading to the production of Lewis A antigens, underline the
plausibility of our findings and encourage further investigations
in independent larger studies.

In conclusion, by extending the analysis of the serum
and urine metabolomes using LC-MS, we could identify new
candidate BFIs for milk, cheese, and soy. Among the identified
BFIs, only two (proline and galactonic/gluconic acid) were
previously identified using GC-MS and NMR, highlighting
the relevance of multiplatform metabolomics. However, the
validation of BFIs is a complex process and requires testing
their plausibility, dose–response, time–response, robustness,
reliability, stability, analytical performance, and interlaboratory
reproducibility (14). The presence of LeA and BGH in serum
of adults after milk intake is of interest as such metabolites
have mainly been discussed in the context of maternal milk
and newborns. However, the link between the presence of LeA
and BGH and the subjects’ secretor or nonsecretor status still
has to be confirmed. Nevertheless, considering the extensive
effects on health related to the presence or absence of such
antigenic motifs, it would be of interest to investigate if se-
cretors benefit from drinking milk differently from nonsecretor
subjects.
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